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Expectation-based syntactic comprehension

Roger Levy
Department of Linguistics

University of California, San Diego

May 20, 2007

Abstract

This paper investigates the role of resource allocation as a source of processing dif-
ficulty in human sentence comprehension. The paper proposes a simple information-
theoretic characterization of processing difficulty as the work incurred by resource
reallocation during parallel, incremental, probabilistic disambiguation in sentence com-
prehension, and demonstrates its equivalence to the theory of Hale (2001), in which
the difficulty of a word is proportional to its surprisal (its negative log-probability)
in the context within which it appears. This proposal subsumes and clarifies findings
that high-constraint contexts can facilitate lexical processing, and connects these find-
ings to well-known models of parallel constraint-based comprehension. In addition,
the theory leads to a number of specific predictions about the role of expectation in
syntactic comprehension, including the reversal of locality-based difficulty patterns in
syntactically constrained contexts, and conditions under which increased ambiguity
facilitates processing. The paper examines a range of established results bearing on
these predictions, and shows that they are largely consistent with the surprisal theory.

Keywords:
Parsing; Frequency; Sentence Processing; Information Theory;

Prediction; Syntax; Word Order; Syntactic Complexity

1 Introduction

There are several important properties that must be accounted for by any realistic theory of
human sentence comprehension. These include:

1. robustness to imperfectly formed input;

2. accurate ambiguity resolution;

3. inference on the basis of incomplete input; and

1



4. differential, localized processing difficulty.

This paper attempts to show how these four properties can be tightly interconnected in a
probabilistic, expectation-based theory of syntactic comprehension. In particular, this paper
focuses on deriving a theory of Property 4—namely, that not all sentences are equally easy
to comprehend, and different parts of sentences differ in their difficulty—from Properties 1
through 3.

To a considerable extent, the dominant paradigm for investigating differential processing
difficulty has been what I will call resource-requirement or resource-limitation theories. These
propose that:

� some syntactic structures require more of a given resource than do others; and

� that resource is in short supply in the human parser; and

� this gives rise to greater processing difficulty for more resource-intensive structures.

Typically this limited resource is some form of memory. The resource-limitation position has
also come to inform a persistent view of ambiguity resolution: the resource-limited parser
can only pursue one alternative at a time (i.e., the parser is serial), and in the face of local
ambiguity, the processor chooses the alternative that minimizes the resources consumed.
This viewpoint has inspired a variety of ambiguity resolution theories, including Late Closure
(Frazier and Fodor, 1978) and Minimal Attachment (Frazier, 1979). Perhaps the most salient
modern incarnations of memory-centered resource-requirement theories are, for ambiguity
resolution, the Active Filler Hypothesis (AFH; Clifton and Frazier 1989); and, for locally
unambiguous sentences, the Dependency Locality Theory (DLT; Gibson 1998, 2000).

At the same time, an alternative line of research has focused on the role of expectations in
syntactic processing. This idea has historically been associated most closely with constraint-
satisfaction processing models such as those of MacDonald (1993); MacDonald et al. (1994);
Tanenhaus et al. (1995), and McRae et al. (1998), and can be traced back to early work by
Marslen-Wilson (1975).1 This line of work typically takes a strong integrationist and paral-
lelist perspective: the comprehender draws on a variety of information sources (structural,
lexical, pragmatic, discourse) to evaluate in parallel a number of possible alternatives for
the input seen thus far. For the most part, the primary concern of constraint-based work
has been ambiguity resolution, the argument being that possible structural analyses are
ranked according to their plausibility on a number of dimensions, rather than according to
the amount of resources they consume. Empirically observed processing difficulty after local
ambiguity resolution is informally ascribed to either a reranking of the favored analysis, or
competition between closely-ranked analyses. The constraint-based position can be thought
of as a resource-allocation approach to syntactic processing: the parser allocates different
amounts of resources to different interpretations of the partial input, and difficulty arises
when those resources turn out to be inefficiently allocated.

1See Jurafsky (2003) for a more comprehensive account of the history of expectation-based approaches
in human sentence processing, including syntactic processing.
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As argued by Jurafsky (2003), probability theory fits naturally as an underlying infras-
tructure for constraint-based approaches to express the rational (in the sense of Anderson
1990) combination of multiple information sources. The use of probability theory for psy-
cholinguistic modeling has in fact become more prevelant over the past decade, beginning
with Jurafsky (1996) and continuing in Narayanan and Jurafsky (1998, 2002); Crocker and
Brants (2000). This paper proposes a resource-allocation theory of processing difficulty
grounded in parallel probabilistic ambiguity resolution: the possible structural analyses con-
sistent with a partial input are preferentially ranked in parallel, and the difficulty of a new
word corresponds to the amount of reallocation necessary to reflect the word’s effect on the
preference ranking. Section 2 gives the derivation of this theory and shows that it turns out
to be equivalent to the surprisal theory originally proposed by Hale (2001).2 As a result
we have a single theory (simply called the surprisal theory in this paper) unifying the idea
of the work done incremental probabilistic disambiguation with expectations about upcom-
ing events in a sentence. In this theory, surprisal serves as a causal bottleneck between
the linguistic representations constructed during sentence comprehension and the processing
difficulty incurred at a given word within a sentence. This paper argues that the surprisal
theory, when conjoined with probabilistic models chosen according to appropriate principles
(see Section 3), makes a wide range of precise predictions consistent with empirical observa-
tions, while remaining relatively neutral as to the exact representations of possible structural
analyses. Section 4 contrasts the surprisal theory with alternative resource-allocation and
resource-limitation theories of processing difficulty, illustrating the general conditions under
which their predictions maximally diverge. The remainder of the paper examines a number
of established experimental results pertaining to these divergent predictions, and shows that
they lend considerable support to the surprisal theory.

2 Deriving a resource-allocation theory of processing

difficulty

This section presents a new derivation of a theory of resource-allocation processing diffi-
culty, based on a highly general conception of sentence comprehension, and accounting for
principles that are necessary for any realistic model of human sentence processing.

A language contains a (normally infinite) set of complete structures such that a fully
disambiguated utterance corresponds to exactly one structure. Each structure contains the
complete string of the utterance, plus presumably at least some other information, since
some well-formed strings are ambiguous. As an example, we might consider a complete
structure to be the string plus its syntactic/semantic analysis, so that the sentence the girl
saw the boy with a telescope might be compatible with two possible complete structures, one

2The surprisal theory of Hale (2001) is not to be confused with the Entropy Reduction Hypothesis (ERH)
of Hale (2003b,a, 2006). In the former, the difficulty of a word is determined by its log-probability; in the
latter, by the induced change in uncertainty as to the complete analysis of the sentence. These two quantities
need not be related.
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where with a telescope modifies saw and one where it modifies boy. However, we will remain
agnostic as to precisely what these complete structures contain, so long as they contain the
complete string.

We can reasonably define what it means to comprehend a sentence S as the (implicit or
explicit) construction of a preference ranking over the set of possible all possible structures T
in the language consistent with S. We will use the language of probability theory to express
preferences and rankings, so comprehension of S involves placing a probability distribution
over T once we have seen S.

There is ample evidence, however, that sentence comprehension is incremental : we do
not wait until we have heard an entire sentence to start disambiguating and comprehending.
Perhaps the most explicit demonstration of this fact comes from work in cross-modal eye-
tracking (Tanenhaus et al., 1995; Altmann and Kamide, 1999; Kaiser and Trueswell, 2004);
in Altmann and Kamide (1999), for example, listeners were found to start looking at the
plausible objects in a picture for the main verb of a sentence as soon as they heard the verb.
Comprehenders are able to make inferences about later parts of the sentence based on what
they have heard earlier in the sentence. To capture this fact, we define the comprehension
of a partial input sequence w1···i (the first i words of the sentence) to be placing a preference
(i.e., probability) distribution P T

i over the possible structures T based on w1···i, plus context
external to the sentence itself. For listeners to be capable of incremental inference, they
must be constantly updating P T

i ; for simplicity in the present context, we assume that they
update P T

i after every input word.
The probability distribution P T

i consists of an allocation of resources among the possible
interpretations of the sentence, and for the resource-allocation theory of processing difficulty
our single stipulation will be that difficulty is incurred by updating P T

i , and that difficulty
is quantified by the degree that P T

i has to be updated. To quantify the degree of difficulty
in the update we will use the relative entropy of the updated distribution with respect to
the old distribution.3 The relative entropy of a probability distribution q with respect to
another distribution p (also known as the Kullback-Leibler (KL) divergence of q from p) is
defined as

D(q||p) =
∑

T∈T

q(T ) log
q(T )

p(T )
(1)

Intuitively speaking, the relative entropy of q with respect to p can be thought of as the
penalty incurred from encoding the distribution q with p. When q = p, D(q||p) = 0, and the
greater the difference between the distributions, the greater the relative entropy.

It turns out that under this formulation of resource-allocation processing difficulty, re-
gardless of the form of complete structures T or the preference distribution P T , the pre-
dicted difficulty of the ith word, wi, is precisely equal to the surprisal of wi, which is de-
fined as the negative log-probability of wi in its sentential context (which we denote by the

3It is of interest to note that recently, researchers in vision have independently proposed the relative
entropy induced by an observation as a theoretical quantification of what drives attention in human visual
scene perception (Itti and Baldi, 2005).
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already-seen input sequence w1···i−1) and extra-sentential context (which we denote simply
by CONTEXT):

difficulty ∝ − log P (wi|w1···i−1, CONTEXT) (2)

Precisely this measure of difficulty was in fact proposed by Hale (2001). Surprisal is mini-
mized (goes to zero) when a word must appear in a given context (i.e., when
P (wi|w1 ··· i−1, CONTEXT) = 1), and approaches infinity as a word becomes less and less
likely. The simple proof of this result is given in Section 2.1, and its implications are discussed
in Section 2.2.

2.1 Proof of equivalence to surprisal

Consider any stochastic generative process P , conditioned on some (possibly null) external
context, that generates complete structures T ∈ T , each consisting at least partly of surface
strings to be identified with serial linguistic input. Examples of such processes include
but are not limited to n-gram models, Hidden Markov Models (HMMs), and probabilistic
context-free grammars (PCFGs). Furthermore, for any particular input prefix w1···i define
the probability distribution Pi as the conditional distribution over T induced by P , given
the prefix w1···i and other context:4

Pi(T ) ≡ P (T |w1···i), ∀T ∈ T (3)

and define the set Ti as the set of complete structures with prefix w1···i (note that Ti is also
the subset of T that has non-zero probability according to Pi). We will also give P and Pi a
secondary meaning as signifying joint and conditional (respectively) probability distributions
over words: P (w1···i) ≡

∑
T∈Ti

P (T ), and Pi(w) ≡ P (w|w1···i).
I will now show that

D(Pk+1||Pk) = − log Pk(wk+1) (4)

That is, the relative entropy of the distribution over hidden structures after having seen
wk+1 from the distribution before having seen wk+1 is simply equal to the surprisal of wk+1.

Proof. The proof requires only a simple application of the chain rule. First, note that for
any integer j and any T ∈ Tj,

Pj(T ) ≡ P (T |w1···j) (5)

=
P (T, w1···j)

P (w1···j)
(6)

4For convenience we will omit the CONTEXT term explicitly conditioned on in Equation (2), but it
should be understood that we are always implicitly conditioning on extra-sentential context.
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And by virtue of the fact that T is in Tj,

Pj(T ) =
P (T, w1···j)

P (w1···j)
(7)

=
P (T )

P (w1···j)
(8)

Therefore, for all T ∈ Tk+1,

Pk+1(T )

Pk(T )
=

P (T )
P (w1···k+1)

P (T )
P (w1···k)

(9)

=
P (w1···k)

P (w1···k+1)
(10)

≡
1

Pk(wk+1)
(11)

independent of T .
Therefore, the KL divergence from Pk+1 to Pk is

D(Pk+1||Pk) =
∑

T∈Tk+1

Pk+1(T ) log
Pk+1(T )

Pk(T )
(12)

= log
1

Pk(wk+1)

∑

T∈Tk+1

Pk+1(T ) (13)

= − log Pk(wk+1) (14)

Intuitively, this proof results from the fact that the ratio of the probability of any com-
plete structure T before versus after seeing a word wk+1 is constant, because the original
process generating T is the same. This constant ratio has to be the amount of probability
mass pruned away from Pk by the requirement of compatibility with wk+1—in other words,
the conditional probability of wk+1, as seen in Equation 11. This is the probability ratio
term in the KL divergence, as seen in Equation 13, and because it is constant, the proba-
bility over structures T can be independently summed out. Finally, note that this proof of
equivalence only holds if the extrasentential context does not change at the same time as
wk+1 is processed; if the extrasentential context is changed, the constancy of the ratio

Pk+1(T )

Pk(T )

in 11 may be broken.
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2.2 Implications of relative-entropy derivation of surprisal

This equivalence has important implications for how we conceptualize the incremental pars-
ing process. In a fully parallel, incremental probabilistic parser capable of online inference
(that is, inference before input is complete), storing the complete set of ranked partial parses
consistent with already-seen input is also equivalent to assigning a probability distribution
over the complete structures to which the already-seen input may possibly extend. Upon
termination of the input, this set of ranked partial parses determines a most-likely interpre-
tation. On the way, after every new input token, such a parser must update its collection of
ranked partial parses—and therefore its distribution over completed parses—to reflect the
new information. Intuitively, the relative entropy from a distribution p to another distribu-
tion q measures the penalty incurred by encoding, or approximating, q with p. The surprisal
can therefore be interpreted as the difficulty incurred in replacing the old distribution with
the new. A word’s surprisal is also, of course, a measure of its expectancy.

