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We explore the idea that eye-movement strategies in reading are precisely adapted to the joint
constraints of task structure, task payoff, and processing architecture. We present a model
of saccadic control that separates a parametric control policy space from a parametric ma-
chine architecture, the latter based on a small set of assumptions derived from research on
eye movements in reading (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Warren,
& McConnell, 2009). The eye-control model is embedded in a decision architecture (a ma-
chine and policy space) that is capable of performing a simple linguistic task integrating in-
formation across saccades. Model predictions are derived by jointly optimizing the control of
eye-movements and task decisions under payoffs that quantitatively express different desired
speed-accuracy tradeoffs. The model yields distinct eye-movement predictions for the same
task under different payoffs, including single-fixation durations, frequency effects, accuracy
effects, and list position effects, and their modulation by task payoff. The predictions are com-
pared to—and found to accord with—eye-movement data obtained from human participants
performing the same task under the same payoffs, but are found not to accord as well when
the assumptions concerning payoff optimization and processing architecture are varied. These
results extend work on rational analysis of oculomotor control and adaptation of reading strat-
egy (Bicknell & Levy, 2010b; Norris, 2009; Wotschack, 2009; McConkie, Rayner, & Wilson,
1973) by providing evidence for adaptation at low levels of saccadic control that is shaped by
quantitatively varying task demands and the dynamics of processing architecture.

Introduction

We present a set of novel eye-tracking experiments
and computational models that explore the idea that
eye-movement strategies in reading are adaptations
to the joint constraints of processing architecture,
task structure, and task payoff. To our knowledge,
these experiments provide the first evidence for the
modulation of low-level saccadic control in a se-
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quential reading task by the experimental manip-
ulation of an external payoff—a payoff that quan-
titatively specifies a speed-accuracy tradeoff. The
computational models provide the first systematic
analysis of how observed eye-movements in read-
ing might be determined by such task payoffs inter-
acting with the constraints of the processing archi-
tecture, including oculomotor dynamics and repre-
sentation noise. The key components of this anal-
ysis are a model with multiple control (strategy or
policy) parameters that performs the complete task,
and an exploration of how changes in both external
payoff and processing architecture lead to changes
in achieved payoff and optimal strategies, and thus
changes in the predicted behaviors.

Task effects in psycholinguistics

Task goals and context have long been known to
have major effects on human performance in psy-
cholinguistic experiments (for an early analysis see
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the seminal chapter by Forster, 1979). For example,
in the area of single-word lexical processing, there
are robust differences in how frequency and other
important effects are manifest in naming vs. lexical
decision tasks (e.g., Grainger, 1990). Task context
in the form of experimental list composition and
goal manipulation via instructional emphases have
significant effects, and have received detailed theo-
retical treatments (Wagenmakers, Ratcliff, Gomez,
& McKoon, 2008).

There is also a small but growing line of em-
pirical work demonstrating task effects on eye-
movements in reading. For example, McConkie and
colleagues (McConkie et al., 1973) have shown that
participants tend to read longer when anticipating
more difficult questions (for example, questions of
a factual nature), as well as when they were finan-
cially incentivized to answer the questions correctly.
More recently, Rayner and Raney (Rayner & Raney,
1996) have shown that the lexical frequency effect
is eliminated when subjects read words in search
of a target word rather than reading for compre-
hension. Finally, Wotschack (2009) found that in-
creasing the frequency and difficulty of comprehen-
sion questions, as well as instructing the participants
to proofread, led to slower reading speeds. But
while this prior work manipulates task type and dif-
ficulty, there has not been a manipulation of quanti-
tative speed-accuracy tradeoffs of the kind we pur-
sue here.

In addition, recent work on visual attention in
both linguistic and nonlinguistic contexts indicates
that attention strategies are strongly shaped by pre-
vailing task goals (e.g., Rothkopf, Ballard, Hay-
hoe, & Regan, 2007; Ballard & Hayhoe, 2009; see
Salverda, Brown, & Tanenhaus, 2011 for a recent
review). In general, effects of strategic adaptation
penetrate all levels of human performance (Newell,
1973), from the most elementary perceptual deci-
sions (Tanner & Swets, 1954) to more complex
multi-tasking scenarios (Meyer & Kieras, 1997;
Howes, Lewis, & Vera, 2009).

One of our guiding hypotheses is therefore that
eye-movement strategies in reading are shaped by
task goals. Just as there are no fixed visual search
strategies, neither are there fixed cognitive or eye-
movement control strategies in reading. But we
also assume that there are relatively fixed aspects of
the cognitive and oculomotor architecture (Reichle,
Rayner, & Pollatsek, 2003; Engbert et al., 2005)

that define the space of possible processing strate-
gies and give shape to the payoff surfaces that map
strategies to expected payoff.

The theoretical challenge: From task and
payoff through architecture to behavior

We face a challenge in bridging the gap between
high level task goals and payoff, and the lowest lev-
els of moment-to-moment behavioral control that
make contact with eye-movement measures. Meet-
ing this challenge demands a theoretical approach
that provides an analytic means to investigate the ef-
fects of both task goals and architectural constraints
on behavior. The broad foundations of the neces-
sary approach were provided by early signal de-
tection theory (SDT) (Tanner & Swets, 1954): a
formal model that specifies parameters of strate-
gic adaptation (in SDT, perceptual decision thresh-
olds); a specification of the fixed processing con-
straints on performance (in SDT, the noise parame-
ter, estimated by d′); and quantitative feedback on
task performance that is used in both human ex-
periments and in derivations of optimal adaptation
by the model (in SDT, the payoff matrix for hits,
misses, correct rejections, and false alarms). Ideal
observer models built on SDT (Green & Swets,
1966; Geisler, 1989), and extensions to the dynam-
ics of optimal decisions based on Bayesian sam-
pling (Wald & Wolfowitz, 1948; Stone, 1960; Ed-
wards, 1965; Bogacz, Brown, Moehlis, Holmes, &
Cohen, 2006) significantly extend this formulation
in various ways, but retain its basic form.

The approach: Bounded optimal control

The most general form of the approach specifies
machines and parametric policies capable of per-
forming sequential decision making tasks, and a
means to derive policies that optimize some mea-
sure of obtained payoff/reward—the reinforcement
learning formulation (Sutton & Barto, 1998; Kael-
bling, Littman, & Moore, 1996; Singh, Jaakkola,
Littman, & Szepesvari, 2000). Our version of the
approach as it is applied to both the human and
computational experiments reported here is shown
in schematic form in Figure 1 and includes the
following components: (1) A linguistic task envi-
ronment, the List Lexical Decision Task (LLDT),
which requires determining whether a horizontal ar-
ray of six-letter strings are all words or not (we
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describe the LLDT in more detail below). (2) A
machine (agent architecture) that can control both
perception (via oculomotor decisions that determine
saccade timing) and task-environment actions (via
trial-level decisions that lead to simulated button
presses indicating the response). (3) Machine con-
straints that embody assumptions about processing
architecture (oculomotor dynamics and representa-
tion noise). (4) A set of distinct quantitative pay-
off functions that provide feedback on task perfor-
mance and impose different speed-accuracy trade-
offs (three payoffs we label Accuracy-, Balanced-
and Speed-emphasis). (5) Eye-tracking experiments
using these different payoff functions in which hu-
man participants are given cash bonuses based on
their performance. (6) Computational experiments
in which distinct optimal control policies are de-
rived for the constrained machine under the differ-
ent payoff functions, and under versions of the ma-
chine that vary architectural components of theoret-
ical interest.

