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Computational psycholinguistics seeks to build
theories of human linguistic processes that take
the form of working computational models. These
models address processes ranging from word rec-
ognition to discourse comprehension, and produce
behavior that constitutes predictions to be com-
pared to human data.

INTRODUCTION

Computational psycholinguistics seeks to build
theories of human linguistic processes that take
the form of implemented computational models.
These models are intended to explain how some
psycholinguistic function is accomplished by a set
of primitive computational processes. The models
perform a psycholinguistic task and produce be-
havior that can be interpreted as a set of predictions
to be compared to human data. As such, computa-
tional psycholinguistics is a paradigmatic example
of cognitive modeling more generally. One prob-
lem with the label computational psycholinguistics is
the implication that there is something that can be
identified as noncomputational psycholinguistics.
This is not presently the case: all psycholinguistic
theories are, at some level, assertions about compu-
tational processes. Computational psycholinguis-
tics is distinguished from other forms of cognitive
modeling by its domain (not its techniques), and it
is distinguished from other forms of psycholinguis-
tic theorizing by its focus on producing functioning
computational mechanisms that embody an expli-
cit process model. The remainder of this article is
devoted to reviewing the state of computational
modeling in several of the major subfields of
psycholinguistics.

MODELS OF LEXICAL PROCESSING

The most influential computational models in
psycholinguistics have been those focused on
word-level processes, in particular, spoken and

visual word recognition. In fact, there are currently
no major psycholinguistic theories of word recog-
nition that do not take the form of a computational
model. Competing theories are routinely tested by
running the corresponding computational models
to determine how well the models” behavior fits
human data. At some level, there is significant the-
oretical convergence. All of the models of lexical
processing are activation-based: lexical access is
modeled as a dynamic process of modulating the
activation of patterns of representation that encode
information associated with specific lexical (or
morphological) items. However, the models differ
dramatically along many important architectural
dimensions, such as the degree of top-down feed-
back and the nature of the computational principles
determining the dynamic activation patterns.

Spoken Word Recognition

Models of spoken word recognition must satisfy a
number of challenging functional and empirical
constraints. These include: speech occurs in time,
with no clear boundaries between words or
phonemes, which may in fact overlap; there are
effects of both left and right context on word recog-
nition; lower-level phoneme identification may
depend on higher-level lexical information; and
there may be considerable noise in the environment
(McClelland and Elman, 1986).

Current computational models of word recogni-
tion are extensions of ideas first put forward expli-
citly in the COHORT theory of speech perception
(Marslen-Wilson and Tyler, 1980). The key prin-
ciples in COHORT are that the initial sound of a
word establishes a cohort or candidate set of pos-
sible words beginning with that sound, and this
candidate set is incrementally narrowed down in
real time as subsequent acoustic input arrives.
Word recognition is achieved when the candidate
set is narrowed to one, which may occur before the
end of the word.
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The TRACE model of McClelland and Elman
(1986) provides an explicit computational realiza-
tion of these basic ideas in COHORT, while ad-
dressing some of its most critical shortcomings. In
particular, COHORT had no clear account of how
word boundaries were identified in the continuous
speech stream, and it assumed accurate bottom-up
identification of phonemes. TRACE is an inter-
active-activation architecture with bidirectional ex-
citatory connections between nodes representing
acoustic features, phonemes, and words. Each
time slice of input occupies a separate part of the
input vector, and there are multiple copies of
phoneme and word detectors centered over every
three time slices. There are also inhibitory links
within levels between mutually incompatible
words or phonemes; thus, word and phoneme rec-
ognition is a competitive process. This competition
and the distribution of multiple detectors across
the network permits the model to recognize
words without clear boundaries known in advance.
The bidirectional nature of the within-level connec-
tions provides a way for the lexicon to directly
influence the perception of lower-level phonemic
and acoustic features.

TRACE has been used to account for a wide
range of psycholinguistic data on word recogni-
tion, including the signature data originally used
to motivate COHORT. Among these phenomena
are: the effect of lexical context on phoneme re-
cognition and its modulation by factors such as
ambiguity; phonotactic rule effects on phoneme
recognition, and their modulation by specific lex-
ical items (phonotactic rules determine what se-
quences of phonemes are possible in a language);
and the categorical nature of phoneme perception.
TRACE was one of the prominent early successes of
the PDP (parallel distributed processing) approach
to modeling cognition and perception, and played
a significant role in establishing the viability of the
PDP paradigm.