Deriving surprisal as a special case of reranking-based difficulty thus addresses a potential
conceptual vulnerability of expectation-based approaches. It might be thought that calculat-
ing expectations about upcoming structures in a sentence can be computationally expensive,
so why would the human parser waste resources on constantly calculating and updating the
likelihood of upcoming words and/or structures in a sentence? For those who are inclined
to think of incremental structure-building and disambiguation as the fundamental type of
work that needs to be done in sentence comprehension, we now have a clear answer to this
challenge: surprisal as the predicted difficulty of word wi falls out of the incremental up-
date process itself. Expectations about upcoming words in a sentence need not be explicitly
calculated; rather, they are implicit in the partial parse of an incomplete input.

2.3 Surprisal as a causal bottleneck

The hypothesis that the surprisal of a word (or, equivalently, the relative entropy induced
by the word between the distributions over interpretations of the partial sentence) is a de-
terminant of that word’s processing difficulty has an interesting and convenient property:
surprisal functions as a causal bottleneck between representations and behavioral observ-
ables.5 As pointed out in Section 2.1, many different classes of generative stochastic process
can determine conditional word probabilities. For any given class of process, there are many
different representational choices that may affect the conditional word probabilities that
result—including the inventory of states, the independence assumptions between compo-
nents of the process, and the parameter values that are ultimately chosen or fitted. Under
the surprisal (or equivalently, the relative-entropy) theory, however, those representational
choices affect predictions about incremental processing difficulty exclusively through the
conditional word probabilities that they determine. Any two generative stochastic processes
that determine the same set of conditional word probabilities will make exactly the same
predictions about processing difficulty, regardless of the representational content of these

5I am particularly grateful to Andrew Kehler and an anonymous reviewer for helping clarify presentation
of the ideas in this section.
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Figure 1: Surprisal as a causal bottleneck

processes or even the nature of the underlying (“hidden”) structures within the process.
Furthermore, the probabilistic string model may be more directly inspectable: we might, for
example, hypothesize a close relationship between probabilistic string models derived from
comprehension models and Cloze probabilities resulting from sentence completion experi-
ments (see Section 4.1 for a more detailed discussion). This property of surprisal contrasts
with nearly every other proposed probabilistic theory of sentence comprehension, including
competition theories (Section 4.3), the Tuning Hypothesis (Section 4.4), and pruning and
attention shift theories (Section 4.5), in which representation affects predictions about pro-
cessing difficulty more directly. This causal bottleneck property is illustrated schematically
in Figure 1b, alongside the contrasting situation in Figure 1a, where representational choices
have more direct effects on predictions about comprehension difficulty.

For example, McDonald and Shillcock (2003a,b) show that a word’s bigram (also called
transitional) probability is a significant predictor of reading times for a corpus of eye move-
ments from the reading of British newspaper articles. A bigram word model is a conditional
probability model over strings. Referring once again to the causal-bottleneck schematic
in Figure 1, it becomes clear that we do not need to conclude from McDonald and Shill-
cock’s work that the human parser directly tracks bigrams (although the authors themselves
conclude something close to this). We can instead conclude more agnostically that the
probabilistic grammatical models used by the human parser for incremental processing and
disambiguation determine probabilistic languages that, at a minimum, sensitize the prob-
ability of a word wi to the word wi−1 that immediately precedes it. This encompasses a
wide range of probabilistic structures, including not only n-grams but also, for example,
some types of lexicalized PCFGs (Charniak, 2001). Under the surprisal theory, we might
expect that McDonald and Shillcock’s results are due to an overall correlation between bi-
gram probabilities and the presumably more refined word surprisals deriving from the human
parser’s capacity for sophisticated probabilistic disambiguation; and in fact, Frisson et al.
(2005) present results suggesting that bigram probability effects on reading times disappear
when Cloze probabilities are tightly controlled.6 The causal bottleneck property is also im-

6In addition to the weakly Cloze-controlled study of McDonald and Shillcock (2003a) refuted by Frisson
et al. (2005), McDonald and Shillcock also give another reason for concluding that the human parser directly
tracks bigrams: they found a significant effect of backward transitional probabilities (i.e., P (wi|wi+1)) on the
reading difficulty of a given word wi. There is, however, another natural interpretation of this result: the
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portant in the analysis of experiments involving German word order in Sections 5 and 7: the
precise representation of German word order varies dramatically across different syntactic
frameworks, but even relatively simple context-free rules capture the relevant distributional
patterns of constituents within German-language sentences. Under surprisal, the finding
that reading-time patterns reflect these distributional patterns can be taken as support for
the hypothesis that native speakers of German, in the process of online sentence comprehen-
sion, construct and are sensitive to statistical information involving descriptions containing
information equivalent to these context-free rules.

A closely related point has to do with bias in estimating word-by-word comprehension
difficulty. Many stochastic string-generating processes (including HMMs and PCFGs) gen-
erate unobserved hidden structure “behind” the string whose granularity is not known a
priori. In order to determine a specific probabilistic model, a granularity level must be
chosen and the relevant event probabilities must be estimated with respect to that granu-
larity. Because a word’s surprisal is totally dependent on the resulting probabilistic string
language, however, a refinement in granularity level will not result in a change in surprisal
predictions of a maximum-likelihood estimated model unless there are empirical differences
in the relevant event probabilities at the finer granularity. As an example, in PCFG model-
ing we might wonder whether to grammatically distinguish animacy at the level of the noun
phrase. Adding a binary animacy distinction to the grammar, for example, would split the
following two rules into four:

(1) a. VP → V NP ;

VP → V NP[+anim]
VP → V NP[−anim]

b. NP → Det N ;

NP[+anim] → Det N[+anim]
NP[−anim] → Det N[−anim]

Now suppose that animate and inanimate NPs occur in VPs with the same relative fre-
quency as they occur in the corpus as a whole.7 Under these circumstances, the resulting
animacy-distinguished PCFG still determines exactly the same probabilistic string model,
and so its surprisal predictions will be unchanged. (If animate NPs tended to appear dispro-
portionately often or rarely inside VPs, the resulting probabilistic string model and surprisal
would of course reflect this, as would be desired.) That is, making the probabilistic grammar
more fine-grained has no inherent effect on the predictions about processing difficulty made
by surprisal—what matters is whether the finer granularity level leads to the capturing of
additional important statistical regularities that the coarser-grained grammar would miss.
This lack of granularity-induced bias also contrasts with several other proposed probabilis-
tic theories of syntactic comprehension described in Section 4. For a competition model,

high redundancy of natural English text means that a word’s backward transitional probability will generally
be correlated with its global left-contextual probability (i.e., P (wi|w1···i−1)), even when forward transitional
probabilities are accounted for.

7Formally, that P(VP→ V NP[+anim])
P(VP→ V NP[−anim]) = P(NP[+anim])

P(NP[−anim]) . If additional rewrite rules for NPs appear in the

grammar, then their probabilities for animate and inanimate NPs must also be matched.
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for example (Section 4.3), the question arises of whether analyses containing animate and
inanimate NP categories compete with each other. For pruning or attention-shift models
(Section 4.5), the finer grain size may have an impact on what will get pruned, or what is
the top-ranked analysis at a given point.

2.4 Psychological Plausibility

In most cases, a partial input w1···i will be compatible with an infinite number of complete
structures T—we can see this simply from the fact that the beginnings of most sentences
can be completed in an infinite number of ways. Therefore, it is neither psychologically nor
practically possible for the distribution D to be implemented as an enumeration over com-
plete structures. Rather, D would be implicitly determined by some tractable incremental
processing algorithm, such as a chart parser (Kay, 1980). Hale (2001) points out that for
PCFGs, a probabilistic Earley parser (Stolcke, 1995) determines word-by-word surprisals as
a side effect. Other natural formalizations of incremental comprehension might also lead to
relative entropy as a natural measure of processing difficulty; the crucial intuition, consis-
tent with the notion of expectation, is that work is required to rule out continuations of an
incremental input that might have been, but were not.8

The question also arises of how strongly the surprisal theory is a commitment to full
parallelism: that all possible structural analyses of a sentence are maintained during online
comprehension. As Jurafsky (1996) points out, full parallelism becomes less tractable as a
wider variety of information sources is brought to bear in probabilistic disambiguation. This
leads to the possibility that parallelism in the human parser is limited : more than one, but not
all, of possible analyses are maintained in the course of online comprehension. Without full
parallelism, the strict equivalence between relative entropy and conditional word probability
derived in Section 2.1 (and together with it the causal bottleneck property, if one takes
the relative entropy measure as primitive) is lost. However, evidence from the probabilistic
parsing literature (Roark, 2001; Henderson, 2004) suggests that in typical sentences, most
of the probability mass is focused on a small number of highly-ranked analyses. To the
extent that this is true, the relative-entropy/surprisal equivalence will be approximate, and
the results described in further sections of this paper should remain valid. The results of
Sections 6 and 7 include cases where parallelism (maintaining at least two candidates) under
surprisal is crucial to giving new explanations for results involving facilitative ambiguity and
default grammatical function preferences.

8As pointed out by one reviewer, updating a set of probabilities need not in principle be more work- or
resource-intensive when the numerical magnitudes of the changes are larger. However, it seems plausible that
probabilities allocated to incremental interpretations would be represented by activation levels in relevant
structures within the brain, that larger differences in activation levels would correspond to larger physical
differences, and that larger physical changes would be more resource-intensive than smaller changes.
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3 The structure of probabilistic grammatical models

The goal of this paper is to present an argument for the presence of probabilistically formu-
lated expectation-based effects in syntactic comprehension, and more specifically to advocate
a particular relationship—surprisal—between incremental probabilistic disambiguation and
processing difficulty. I do not take it as a goal of this paper to advance a particular proba-
bilistic model over trees or strings as the correct one used by adult native speakers of any
language. The formulation of such models is the modus operandi of natural language engi-
neering research in parsing and speech recognition, and I take the fact that the best models
in these fields today are so sorely outperformed by human capabilities as an indicator that
any proposal we can reliably estimate at the present day is almost certainly too simple to
be realistic.

Nevertheless, probabilistic grammatical models, in particular probabilistic context-free
grammars (PCFGs; Booth 1969), have within applied contexts been remarkably successful
in reconciling the tension between broad coverage and ambiguity management that has
traditionally plagued computational linguistics (see Collins 1999 and Charniak 1997, among
many others). The availability of PCFG models that have the properties 1 and 2 from
the beginning of this paper, of robustness to arbitrary input and accurate disambiguation,
makes them particularly suitable candidates for estimating surprisal values that can be used
to predict patterns in online human comprehension difficulty. For this reason, and also
because the experiments analyzed in this paper were constructed to maximize syntactic
contrasts, I follow the practice of Hale (2001) in using PCFGs to estimate surprisal values
at crucial regions of stimuli in many of the experiments analyzed.9 In this context, insights
gained from applied parsing research can be usefully applied to place minimal requirements
on the complexity of accurate probabilistic grammatical models. Natural language parsing
research has demonstrated that even from relatively small amounts of data (1 million words
or less), the following properties can be reliably incorporated into PCFGs, and in fact must
be present for accurate disambiguation:

� Gross morphosyntactic properties, such as case marking and agreement features, as
well as unbounded syntactic dependencies such as relativization, can be reliably incor-
porated into the structure of syntactic categories (Collins, 1999; Collins et al., 1999);

� The internal structure of a category may be probabilistically dependent on the lexical
(and/or semantic) content of its governor (Magerman, 1994; Collins, 1999; Charniak,
1997);

� Within a local syntactic tree, the distribution of sisters is history-based : the presence
of a given sister may be probabilistically dependent on which other (both head and

9Given a PCFG, existing algorithms by Jelinek and Lafferty (1991) and Stolcke (1995) show us how to
calculate the prefix probability of a string: the total probability of all trees (or strings) consistent with that
prefix. As pointed out by Hale (2001), the conditional probability of wi is then simply the ratio of the prefix
probabilities of w1···i−1 and w1···i. Precisely which algorithm is used to calculate these probabilities, and
details of how the chosen algorithm works, are irrelevant.
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non-head) sisters are also present (Collins, 1999; Klein and Manning, 2003);

� The domain of independent events—the probabilistic analogue of the domain of local-
ity in categorical syntactic theory—need not be restricted to local trees (Bod, 1992;
Johnson, 1998; Klein and Manning, 2003). For example, the probability that a given
NP contains a relative clause can be usefully conditioned on the identity of the NP’s
parent and sisters.

In all cases where it is practically possible to estimate a complete grammatical model rele-
vant to a particular experiment, PCFG parameters are estimated from a publically available,
syntactically annotated corpus of the language in question.10 In each case, enrichments of
the grammatical representation used in the corpus annotation are applied only minimally,
to incorporate basic information about the relevant syntactic contrasts in a particular ex-
periment into the grammar, and all enrichments are some subset of the four types listed
above. Hence, in all analyses of German clause-final verbs I introduce a categorical distinc-
tion between verb-second and verb-final clauses; in the analysis of the effects of varying-size
prepositional phrases in Section 5, I distinguish between PPs with three or fewer words from
those with four or more; in Sections 5.2 and 7, analyzing the effects of case marking, mor-
phological case is percolated from head nouns onto their NP projections; and in analyzing
English relative clauses in Section 5.3, the unbounded syntactic dependency between the
relative pronoun and its governing category is threaded through the intervening syntactic
categories, in the style of Generalized Phrase Structure Grammar (Gazdar et al., 1985).
This minimal approach to grammar refinement ensures that we are not using models more
refined than what the rational parser of an adult native speaker could be expected to deploy
in probabilistic disambiguation; additionly, minimal grammar refinement reduces both the
variance of estimated parameters and the danger of massaging the resulting probabilistic
word model to fit observed reading-time patterns. Note, crucially, that while the resulting
PCFGs typically have thousands of free parameters, the resulting psycholinguistic model has
only one: the amount of difficulty that is caused by one bit of surprisal.