This approach meets the bridging challenge be-
cause it provides a way for specific task goals (ex-
pressed as payoff functions) to interact with ma-
chine constraints (through optimization) to yield
detailed behavior. It also has the methodological
virtue of reducing theoretical degrees of freedom in
explaining behavior (Howes et al., 2009) because
strategic parameters are optimized for task payoff,
not fit to data. We refer to the approach as “bounded
optimal” control to emphasize the role that process-
ing architecture plays in defining the optimization
problem (Russell, Subramanian, & Parr, 1993), but
there is no special sense of “optimal” intended; it is
simply an application of optimal sequential control.

This work is in the growing tradition of ratio-
nal analysis (Anderson, 1990) approaches to lan-
guage processing (Hale, 2011) and eye-movement
control (Legge, Klitz, & Tjan, 1997; Bicknell &
Levy, 2010a, 2012), and draws substantially on
Bayesian sequential sampling and diffusion mod-
els of lexical processing (Norris, 2006, 2009; Wa-
genmakers et al., 2008) and mathematical models
of eye-movement control in reading (Engbert et al.,
2005; Reichle et al., 2003). What distinguishes
our present work is the analytic and empirical fo-
cus (and associated novel results) on understanding
how task-specific payoff and processing architec-
ture jointly shape eye-movement behavior. We now
introduce our task paradigm in more detail which
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Figure 1. Overview of the approach. See the text for a
detailed description keyed to the numbered elements.

will allow us to ground the main theoretical assump-
tions and model description.

The List Lexical
Decision Task

The List Lexical Decision Task (LLDT) is a simple
extension of a paradigm first introduced by Meyer
and Schvaneveldt (1971). On each trial of the
LLDT, participants are presented with a list of al-
phabetic character strings, and must make a single
decision as to whether the list contains only words.
The top of Figure 1 shows a typical trial. In the
human and modeling experiments reported below,
there are six strings in a horizontal array; each string
is four letters long. There is at most one nonword
per list and no words are repeated in the same list.

The LLDT is a simple task but has several desir-
able features for our purposes: (a) it is amenable to
quantitative payoff manipulations and trial-by-trial
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Accuracy Balanced Speed

Incorrect penalty -150 -50 -25
Speed bonus (per
second under 5s)

8 6.7 5.7

Table 1
Quantitative payoffs given to both model and hu-
man participants. These payoff points translated
into cash bonuses for the human participants.

feedback that differentially rewards speed and ac-
curacy (discussed next); (b) it requires the control
of serial visual attention; (c) it involves both per-
ceptual control decisions and a separate trial-level
decision, and thus poses a joint optimization prob-
lem over both sets of decisions; (d) it requires the
application of (minimal) linguistic knowledge that
can be approximated via corpus frequencies; (e) it
is expected to lead to left-to-right reading and thus
yield an eye-tracking record comparable to natural
reading. Because all the words are four letters and
selected independently, the LLDT is also expected
to yield a high proportion of single fixations and
clean estimates of frequency effects not confounded
by length and predictability.

Three distinct payoffs

We evaluated both model and human participants
according to three different payoff functions (spec-
ified in Table 1. The payoffs were designed to im-
pose different speed-accuracy tradeoffs for a given
level of success, and were all defined in terms of a
bonus for speed and penalty for incorrect responses.
The bonus was continuous at the millisecond level,
starting at zero points for responses longer than 5s
and rising by a different number of points per sec-
ond for each payoff.

An optimal control model

Main theoretical assumptions

We can now state our three main theoretical as-
sumptions:

1. Saccadic control is a “rise-to-threshold” sys-
tem (Brodersen et al., 2008) conditioned on task-
specific decision variables that reflect the accumula-
tion and integration of noisy evidence over time. We

model the evidence accumulation as Bayesian se-
quential sampling, and in our simple two-alternative
task this is equivalent to a Sequential Probability
Ratio Test (Wald & Wolfowitz, 1948).

2. The saccade thresholds are set to maximize
task-specific payoff, but this is one part of a joint
optimization problem that includes all other policy
parameters that determine behavior in the task. In
our model of the LLDT, this consists of a separate
decision variable and threshold that determines the
task-level response to the entire trial. These two
thresholds together determine how long the model
fixates on individual strings, how many strings it
reads, and when and how it responds.

3. The shape of the payoff surface (and thus its
maxima) over the multi-dimensional policy space is
determined jointly by the payoff function and prop-
erties of the perceptual and oculomotor system, in-
cluding saccade programming duration, eye-brain-
lag, saccade execution duration, manual motor pro-
gramming duration, and representational noise.

Overview
We provide a brief overview of a typical trial

before focusing in on specific detail of each as-
pect of the model specification. See Figure 2 for
a schematic diagram of the full model, and Fig-
ure 3 for simulated traces from two sample tri-
als. On a given trial, the first fixation starts on the
leftmost string. During each fixation, noisy infor-
mation about the fixated string is acquired at ev-
ery timestep, with some delay (the eye-brain-lag,
VanRullen & Thorpe, 2001). This noisy informa-
tion is used for updating the model’s beliefs about
the status of the current string as well as the trial as
a whole. This means that information about the cur-
rent word may affect the beliefs about other words,
as a consequence of the constraint that each list has
at most one nonword. (We later explore the im-
plications of this in the model predictions and find
support for these predictions in the human perfor-
mance). The model receives no parafoveal input—
i.e., it receives information from one word at a time.
This is a reasonable approximation given the wide
spacing of the strings in the human experiment (ap-
proximately 3.4 degrees of visual angle), and we
found no empirical evidence for preview effects.

The sampling continues until either the string-
level or the trial-level belief reaches some thresh-
old, at which point either a saccade is initiated (if
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Parameter Mean Std Deviation Source

Eye-Brain Lag 50ms 15ms (VanRullen & Thorpe, 2001)
Saccade programming time 125ms 37.5ms E-Z Reader (Reichle et al., 2009)

Saccade execution time 40ms 12ms Estimated from participants
Motor preparation and execution time 100ms 30ms EPIC (Meyer & Kieras, 1997)

Trial onset detection and refixation 150ms 45ms Prior estimate of short fixation and saccade
Sample duration 10ms 0 Nontheoretical discretization parameter

Gaussian sample noise 0 1.2 Standard deviation fit as described in text

Table 2
Model parameters; all are fixed in advance except sample noise, which is fit as described in the text. Means
were taken from sources noted, with standard deviation fixed at 0.3 × mean.