TRACE has been challenged on both empirical
and theoretical grounds, most notably by the Short-
list model of Norris (1994). A number of empirical
studies have directly tested the assumption of top-
down feedback in TRACE and yielded results more
consistent with a purely bottom-up architecture in
which phoneme recognition is autonomous and
receives no feedback from lexical recognizers. For
example, certain top-down lexical influences are
dependent on using degraded stimuli, though
TRACE should predict the effects in undegraded
stimuli as well. Norris also argued that the TRACE
architecture is implausible because it assumes
the duplication of the entire network of lexical

recognizers across multiple time slices. Shortlist is
a purely bottom-up model that avoids the duplica-
tion of lexical recognizers by separating the process
of generating candidate words (the ‘shortlist”) and
the process of resolving identification via lexical
competition.

Visual Word Recognition: Lexical
Naming and Decision

Current prominent models of visual word recogni-
tion also take the form of computational models.
One of the most influential of these models, the
connectionist model of Seidenberg and McClelland
(1989) (henceforth SM89), is a descendant of the
McClelland and Rumelhart (1981) interactive
activation model of word perception, which used
localist word, letter, and feature units with hand-
coded connections. SM89 builds on this earlier
model but adopts distributed representations of
both orthographic and phonological information.
The model is a feedforward network with one
hidden layer interposed between orthographic
and phonological units. The connections between
units were trained by back propagation on a word-
naming task. The model accounts for several phe-
nomena in word-naming, including differences
among regular and exception words and differ-
ences in word-naming and lexical decision tasks.
Because the model exhibits a gradual learning
curve, it was also used to simulate the behavior of
children acquiring word recognition skills.

One of the major debates in theories of word
recognition is whether or not there is a single pro-
cessing route from print to speech, or dual process-
ing routes — separate lexical and nonlexical routes.
The SM89 model is a clear example of a single-route
architecture, and has come under sharp criticism
from proponents of dual-route architectures. For
example, Coltheart et al. (1993) note that the SM89
model actually performs more poorly on nonwords
than humans do. Dual-route architectures are well
suited to handing nonwords because the nonlexical
route implements a general rule-based system that
converts letter strings to strings of phonemes.
Coltheart et al. also criticize the SM89 model for
its inability to account for the dissociations evident
in pure developmental surface dyslexia: normal
nonword reading accuracy accompanied by gross
impairments in reading exception words. Coltheart
et al. offer a modular dual-route computational
model, the Dual-Route Cascaded Model, which in-
corporates a learning algorithm for inducing the
general pronunciation rules from examples (it was
tested on the same letter-string/phone-string pairs
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used by SM89). Although Coltheart et al. did not
commit to the details of the lexical route, they sug-
gest that something like the original McClelland
and Rumelhart (1981) model may be an appropri-
ate realization of that part of the word-naming
system.

The debate surrounding dual-route and single-
route architectures continues, with data from
various forms of dyslexia playing an increasingly
important role. The dual-route models have
evolved to include explicit accounts of both reading
aloud and lexical decision (Coltheart et al., 2001),
and the connectionist models have evolved away
from feedforward networks towards recurrent at-
tractor networks that better handle generalization
(Plaut et al., 1996).

Lexical Ambiguity Resolution:
Processing Words in Context

One of the key lessons learned from several
decades of attempting to program computers to
process natural language is that massive local am-
biguity is pervasive at all levels of linguistic repre-
sentation. This is clearly evident in lexical
processing, in which individual words are often
associated with multiple syntactic and semantic
senses, some mutually inconsistent, some partially
inconsistent. Many of the theoretical themes noted
above in word recognition are important in ambi-
guity resolution as well, in particular, the degree of
autonomy or interaction present in initial lexical
access. Differing positions on this issue distinguish
the major theories of ambiguity resolution: selective
access models, most closely associated with inter-
active theories, assume that contextual information
provides direct top-down influence on initial sense
activation; ordered access models assume that differ-
ent senses are accessed in order of frequency of use;
exhaustive access models, most closely associated
with modular theories, assume that all senses are
autonomously and exhaustively accessed in paral-
lel; and hybrid models assume some combined
effects of context and frequency.