It bears reiterating that this use of PCFGs is not a commitment to any particular gram-
matical formalism as the backbone of sentence comprehension. PCFGs serve as a formal
means of estimating what expectations about upcoming words in a sentence implicitly arise
from the use of particular types of information in online sentence comprehension and disam-
biguation. The choice of a given PCFG embodies a hypothesis about the types of information
to which a comprehender’s online disambiguation decisions are sensitive, and how that sen-
sitivity is expressed. However, the predictions of the PCFG regarding processing difficulty
are completely mediated through the resulting probabilistic word model, as illustrated in
Figure 1b. Furthermore, in Sections 6, 7.2, and 8.1, we will not even be able to estimate
the parameters of the relevant grammatical model, but by analyzing the conditional word

10In all cases, PCFGs are estimated using relative-frequency estimation, with the rewrite of each syntactic
category assumed to be probabilistically independent of its ancestors and sisters. See Appendix A for an
example of such PCFG estimation.
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probabilities in question we will be able to come to firm conclusions about difficulty asym-
metries predicted by surprisal under any reasonable probabilistic grammatical model that a
native speaker is likely to be using, context-free or not. Finally, this paper make no claims
about how much of an adult native speaker’s capacity for probabilistic disambiguation is
derived from tabulation of statistics directly from individual experience, and how much from
higher-order generalizations—innate or learned, linguistic or extra-linguistic—about likely,
plausible, or logically possible strings that the comprehender may receive as input. From
the perspective of the theory investigated here, the cognitive entity of primary interest is the
resulting probabilistic word model alone.

4 Comparison with other processing theories

4.1 Predictability

The surprisal theory bears the greatest conceptual similarity to the well-known observation
that words are easier to comprehend in contexts where they are highly predictable (e.g.,
(2-a) below) than in unconstraining contexts ((2-b)):

(2) a. He mailed the letter without a stamp.
b. There was nothing wrong with the car.

This effect of predictability has been observed in both eye-tracking reading studies, as re-
duced reading time and increased skipping probability (e.g., Ehrlich and Rayner 1981), and
in evoked-reaction potential (ERP) studies, as a differential N400 effect (e.g., Kutas and
Hillyard 1980, 1984). The traditional method of quantifying predictability has been the use
of Cloze completion studies (Taylor, 1953), where the predictability is measured as the prob-
ability with which subjects complete an initial context such as he mailed the letter without
a with the word of interest, such as stamp in (2-a) above.

In expectation-based theories as formulated here and in Hale (2001), the crucial measure
of surprisal is conceptually something very close to a negative log-Cloze probability, and
indeed the surprisal of an extremely predictable word should be lower than a somewhat pre-
dictable word (such as a Cloze probability differential of 0.9 versus 0.6; Kutas and Hillyard
1984; Federmeier and Kutas 1999). The surprisal theory goes beyond the traditional domain
of predictability in three respects, however. First, the theory proposes that conditional prob-
ability affects difficulty in a log scale. That is, the ratio rather than the difference between
the conditional (or Cloze) probabilities should be the determinant of differential difficulty
between two items; so we should see similar effects between items with probabilities 0.05
and 0.1 as between items with probabilities 0.5 and 1. Recent modeling literature on pre-
dictability effects in reading has assumed that they function on an absolute probability scale
(Reichle et al., 1998; Rayner et al., 2004; Engbert et al., 2005), but the results of Rayner
and Well (1996) suggest that similar absolute differences in predictability have a greater
impact on difficulty on the low end of the scale than on the high end of the scale, which is
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expected under the surprisal theory.11 Second, the surprisal theory explicitly predicts that
we should see differential predictability effects even for words that are not the most likely
completion of a given context. Third, predictability is generally considered a primarily se-
mantic phenomenon; but surprisal differences can derive from any source, including syntax,
morphology and phonology as well as semantics. The bulk of studies examined in the re-
mainder of this paper involve differences in (quite small) conditional probabilities deriving
from syntactic effects; in many cases, the relevant objects of prediction can be thought of as
syntactic categories rather than wordforms.

4.2 Locality

Locality-based processing theories include two hallmark proposals. The first is that greater
distance between entities in a syntactic relationship causes greater difficulty when that re-
lationship is constructed; Gibson’s Dependency Locality Theory (DLT; Gibson 1998, 2000)
is an exemplar of this type of proposal. Under the DLT, the comprehension difficulty of
a word w is taken to be affected by (among other factors) its structural integration cost,
which is monotonically increasing in (a) the number of dependency relationships between w
and words that precede it; and (b) the distances between w and the preceding words with
which it is in a dependency relation. The second hallmark proposal is that preference for
more local syntactic relationships directly guides disambiguation, and when maximally local
structures turn out to be wrong, difficulty is incurred because the parser has been misled.
This proposal has had a wider variety of incarnations; perhaps the most prominent current
incarnation is the Active Filler Hypothesis (AFH; Clifton and Frazier 1989).

Head-final local syntactic dependencies turn out to be a rich source of divergence between
predictions of the DLT and surprisal. There are a variety of syntactic circumstances in which
a comprehender knows that a final governing category has to appear, but does not know
exactly when it will appear, or what it will be. This situation is common in languages
with obligatorally verb-final clauses, such as in German, Japanese, or Hindi. As Konieczny
(2000) points out, the DLT predicts in these cases that a larger number of left dependents
will cause greater processing difficulty at the final governor, because all the left dependents
must be integrated with it at the same time. But the surprisal theory makes the opposite
prediction in this case. The more dependents we have seen, the more information we have
about their governor, and in general the more information we have, the more accurately we
should be able to predict that governor’s location and identity.12 Experiments testing this

11In addition, word frequency is generally taken to affect difficulty on a log scale. Because the surprisal
theory as derived in Section 2 is a consequence of generative probabilistic models, it subsumes word frequency
as a part of conditional word probability. Word frequency corresponds simply to a unigram probabilistic
word model.

12Konieczny informally makes a similar point: extra dependents can help us narrow down the class of
events that a final verb might denote, and therefore aid in lexical access. The surprisal theory encompasses
this position, which involves prediction of the identity of the item ending the clause, but is more general, as
it includes predictions about the location of the end of the clause. See discussion of Jaeger et al. (2005) in
Section 5.3 for evidence that humans make accurate, syntactically-driven positional predictions consistent
with the surprisal theory.
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divergence in prediction have been carried out by Konieczny (2000); Konieczny and Döring
(2003); Vasishth and Lewis (2006); Gibson et al. (2005b) that are informally consistent with
surprisal’s predictions. In Sections 5.1 and 5.2 I construct explicit expectation-based models
of German verb-final clauses, showing that predictions of the surprisal theory closely match
qualitative reading-time patterns.

DLT-style and AFH-style theories make similar predictions regarding long-distance de-
pendencies that violate minimal locality, such as object over subject relativizations (e.g.,
King and Just 1991; Gibson et al. 2005a):

(3) a. The reporter who attacked the senator admitted the error.
b. The reporter who the senator attacked admitted the error. (Gibson, 1998)

In the DLT, the object extraction (3-b) is predicted to be more difficult than the subject
extraction (3-a), due to the storage cost of maintaining the extracted element longer plus
the final cost of a longer-distance integration. In the AFH, the parser greedily posits a
gap immediately to match the relative pronoun filler; when that decision turns out to be
incorrect, as in (3-b), reanalysis is required and difficulty ensues.

Surprisal-based processing predicts the same general asymmetric difficulty, but for a
different reason: in the above examples, extractions from the leftmost site are more common
than more distant extractions. Hale (2001) showed that the simplest PCFGs derived from
annotated corpora of English text assign a higher surprisal to object-extracted relative clauses
such as (3-b) than to subject-extracted relative clauses, essentially because most relative
clauses are subject extractions. The predictions of the DLT, the AFH, and surprisal begin to
diverge, however, at the finer-grained level of exactly where processing difficulty is predicted
to occur in nonlocal dependencies, and subsequent sections of this paper analyzes several
relevant experiments. Section 7 presents a detailed analysis of AFH-inspired experiments
from Schlesewsky et al. (2000) on German verb-second clauses that the authors contend
undermine serial frequency-based processing accounts, and shows that surprisal actually
models these experiments more precisely than the AFH itself. Section 8.1 presents analysis
of two detailed recent studies on English relative clauses (Gordon et al., 2004; Grodner and
Gibson, 2005), which yield some results consistent with surprisal but also seem to support a
locality-based component of syntactic processing difficulty.

4.3 Competition and dynamical models

Traditionally, parallel constraint-satisfaction models of syntactic comprehension have taken
competition as the link connecting incremental disambiguation and observable measures of
processing difficulty (MacDonald et al., 1994; Spivey and Tanenhaus, 1998; McRae et al.,
1998). In these models, a variety of noncategorical, weighted constraints, potentially ex-
tralinguistic as well as linguistic, are simultaneously brought to bear in the incremental
disambiguation of syntactic ambiguity. In these dynamical models, candidate analyses of
an input substring compete with each other to reach a critical activation threshold, and the
number of cycles in the network that it takes to reach this threshold determines predicted
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processing times. As a result, the greater the total weight of constraints satisfied by the fa-
vored analysis relative to alternate analyses, the faster this analysis can reach activation and
the easier comprehension will be. This leads to at least two types of empirically predicted
high reading times. First, if an early part of the input causes one analysis to be favored, but
later parts of the input disconfirm that analysis in favor of another, it can take time for the
system to gravitate from the original to the new analysis. (This can been seen as a form of
attention shift, as discussed in Section 4.5.) Second, when the system is near a boundary
between multiple analyses, it can linger in a state of competitive gridlock.13 Competition
model can be thought of as resource-allocation models in which a fixed amount of resources
must be distributed among competing analyses of a partial input, and in which (unlike for
surprisal) allocation leading to relative equibias among analyses is inefficient.

It merits notice that competition models proposed in the literature contain two logically
separable components: the integration of multiple, non-categorical constraints as the mode
of syntactic disambiguation; and the attribution of long processing times to competition
among alternative interpretations. The surprisal theory is completely compatible with the
first component, but not with the second: under surprisal, difficulty occurs when resources
are distributed in a way that is not highly compatible with the continuation of the sentence.
Differences between the predictions of surprisal and competition models will become clear in
Section 6, where experiments are analyzed that may demonstrate circumstances under which
unresolved ambiguity can speed comprehension; and in Section 8.3, in which experiments
seem to indicate that under some circumstances, purely locally coherent syntactic analyses
can compete with global probabilistic expectations.

4.4 Tuning

The tuning hypothesis (Mitchell, 1994; Cuetos et al., 1996; Mitchell et al., 1995) is a serial-
choice model of syntactic disambiguation in which syntactic ambiguity is resolved by choosing
the most frequent structural variant. The processing difficulty that ensues when a subsequent
word is consistent with only the less frequent variant is considered a mild form of garden
pathing. The surprisal theory agrees with the tuning hypothesis in assuming the rationality
hypothesis that more frequent structural variants are preferred, but differs in its commitment
to parallelism and in the formalization of processing difficulty. Nevertheless, for the head-
initial structures that have been of primary interest in tuning hypothesis research—such as
leftward attachment of relative clauses into multilevel NPs—the predictions of surprisal are
essentially similar to those of tuning.14 As will be seen in Section 5, however, for head-
final structures the surprisal theory makes substantial predictions in cases where the tuning
hypothesis has nothing to say. The tuning hypothesis is also sensitive to granularity bias,
as discussed in Section 2.2. Finally, Section 6 discusses differences in how serial-choice
and parallel surprisal theories deal with cases where unresolved ambiguity can facilitate
comprehension.

13See also the analysis of Tabor and Tanenhaus (1999), who show how competition effects can also emerge
directly from a predictively trained neural network.

14This follows directly from the Markov decomposition of conditional word probability, plus Bayes’ rule:
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4.5 Pruning and Attention Shift

A number of other ranked-parallel syntactic comprehension models have been proposed (Gib-
son, 1991; Jurafsky, 1996; Narayanan and Jurafsky, 1998, 2002; Crocker and Brants, 2000);
as in surprisal, comprehension difficulty in these models is a function of the rankings of
possible structure before and after a given word. The most prominent sources of difficulty
in these models have been pruning, where low-ranked structures can be eliminated due to
memory limitations, and attention shift, where change in what the highest-ranked structure
is causes difficulty. These models of processing difficulty are thus immediately distinguished
from surprisal in that there are no known causal bottlenecks for these theories without the
introduction of additional specialized assumptions, since it is impossible in general to deter-
mine whether a particular structure is the highest-ranked or has been dropped altogether
without making a specification of what the set of possible structures actually is. Neverthe-
less, the surprisal theory captures key insights involved in both attention shift and pruning.
Consider, for example, a situation with two major incremental interpretations I1 and I2, at a
point where I1 has a conditional probability well over 0.5. A word that causes I2 to become
most probable will necessarily involve considerable surprisal: this extra surprisal corresponds
to the attention shift effect proposed in Narayanan and Jurafsky (2002).15 Likewise, when a
given word w can only be generated from an unlikely structure S, the conditional probability
of w can be no higher (and will typically be much lower) than the conditional probability
of S, as in classic garden-path sentences: as originally demonstrated by Hale (2001), this
gives an effect quite similar to that of pruning models. In the surprisal theory, however,
attention-shift and pruning effects are not all-or-nothing, and are thus compatible with dif-
ficulty gradients such as those demonstrated for different types of reduced relative clauses in
work such as MacDonald et al. (1994) and Spivey and Tanenhaus (1998).

Pi(w) =
∑

T

P (T |w1···i−1)P (w|T )

=
∑

T

P (T, w1···i−1)

P (w1···i−1)
P (w|T )

∝
∑

T

P (T )P (w|T )

where T range over the possible partial parses of w1···i−1. When only one partial parse T ∗ can generate w,
the conditional word probability Pi(w) will be larger when the structural frequency, and hence probability,
of T ∗ is greater, assuming that P (w|T ) is approximately constant (which, generally, is implicitly ensured in
the relevant work by controlling for factors such as plausibility and word frequency at the disambiguating
word).