Search range Final value Source

Saccade Threshold 0.80, 0.85, 0.86, 0.87, 0.88,
0.89, 0.90, 0.91, 0.92, 0.93,
0.94, 0.95, 0.96, 0.97, 0.98,
0.99, 0.995, 0.999, 0.9999,
0.99999

0.99 (Acc),
0.97 (Bal),
0.92 (Speed)

Maximizing payoff given
task and architecture

Decision Threshold 0.80, 0.85, 0.90, 0.92, 0.94,
0.95, 0.96, 0.97, 0.98, 0.99,
0.999, 0.9999, 0.99999

0.999 (Acc),
0.999 (Bal),
0.99 (Speed)

Maximizing payoff given
task and architecture

Table 3
Derived policy parameters. The saccade and decision thresholds were derived by evaluating the expected
payoff achieved by the model with each combination of indicated policy values, and then choosing the pair
of thresholds that maximize payoff; see Figure 4 for the derivation of the optimal policy.

the string-level threshold is reached), or a manual
response is initiated (if the trial-level threshold is
hit). We will refer to these thresholds as the sac-
cade threshold and decision threshold. Information
acquisition continues while the saccade or manual
response is being programmed and until the saccade
begins execution (with some visual persistence off-
set). Once saccade programming and execution is
complete, the model fixates on the following string
(if there are strings remaining), or initiates a re-
sponse otherwise. Once motor programming and
execution is complete the trial is over.

Oculomotor architecture and noise

The model’s sequential perceptual inference mech-
anism is embedded in a simple oculomotor control
machine, drawing upon current mathematical mod-
els of oculomotor control in reading. The delays
noted above (eye-brain-lag, saccade programming

and execution times, and motor time) are drawn
from gamma distributions, chosen for convenience
because they are constrained to be positive and
have been previously used in eye movement mod-
els (Reichle et al., 2009). For ease of interpretation,
we will report the means and standard deviations of
these parameters. They were converted to gamma
distribution parameters by setting the shape param-
eter k =

µ2

σ2 and the scale parameter θ = σ2

µ
, where

σ = 0.3 × µ. Means were taken from the existing
literature (see Table 2), and mean saccade duration
was estimated directly from our human participants.

Bayesian evidence integration and assump-
tions about prior beliefs (lexicon)
We assume that there is some noise in the percep-
tual information acquisition process and in the pro-
cess of matching visual input to the lexicon. To
overcome this noise, our model (and many ideal
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Next, we update the string-level beliefs:

Prnew(S k = Wi|T ! N k, sk) =

=
Pr(sk |S k = Wi,T ! N k)Prold(S k = Wi|T ! N k)

Prold(sk |T ! N k)

=
Pr(sk |S k = Wi)Prold(S k = Wi|T ! N k)

Prold(sk |T ! N k)
(4)

Prnew(S k = Ni|T = Nk, sk) =

=
Pr(sk |S k = Ni,T = N k)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)

=
Pr(sk |S k = Ni)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)
(5)

Finally, we update the trial level beliefs:

Prnew(T =W|sk) =

=
Prold(sk |T =W)Prold(T =W)

Prold(sk)
=

=
Prold(sk |T ! N k)Prold(T =W)

Prold(sk)

(6)

Prnew(T = N j!k |sk) =

=
Prold(sk |T = N j)Prold(T = N j)

Prold(sk)

=
Prold(sk |T ! N k)Prold(T = N j)

Prold(sk)
,

(7)

Prnew(T = N k |sk) =

=
Prold(sk |T = N k)Prold(T = N k)

Prold(sk)

(8)

In order to make decisions, in addition to the proba-
bility that the trial is a word trial or not that we compute
above, we also need the probability that the string at po-
sition k is a word or nonword, i.e., Pr(S k ∈ ∪n

i=1Wi) and
Pr(S k ∈ ∪m

i=1Ni):

Pr(S k ∈ ∪n
i=1Wi) =

n∑

i=1

Pr(S k = Wi|T ! N k)Pr(T ! Nk)

(9)

Pr(S k ∈ ∪m
i=1Ni) = 1.0 − Pr(S k ∈ ∪n

i=1Wi) (10)

The full process then iterates, with each Prnew becom-
ing the next Prold.
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Figure 2. Schematic diagram of the full model. Stimulus arrives from environment with some delay (eye-brain lag)
(1), at which point a posterior update occurs (2), taking into account the new sample information plus prior beliefs
(initialized from knowledge of the experiment and lexicon). Control conditioned on string-level and trial-level beliefs
(3) may initiate manual (4) or oculomotor action (5) (button press or saccade). In the case of the latter, the eye moves to
the next string with some delay (6) (saccade programming and execution). In the case of the former, response is made
with some delay (motor programming and execution) and the model receives payoff feedback (7).

observer models) iteratively uses Bayes’ update in
combination with some prior belief to determine
the probability distribution over the currently fix-
ated string and the remaining strings in the trial.

The model maintains belief probabilities over
the following items: (a) the probability distribution
over all possible strings in the currently fixated po-
sition, (b) the probability of a nonword in each po-
sition, and (c) the probability that the current trial
is a word trial (note that this is the complement of
the sum over (b)). The prior over (a) is derived from
corpus frequencies from the Brown Corpus (Kucera
& Francis, 1967), the prior over (b) is the proba-
bility of a nonword trial divided by the number of
positions, and the prior over (c) is the probability
of a word trial. The simplifying assumption here is
that the participants know all of the words in the ex-
periment and thus would categorize all of the word
strings correctly given sufficient time (we discuss
below how this assumption may have contributed to
a discrepancy between the accuracy achieved by the
model and the humans).

Following Norris (2006), the model represents
the string stimuli with a simple indicator vector cod-

ing. The true identity of each letter is represented as
a vector of length 26 with a 1 in the position corre-
sponding to this letter, and zeros elsewhere. Each
string is represented as a 4 × 26 matrix with a row
for each of the four letters in the string. This coding
does not represent a deep theoretical commitment
but is a convenient way to place strings in a repre-
sentational space with plausible similarity relations.
Samples are generated by adding mean-zero Gaus-
sian noise to this representation; we discuss below
how this noise parameter is set.