In contrast to word recognition, the major theor-
ies of lexical ambiguity resolution are not strongly
identified with specific implemented computa-
tional models (for reasons discussed below). How-
ever, there have been attempts to build detailed
comprehensive computational models. One of the
most successful is Kawamoto’s (1993) recurrent
connectionist model of ambiguity resolution. In
this model, each lexical entry is represented by a
pattern of activity over a 216-bit vector divided into
separate subvectors representing a word’s spelling,

pronunciation, part of speech, and meaning. The
network is trained with a simple error-correction
algorithm by presenting it with the lexical patterns
to be learned. The result is that these patterns
become attractors in the 216-dimensional represen-
tational space. The network is tested by presenting
it with just part of a lexical entry (e.g. its spelling
pattern) and noting how long various parts of the
network take to settle into a coherent pattern cor-
responding to a particular lexical entry. Kawomoto
used these settling times to predict reading times,
lexical decision times, and semantic access times.
The model accounts for a wide range of phenom-
ena, including frequency effects on processing of
unambiguous and ambiguous words, context inter-
actions with frequency, and the effect of task on the
relative difficulty of processing ambiguous versus
unambiguous words.

MODELS OF COMPREHENSION

Language comprehension involves more than the
identification and disambiguation of words; the
meanings of these parts must be pieced together
in real time to yield the meanings of the sentences
and the discourse. The state-of-the-art in computa-
tional linguistics and artificial intelligence places an
upper bound on the field’s ability to develop func-
tional theories of comprehension processes. The
best understood of these processes computation-
ally and psychologically is syntactic parsing, the
incremental assignment of grammatical structure
to a string of words. Syntactic parsing is often as-
sumed (though not universally) to be a necessary
precursor to assigning a semantic interpretation.

Parsing

The major computational problem in parsing is how
to handle local ambiguity. In fact, the prominent
theories of sentence processing are actually theories
of ambiguity resolution, and are distinguished by
the positions they take on the key architectural
questions surrounding ambiguity resolution. These
include: are multiple structures computed and
maintained in parallel at ambiguous points, or
does the parser commit to a single structure imme-
diately? What determines what structures the
parser prefers when faced with ambiguity (e.g. ref-
erential discourse context, structural complexity,
frequency of usage)? How do syntactic and lexical
ambiguity resolution interact?

Two of the most influential models of sentence
processing take opposing positions on most of these
issues (though many of the issues are orthogonal).
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Frazier’s (1987) Garden Path Model asserts that the
parser computes and pursues a single structure at
ambiguous points, and that this initial structure is
computed on the basis of general phrase structure
rules without appeal to frequency, context, or
detailed lexical information. Instead, structural
simplicity is the principle that determines which
structure is pursued in the case of local ambiguity.
In contrast, the Constraint-based Lexicalist ap-
proach (MacDonald et al., 1994) claims that parsing
is a constraint-satisfaction process that uses mul-
tiple information sources (or constraints), including
context and detailed lexical information, without
special architectural priority given to any particular
constraint.

In sharp contrast to theories of word recognition,
the dominant theories of sentence processing have
not been strongly identified with specific computa-
tional models. (For example, the Garden Path
Model was not implemented until 17 years after it
was introduced (Spivey and Tanenhaus, 1998).)
Among the earliest influential computational
models were Marcus’s (1980) wait-and-see parser,
and the Wanner and Maratsos (1978) augmented
transition network (ATN) grammar, which briefly
contended with the Garden Path Model as a frame-
work for understanding ambiguity resolution.
Nevertheless, implemented computational models
of sentence processing largely dropped from the
scene in the 1980s.