15Using the relative-entropy derivation, we can actually put a (conservative) lower bound on the surprisal

from the contribution of the I2 term alone: Pk+1(I2) log Pk+1(I2)
Pk(I1) .
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4.6 Prediction-based connectionist models

Many connectionist models of online sentence processing (including Elman 1990, 1991; Chris-
tiansen and Chater 1999; Tabor and Tanenhaus 1999; Konieczny and Döring 2003; and a
component of the model of Rohde 2002) propose prediction-based metrics of the difficulty of
a word wi in its sentence context with the activation of wi after w1···i−1 have been seen—
the lower the activation, the greater the difficulty. The activation at the output layer of a
predictive neural net can be directly interpreted as a multinomial probability distribution
over the next input token, and the most commonly used training regimens can be seen as
directly optimizing the predictive power of the net (see Rumelhart et al. 1995, inter alia
for discussion). Depending on the precise definition used, these difficulty metrics can be
equivalent to or quite similar to the surprisal metric proposed here.16 As a result, some pre-
dictive connectionist models of online sentence comprehension may make predictions about
reading times quite similar to those presented in the paper. The precise predictions can vary
significantly, of course, based on the model underlying conditional word probabilities—this
paper emphasizes the use of hierarchically-structured probabilistic grammars estimated from
syntactically annotated corpora, whereas most connectionist models are trained on corpora
consisting of raw text (that is, word strings).17 In some cases, researchers using connection-
ist models have drawn a strong link between the process of grammar acquisition and results
in adult native-speaker sentence processing. Christiansen and Chater (1999), for example,
have argued that structural relationships within strings that are hard for networks to learn,
such as nested dependencies, are also the hardest for adult native speakers to process. 18

The theory proposed here, in contrast, assumes that the structural relationships underlying
surface strings are learned perfectly, similarly to other proposals discussed earlier in this
section.

5 Verb-final contexts, surprisal, and locality

There are contexts in nearly every language where a head follows one or more of its depen-
dents. When a language comprehender recognizes that a partial input has entered such a
context, they are in a position where they obtain increasing amounts of information about
the upcoming head. Intuitively, this accumulating information has two effects: on the one
hand it places a greater memory load on the comprehender, on the other hand it can help
sharpen comprehenders’ expectations about the upcoming head. This situation is perhaps
most ubiquitous in languages where verbs are final in their clause, such as German (exclud-
ing finite matrix-clause verbs), Japanese, and Hindi. Unlike in English, when a clause-final

16I am grateful to an anonymous reviewer for this point.
17Of particular interest in this connection is the model of Henderson (2004), in which a probabilistic model

over context-free trees is learned, but a neural net is used to learn a compressed yet potentially unbounded
history representation over conditioning structure.

18Other connectionist models of online sentence processing, such as Tabor et al. (1997) and Tabor and
Tanenhaus (1999), propose metrics of online processing difficulty that are not based on prediction, but retain
the tight link between connectionist acquisition and online processing.
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verb is encountered the number and distance of previous dependents can vary widely. As
pointed out by Konieczny (2000), DLT-type locality theories predict that the final verb will
be more difficult to process when it has a greater number of dependents. Section 4.2 argues
informally that surprisal predicts the opposite: more preverbal dependents gives the com-
prehender more information with which to predict the final verb’s identity and location, and
comprehension should therefore be easier.19 In the last several years, a number of reading
studies have been reported which bear upon this divergence in predictions. Sections 5.1
and 5.2 presents a surprisal-based analysis of Konieczny (2000) and Konieczny and Döring
(2003), for which the resources exist to construct explicit computational surprisal-based
models. Section 5.3 analyzes another upcoming-head experiment, this time in English, and
Section 5.4 briefly discusses related experiments in Hindi and Japanese (Vasishth and Lewis,
2006; Gibson et al., 2005b; Nakatani and Gibson, 2003).

5.1 Konieczny 2000: effect of additional constituents

Konieczny (2000) was the first to investigate the effect of extra preverbal constituents on
processing difficulty, measuring reading time at clause-final verb in transitive German em-
bedded clauses where the amount and type of material between the direct object and the
final verb varied, as in (4) below.

(4) a. Er
He

hat
has

den
the

Abgeordneten
delegate

begleitet,
escorted,

und
and

. . .

. . .
“He escorted the delegate, and . . . ”

b. Er
He

hat
has

den
the

Abgeordneten
delegate

ans
to the

Rednerpult
lectern

begleitet,
escorted,

und
and

. . .

. . .
“He escorted the delegate to the lectern, and . . . ”

c. Er
He

hat
has

den
the

Abgeordneten
delegate

an
to

das
the

große
big

Rednerpult
lectern

begleitet,
escorted,

und
and

. . .

. . .
“He escorted the delegate to the large lectern, and . . . ”

In (4-a) the verb directly follows the direct object; in (4-b)-(4-c) a prepositional phrase
goal of varying size intervenes between the direct object and the verb. From a locality-based
perspective the predictions are clear: the verb should be easiest to process in (4-a), because
it has the fewest and nearest dependents; and hardest to process in (4-c), because it has the
most and farthest dependents. Konieczny, however, found the opposite pattern: the verb
was processed the fastest in (4-c) and slowest in (4-a) (see Table 1).

In order to determine the predictions of surprisal-based sentence processing on Ko-
nieczny’s data, it is necessary to choose a probabilistic language model pi(w). The choice
of model should be driven by our linking hypothesis between incremental comprehension
and difficulty: the model chosen as optimal for purposes of incremental processing and dis-
ambiguation should accurately predict per-word reading times. In this case, our data—the

19Assuming, of course, that the identity of the final verb is consistent with the contents of its preverbal
dependents.
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Average RT (ms) Surprisal DLT prediction
no PP 514 15.99 faster
short PP 477 15.41 slower
long PP 463 15.35 slower

Table 1: Empirical reading time versus surprisal at clause-final verb of (4)

experimental stimuli used in reading-time experiments—do not follow ecologically natural
distributions, but rather maximize clause-level structural variation while minimizing other
structural and lexical variation. A non-lexicalized PCFG is therefore a sufficient basis for
modeling the contrast observed in Konieczny’s data. We can take advantage of the hand-
parsed NEGRA corpus (Skut et al., 1997) of German, and use essentially the grammar read
straight off the parsed corpus to construct a language model, making only minimal changes
to the grammatical representations in the corpus necessary to encode important distribu-
tional properties of German syntax not already directly encoded in the local-tree structure
of the NEGRA corpus.20 Calculating the final-verb surprisals of one of Konieczny’s items,
given in (4), and comparing it to reported mean reading times results in the comparison
shown in Table 1. As can be seen, surprisal values match average reading times quite closely.
The DLT, in contrast, predicts the wrong monotonicity of reading difficulty.21

The reason that PCFG-derived surprisal values match Konieczny’s empirical results so
well is that incremental parsing with a PCFG naturally captures the effect of a sentence’s
constituent history on the expectations regarding yet-to-be-seen input. As soon as the com-
prehender knows that the input is part of a verb-final clause, the incremental probabilistic
parsing process implicitly determines set of expectations as to the next constituent. Each
subsequent constituent affects these expectations. To a first approximation, seeing a con-
stituent of a given type (a subject, a direct object, the final verb, a goal, a location, and so
on) sharply decreases the expectation of seeing another constituent of the same type in the
same clause, because multiple constituents of a single type rarely co-occur in a single clause;
this is part of the comprehender’s knowledge of linguistic argument structure, captured in
the PCFG model by the structure of rewrite rules. When a PP goal is actually seen in

20For all models of German-language experiments, in order to sharpen the PCFG’s distributional knowl-
edge of V2 versus verb-final contexts I introduced syntactic distinctions in the VP and CVP (coordinated
VP) NEGRA syntactic categories based on whether the clause was matrix or subordinate. Subordinate-
clause VPs were defined as those under an S category and sister to a PRELS tag, which is the NEGRA
syntactic category for relative pronouns. For the model of Konieczny (2000), I additionally follow his par-
ticular experimental design to distinguish small PPs (those with 2-3 words) and large PPs (4-6 words) from
other PPs. This last distinction is motivated by the fact that variable word-order phenomena such as heavy
NP shift (Wasow, 2002) and right-extraposition (Uszkoreit et al., 1998) are highly sensitive to constituent
size.

21Konieczny used a variety of experimental items, the word-by-word surprisals of most of which could not
be calculated due to lack of lexical coverage in the NEGRA corpus. For every item that was covered by
NEGRA, the monotonicity of surprisal is the same in the pairwise contrasts between presence and absence
of PPs. The small/large PP contrast had correct monotonicity in only half the items, but the mean surprisal
difference was 0.50 bits in the correct direction.
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S

NP

Er

Vfin

hat

VP

NP

den Abgeordneten

�
�H
HNP

PP
Vpart
AdvP

S

NP

Er

Vfin

hat

VP

NP

den Abgeordneten

PP

ans Rednerpult

�
�H
HNP

�
�H
HPP

Vpart
AdvP

S

NP

Er

Vfin

hat

VP

NP

den Abgeordneten

PP

ans Rednerpult

Vinf

begleitet

�
�H
HNP

�
�H
HPP

Vpart

AdvP

Figure 2: Incremental parse of (4), showing incremental narrowing of next-constituent syn-
tactic expectations

the input, as in (4-b), the expectation allocated to seeing a PP goal is pruned away, and
because expectation is actually a probability distribution that must sum to 1 at all times,
it is reallocated among all the other types of constituents that have not yet been seen. The
final verb, being one of those constituents, therefore has its expectation increased after every
other constituent. In another manner of speaking, the comprehender’s expectation as to
the location of the final verb sharpens as the clause lengthens. The way this incremental
expectation-narrowing process plays out in a PCFG-derived probabilistic string model is
illustrated in Figure 2: as each constituent of a given category is seen and integrated into
the incremental parse, it eliminates most of the expectation for seeing another constituent
of the same type next, and as a result increases the expectation for seeing a constituent of
one of the remaining types.22

5.2 Konieczny and Döring 2003: effect of preverbal NP type

Konieczny and Döring (2003) report a variant of Konieczny (2000)’s original experiment,
where the syntactic position of a preverbal NP, rather than the presence/absence of a pre-
verbal PP, is varied:

22Technically, the PCFG used to model this experiment does not distinguish goal PPs from other types of
PPs, because the NEGRA corpus unfortunately does not make this distinction. The PP category in Figure
2 is therefore not subdivided. Nevertheless, the same intuitive argument holds for this cruder grammatical
model, because PPs in general are in complementary distribution with each other in verb-final contexts.
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(5) a. Die
the

Einsicht,
insight,

daß [NPnom

that
der
the

Freund]
friend

[NPdat dem
the

Kunden]
client

[NPacc das
the

Auto
car

aus
from

Plastik]
plastic

verkaufte,
sold,

. . .

. . .
“The insight that the friend sold the client the plastic car . . . ”

b. Die
the

Einsicht,
insight,

daß [NPnom

that
der
the

Freund
friend

[NPgen des
the

Kunden]]
client

[NPacc das
the

Auto
car

aus
from

Plastik]
plastic

verkaufte,
sold,

. . .

. . .
“The insight that the friend of the client sold the plastic car . . . ”

In an eye-tracking reading study, Konieczny and Döring found that regression-path times
for the final verb verkaufte were significantly shorter for the dative condition, where dem
Kunden is dependent on the final verb, than for the genitive condition, where des Kundes is
dependent on the preceding noun Freund.23 This study is a nice methodological confirmation
of the original pattern observed in Konieczny (2000). The stimuli in (5) differ in only a single
letter, thus controlling quite precisely for the orthographic length, number of tokens, and
also, as it turns out, word frequency of the material preceding the critical region (dem and
des are quite close in overall word frequency, with des perhaps slightly more frequent in
some contexts).

Intuitively, surprisal applies just as readily to this experiment as to Konieczny’s original
experiment. Just before seeing the final verb in (5-a), the comprehender knows that nomi-
native, accusative, and dative NP arguments have all appeared as preverbal dependents; in
(5-b), only nominative and accusative preverbal dependents have appeared. The compre-
hender’s expectations are therefore more narrowly focused in (5-a), and so the surprisal at
the final verb should be lower. In order to precisely model this effect of constituent history,
we can use a PCFG grammar to determine a conditional word model as we did in Section
5. Here, however, the crucial difference in experimental conditions involves case marking on
an NP constituent. Fortunately, about a third of the NEGRA corpus includes case-marking
annotation on the wordforms, and we can transfer this information up to phrasal nodes using
simple grammatical rules, so that the learned PCFG captures basic distributional general-
izations about case-marking patterns in German.24 Knowledge of the overall distribution of
argument realization frames, such as the rarity of multiple dative NPs in a single clause, is
thereby transferred into the PCFG. We then use these case-enriched symbols as atomic cat-
egories, and learn a PCFG via relative-frequency estimation from the enriched corpus. The

23They also varied whether the immediately preverbal PP was a nominal dependent, as in aus Plastik in
(5), or a verbal dependent such as aus Freude. Although they found slightly shorter average reading time
for the nominal-dependent case, this difference was not statistically significant. If subsequent studies were
to achieve a statistically significant result favoring faster reading times for the nominal-dependent condition,
then it could be problematic for the expectation-based account presented here.

24To be precise, we recursively percolate case marking onto NPs and PPs from their head daughters (the
case of a preposition is considered to be the case it governs). These percolation rules are similar in nature
to constraints used in unification-based grammatical formalisms such as Functional Unification Grammar,
Head-Driven Phrase Structure Grammar, and Lexical-Functional Grammar.
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COMP

daß
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Freund
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das
Auto

V

verkaufte
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(a) Verbal-dependent condition

SBAR

COMP

daß

S

NPNOM

NPNOM

der
Freund

NPGEN

des
Kunden

VP

NPACC

das
Auto

V

verkaufte

����XXXXNPNOM NPDAT ����XXXXNPACC PP AdvP V

(b) Nominal-dependent condition

Figure 3: Incremental parsing with case-percolated PCFG

Reading time (ms) surprisal DLT prediction
verbal dependent (dative) 555 23.51 slower
nominal dependent (genitive) 793 23.91 faster

Table 2: Reading time, surprisal, and DLT predictions at final verb for (5)

incremental parses of (5) are shown in Figure 3, together with schematics of next-constituent
expectations at the point of seeing the final verb.