At each time step, upon receipt of a sample the
model computes a multi-step Bayes update: first,
it updates its belief of the probability distribution
over strings in the current position; then, it uses this
information to update its belief over the other po-
sitions and the trial. In doing so, it takes into ac-
count the fact that position-level nonword probabili-
ties are not conditionally independent given the one-
nonword restriction. However, in order to greatly
decrease the computational cost of each update, the
model allows for non-zero belief probabilities over
lists with repeated word-strings. The larger lexi-
cons that we can explore as a result are substantial
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Figure 3. Simulated model traces for a correct word trial and a correct nonword trial. At the top are the words in
each trial. The filled rectangles show the timing and duration of fixation durations, saccade programming (prog), eye-
brain-lag (EBL), sampling, and motor response preparation and execution. At the bottom is the random walk of the
belief probabilities, with the bottom representing 0 and the top 1. The black line is the trial-level belief (and so starts
at 0.5), and the red lines are the string-level beliefs (and so start at 0.82, the prior probability that a given string is a
word). The solid horizontal black lines are the decision thresholds (the top one for a word-trial and the bottom one for a
nonword-trial), the dashed horizontal lines are saccade thresholds.

enough that the probability of repeated words is ex-
tremely low and so we think that this simplification
in the model is justified. The full mathematical de-
tail of the update is included in the Appendix.

The model was tested with 50 different word
and nonword lexicons of approximately 500 strings

each. The word lexicons always included the exper-
imental words and an additional set of words drawn
uniformly randomly from the set of 1,500 English
four letter words represented in Kucera and Fran-
cis (1967); the nonword lexicons always included
the experimental nonwords and an additional set of
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nonwords in which letter bigrams were attested in
the English word list. The model’s performance is
always evaluated on the words and nonwords from
the human experiments, but for the model these
strings are not distinguished in any way from the
rest of the model’s lexicon. Aggregating results
across different model lexicons ensures that the re-
sults are not driven by a particular lexicon choice
(though our experience with the modeling indicates
the results are robust against this choice). Never-
theless, granting the model veridical knowledge of
both words and nonwords in this way is a gross sim-
plification of human subject knowledge; we con-
sider some potential consequences of this below.

Trial decision and saccade thresholds
What remains is the process of conditioning con-
trol on the belief state detailed above. The control
problem is essentially two nested optimal stopping
(Wald & Wolfowitz, 1948; Stone, 1960; Edwards,
1961) problems: when to stop sampling from each
string and move on to the next word, and when and
how to respond and thus end the trial. The model
uses two thresholds to implement these control de-
cisions. The saccadic control is determined by a
threshold defined over the evolving probability of
a nonword (or word) in the current position, and
the manual button (trial-level response) control is
determined by a threshold over the evolving proba-
bility that the trial is a word or nonword trial. The
model thus yields biased random walks (e.g., Rat-
cliff, 1978), in which the belief probabilities make
a noisy rise or fall towards one of two symmetrical
thresholds (Figure 3); crossing a threshold then trig-
gers the corresponding action. The two thresholds
(over saccade and manual decisions) embody the
fundamental speed-accuracy tradeoff in the model.
As the thresholds are set higher, the probability of
making an error falls but the time to decision in-
creases; as the thresholds fall, the opposite happens.

This dual-threshold policy space is a subset of
the full space of possible policies, which consists
of all actions available to the model (saccade, wait,
respond yes, respond no) conditioned on all possi-
ble belief states. It is possible that better policies lie
outside of the space we explored. As such, the pol-
icy space simplification may be taken as a theoret-
ical commitment to a kind of computational bound
on control. Although this may be a plausible as-
sumption, future work must provide support for it

by comparing it explicitly to alternative models. For
present purposes, the 2-dimensional space has the
virtues of simplicity and computational tractability.

Understanding how the
model makes predictions

Recall the fundamental theoretical challenge we
identified in the Introduction: find a way to link
high level task goals and payoff, through process-
ing architecture, to the lowest levels of moment-
to-moment behavioral control. We now describe
how we can use the model to accomplish this, by
making predictions on the List Lexical Decision
Task under the three different payoff schemes. The
methodology is to explore differences in the payoff
surfaces, especially focusing on optimal and near-
optimal policies, and their implications for behav-
ior. More specifically, in what follows we (1) ex-
amine the relationship between policy and expected
payoff; (2) examine the relationship between pol-
icy and behavior; and (3) examine the relationship
between behavior and payoff. It is important to un-
derstand that these are not three separate computa-
tional steps in the modeling process but rather dif-
ferent ways of viewing the model’s implications.

Fitting the noise parameter. The Gaussian noise
added to the sample vectors is the one parame-
ter that is not fixed in advance. It functions as a
kind of scaling parameter in that increasing noise
requires increasing the number of samples to ob-
tain a given level of accuracy. We fit this param-
eter to the human data by computing optimal poli-
cies across a range of noise values and choosing the
value that minimizes a simple error measure: root
mean squared deviation from mean single fixation
duration (SFDs, fixation durations on strings fix-
ated only once) for the three payoff conditions. In
this sense, the fixation durations act as our training
set, and the model’s remaining measures are the test
set. Other choices, for example fitting SFD to only
one of the conditions, makes little difference. Fig-
ure 9 (red curve) shows the resulting model error
(computed here as root mean squared error) across
a range of noise levels in the neighborhood of the
minimum. Figure 9 also shows model errors for
three other architectural variants discussed below.
For the architecture described above and illustrated
in Figures 2 and 3, the noise value providing the
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best fit is 1.2 and this value is held constant across
all predictions for all three payoffs.

The relationship between policy and payoff

Figure 4 provides views of the payoff surface in the
two-dimensional policy space. In the first three pan-
els, payoff is plotted against saccade threshold and
each separate line corresponds to a separate deci-
sion threshold. In the fourth panel, payoff is plot-
ted against decision threshold and each line corre-
sponds to a separate saccade threshold—thus these
are different views of the same 2-D payoff surface.
Recall that a policy is simply a pair of threshold val-
ues (saccade-threshold, decision-threshold). The
circled point at the top of each payoff plot represents
the policy that yields the maximum expected payoff
under this formulation of the policy space, and its
value is given as the pair of numbers to the left of
the point. The colored points represent policy points
that are within 0.2 payoff units of the optimal. Val-
ues of each point are computed from means of 300K
Monte Carlo trials; see the Appendix for details.

Consider the Accuracy payoff graph at the left.
This graph indicates that there is a flat region of the
payoff surface when saccade thresholds are below
about 0.85; this corresponds to thresholds where
the saccade program is initiated almost immedi-
ately upon fixation. There is a steep rise in pay-
off as saccade thresholds increase—because more
samples are obtained and accuracies are increasing
significantly—up to a maximum point near a thresh-
old of 0.99, followed by a steep decline as the addi-
tional gain from increased accuracy diminishes and
the time cost begins to dominate. This relation-
ship holds for most of the good performing deci-
sion thresholds. The relationship between decision
threshold and payoff has a similar but simpler pro-
file over the range we explored: a steady increase in
payoff as the decision threshold increases, followed
by a steep drop as the time cost begins to dominate.