Understanding why this happened will help
place current parsing models in context. First, the
early success of the Garden Path Model and the rise
of modularity as a central theoretical theme in cog-
nitive science jointly led the field to focus on modu-
larity as the key architectural issue in sentence
processing, and on ambiguity resolution as the
key phenomenon providing insight into that
issue. Second, Minimal Attachment is an extremely
simple and practical theory — it can be stated in a
few sentences and easily used to derive predictions
cross-linguistically (once the underlying syntactic
structures have been agreed upon). Computational
models offered little advantage over such a theory,
given this relatively narrow empirical and theor-
etical focus.

Two developments in the field are now leading
researchers to develop more computational models.
One is the need to provide more comprehensive,
integrated accounts of sentence processing. Modu-
larity is but one of several important architectural
issues (Lewis, 2000), and computational modeling
provides a way to develop and test interactions
among components in a more functionally com-
plete architecture. For example, computational

models figure prominently among recent attempts
to provide integrated accounts of both garden-path
effects and working memory complexity effects in
unambiguous constructions (Gibson, 1998; Lewis,
2000; Vosse and Kempen, 2000). Computational
modeling also provides a way to import theoretical
constraints from other areas of cognitive psych-
ology, as in the Just and Carpenter (1992) working
memory-constrained model.

A second development leading to more compu-
tational models is the rise of the constraint-based
theories of sentence processing noted above. While
these theories were initially proposed without
associated computational models, it has become
clear that the nature of these theories demands
that they be formulated and tested as precise com-
putational models. Several activation-based/con-
nectionist models (e.g. Spivey and Tanenhaus,
1998) have been developed in the constraint-based
framework.

Unlike computational models of word-level pro-
cesses, which are almost exclusively the domain of
connectionism, current computational theories of
sentence processing are a mix of symbolic, connec-
tionist, probabilistic, and hybrid models. As a class,
the symbolic models tend to account for more com-
plex cross-linguistic data, such as phenomena in
head-final languages (e.g. Konieczny et al., 1997;
Sturt and Crocker, 1996). However, recent models
based on recurrent networks are attempting to
push connectionist models in the direction of hand-
ling more complex syntactic structures, including
difficult center-embeddings (Christiansen and
Chater, 1999; Tabor et al., 1998). Several hybrid
models are also under development, which have
the promise of combining some of the strengths of
both approaches (Jurafsky, 1996; Just and Carpen-
ter, 1992; Lewis, forthcoming; Stevenson, 1994;
Vosse and Kempen, 2000).

Discourse Processing

Processing running discourses of sentences in a text
or verbal exchanges between interlocutors requires
keeping track of multiple related levels of informa-
tion (including, at least, the linguistic structure
of the utterances, the goals and intentions of the
participants, and the content of what is being
discussed). Several major discourse processing
theories have long been associated with imple-
mented computational models. These include the
Centering theory of Grosz and colleagues (Grosz
et al., 1995), which provides an explicit algorithm
for keeping track of attentional shifts among dis-
course entities and binding referring expressions to
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these entities. The theory makes predictions about
preferential patterns of pronominal reference that
have been tested in reading time experiments
(Gordon et al., 1993).

Another influential model is the Construction-
Integration (CI) architecture of Kintsch and col-
leagues (Kintsch, 1998). Comprehension in the
CI architecture is an activation-based process
that proceeds in two phases. The construction
phase produces local sentence-level propositions
using simple, context-independent rules. The in-
tegration phase uses a constraint satisfaction pro-
cess to integrate the possibly incoherent set of
local propositions into a coherent whole organized
by higher-level macropropositions. Many of the CI
model’s predictions about anaphora resolution,
word identification, and the generation and re-
trieval of macropropositions have been empirically
confirmed (Kintsch, 1998).