As we saw previously in Figure 2 for Konieczny (2000), the extra preverbal constituent in
the verbal-depend condition sharpens next-constituent expectations and thereby decreases
surprisal at the final verb itself. Table 2 shows empirical regression-path reading times,
conditional word probabilities, and DLT-predicted reading times for the two conditions of
(5). Although the conditional probability of the final verb is quite low in both conditions,
it is roughly 30% higher in the verbal-dependent condition than in the nominal-dependent
condition, correctly predicting reading time monotonicity. DLT, on the other hand, predicts
faster reading time for the nominal-dependent condition, since there are fewer preverbal
dependents for the verb to integrate with.

5.3 Disentangling verb location from verb identity

The experimental results described in Sections 5.1 and 5.2 are also compatible with the
informal intuition of Konieczny (2000) (see also Konieczny 1996), that preverbal dependents
constrain the lexical type of the final verb and thus allow better prediction of that verb. The
surprisal analysis, however, shows that this explanation based on verb identity is not strictly
necessary. Assuming only an unlexicalized PCFG—that is, assuming that native German
speakers are capable of discriminating good from bad constituency structures—determines
a surprisal model reflecting only information about verb location that nevertheless makes
qualitatively correct predictions about final verb reading times.

This section shows how information about verb location and identity can be disentangled,
by discussing a recent experiment carried out by Jaeger et al. (2005). Jaeger et al. used
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English subject-modifying relative clauses of varying lengths, and observed reading times
occurring on the matrix-clause verbs appearing immediately after the RC:

(6) a. The player [that the coach met at 8 o’clock] bought the house. . .
b. The player [that the coach met by the river at 8 o’clock] bought the house. . .
c. The player [that the coach met near the gym by the river at 8 o’clock] bought

the house. . .

Like German verb-final clauses, English subject-modifying relative clauses are a constrained
syntactic context. The comprehender knows that the relative clause has to end, but does
not know when it will end until seeing the next item of the matrix clause (in this case, the
matrix verb). The more postverbal constituents within the RC that have been seen, the fewer
possible choices there are for subsequent constituents within the RC. This follows because
constituent types tend to be in complementary distribution—for example, in a given clause
the knowledge that a temporal phrase has already appeared makes it less likely that a new
temporal phrase will be seen. This means that the comprehender’s expectation for the end
of the RC (and hence seeing the matrix verb next) should generally increase as the number
of already-seen postverbal constituents increases. The DLT, in contrast, predicts that more
RC-internal constituents will lead to greater matrix-verb difficulty, as the distance from the
matrix subject it governs increases. The predictions of the surprisal theory can be made
precise by using an unlexicalized PCFG of English, learned from the parsed Brown corpus
section of the Penn Treebank (Marcus et al., 1994). The Brown corpus represents multiple
postverbal dependents as sisters within a single local tree, meaning that the resulting PCFG
encodes the relevant distributional dependencies among postverbal dependents.

Table 3 shows matrix-verb surprisal values estimated by a PCFG trained directly off the
parsed Brown corpus, together with DLT predictions and empirical mean reading times.25

The surprisal model matches empirical results: surprisal and reading time at the matrix
verb both decrease as the number of postverbal constituents in the preceding RC increases.
Crucially, the observed effect does not follow from the account of Konieczny (1996, 2000), in
which preverbal dependents help the comprehender guess the identity of the final verb, be-
cause there is no direct argument structure relation between the matrix verb and the verbal
dependents in the RC. This effect is also unpredicted by a theory of anti-locality effects pro-
posed Vasishth and Lewis (2006), under which a governing head can be primed by preceding
constituents that are (i) its dependents, or (ii) dependents of its dependents; the extra PPs
in (6) are neither. The broader surprisal theory encompasses the narrowing of expectations
proposed by Konieczny for final-verb identities, but also predicts that comprehension pat-
terns will reflect implicitly-formed expectations about upcoming constituency, a prediction
that is borne out in this experiment.

25The paired comparisons between the 1 and 2 and 1 and 3 PP conditions are statistically significant; the
paired comparison between the 2 and 3 conditions is not.
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Number of PPs intervening between
embedded and matrix verb
1 PP 2 PPs 3 PPs

DLT prediction Easier Harder Hardest
Surprisal 13.87 13.54 13.40
Mean Reading Time (ms) 510± 34 410± 21 394± 16

Table 3: Surprisal and average reading times at matrix verb for (6)

5.4 Other investigations involving verb-constraining contexts

Reading-time investigations of clause-final verbs have also been carried out in Hindi and
Japanese. (Vasishth 2002 (Chapter 5), 2003, Vasishth and Lewis 2006) have conducted
several experiments on processing difficulty within Hindi complement clauses and relative
clauses, both of which are verb-final, varying the amount of material appearing before the
final verb. Consistent with predictive accounts including surprisal, reading time at final
embedded verbs is lowest when there is more preverbal material within the clause.

Two other relevant experiments have been carried out by Nakatani and Gibson (2003) and
Gibson et al. (2005b) for Japanese, which is verb-final and has freely reorderable preverbal
complements. In both cases, predicted asymmetries in integration cost at final verbs failed to
emerge. Gibson et al. (2005b) found patterns similar to those we have already seen in German
and Hindi: greater amounts of preverbal material decreased, rather than increased, final-verb
reading times.26 For Nakatani and Gibson (2003), the object of investigation was the degree
of center-embeddedness in sentences with multiple sentential complements. They found
that the greatest difficulty associated with multiply center-embedded sentences occurred at
the onset of the most deeply embedded clause—signaled by a third consecutive animate
nominative NP at the beginning of the sentence—rather than at the final, least-embedded
main verb, where the integration-cost component of DLT predicts it to occur. In the surprisal
theory, the natural place to look for an explanation of this result would be to estimate the
probability of the conditional probability of a third consecutive animate, nominative NP
given two such consecutive sentence-initial NPs. Unfortunately, large annotated corpora of
Hindi and Japanese are not readily available, so more detailed and explicit models addressing
these issues must remain as topics of future research.

5.5 Discussion

Explicit word-probability models constructed using PCFGs trained on hand-annotated cor-
pora of German provide a qualitative match to empirical reading-time differences found at

26Unlike the results of Konieczny and Döring (2003), Gibson et al. found no difference in the reading times
in contrasts of adverbial versus adnominal positioning of a preverbal constituent. One plausible explanation
could be that whereas the verbal/nominal dependency alternation in Konieczny and Döring was confounded
with the ditransitivity/ditransitivity alternation, in Gibson et al. (2005b) it involved a locative constituent,
which may have facilitated similar evidential inferences about the final verb from either position.
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clause-final verbs. Because these models are unlexicalized, their predictions reflect only the
incremental change into comprehenders’ expectations about the location of the yet-unseen
final verb. These results demonstrate that, under the surprisal theory, even quite simple
models of probabilistic ambiguity resolution naturally give rise to the prevalent pattern of
reading-time results observed in verb-final clauses: additional dependents facilitate compre-
hension of the final verb.

In a probabilistic language model that closely matched naturally-occurring corpus data,
however, additional preverbal dependents would also sharpen expectations regarding the
verb’s identity. As Konieczny (1996, 2000) himself points out, seeing a goal PP restricts the
syntactic/semantic classes from which the final verb can plausibly originate.27 Konieczny
and Döring present a constraint-based computational model in the form of a simple recurrent
network (SRN; Elman 1990) that captures probabilistic dependencies between specific verbs
and their host of dependents. Their SRN, trained on an artificially generated corpus consist-
ing of both transitive and ditransitive verbs, models probabilistic lexical selection preferences:
the presence of a preverbal dative argument excludes simple transitive final verbs from the
space of possible final verbs, and hence boosts the expectation for those ditransitive verbs
the dative argument has been seen to occur with. They do not formalize a general relation-
ship between these expectations and reading time predictions, but their SRN’s results match
their experimental results under any theory in which a word’s processing difficulty decreases
monotonically with the activation its output node in an SRN (including under surprisal, if
output node activation levels are interpreted as a probability distribution over the next word,
as in Rumelhart et al., 1995). In principle, lexical selectional preferences and expectations
about verb location could be combined in a surprisal model using lexicalized PCFGs (see
Collins 1999) trained on naturally occurring German data, rather than an artificial corpus.
Unfortunately, corpus data is too sparse to easily yield reliable estimates of lexical selectional
preferences for all but the most common verbs; verkaufte ‘sold’, for example, occurs only
five times in the NEGRA corpus (see also Dubey and Keller 2003). As we have seen, how-
ever, even unlexicalized PCFG surprisal models predict the correct monotonicity of difficulty
not only for clause-final verbs, where information abut verb identity and verb location are
conflated, but also for English matrix-clause verbs as in Section 5.3, where only information
about verb location is likely to be relevant.

6 When ambiguity facilitates comprehension

The fully-parallel surprisal theory entails an unusual relationship between structural am-
biguity and processing difficulty. In most processing theories, local structural ambiguity
leads to difficulty under a variety of circumstances. In serial theories, local ambiguity is a
precondition for garden-path effects; in competition-based parallel accounts, equibias while
an ambiguity is unresolved is the primary source of syntactic comprehension difficulty. In

27Vasishth and Lewis (2006) propose an account based on activation decay and retrieval inference (Ander-
son et al., 2004) similar in many respects to that of Konieczny (1996), except that the preverbal constituents
prime related final verb candidates rather than rule out incompatible candidates.

26



the surprisal theory, on the other hand, structural ambiguity per se plays no role in the
determination of processing difficulty: ambiguities are relevant only insofar as they have an
effect on conditional word probabilities. In the language of probability theory, a word wi’s
surprisal marginalizes over all the possible partial structural descriptions consistent with the
string prefix w1···i:

Pi(w) =
∑

T,w1···i−1∈T

P (T |w1···i−1)P (wi|T )

where T ranges over the partial syntactic/semantic structures of w1···i−1. If there is a local
ambiguity through w1···i−1, and more than one structural variant T can give rise to a given
next word w, then the conditional probability Pi(w) draws mass from all these T ; the multiple
variants can be said to conspire to facilitate processing of w. This is in sharp contrast to
competition-based accounts, in which the multiple possible variants compete with each other
and thus should impede processing of w.

This direct prediction of the surprisal theory turns out to bear directly on a number of
established findings. Most prominent are the results of Traxler et al. (1998); van Gompel
et al. (2001, 2005), who show that ambiguous left attachments into a complex NP are, if
anything, read more quickly when they do not resolve the attachment level. Example (7)
below illustrates a characteristic finding in this work.

(7) (Traxler et al., 1998)

a. The daughteri of the colonelj who shot herselfi/*j on the balcony had been very
depressed.

b. The daughteri of the colonelj who shot himself*i/j on the balcony had been very
depressed.

c. The soni of the colonelj who shot himselfi/j on the balcony had been very de-
pressed.

In (7-a) and (7-b), the reflexive pronoun disambiguates the locally ambiguous attachment of
the relative clause who shot. . . ; in (7-c), the reflexive pronoun has ambiguous antecedence,
and both high and low attachment are possible. Traxler et al. found that the reflexive
pronoun and surrounding regions were read more quickly and with fewer regressions in
the ambiguous case than in either ambiguous case. Analogous reading patterns have been
produced by van Gompel et al. (2001) for certain NP/VP attachment ambiguities, and by
van Gompel et al. (2005) for NPs postmodified by progressive participial VPs. Traxler
et al. (1998); van Gompel et al. (2001, 2005) have argued that these reading patterns are
problematic for parallel competition-based accounts, according to which an ambiguity left
unresolved should, if anything, give rise to greater and longer-lasting difficulty. These reading
patterns are, however, predicted by the parallel surprisal-based account, as will now be
demonstrated.

For the sentences in (7) it seems uncontroversial to follow Traxler et al. (1998) in assuming
that the two main structural alternatives up through the words . . . who shot are essentially
as shown in Figure 4, with a partially constructed relative clause attaching either high or low
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(b) Low-attached relative clause (RClow)

Figure 4: High versus low attachments of the relative clause in (7)

into a PP-modified NP. This attachment ambiguity is relatively equibiased, so the conditional
probability given the string prefix will be substantial for each of these partial structures.28

The conditional word probability of a reflexive pronoun (either himself or herself ) in this
context is simply the weighted sum of the probability of the pronoun given each partial
structure.

We can write out the equations specifying the conditional probability of himself for (7-b)
and (7-c) as follows:

Pi(himself) = Pi(RClow)P (himself|RClow) + Pi(RChigh)P (himself|RChigh)

It seems safe to assume that the probabilities of high versus low RC attachment, Pi(RClow)
and Pi(RChigh), are both substantial (since the attachment is fairly equi-biased), and are ap-
proximately equal for (7-b) and (7-c). Likewise, the term P (himself|RClow), which represents
the probability that a relative clause modifying the lower NP the colonel and beginning with
who shot. . . will continue with himself, should be approximately equal for the two stimuli.
The term P (himself|RChigh), however, varies dramatically between (7-b) and (7-c): for the
latter, its magnitude should be on the order of P (himself|RClow) (following the reasoning
that the son of the colonel shot himself and the colonel shot himself are similar-probability
events), but for the former it is zero, because the word himself simply cannot appear in a
position where its antecedent must be daughter. Pi(himself) can thus be expressed as wx for
(7-b), and wx + yz for (7-c), where the pairs w, y and x, z are of similar magnitude. The
conditional probability of himself is therefore substantially higher (around double) in (7-c),
as both attachments contribute probability mass to the continuation, than in (7-b), where
only the low attachment contributes probability mass. Similar reasoning can be applied to
(7-a), where herself receives probability mass from only the high attachment.