The Balanced and Speed payoffs have a simi-
lar profile as the Accuracy payoff—for the saccade
thresholds, a flat region, a rise, and a sharp drop.
But the qualitative shape differs considerably in the
region of the maximum; payoff surface is consid-
erably flatter for the Balance payoff, and very flat
for Speed. Thus there is considerably more spread
in the range of thresholds that perform within some
close threshold of the optimum. The visualization

of the payoff space suggests that we were more suc-
cessful in separating the Accuracy condition from
the other two than we were in separating Balanced
and Speed from each other.

The graphs in Figure 4 provide a visualization of
the fundamental basis of the model’s link between
task payoff and predicted behavior: they depict the
nature of the adaptive space that the human partic-
ipants must navigate according to the model. The
overall differences in payoff levels are not impor-
tant; what is important are differences in the opti-
mal and near-optimal policies, and in the shape of
the payoff surface. The next step is to relate these
same policy points to predicted behavior directly.

The relationship between behavioral mea-
sures and payoff

Figure 5 plots SFD and overall trial response time
against saccade threshold (we focus on these two
measures for illustration; many other measures are
obtained as shown in Figure 6, 7 and 8). The col-
ored points correspond to the best policies identi-
fied in Figure 4. The relationships are clear: in-
creasing saccade threshold increases single fixation
duration, though it has almost no effect until thresh-
olds are above 0.85, and past 0.99 the fixation times
increase dramatically. The decision threshold lines
are indistinguishable because task decision thresh-
olds have no direct effect on single fixations. The
middle graph shows that trial response times also
increase as both saccade and decision thresholds in-
crease. Finally, the right graph shows that increas-
ing saccade threshold increases overall accuracy.

Finally, the third panel in Figure 5 visualizes the
payoff surface directly in terms of one of the behav-
ioral measures (SFD); here each line corresponds
to a different payoff. In this space it is easy to see
the speed-accuracy tradeoff in the upside-down U-
shaped curves. On the left side of the curve, spend-
ing more time increases payoff because accuracy is
increasing; on the right side, spending more time
decreases payoff because the cost of the increased
time outweighs the diminishing accuracy gains.

Model predictions and
human experiment results

In what follows we describe the human eye-tracking
experiments and walk through both the model pre-
dictions and human results at the trial-level and
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Figure 4. Expected payoffs generated by the model over the 2-D policy space defined by decision and saccade thresh-
olds. The first three panels relate expected Accuracy, Balanced, and Speed payoff to saccade thresholds; each separate
line corresponds to a separate decision threshold. The fourth (rightmost) panels relates the expected Accuracy payoff to
decision thresholds; each separate line corresponds to a separate saccade threshold. (The Balanced and Speed payoffs,
not shown, have rising but shallower slopes). The circled points represent the optimal policies, whose value is indicated
at the left of the point. The colored points (red for Accuracy, blue for Balanced, and green for Speed) represent policies
that are within 0.2 expected payoff units of the optimal point; thus the spread of these points in the Balanced and Speed
payoffs reflects the flatter surfaces for those payoffs. Expected payoff values were computed over 300K simulated trials.
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Figure 5. Examples of how thresholds determine behavior, and in turn how behavior and payoff are related. The first
two panels show single fixation duration (SFD) and trial RT as a function of saccade threshold; the third panel shows
expected payoff as a function of SFD. The circled points represent the optimal polices and the colored points (red for
Accuracy, blue for Balanced, and green for Speed) represent policies within 0.2 payoff units of the optimal. See Figure 4
for the identification of these points.

string (word) level. Throughout it is important
to understand the constrained nature of the model
predictions. The threshold settings determine how
the model behaves—the responses it makes, when
it makes them, and how long it spends fixating
on each string—and thus determine predictions for
word and nonword trials, correct and incorrect tri-
als, word and nonword fixation times, position ef-

fects, accuracies, and so on. We report below multi-
ple measures for each of the three conditions; with
the single noise parameter fit to minimize error on
single fixations durations as described above and
held constant across the three payoff conditions.
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Eyetracking experiment methods
Participants Sixty-one members of the Univer-
sity of Michigan community participated in the ex-
periments. Data from thirteen were unusable due
to calibration problems, failure to complete the ex-
periment, or equipment malfunctions, leaving a to-
tal of 48. Participants were given a baseline of $10
for participation, plus a bonus of $1 for each 1000
points they earned in the task.

Stimuli Participants responded to 200 trials of the
LLDT divided into 10 blocks, preceded by a 10-
item practice block. There were two types of tri-
als in each block: half of trials contained all-words
lists, and the other half contained 5 words and one
non-word in a randomly drawn position. Words
were all 4 characters long and drawn from a 234-
word subset of the Brown Corpus (Kucera & Fran-
cis, 1967), containing 117 high-frequency words
(mean frequency count 239.2, SD 186.0) and 117
low frequency words (mean frequency count 5.6,
SD 12.8). Nonwords were also all 4 characters
long, and were drawn from a list of 53 nonwords
pronounceable according to English phonotactics.
While this means that participants saw each string
more than once, the number of times a string was
seen had no effect on fixation durations (effect of
-0.64 ms per time seen, p=0.61).

Procedure Each participant was assigned to one
of the three payoff conditions used to make predic-
tions from the model. They were not told the name
of their payoff, only a quantitative description of the
requirements (e.g. “You will receive a point for each
125 milliseconds by which your response is faster
than 5000 ms (5 s). You will lose 150 points if your
response is incorrect. You will get a $1 bonus for
each 1000 points.”).

Items were presented on a CRT monitor in a 20pt
Courier font, separated by 8 characters of whites-
pace. This resulted in each word covering 0.7 inches
or 1.6 degrees of visual angle, and whitespace cov-
ering 1.48 inches or 3.4 degrees of visual angle at a
distance of 25 inches from the screen. Each trial
started with a fixation dot at the location of the
first string. The entire six-string list would appear
once subjects fixated, and the trial ended after sub-
jects responded using a Cedrus response box. Eye
movements were measured using an SR-Research

Eyelink II head-mounted eye-tracker operating at
500Hz. Single-point drift correction was performed
before every trial.

Statistical methods are given in the Appendix.

Trial level effects

Figure 6 shows the results for key trial-level mea-
sures: response times (on correct and incorrect tri-
als), and percentage correct. The top row is the set
of human results, and the bottom row is the set of
model results from a set of policies at or near opti-
mal (within 0.2 payoff units) plotted. Table shows
condition means for human participants and model.

The key empirical result here is that the human
participants show marginally decreased accuracies
and response times across the Accuracy-Balanced-
Speed payoff conditions: the accuracy condition re-
sults in slower response times (Table 6, contrast set
(a)) and higher percentage correct (Table 6, con-
trast set (b)). The model predicts this trend because
the optimal thresholds for Accuracy are higher (Ta-
ble 3) than Speed, leading to slower but more ac-
curate responses. There is a significant discrepancy
in predicted accuracies that we address below. The
model also correctly predicts that correct word tri-
als will show slower responses than incorrect trials,
with the converse holding in nonword trials (a re-
liable cross-over interaction, Table 6, contrast set
(c)). This result is a consequence of the fact that
’all words’ responses (correct or incorrect) tend to
come after reading the full list, whereas ’not all
words’ responses tend to come after only reading
a subset of words. Although this is not surprising
behavior for the humans, the model need not have
behaved this way: there are suboptimal strategies in
the space we explored that set the decision threshold
low enough that an ’all words’ response are made
before all strings are read, and ones that set it high
enough that ’not all words’ responses are not made
until after the sixth string.