MODELS OF PRODUCTION

The dominant psycholinguistic theories of produc-
tion are now associated with implemented compu-
tational models. Most psycholinguistic theories of
production focus on the final stages of production:
producing an ordered set of phonemes correspond-
ing to some (given) intended utterance. (In contrast,
much work on production in computational lin-
guistics and artificial intelligence is focused on the
functionally more difficult processes of higher-
order discourse and speech act planning.) The the-
oretical landscape is quite similar to theories of
lexical processing: all the models are activation-
based, but differ in their assumptions about the
nature of interaction between independent levels
of representation. Among the best-known models
are those of Dell (Dell et al., 1997) and Levelt (Levelt
et al., 1999), which take opposing positions along
this dimension. The Dell model is an interactive-
activation-based theory that takes an ordered set
of word units as input and generates a string of
phonemes. Most of the important phenomena
accounted for by the model are speech errors, in-
cluding perseverations (e.g. beef needle soup) and
anticipations (e.g. cuff of coffee). Dell’s model con-
sists of a network of word units (lemmas) and
phoneme units and bidirectional links between
word units and their constituent phonemes. The
signature phenomenon accounted for by the feed-
back from phonemes to words is the statistical
overrepresentation of mixed errors, such as saying
rat when the intention is cat. When the word node
for cat is active, the phoneme segments /k/, /a/,
and /t/ are activated. The latter two segments then

feed activation to rat, which may already be above
baseline due to a semantic association.

The WEAVER++ model (Levelt et al., 1999) is
also activation-based, but eliminates bidirectional
connections. Processing is staged in strictly feedfor-
ward fashion, starting with conceptual preparation
(not implemented), and proceeding to lexical selec-
tion, morphological and phonological encoding,
phonetic encoding, and finally articulation. Unlike
most other production theories, the WEAVER++
model accounts primarily for reaction time (RT)
data, and was developed exclusively on the basis
of RT data from simple production paradigms such
as picture naming. However, Levelt and colleagues
have also shown that the model can account for
some speech errors as well, including those used
to motivate the bidirectional connectivity in the
strongly interactionist models.

MODELS OF ACQUISITION

With one prominent exception noted below, com-
putational models have only recently begun to play
an important role in theorizing about language ac-
quisition. A fundamental difficulty facing the de-
velopment of serious computational models of
acquisition is that the input to such models must
generally be a large corpus of utterances in context.
Although large computer databases of naturally
occurring text and speech are now readily avail-
able, such databases currently lack a component
that nearly all acquisition theories assume is neces-
sary: some representation of the context in which
the utterance occurs. For this reason, much compu-
tational modeling of grammar acquisition is cur-
rently done using small-scale, artificially created
grammars or lexicons, in small-scale, artificial
domains (Feldman ef al., 1996).

However, current speech and text databases are
well suited to exploring distributional theories of
acquisition. For example, certain kinds of lexical
and syntactic information can be determined from
purely distributional analyses (Cartwright and
Brent, 1997). One important example is specific
verb subcategorization frames, which play a critical
role in all modern syntactic theories and sentence
comprehension theories. Computational models of
speech segmentation have also been developed
that learn to identify word boundaries from expos-
ure to continuous speech (Christiansen ef al., 1998).

By far the most controversial and influential
computational acquisition model is the Rumelhart
and McClelland (1986) (henceforth RMS86) con-
nectionist model of the acquisition of the past
tense form of English verbs. Past tense inflection
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acquisition has served as a kind of Drosophila for
research on the mechanisms underlying apparently
rule-governed linguistic behavior, and lies at the
center of a much broader debate on connectionism
and language. The RM86 model was proposed as
an alternative account to the traditional view that
the past tense form of English verbs is formed by
dual routes: an abstract rule that handles all regular
forms by adding —ed to a stem, and a memory that
contains a list of irregular exception words (such as
ran). The connectionist model instead proposed a
single processing route, implemented as a feedfor-
ward network with a single hidden layer, and no
explicit representation of a rule. The network was
trained on 460 pairs of root and inflected forms.
The network reproduced the well-known U-shaped
performance curve often taken as prima facie evi-
dence for the formation of a general —ed rule: chil-
dren initially do not make overgeneralization errors
(e.g. saying runned for ran), but then go through a
period of apparently over-applying the general
rule, and finally recover to adult levels of perform-
ance. Crucially, the network also generalized and
transferred appropriately to novel low-frequency
verbs (e.g. the network correctly produced wept as
the past tense of weep), capturing subregularities
among the irregular words in the corpus.