28Tree searches in the Brown corpus revealed 9 such examples of sentence-initial high attachments, and 15
of low attachments. WSJ corpus figures were more strongly low-biased at 7 : 28, but included a much larger
number of partitives such as fully 80% of employees and nearly all of the crude oil which, when modified by
a non-restrictive relative clause, are obligatorily low attachments. The Brown corpus frequencies comport
well with forced-choice offline attachment preferences determined by Traxler et al. (1998), who found a 70%
preference for low attachment.
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Quite recently, Green and Mitchell (2006) have argued that the results of Traxler et al.
(1998); van Gompel et al. (2001, 2005) are actually unproblematic for competition models,
on the basis of an extensive set of simulations using the Spivey-Knowlton (1996) normalized
recurrence algorithm serving as the basis for prominent competition-based modeling results
such as McRae et al. (1998), Spivey and Tanenhaus (1998), and Ferretti and McRae (1999).
Green and Mitchell show that the mean level of attachment preference across a set of ex-
perimental materials is insufficient to determine the predictions of a competition model: the
distribution of attachment preference within the materials is also important. If the variance
in attachment preference is large, then a competition model will essentially mimic a serial
model: it will attach low for low-preference items and high for high-preference items, and
will thus be garden-pathed some of the time in each disambiguating condition but never
in the undisambiguated condition.29 This defense of competition-based models differs from
surprisal’s explanation: under surprisal, the undisambiguated condition would remain easier
even if all items were perfectly equibiased at all points in the input prior to the critical
region.

The parallel surprisal theory’s explanation of unresolved-ambiguity data differs markedly
from the serial variable-choice model advanced by Traxler et al.. In the variable-choice
account, the parser, upon encountering the relative pronoun who, stochastically chooses
either high or low attachment and continues on with a serial parse, backtracking only if that
serial parse subsequently fails (as happens if the low attachment was chosen in (7-a), or the
high attachment in (7-b)). This is a claim that the parser is garden-pathed some of the
time, and that the observed differential difficulty results from reanalysis during some trials
on (7-a) and (7-b). The variable-choice account would seem a natural explanation for the
data in Traxler et al. (1998) and van Gompel et al. (2001), where the critical disambiguation
site appears several words downstream of the attachment site. Variable choice might be
a less plausible explanation for the data in van Gompel et al. (2005), where the site of
disambiguation is the first word of the left-attaching phrase, as in (8) below. van Gompel
et al. found the undisambiguated condition (8-c) easier than either disambiguated condition,
parallel to the results Traxler et al. (1998) found for (7).

(8) a. I read that the governor of the province retiring after the troubles is very rich.
b. I read that the province of the governor retiring after the troubles is very rich.
c. I read that the bodyguard of the governor retiring after the troubles is very rich.

In these stimuli, an attachment decision can only be made after the critical word retiring
is recognized as initiating a phrase that can be left-attached to an NP. Unlike (7), however,

29This analysis would apply equally, of course, to distribution of attachment preference among participants.
Green and Mitchell (2006) also make the point that the McRae et al. (1998) version of Spivey-Knowlton
(1996)’s model actually starts disambiguating the attachment before the modifier is ever encountered, which,
in combination with the model’s “rich get richer” dynamical feedback mechanism, effectively magnifies small
attachment preference differences. However, the fact that the McRae et al. (1998) model begins disambiguat-
ing modifier attachments before encountering the modifiers may perhaps be considered an idiosyncracy that
might not apply more broadly to competition models in general.
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at the moment when the attachment decision can first be made in (8), the parser has all
the information necessary—the head nouns of both attachment sites together with the dis-
ambiguating word—always to make the correct attachment decision. For a rational parser
not to avoid reanalysis in these situations would require a considerably impoverished parsing
regimen where little to no top-down information is available, a requirement which seems to
fly in the face of the capacity to integrate a variety of contextual information into attachment
decisions (Tanenhaus et al., 1995). The parallel surprisal theory, on the other hand, deals
with the data in (8) unproblematically, since the word retiring in (8-c) derives probability
mass from the possibility of modification of either preceding NP, whereas in (8-a) and (8-b)
it derives probability mass from only one possible attachment. The facilitative effect of am-
biguity under surprisal also turns out to be important in the analysis of the German subject
preference presented in Section 7.

There are several other ways in which the basic manipulation might be varied to tease
apart surprisal and variable-choice models. Variable choice, but not surprisal, predicts bi-
modality in response measures at the critical region (see also Gibson and Pearlmutter 2000).
Under variable choice we might also expect that as the amount of material intervening be-
tween the ambiguous attachment and the disambiguating region is increased, the observed
relative difficulty incurred in ambiguity resolution would increase, if we introduce the as-
sumption that recovery is more difficult for a garden path further pursued.30 Finally, note
that the analysis in this section relied on the assumption that P (wi|T ) was approximately
equal for different T . If the experimental contrast is altered so as to break this assumption,
we can cause the predictions of surprisal to diverge from those of variable choice. Consider
the contrast in (9) below, for example.

(9) a. The suicidal daughteri of the colonelj who shot herself*i/j on the balcony had
been very depressed.

b. The homicidal soni of the colonelj who shot himselfi/j on the balcony had been
very depressed.

In a generative probabilistic model sensitive to the pragmatics and lexical semantics of
the words suicidal and homicidal, we would expect the probability of herself given high
attachment in (9-a) to greatly exceed the probability of himself given either attachment in
(9-b).31 As long as this manipulation of the high NP does not drastically affect the prior
probability of high versus low attachment, the conditional word probability of herself in (9-a)
would then be much higher than that of himself in (9-b), but the variable-choice model would
in contrast predict that average reflexive pronoun difficulty should still be higher in (9-a),
since it is only in this stimulus that the possibility of being garden-pathed exists at all.

30Introducing such an assumption might also be a way of handling the length-sensitive “digging-in effects”
mentioned in Section 8.3 within the variable choice model.

31This hypothesis might be tested via Cloze completions of the partial sentence The {colonel/suicidaal
woman/homicidal man} shot .
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7 The subject preference

Variable word order in natural languages can give rise to local ambiguities involving which
grammatical function (GF) is assigned to a particular noun phrase. Such local ambiguity is
possible in a wide variety of languages: although languages with free word order often use case
to mark GFs on noun phrases, syncretism of case form across multiple GFs is also widespread,
being documented in Australian, Finno-Ugric, Indo-European, and Turkic languages (e.g.,
Carstairs 1984; Comrie 1978, 1986; Kiparsky 2001). The situation with respect to online
processing is best documented in German (e.g., (Hemforth, 1993; Schlesewsky et al., 2000;
Bornkessel et al., 2002)). For example, when a clause-initial NP is syncretized between
nominative and accusative case, as in (10) below, there is a temporary ambiguity between
subject and object interpretations of that initial NP. The postverbal NP is read more quickly
when it is accusative (10-a) than when it is nominative (10-a), indicating a default subject
preference (Hemforth, 1993).

(10) a. die
the

Henne
hennom/acc

sieht
sees

den
theacc

Bussard
buzzard

“The hen sees the buzzard.”
b. die

the
Henne
hennom/acc

sieht
sees

der
thenom

Bussard
buzzard

“The buzzard sees the hen.”

This preference is relevant to both frequency- and locality-based parsing theories, because
one “default” word order (subject before object for German) is often much more frequent
than the other, and movement-based syntactic theories of the alternate orderings can create
locality asymmetries. This section closely investigates two experiments conducted by Schle-
sewsky et al. (2000) which are particularly interesting because they investigate a granularity
level at which construction-frequency accounts along the lines of the Tuning Hypothesis may
be ruled out. They point out that although declarative clauses in general are usually subject-
initial, interrogative clauses beginning with the inanimate, case-syncretized word was ‘what’
may not be. They report that of 480 sentence-initial was ‘what’ items randomly selected
from the Freiburg Corpus, about 55% were accusative, suggesting that frequency-based con-
siderations should not favor a default subject interpretation for inanimate case-syncretized
initial NPs.

Schlesewsky et al. also consider a movement-based syntactic account along the lines of
the Active Filler Hypothesis. In their account, main declarative clause order is derived by
movement of the finite verb and an argument NP from an underlying SOV order to the head
and specifier positions of CP, respectively. In (10), as soon as the parser has seen the finite
verb sieht, it can posit an immediately following gap in the subject position and resolve it
with the sentence-initial filler, as in Figure 5. Under this preferred parse, however, the next
NP cannot be nominatively marked, so (10-b) will cause processing difficulty. Thus the AFH
predicts the subject preference independent of construction frequency.
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Figure 5: Schlesewsky et al. (2000)’s Subject Preference in German declarative clauses (Ex-
ample (10-a)), as derived by the AFH and a movement-based analysis of German clause
order. For Example (10-b), Bussard has the nominative article der, and the greedy assign-
ment of sieht to the V gap creates a case marking conflict.

Schlesewsky et al. (2000) conducted two experiments involving singular, neuter, case-
syncretized sentence-initial wh words, to determine whether a subject preference persists
when construction-frequency differentials are neutralized. In one experiment, disambiguation
involves number marking on the main verb (11); in the other, disambiguation occurs via case
marking on the postverbal NP (12).

(11) welches
which

System
system

| unterstützt/unterstützen
| supports/support

| die
| the

Programme
programs

| auf
| on

den
the

Computer
computer

| ?
| ?

“Which system {supports the programs on the computer/do the programs on the
computer support} ?”

(12) was
what

| erforderte
| required

| den/der
| the.acc/.nom

Einbruch
break-in

| in
| into

die
the

Nationalbank
national bank

| ?
| ?

“What {required the break-in into the national bank/did the break-in to the national
bank require}?”

In (11), verbal agreement in the plural unterstützen condition disambiguates the gram-
matical function of the sentence-initial singular neuter NP welches System; in the singular
unterstützt condition, disambiguation occurs at the (nom/acc syncretized) postverbal NP,
which being plural cannot be the subject of a singular verb. In a serial model, default sub-
ject intepretation preference for the initial NP predicts greater processing difficulty at the
main verb in the unterstützen condition. Schlesewsky et al. (2000) confirmed this predic-
tion experimentally, finding higher reading time for the plural unterstützen condition of (11)
starting at the main verb and persisting through the rest of the sentence.
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was welches + N
Subj Obj Other Subj Obj Other

NEGRA 43 18 19 0 0 0
TIGER 84 47 23 0 1 0
TüBa-D/Z (Nom/Acc) 40 37 18 1 0 0

Table 4: Empirical frequencies of subject and object interpretations of sentence-initial was
and welches

In (12), verbal agreement is singular, meaning that the verb is compatible with either a
subject or object reading for sentence-initial was. Case marking on the immediate postver-
bal NP is unambiguous, however, and disambiguates the grammatical function of the clause-
initial NP was. In a serial model, default preference for subject interpretation of the sentence-
initial NP would predict greater processing difficulty at the postverbal NP in the der con-
dition. Schlesewsky et al. (2000) indeed found significantly higher reading time for the der
condition, but at the postverbal NP the difference was small and statistically insignificant;
it reached significance (as well as its largest numerical difference) at the postmodifying PP.

As discussed in Section 4.4, the predictions of surprisal can differ substantially from
construction-frequency accounts such as the Tuning Hypothesis when dependents precede
their heads, as is the case for subject-preference data. The remainder of this section presents
a surprisal-based analysis of the data in (11) and (12). First, however, it is instructive to use
readily-available hand-parsed corpora of German to determine the generality of the corpus-
frequency counts of Schlesewsky et al. (2000). Table 4 shows these counts for the NEGRA
corpus, as well as for two other parsed corpora of German, TIGER and TüBa-D/Z.32 We see
a considerable corpus-dependent difference: for Frankfurter Rundschau text (NEGRA and
TIGER), there is a clear trend toward greater frequency of subject for sentence-initial was,
but for Die Tagezeitung text (TüBa-D/Z), as with the reported Freiburg Corpus counts,
subject and object seem to be similar in probability as GFs for initial was.

7.1 welches questions with disambiguating agreement

The intuitive difference between surprisal and serial construction-frequency accounts of (11)
becomes clear when the full set of structural continuations of Welches System. . . that could
lead to the finite verb is examined:

(13) a. [Welches System]subj V.sg . . .

b. [Welches System]obj V.sg . . .

32TIGER, like NEGRA, is a hand-parsed corpus of text from the German newspaper Frankfurter Rund-
schau (Brants et al., 2002). TüBa-D/Zis a hand-parsed corpus of text from the German newspaper Die
Tagezeitung, which is more colloquially written than Frankfurter Rundschau (Telljohann et al., 2005).
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c. [Welches System]obj V.pl . . .

d. *[Welches System]subj V.pl . . .

As discussed in Section 6, surprisal marginalizes over multiple structural interpretations of a
partial input to determine the expectation of the next word. Since a sentence-initial object
does not constrain number marking on the upcoming finite verb, singular verb expectations
receive probability mass from not only subject ((13-a)) but also object (13-b)) interpreta-
tions of the clause-initial NP. Plural verb expectations, in contrast, receive expectation from
only the object interpretation of the clause-initial NP (note that continuation (13-d), be-
cause it violates subject-verb agreement, will receive little to no expectation from a rational
probabilistic model.) Informally, then, even if the probability of an object interpretation
of clause-initial Welches System is over 0.5, the expectation it contributes to finite verbs is
split between singular and plural verbforms. In the case-marked NEGRA corpus, 60.6% of
clause-initial objects are in fact followed by a singular finite verb, whereas only 15.2% are
followed by a plural finite verb. This causes the surprisal to be greater for plural verbs than
for singular. Two detailed quantitative estimates of finite-verb surprisal differences for (11)
are given in Appendix B in support of this informal analysis.