String level effects: Payoff, frequency,
string type, and list position

Figure 7 shows the results of key string-level mea-
sures: single fixation duration across fixation types
and by frequency class. We report single fixation
durations both for brevity and because this is the
measure that our model, currently lacking regres-
sions, is able to quantitatively predict. 71% of the
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Response Time (ms) % Correct Payoff

Condition Human Model Human Model Human Model

Accuracy 1667 1644 92 98 12.91 23.44
Balanced 1548 1546 87 97 16.08 21.52

Speed 1494 1455 88 95 16.65 18.89

Table 4
Trial-level measures; payoff reported is mean payoff per trial. See Table 6 for significance tests.

●

1000

1200

1400

1600

1800

2000

2200

Response Time for Word Trials

Tr
ia

l R
es

po
ns

e 
T

im
e 

(m
s)

(HUMAN)

Accuracy Balance Speed

●

●
●

●

●

●

CORRECT trial
INCORRECT trial

1000

1200

1400

1600

1800

2000

2200

Response Time for Word Trials

Tr
ia

l R
es

po
ns

e 
T

im
e 

(m
s)

(MODEL, noise=1.20)

Accuracy Balance Speed

●

●●

●

●
●
●
●

●

●

●

●
●
●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

1000

1200

1400

1600

1800

2000

2200

Response Time for Nonword Trials

Tr
ia

l R
es

po
ns

e 
T

im
e 

(m
s)

(HUMAN)

Accuracy Balance Speed

●

●
●

●

●
●

CORRECT trial
INCORRECT trial

1000

1200

1400

1600

1800

2000

2200

Response Time for Nonword Trials

Tr
ia

l R
es

po
ns

e 
T

im
e 

(m
s)

(MODEL, noise=1.20)

Accuracy Balance Speed

●

●
●

●

●●●
●●
●

●
●
●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●●

●
●
●●
●
●●
●
●●
●●

●●

●

●

●

●

●

●

●

85

90

95

100

Percent Correct

P
er

ce
nt

 C
or

re
ct

(HUMAN)

Accuracy Balance Speed

●

●
●

85

90

95

100

Percent Correct

P
er

ce
nt

 C
or

re
ct

(MODEL, noise=1.20)

Accuracy Balance Speed

●●●
●

●
●
●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6. Empirical measures at the level of the trial for the full set of human participants and the computational
model. The colored points represent predictions corresponding to the best-performing policies identified in Figure 4, the
lines connect the means of this set. The error bars on the human data correspond to one standard error estimated from
posterior densities of the mixed effects models.

strings were fixated only once, so other measures
(e.g. first fixation and total fixation times) show the
same patterns.

The key result here is that the human data is con-
sonant with the model prediction of slower fixation
durations in the Accuracy as compared to the Speed
condition (Table 6, contrast set (d)). The model pro-
vides a straightforward explanation of this effect:
when a payoff provides pressure to respond more

correctly, a higher saccade threshold will increase
the amount of information acquired, increasing the
likelihood of a correct response. Note that while the
differences in trial response times is consistent with
a difference in fixation durations in the model, this
need not have been the case in the human data: the
humans could have adapted via other strategies such
as keeping their hands closer to the keys or minimiz-
ing mind wandering. Rather than (or in addition to)
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Figure 7. Single fixation durations and frequency ef-
fects for human participants and model. The colored
points represent predictions corresponding to the best-
performing policies identified in Figure 4, the lines con-
nect the means of this set. We show the frequency effect
here as means of low and high frequency bins (median-
split) but all statistical models used continuous predictors.
The error bars on the human data correspond to one stan-
dard error estimated from posterior densities of the mixed
effects models.

these other adaptations, humans show evidence of
adapting their moment-to-moment saccade timing
to the differential speed-accuracy pressures.

The model also correctly predicts an effect of
log frequency on fixation durations: fixations on
highly frequent words are faster (Table 6, contrast
set (d)). Norris (2006) has shown that this is a con-
sequence of an otherwise unconstrained ideal ob-
server model making decisions on single words, but
it was not a necessary outcome with the additional
oculomotor constraints we introduced. The effect
can disappear with sufficiently low saccade thresh-
olds, even though the model can still perform the
task. Indeed, in the Speed condition, many good-
performing thresholds nearly make the frequency
effect disappear. The reason is that thresholds can

be set that are near the prior belief in expectation, so
a saccade program is initiated immediately, before
samples are taken. There is therefore little or no op-
portunity for frequency to affect fixation duration.
But samples continue to arrive during the saccade
programming time so the task can be performed.
The model also predicts a larger frequency effect in
the Accuracy condition as compared to the Speed
condition, for the same reason: thresholds are set
lower in the Speed condition and fewer samples are
obtained during the pre-saccade-programming stage
of sampling that affects fixation durations and thus
frequency effects. The human data are consistent
with this effect, but the interaction is not reliable.

The model makes other interesting and more sub-
tle predictions attested in the human data (Figure 8,
left two columns). First, nonwords are read more
slowly than words. In the model, this is a conse-
quence of the fact that the prior probability that any
given string is a word is much higher than a non-
word. It therefore takes more evidence (more sam-
pling time) to reach the nonword threshold. Fur-
thermore, the word-nonword difference is predicted
to be larger in the Accuracy condition than Bal-
ance and Speed, an effect that appears in the hu-
man data as a reliable interaction between condition
and string type. This reflects a nonlinear effect of
distance-to-threshold on the number of samples re-
quired in expectation.

In addition, the effect of trial accuracy is differ-
ent for words and nonwords (another interaction):
fixation durations on words are about the same in
correct and incorrect trials, but the model predicts
that nonwords are read more quickly in incorrect tri-
als, and the human data shows this pattern (Table 6,
set (g)). In the model this arises because the word
threshold is closer than the nonword threshold, and
so incorrect random walks to the word threshold
happen more quickly than correct random walks to
the nonword threshold.

Finally, the model predicts that strings in later
positions are read somewhat more slowly than
strings in early positions for all three payoff condi-
tions; this effect, though tiny, is also reliable in the
human data (Table 6, contrast set (e)). This is an-
other consequence of the list-level Bayesian update.
The reason is a somewhat counterintuitive property
of the probabilistic structure of the task: as evidence
is accumulated identifying strings as words in the
list, the probability of an all-words list increases—
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Figure 8. Single fixation durations for word and nonword, by correctness (left two columns), and single fixation dura-
tions for words by position in the list (rightmost column), for the full set of human participants and the computational
model. The colored points represent predictions corresponding to the best-performing policies identified in Figure 4, the
lines connect the means of this set. The error bars on the human data correspond to one standard error estimated from
posterior densities of the mixed effects models.

but the probability that any one of the individual
strings remaining is a nonword increases slightly.
Thus, the prior belief that each remaining string is a
word is slightly lower, and in expectation additional
samples are required to hit the word threshold.