Every aspect of this work has come under sharp
criticism, including the content of the artificial
database on which RM86 trained their original net-
work, the empirical robustness of the U-shaped
curve itself, and the use of connectionist architec-
tures more generally as accounts of human linguis-
tic and cognitive performance (Marcus, 1996;
Pinker and Prince, 1988). Some of these criticisms
have been addressed in revisions to the model
(MacWhinney and Leinbach, 1991), but new em-
pirical evidence from adult processing has also
accumulated in favor of the dual-route view
(Marslen-Wilson and Tyler, 1998).

CURRENT DIRECTIONS

A number of short-term and long-term theoretical
directions are evident in this review. One overarch-
ing trend is clear: computational modeling is
playing an increasingly important role in theorizing
in all subfields of psycholinguistics. There are sev-
eral reasons for this, all related to theoretical trends
in psycholinguistics more generally. There are four
trends in particular that are likely to continue in the
near term. First, there is a gradual move towards
providing more integrated accounts of multiple com-
ponents of linguistic processing. For example, sev-
eral computational models now combine theories

of lexical ambiguity resolution and sentence pro-
cessing, or ambiguity resolution and working
memory (e.g. Kintsch, 1998). Second, there is an
increasing move towards developing theories that
are jointly constrained by processing and acquisition
data (e.g. Seidenberg and McClelland, 1989). Ac-
companying this trend is a growing reliance on
large machine-readable corpora to test models
that have some role for linguistic experience.
Third, theories of normal linguistic performance
are increasingly constrained by neuropsychological
data from patients with linguistic deficits due to
brain damage. Computational models of intact per-
formance can be ‘lesioned” and tested against both
normal and patient data (e.g. Plaut et al., 1996).
Fourth, there is increasing convergence in all sub-
tields of psycholinguistics towards continuous acti-
vation-based models of processing. These include
parallel distributed processing approaches, but
also many activation-based symbolic models.

There are also some emerging trends that will
most likely play out over the longer term. These
include increasing attempts to integrate psycholin-
guistic models with other process theories in cog-
nitive psychology, such as detailed models of
memory and skill, and increasing convergence
with efforts in computational linguistics as both
fields attempt to tackle functionally difficult areas
such as word sense disambiguation and robust
parsing. These latter efforts will naturally result in
greater contact with linguistic theory. In particular,
linguistic theories which prove to be important in
the development of scalable and robust speech and
natural language systems will be incorporated in
psycholinguistic models that place a premium on
functionality and scalability.
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Experimental methods in psychology are the pro-
cedures used to isolate the effects of manipulations
on behavioral measures.

USE OF EXPERIMENTS IN
PSYCHOLOGY

Experimental methods have been associated with
psychology since the field’s beginnings. The
founding of psychology as a science is usually
dated to 1879, when Wilhelm Wundt established
the first laboratory devoted to experimental inves-
tigation of psychological phenomena. This associ-
ation of psychology with the experimental method
and its emphasis on control of the environment
is what enabled the discipline to make the claim
of being a science. The scientific approach pro-
vides a more objective method for establishing
facts and evaluating alternative possible explan-
ations. Throughout its history, experimentation
has remained the central method of psychology,
although it has not been without its critics, and
non-experimental methods such as naturalistic
observation and survey research have come into
increasingly wide use.

Experiments can be conducted with humans or
animals. The specific population that is studied will

depend on several factors, including the topic with
which the research is concerned, the theoretical
predispositions of the researcher, the specific
methods that are feasible with a particular popula-
tion (e.g. humans cannot be lesioned, but non-
humans cannot provide verbal reports), and the
fact that more control can be exerted over a labora-
tory animal’s history and environment than can be
extended over a human’s. Much psychological re-
search in the late nineteenth century used human
subjects, in part because researchers had an interest
in the subjective experience of perceptual events.
Beginning in the early twentieth century with the
behaviorist movement, the use of animals in-
creased. Because the learning and conditioning
principles studied by the behaviorists were con-
sidered to be generalizable across species, much
of the research focused on rats and pigeons,
animals that can be studied easily.

Research on humans continued to be conducted
throughout this period, but a major renewal of
interest occurred with the advent of contemporary
cognitive psychology in the 1950s. Most experi-
mental research on humans is conducted in la-
boratory settings with undergraduate psychology
students. One concern with such research is the
extent to which the principles derived from it