7.2 was questions with disambiguating case marking

We now examine the stimuli in (12), in which the grammatical function of sentence-initial
was is disambiguated by case marking on the definite article of the immediately postverbal
NP. We therefore will investigate word-by-word surprisal differentials arising from a case-
marked PCFG derived from the NEGRA corpus, just as in Section 5.2.33 Figure 7 plots
the word-by-word differences in the subject-was and object-was conditions for (a) surprisal,
based on the case- and number-percolated PCFG read off the morphologically annotated
portion of NEGRA; and (b) actual mean reading time of the word’s region in (12).34 The
scaling factor of the graph is the slope of a linear regression (with zero intercept) of by-region
reading time against surprisal.

The crucial points in Figure 7 are the surprisals and reading times at the postverbal
article der and at the preposition in. Because these are closed-class words occurring in
high-frequency syntactic contexts, we can be relatively confident that statistical variance in

33Note that case marking is not represented on the PPs in Figure 6 because their case is not fully con-
strained before the subsequent NP has been seen. In effect, the PP category in these partial parse trees is
shorthand for all the possible case-marked PP categories consistent with the head preposition in.

34Because the words erforderte, Einbruch, and Nationalbank do not appear in the case-marked portion of
NEGRA, it was impossible to measure all relevant probabilities associated with these words. Instead, I have
substituted the semantically related words begründete ‘caused’, Eintritt ‘entrance’, and Bank ‘bank’ have
been respectively substituted. Since both the substituted words and their replacements are part-of-speech
unambiguous, the substitutions have no effect on the surprisal differentials at other words in the sentences
determined by an unlexicalized PCFG.
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Figure 6: The two major partial parses for (12), with case- and number-percolated categories.
(PWS is the part of speech assigned to the word was in the NEGRA treebank.)

the surprisal difference across conditions at these points is relatively low.35 Although the
surprisal in the der condition of (12) at the postverbal article is indeed higher (by 0.32 bits),
it is the postnominal preposition that sees the greatest surprisal differential—over twice as
high at 0.70 bits. This pattern matches the empirical results of Schlesewsky et al. (2000),
where the greatest difficulty was found at the postnominal PP, not at the postverbal NP.

Two questions now need to be answered regarding the surprisal model’s results: why
there is a considerable surprisal differential at the postnominal PP, and why there is only
a small surprisal differential at the postverbal NP. The first question turns out to have a
simple answer upon inspection of incremental parsing under the case-marked PCFG. Figure
6 shows the partial parses leading to the preposition in in the der and den conditions of
(12), respectively. The only difference among the grammatical rules required to extend the
partial parse through Einbrugh to accomodate the new word in is the PP adjunction rule:

(14) NPnom → NPnom PP

versus

(15) NPacc → NPacc PP

In German, object NPs are empirically more likely than subject NPs to be postmodified by
prepositional phrases. This is shown in Table 5: it is true not only of subject versus object
NPs overall, but also specifically of subject versus object NPs in the immediate postverbal
position.36 This means that the probability of the rule (14) is higher than the probability of
(15). In the online comprehension of (12), immediately after hearing Einbruch the compre-
hender therefore has a greater expectation of seeing a PP (and hence a preposition) next in
the den condition than in the der condition. Hence the surprisal at in is greater in the der
condition.

35The surprisal differences at the open-class words Eintritt and Bank, in contrast, are likely to have
high variance, because the prior frequency of the word appearing in different case forms will affect surprisal
differentials, and the low count of these words in the case-marked portion of NEGRA (3 instances of Eintritt,
7 of Bank) causes high variance in the prior-frequency estimate.

36All subject/object differentials in Table 5 are significant by Fisher’s exact test. For all corpora, post-
modification also remains more frequent for object than for subject NPs when only PPs headed by the word
in are considered, although only the figures for post-verbal NPs (not the figures for all NPs) are statistically
significant.
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Figure 7: Predicted vs. actual reading time differentials for (12)

The explanation for the small surprisal differential at the onset of the postverbal NP,
despite the strong differential frequency of initial-NP grammatical function reported for
NEGRA in Table 4, is as follows. First, not all German finite clauses beginning with sub-
ject was are transitive. Second, in transitive clauses of written German there seems to
be an overall tendency to put the subject NP immediately after the finite verb when the
object NP is scrambled to initial position: in NEGRA, 73% of subject-initial clauses have
an immediately post-verbal object, whereas 90% of object-initial clauses have an immedi-
ately post-verbal subject.37 These two factors conspire to reduce the surprisal advantage of
den over der. Unlike the Active Filler Hypothesis, therefore, surprisal predicts maximal
processing difficulty in this experiment precisely where it occurs.

8 Empirical difficulties for the theory

In Sections 5, 6, and 7 we have seen cases where surprisal makes predictions consistent with
online processing data that may be difficult to reconcile with other theories. This section

37Unfortunately, insufficient data exists to determine whether this pattern extends to was-initial clauses
in particular.
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All Postverbal
Subj Obj Subj Obj
N % N % N % N %

NEGRA 15220 15.3 7952 22.4 2393 12.2 1156 20.3
TIGER 30187 15.2 17490 23.7 4231 12.2 2461 24.4
TüBa-D/Z 20072 6.3 10094 11.2 5672 4.8 2710 8.6

Table 5: Frequency of PP modification for subject versus object NPs

touches on empirical data that may be difficult for surprisal, and suggests what support for
other types of processing theories can be drawn from these data.

8.1 English relative clauses

At this point it is appropriate to return to the configuration that has been most extensively
investigated in the context of syntactic processing difficulty: relativization. As noted in
Section 4.2, it is well-established that object-extracted RCs in English are more difficult
than subject-extracted RCs. In locality-based theories, this is due to the fact that subject
but not object relativizations minimize the distance between the extraposition and both the
gap and the governing verb. As shown by Hale (2001), surprisal predicts the same general
asymmetry due to the fact that object RCs are less common than subject RCs. However,
different theories disagree on exactly where the increased difficulty of object RCs is predicted
to occur, and more recent studies have begun to address this issue by looking at word-by-word
reading time patterns in greater detail.

To begin the analysis, note that the integration-cost component of the DLT predicts that
it is the RC verb that will be harder to read in object extractions than in subject extractions,
because the verb (and the immediately postverbal gap) is where the extra integration cost is
paid. Within the surprisal theory, on the other hand, a relative pronoun triggers a syntactic
environment much like a verb-final clause: the comprehender knows that the RC’s verb must
appear at some point, but is uncertain as to what it is and whether a subject will precede it.
Surprisal therefore predicts that RC verbs should be read more slowly in subject RCs than
in object RCs. The cost of low expectation for object RCs should be paid at the embedded
subject, which is where the bulk of the expectation devoted to seeing a subject-extracted
RC is pruned away.38 But the empirical evidence in this case seems to side with locality
over surprisal. Grodner et al. (2000) show that for stimuli of the form in (16) below, there
is a marked increase in the reading time at the embedded verb sent for the object over the
subject relativization. The embedded subject in (16-b), the photographer, is read quickly
(see Appendix B of Grodner and Gibson (2005) for word-by-word reading times):

(16) a. The reporter who sent the photographer to the editor hoped for a good story.

38The DLT’s storage component and the AFH both predict a degree of cost at the embedded subject in
an object relativization, but these predictions have no baseline of comparison and at any rate turn out to
be inferior in granularity to the predictions of surprisal, so I will not discuss them further.
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b. The reporter who the photographer sent to the editor hoped for a good story.

One possible interpretation of this result within the surprisal theory would be that the
observed slowdown at the main verb is a spillover effect: the difficulty is actually incurred at
the embedded subject NP, but it is not registered until the embedded verb. Two natural ways
of testing this interpretation present themselves. First, the distance between the embedded
subject and the embedded verb could be increased: a spillover effect should occur on the
material right after the embedded subject NP, whatever it happens to be. Alternatively, the
surprisal theory could be tested for by modulating the the embedded subject NP so that it
is more or less predictable. A more predictable embedded subject NP should be read more
quickly than one that is less predictable.

An experiment relevant to the spillover prediction was conducted by Grodner and Gibson
(2005), who varied postmodification of the subject NP in embedded RC context:

(17) a. The administrator who the nurse supervised. . .
b. The administrator who the nurse from the clinic supervised. . .
c. The administrator who the nurse who was from the clinic supervised. . .

The DLT predicts that the difficulty of the first verb will be lowest in the unmodified case,
higher in the PP-modified case, and highest in the RC-modified case. Surprisal predicts
exactly the reverse pattern; and furthermore, if the embedded-verb difficulty seen in (16-b)
is due to spillover from the embedded subject NP, we might expect to see a spillover spike
inside the postmodifiers of (17-b) and (17-c). The experimental results in this case generally
support the DLT: RC-verb reading time is elevated significantly in (17-c), and in (17-b)
the PP from the clinic is consistently read quickly, which undermines a spillover account of
verbal difficulty in (16-b).

Gordon et al. (2004) provide another piece of the puzzle by varying the definiteness
and quantification of embedded subject NPs in object-extracted RCs. The crucial contrasts
involve the following stimulus types:

(18) a. The salesman that {the/an} accountant contacted spoke very quickly. (Def-
inite/Indefinite)

b. The salesman that (the) accountants contacted spoke very quickly. (Defi-
nite/Bare Plural)

c. The salesman that {the accountant/everyone} contacted spoke very quickly.
(Definite/Quantifier)

In a corpus study within the same article, the authors found definite NPs to outnumber their
indefinite or bare counterparts for both singular and plural embedded subjects. To reason
about the predictions of surprisal for these cases, it is necessary to recall that the theory
links processing difficulty to the conditional probability of each word in its context. This
encompasses lexical probabilities, so a rare word as a syntactically likely continuation may
well be more surprising than a common word as a syntactically unlikely continuation. In
the (18-a) contrast, the discrepancy in definite/indefinite NP frequency is the only relevant
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statistic, so surprisal predicts that the definite NPs should be easier. Surprisal also predicts
that the definite NPs should be easier in (18-b), but the difference in difficulty should be
more dramatic, because the comprehender receives more information at once—both the fact
of an object RC and the main lexical content of the embedded subject—in the bare plural
case than in the indefinite singular case. In the (18-c) case, the relevant contrast is likely to
be between open-class and closed-class (hence high-frequency) lexical NP head, so we predict
lower difficulty for the everyone stimulus. These predictions are fairly consistent with the
experimental results of Gordon et al. (2004): (18-a) produced no significant differences in
reading times, (18-b) produced significantly faster reading times at the embedded subject
NP for the definite stimulus (and at the matrix verb, though curiously not at the embedded
verb), and in (18-c) reading time was significantly lower at the quantifier NP and beyond.

Taken together, recent results on constrained syntactic environments and English relative
clauses pose a perplexing set of results. On the one hand, in verb-final and English matrix-
verb environments, extra dependencies preceding the head seem to facilitate rather than
hinder reading at the final verb, as we saw in Section 5. On the other hand, additional
and more informative material before the verb of an object-extracted RC seems to hinder,
not facilitate, reading time at that verb. Nevertheless, subregularities in the difficulty of
embedded subject NPs observed in Gordon et al. (2004) are consistent with the predictions
of surprisal.

One way of interpreting these mixed results is to hypothesize that surprisal has a major
effect on word-by-word processing difficulty, but that truly non-local (i.e., long-distance)
syntactic dependencies such as relativization and wh-question formation are handled funda-
mentally differently from local syntactic dependencies, and the retrieval and integration of
a long-distance dependent incurs a substantial processing cost comparable to the cost of a
highly surprising word. On this theory, surprisal effects dominate the processing of verb-final
clauses because none of the dependencies are long-distance, but processing a relative clause
involves storing, retrieving, and integrating a long-distance dependent, so that relative clause
reading times also exhibit substantial DLT-like effects that are not predicted by surprisal.
Working out such a two-factor theory would be a non-trivial undertaking beyond the scope
of this work, but the most recent available data suggests that formulating and testing such
an approach could well be a promising direction for future research on syntactic processing
difficulty.

8.2 Digging-in effects

One property of some competition and dynamical models proposed in the literature (see
Section 4.3) is that they predict digging in: while multiple analyses are posssible, the favored
analysis tends to become stronger even in the absence of evidence bearing on the ambiguity.
One type of evidence that seems to support this idea is a finding by Ferreira and Henderson
(1991) recently elucidated and modeled by Tabor and Hutchins (2004) that the difficulty in
recovery from a so-called “NP/Z” ambiguity (as in (19) below) increases with the length of
the ambiguously-attached NP
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(19) a. As the author wrote the book grew.
b. As the author wrote the book describing Babylon grew.

Ferreira and Henderson found (using relative clause rather than gerund VP postmodifiers)
that participants judged NP/Z sentences grammatical less often when the ambiguous NP
was long, as in (19-b), than when it was short, as in (19-a). Tabor and Hutchins replicated
this finding, and in a self-paced reading study showed that the longer NP induced consider-
ably increased processing difficulty at the disambiguating word grew. Tabor and Hutchins
interpreted this finding as a “digging-in” effect: in the absence of additional information con-
tributing to ambiguity resolution, initial attachment preferences get stronger and stronger,
so that the dispreferred subject interpretation of the ambiguous NP becomes increasingly
less accessible as the NP increases in length.

As presented here, surprisal does not predict digging-in effects: there is no time-dependent
positive-feedback process invoked during incremental sentence comprehension. However, this
does not mean that the NP/Z results described above are incompatible with the theory. The
reason for this is that the size and structure of the ambiguous NP does constitute potentially
disambiguating information. In English, object NPs are typically larger than subject NPs. In
the parsed Brown corpus, for example, subject NPs contain an average of 1.87 words, object
NPs an average of 4.20 words (if pronominal NPs are excluded, the figures are 2.77 and 4.95
respectively). On the basis of arguments made in Sections 3 and 5.1, it is reasonable to expect
this information to be deployed in incremental disambiguation. As a result, the postmodifier
in (19-b) should strengthen the preference for object interpretation of the ambiguous NP,
and correspondingly increase predicted difficulty of the disambiguating verb “grew”.