The accuracy discrepancy

The key discrepancy between model predictions
and human performance is that the model achieves
higher accuracy than the human participants (and
consequently achieves a higher total payoff, espe-
cially in the accuracy condition). It is important
to note that this discrepancy cannot be straightfor-
wardly addressed by simply increasing the noise
parameter—because the model would adjust its
thresholds to maintain higher accuracy levels (and
in doing so increase fixation durations and response

Single Fixation Duration

Condition String Type Human Model

Accuracy Nonword 377 331
Word 264 275

Balanced Nonword 308 294
Word 236 242

Speed Nonword 318 257
Word 244 215

Table 5
Single Fixation Durations for word and nonword
strings. See Table 6 for significance tests.

times). Thus there is a genuine discrepancy that
cannot be explained by the present model.
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Contrast set Effect Estimate p

(a) Condition on RT -180.36 0.09

(b) Condition on % Correct (logit) -0.40 0.08

(c) Trial Type (word vs nonword) on RT -355 <0.001
Correctness (correct vs incorrect) on RT -91 <0.001
Correctness x trialtype interaction on RT -596 <0.001

(d) Condition on SFD -21 0.04
Frequency on SFD -4.45 <0.001
Frequency x Condition interaction on SFD 1.64 0.29

(e) Position on SFD 3.26 0.007
Position x Condition interaction on SFD -0.65 0.44

(f) String (word vs nonword) type on SFD 97 <0.001
String type x Condition interaction on SFD -61 0.05

(g) String (word vs nonword) x Correctness (correct vs incorrect) on SFD 71.2 <0.001

Table 6
Coefficient estimates and p-values calculated using a likelihood ratio test between two linear models iden-
tical except for the presence of the tested predictor. Lines separate different linear models. Condition was
coded as a set of orthogonal contrasts; reported here is the Accuracy vs. Speed contrast.

We suggest two possible reasons for this discrep-
ancy, both of which may be explored with additional
modeling. Human participants are given a baseline
of $10 at the end of their participation in addition to
their performance-based cash bonus. If participants
are maximizing reward rate, this $10 may be more
valuable in 30 minutes than the $10 plus bonus is
in 40 or 45 minutes. Similar additional speed pres-
sures may result from temporal discounting.

Second, the model has veridical knowledge of
which strings are classified as words and which are
nonwords. But some of the very low-frequency
words on the experiment list (e.g. bard and nigh)
may simply not be in the participant’s lexicons, and
no amount of additional sampling will overcome
such errors. These therefore represent a class of
incorrect responses which are not possible for the
model to make. Future work can address this by ex-
plicitly testing the full list of strings without time
pressure post-experiment, and exclude trials with
words not known by the participant.

How does architecture
shape adaptation?

We have shown that the present model, by optimiz-
ing policies for the different payoffs, and thereby
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Figure 9. Root mean squared error of model predictions
(against mean single fixation duration for the three payoff

conditions) for four architectural variants. For each archi-
tecture, new optimal control policies are derived. In red
is the complete architecture explored above and includes
saccade programming, eye-brain-lag, and saccade execu-
tion. The minimal model dispenses with these oculomo-
tor constraints. The other two models explore the effect
of including excluding the saccade programming.
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Figure 10. The first two panels on show the payoff surface and optimal policies (for Accuracy and Speed) for the mini-
mal model that results from eliminating the oculomotor constraints; compare to Figure 4. The rightmost panel shows one
example of the resulting behavioral predictions. The predicted magnitude of both payoff effects and frequency effects
increase, yielding poorer fit to human data. (See Figure 9 for source of the noise parameter.)

its behavior, predicts a detailed empirical signature
of adaptation across the payoffs that is largely at-
tested in the human subjects, at the level of sin-
gle fixation duration. We now make an initial at-
tempt to address the following questions: Does the
fixed architecture—the dynamics of the oculomotor
system—shape adaptive behavior, and is there sup-
porting evidence for this in the human data?

We begin the exploration by introducing a variant
of the model that contains no ocumolotor dynamics;
we label this the minimal model because it dispenses
with eye-brain lag, saccade programming time, and
saccade execution times. With this minimal model
we find new best-fitting noise parameters and new
optimal policies (Figure 9); the exploration is thus
not simply a “lesioning” of the standard model.

Space precludes a full analysis but we focus here
on some key outcomes of eliminating the architec-
tural constraints. Figure 10 reveals a striking dif-
ference in the nature of the payoff surface for the
minimal model: the peaks are sharper and the op-
timal thresholds are higher. There are qualitative
changes to the behavioral predictions as well, in-
cluding a larger payoff effect and larger frequency
effect (right panel).

Our hypothesis was that the poorer fit is due pri-
marily to the elimination of saccade programming
time: as saccade programming time increases, there
is greater pressure to reduce the saccade threshold,
leading to shorter sampling durations during the ini-
tial stage in which the samples can affect fixation

durations. To test this hypothesis we explored two
additional architectural variants: one which main-
tained only the saccade programming time (thus
eliminating eye-brain lag and saccade execution),
and one which kept eye-brain lag and saccade ex-
ecution and eliminated saccade programming. Our
hypothesis was partially supported: the saccade-
programming-only architecture accounted for the
human data nearly as well as the full architecture,
with the exception that the log frequency effects
were still significantly larger in the model than in
the human data. The fit to human data provided by
the architecture with the eye-brain-lag and saccade
execution was between the extremes (Figure 9).

Comparison of LLDT to
sentence reading

The LLDT was designed as a simple testbed for
the empirical and theoretical exploration of opti-
mal control models that will be extended to reading
comprehension. But what is the relation between
LLDT and reading sentences? We had two prin-
cipal design goals to establish some empirical and
theoretical similarities: (i) empirically, the task was
designed to yield a sequential left-to-right fixation
scanning pattern as in reading for comprehension,
but with a high proportion of single-fixations; and
(ii) theoretically, the task was designed to require
the integration of information obtained from multi-
ple lexical items across saccades.



ADAPTIVE EYE-MOVEMENTS 17

The first goal is empirical, and given the eye-
tracking record on the three payoff variants, the
LLDT meets this goal: the scanning pattern was
left-to-right; 71.2% of strings in our analysis were
fixated once; and there were regressions originating
in 7.5% of strings in the analysis, consistent with
recent reading experiments1.