8.3 Local coherence effects

Another type of result that has received considerable recent attention and is what could be
called local coherence effects: when difficulty arises from a source that seems to be indepen-
dent of or even violate constraints imposed by possible structures or structural preferences
imposed by the global (i.e., complete incremental sentence) context. Tabor et al. found
that when a reduced relative clause modifying a noun within an unambiguously non-subject
context is introduced by a verb that is part-of-speech-ambiguous between past participle and
simple past (such as tossed), additional processing difficulty relative to that incurred for an
unambiguously simple-past verb (such as thrown) is incurred:

(20) a. The coach smiled at the player thrown the frisbee.
b. The coach smiled at the player tossed the frisbee.

Within a fully incremental probabilistic theory of comprehension, it would be possible to
entertain these locally-coherent analyses (i.e., the player tossed as a subject-verb combina-
tion) by loosening the set of constraints on what constitutes a well-formed tree, leaving a
small amount of probability mass for “marginal” analyses that are not completely in concord
with all categorical grammatical constraints. This step would not allow surprisal to explain
the observed result, however, because these marginal analyses would, if anything, contribute
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more probability mass to tossed than to thrown. Hence, example (20) would become a case
of facilitative ambiguity, as in Section 6, and the tossed condition should be easier than the
thrown condition. Yet the opposite is observed.

This piece of data is therefore a point of empirical difficulty for the surprisal theory as
presented here. One possible starting point for an analysis, however, could be to explicitly
introduce uncertainty about previous words in the sentence into the model. In any instance
of sentence comprehension, the previous words in the sentence must be retained in short-
term memory, and the comprehender must retain a degree of uncertainty as to exactly what
those words were.39 It is notable that small edits in the structure of (20-b) make the locally-
coherent reading globally coherent as well:

(21) a. The coach smiled at how the player tossed the frisbee.
b. The coach smiled at the player who/that tossed the frisbee.

On the reranking interpretation of surprisal, the difficulty of the critical word tossed could
be due to reranking it induces on the distribution over previous words in the sentence. The
critical word thrown in (20-a) would not induce a corresponding reranking, because it is
incompatible with the edits in (21). Elucidating such an analysis is, however, beyond the
scope of the present paper.

9 Conclusion

Recent experimental results in syntactic ambiguity resolution indicate that comprehenders
incrementally integrate a variety of evidential knowledge in the process of discriminating the
preferred interpretation of a sentence; probability theory serves as a coherent architecture for
this constraint-based, resource-allocation paradigm of ambiguity resolution. We can extend
the parallel, probabilistic disambiguation perspective of incremental sentence processing into
a theory of syntactic complexity and processing difficulty by formalizing a linking hypothesis
stating that the primary source of difficulty incurred in processing a given word is determined
by the degree of update in the preference distribution over interpretations of the sentence
that the word requires. Formalized appropriately using the information-theoretic measure
of the relative entropy between probability distributions, we are able to derive a theory of
processing difficulty previously proposed by Hale (2001), that the difficulty of a word is the
surprisal (negative log of the conditional probability) of that word given its context. This
surprisal theory has several desirable theoretical and mathematical properties, including
a coherent integration of rational disambiguation, incremental processing, and differential
processing difficulty; its ability to serve as a causal bottleneck between representations and
predictions about processing difficulty; and freedom from the granularity bias of other prob-
abilistic theories of syntactic comprehension. Empirically, it can smoothly incorporate major
results in the literature involving prediction and ambiguity resolution; it also makes non-

39This is perhaps particularly true in non-cumulative presentations, which were used in Tabor et al. (2004)
and Konieczny (2005).
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trivial predictions about (1) processing difficulty in head-final and similar contexts where
the comprehender knows that a certain type of constituent is upcoming, but is uncertain as
to exactly where and what it is; and (2) circumstances under which unresolved ambiguity
can facilitate comprehension. As seen in Sections 5 through 8.1, these predictions are for the
most part confirmed by existing experimental results.

There are three more general conclusions that we can also draw from the investigation of
expectation-based processing theories presented here. One is the utility of causal bottlenecks
in theories of syntactic comprehension. At first glance it would seem impossible to talk about
syntactic comprehension without making firm commitment to specific syntactic structures;
and in fact there has been a history of differentiating predictions about behavioral metrics
on the basis of alternative structural representations, from Minimal Attachment (Frazier and
Fodor, 1978) to the more recent Entropy Reduction Hypothesis (Hale, 2006). In the surprisal
theory, in contrast, structural representations affect processing difficulty only through the
mediation of probabilistic word models. The latter can be investigated through a variety of
means, potentially including completion as well as comprehension studies. Yet surprisal is
not a repudiation of syntax: as we have seen, probabilistic word models can be estimated
from probabilistic grammars, and even simple grammars can determine models with difficulty
patterns strikingly similar to established experimental results. Furthermore, surprisal does
not foreclose the possibility of using psycholinguistic data to help characterize the formal
nature of probabilistic grammatical knowledge, as different classes of probabilistic string
languages require different formal means of finite expression. In this respect, investigations
under the surprisal theory can be thought of as a psycholinguistic analogue to empirical and
mathematical investigations into the weak generative capacity of the language faculty in the
1980s (Culy, 1985; Shieber, 1985, inter alia).

In addition, research on syntactic processing and on predictability should keep closer
abreast of one another. This conclusion is a direct consequence of the log-scale of the
surprisal theory. Most work on prediction has focused on highly predictable words—Cloze
probabilities of 0.3 and above. But if the correct scale of predictability effects is logarithmic,
then difficulty asymmetries can arise even for words whose Cloze probabilities would require
enormous studies to accurately estimate. The surprisal theory in fact relies on difficulty
asymmetries between low-probability words to explain results discussed in Sections 5 and
5.3.

Finally, results discussed in Section 8.1 and 8.3 suggest that no one source of processing
difficulty can explain all the prominent results in syntactic comprehension. In particular,
difficulty asymmetries involving relative clauses seem to support a combination of locality- as
well as expectation-based difficulty. Integrating DLT-style locality into a fully-parallel pro-
cessing theory such as surprisal is, however, far from a trivial task, and would be facilitated by
more comprehensive experimental investigation of the circumstances under which evidence
exists for both effects together. Out of necessity, future work will focus on the crossroads
between these two very different views of how difficulty in sentence comprehension arises.
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A Definition and estimation of probabilistic context-

free grammars

A probabilistic context-free grammar (PCFG; Booth 1969) consists of a set of context-free rule
rewrites, each of which is associated with a probability between zero and 1. The probability
of a given rule A → α can be identified with the conditional probability of the rule’s right-
hand side, α, given the left-hand side A—that is, P (α|A). The probability of a context-free
tree in a given PCFG is simply the product of probabilities of all the rules that make up the
tree. The probability of a string w1···n is the sum of the probabilities of all the trees whose
yield is w1···n. The probability of a string prefix w1···i is the sum of the probabilities of all
strings that begin with w1···i, or equivalently, the sum of probabilities of all trees whose yield
begins with w1···i. String prefix probabilities can be calculated efficiently as a byproduct of
bottom-up or left-to-right parsing algorithms, as specified by Jelinek and Lafferty (1991) or
Stolcke (1995).

PCFG estimation is the process of selecting a set of rules and associated probabilities. A
simple form of relative-frequency estimation is employed for all PCFGs used in this paper.
Given a collection of syntactic trees (e.g., the Penn or NEGRA Treebank), the number of
occurrences of each rule in the collection is counted. The relative-frequency estimate of a
given rule R is simply the count of R divided by the total count of all rules whose left-hand
side is that of R’s:

P (A → α) =
Count(A → α)∑
β Count(A → β)

Figure 8 gives an example of relative-frequency estimation of a PCFG from a collection of
two trees. In the estimated PCFG, the novel tree in the right-hand side of the figure has
probability corresponding to the product of the rewrite rules that determine it: 1×1×0.25×
0.25 = 0.0625.

B Analysis of welches questions with disambiguating

agreement

In the stimuli in (11), the contrasting word of interest is an open-class item whose sur-
face forms, unterstützt and unterstützen, are sparse. In addition, the head noun of the the

50



S

NP

I

VP

V

like

NP

cats
S

NP

I

VP

V

like

NP

dogs

Rule Count Probability
S → NP V P 2 1
V P → V NP 2 1
NP → I 2 0.5
NP → cats 1 0.25
NP → dogs 1 0.25

S

NP

cats

VP

V

like

NP

dogs

1.0

0.25 1.0

0.25

Figure 8: Simple relative-frequency estimation of a PCFG

sentence-initial NP is an open-class word whose relative frequency of occurrence in nomi-
native and accusative forms has a strong effect on the predictions of surprisal predicted by
a PCFG. These words are sparse and hence surprisals estimated from corpus-based PCFGs
are unlikely to be reliable.

Most straightforwardly, because the region of interest is so close to the beginning of the
sentence, we can use the n-gram frequency of the first three words of the sentence to estimate
the surprisal at the finite verb directly, given a large corpus of German. A useful estimate of
this sort turned out to require using the World Wide Web itself.40 An exact-match search
using Google returned 15 valid matches of the trigram welches System unterstützt, many of
which were sentence-initial; no instances of the trigram welches System unterstützen were
found.41 The direct counting estimate of surprisal at the finite verb therefore predicts the
reading-time difference experimentally observed by Schlesewsky et al. (2000).

Alternatively, we can decompose the plausible sources of expectation for the relevant finite
verb forms, using grammatical theory and corpus-derived morphosyntactic frequencies. The
probability of the singular and plural verb forms unterstützt and unterstützen in (11) can be
decomposed as follows (WS standing for Welches System):42

P (unterstützt|WS) = P (V.3sg|WS)P (unterstützt|V.3sg, WS)

P (unterstützen|WS) = P (V.3pl|WS)P (unterstützen|V.3pl, WS)

40See Keller and Lapata (2003) for discussion of issues involved in obtaining n-gram frequencies from the
Web.

41June 28, 2005, 12:07pm. I discarded one instance of the former trigram that appeared in a web page
referencing Schlesewsky et al. (2000).

42Although the finite verb forms unterstützt and unterstützen are compatible with first- and second-person
agreement as well, I attend only to third-person agreement because available syntactically-annotated corpora
have nearly exclusively third-person subjects. In a model whose parameters more closely reflected speech
or another written genre, we might expect P (V.2|WS) and P (V.1pl), which respectively contribute to the
probabilities of unterstützt and unterstützen, to be substantial.
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where V.3sg and V.3pl respectively denote singular and plural third-person finite verbs. This
decomposition simply states that the probability of a particular verb-form v given the initial
sequence Welches System is equal to the probability of a finite verb of the correct number
and person marking given the initial sequence, times the probability that the finite verb is
actually v. We can make a crude estimate of the second term in the decomposition with the
simplifying assumption that the conditioning on Welches System does not affect the verb’s
identity.43 Under this assumption, the ratio of the right-hand half of the decomposition for
unterstützt versus unterstützen turns out to be roughly 1 : 2.3—the forms themselves are
roughly equal in frequency (5 versus 6 in NEGRA, 14 versus 11 in TIGER), and singular
finite verbs are roughly 2.3 times as common as plural finite verbs (1844 to 789 in the
morphologically-annotated part of NEGRA).

The first term in the decomposition can be further subdivided:

P (V.3sg|WS) = P (SUBJ|WS)P (V.3sg|WS, SUBJ)

+P (OBJ|WS)P (V.3sg|WS, OBJ)

P (V.3pl|WS) = P (OBJ|WS)P (V.3pl|WS, OBJ)

where SUBJ and OBJ refer to the event of sentence-initial NP turning out to be the subject
or respectively object of the matrix clause. Crucially, the probability of a singular finite
verb has two terms summed together on the right-hand side, because the comprehender
can derive expectation for finite verbs from both the subject and object interpretations of
the initial NP. The probability of a plural finite verb at this point, on the other hand, has
only one term, because a plural finite verb requires an object interpretation of the initial
NP (so P (V.3pl|SUBJ) = 0); see also (13). The Freiburg corpus estimates reported by
Schlesewsky et al. (2000) for the probablities P (SUBJ|WS) and P (OBJ|WS) are 0.45 and
0.55. For the conditional probabilities of V.3sg and V.3pl, make the simplifying assumption of
independence between the lexical content of the initial NP and the category of the subsequent
constituent:

P (V.3{sg/pl}|WS, {SUBJ/OBJ}) ≈ P (V.3{sg/pl}|{SUBJ/OBJ})

These simplified probabilities can be estimated directly from structural counts in the mor-
phologically annotated NEGRA corpus, giving the following estimated probabilities:44

P (V.3sg|SUBJ) = 0.651
P (V.3sg|OBJ) = 0.606
P (V.3pl|OBJ) = 0.152

43If we did not assume independence of the verb form from the lexical content of the initial noun phrase, the
effect would most likely be to increase of the conditional probability of unterstützt relative to unterstützen,
because the former is one of presumably a rather narrow range of semantically plausible verbs given System
as the grammatical subject, whereas System as grammatical object is semantically compatible with a wide
range of transitive verbs.

44Note that nearly all the verbs in the corpus are third-person.
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The crucial comparison is between the second and third lines: even when the initial NP is
an object, the next word is far more often a singular finite verb than a plural finite verb.45

With these probabilities we can now estimate the expectations for singular and plural finite
verbs:

P (V.3sg|WS) = 0.45× 0.651 + 0.55× 0.606

= 0.626

P (V.3pl|WS) = 0.55× 0.152

= 0.0836

The resulting probability ratio, 7.5 : 1 in favor of singular finite verbs, outweighs the 2.3 : 1
ratio we estimated for the probability of the verb form given the number-marked part of
speech. Therefore, the surprisal at unterstützt is less than the surprisal at unterstützen,
which is consistent with empirical reading-time results—even if the relevant initial NPs are
in fact more likely to be objects than subjects.

45Neither set of conditional probabilities sums to 1 because the next word following the sentence-initial
NP may not yet be the finite verb.
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