The second goal is primarily a theoretical one,
but with empirical implications. The goal is satis-
fied because LLDT does require integrating infor-
mation obtained from multiple strings—for exam-
ple, an alternative sequential lexical decision task,
where a yes/no response must be made on each
word, does not satisfy this requirement. Although
the information integration required is minimal, the
sequential nature of the left-to-right evidence accu-
mulation and the nature of the probabilistic con-
straints in the task did give rise to contextual con-
straints that differ across positions of the list. This
led to the prediction of a small increase in fixation
durations across the list, attested in the human data.

We believe the LLDT is a useful first step in
developing quantitative models of task effects in
reading because it permits us to explore novel is-
sues concerning optimal adaptation to the joint con-
straints of task payoff and architecture, but in a se-
quential eye-movement setting where the task and
prior linguistic knowledge sources are clearly de-
fined. And because the task structure and prior
knowledge sources have a principled and integral
role in the model and its predictions, there are paths
to pursuing the integration of high-level linguis-
tic processing and eye-movement control that are
not available to approaches not grounded in a ra-
tional control analysis. One clear possibility is to
adopt generative language models from computa-
tional linguistics to take the place of the generative
model of the simple list structure used here. Indeed
Bicknell & Levy, 2012, 2010a are pursuing such a
path, and such models might be combined with the
nested eye and task-control architecture explored
here to produce optimal control models of reading
that are tuned to specific tasks.

Summary of major results
and broader implications

Let us take stock by revisiting the major theoret-
ical challenge and key hypotheses, and summa-
rizing the major results. The intent was to ex-

plore, computationally and empirically, the idea that
eye-movement control in linguistic tasks is shaped
jointly by specific task context, payoff, and fixed
processing architecture—an idea motivated in part
by a considerable body of work in psycholinguis-
tics and visual attention (Forster, 1979; Wagenmak-
ers et al., 2008; Rayner & Raney, 1996; Wotschack,
2009; McConkie et al., 1973; Reichle, Reineberg,
& Schooler, 2010; Rothkopf et al., 2007; Ballard &
Hayhoe, 2009; Salverda et al., 2011). The challenge
was providing a way to bridge the gap between
high level task goals/payoff, and the lowest levels
of moment-to-moment behavioral control that make
contact with eye-movement measures. We believe
the approach pursued here meets the bridging chal-
lenge because it provides a way to explore how spe-
cific task goals (expressed as payoff functions) in-
teract with machine constraints (through optimiza-
tion) to yield detailed behavior. This approach then
motivates the associated empirical methodology of
running the same task under distinct quantitative
payoffs (Tanner & Swets, 1954).

We introduced a simple linguistic task, the List
Lexical Decision Task, that requires the applica-
tion of lexical knowledge and the integration of in-
formation obtained from a sequence of left-to-right
eye-movements. We presented an optimal control
model of this task that embodies three key theo-
retical hypotheses: (1) saccadic control is condi-
tioned on task-specific decision variables that re-
flect the accumulation and integration of noisy evi-
dence over time; (2) these saccade thresholds are set
to maximize task-specific payoff, but this optimiza-
tion is one part of a joint optimization problem that
includes all other policy parameters that determine
behavior in the task; (3) the shape of the payoff sur-
face (and thus its maxima) is determined jointly by
the payoff function and properties of the perceptual
and oculomotor system. The model permitted the
exploration of these hypotheses computationally by
optimizing control policies for three distinct payoffs
imposing different speed-accuracy tradeoffs. Once
a single noise parameter is fit, the model executing
these optimal policies makes decisions about when
to move the eyes, and how and when to respond

1 E.g. Engbert et al., 2005 shows regression out prob-
ability between 6% and 1%; Reichle et al., 2009 shows
regression out probability between about 8 and 11%, and
Levy, Bicknell, Slattery, & Rayner, 2009 shows regres-
sion out probability between about 10 and 20%.
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to the overall trial, thus generating dozens of be-
havioral measures, including fixation durations, for
each of the distinct payoff conditions.

We ran eye-tracking experiments on the LLDT
in a between-subject payoff manipulation. The
detailed empirical predictions of the model were
largely supported in the human results, including
the key result that single fixation durations were
modulated by payoff in ways predicted by the op-
timal control model. This provides some sup-
port for the first two theoretical hypotheses. We
explored the third theoretical hypothesis—that the
eye-movement behaviors are adapted not only to
the task payoff but are shaped by the specific archi-
tectural constraints of the oculomotor system—by
varying the architectural assumptions in the compu-
tational model and re-deriving optimal policies for
these varied architectures. The optimal policies do
clearly differ in the model when these constraints
are changed. The modified architectures without
saccade programming time provide poorer fits to the
human data: in particular, they overestimate the size
of the payoff effects and frequency effects.

The data from these experiments cannot provide
unambiguous support for the effects of architecture
on optimal policy and thus behavior because there is
no experimental manipulation of the human archi-
tecture. But it is clear that, given the assumptions of
this model, the human data are better accounted for
by assuming that the control policies have indeed
adapted to the saccade programming delay.

There are many interesting directions that may
now be pursued. One especially promising and
novel direction is building models that explain indi-
vidual differences in reading strategies as bounded-
optimal adaptations to individually-varying archi-
tectural constraints. This approach was demon-
strated by Howes et al. (2009) in their individual
differences models of PRP (Psychological Refrac-
tory Period) tasks, where differences in dual-task
costs were explained as signatures of near-optimal
adaptations to low-level processing characteristics
(stage durations and motor noise), not as differ-
ences in an underlying dual-tasking capacity. It
is also possible to explore effects of differences
in internally modulated speed-accuracy tradeoffs—
essentially differences in intrinsic reward. For ex-
ample, the modulation of frequency effect by payoff
suggests a way to understand the increase in lexi-
cal frequency effect on reading times in older adults

(Laubrock, Kliegl, & Engbert, 2006). Our results
show a similar increase in younger adults under a
payoff which emphasizes accuracy; it is known that
older adults’ tend to emphasize accuracy more so
than young adults (Rabbitt, 1979; Smith & Brewer,
1995; Starns & Ratcliff, 2010).

Other useful directions include scaling the model
to more complex sentence-level tasks as indicated
above, as well as incorporating richer sets of cog-
nitive constraints (such as short-term memory (e.g.
Lewis, Vasishth, & Van Dyke, 2006; Lewis & Va-
sishth, 2005)). These will of course introduce
formidable computational and empirical challenges.
But given the ubiquity of adaptive effects at all lev-
els of human performance, we see this combination
of optimal (rational) control analysis and mechanis-
tic architecture modeling as a necessary part of un-
derstanding language and cognition.
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Appendix

Monte carlo simulation details. For the modeling
results reported below, we computed expected values for
the measures (payoffs, reaction times, single fixation du-
ration, etc.) by taking means of these values over 300,000
simulated model trials, where the words and nonwords
in the trials were drawn from the experimental list used
for human participants using the distribution described
above. As in the human experiments the probability of
a word trial was 0.50 (and thus a nonword trial 0.50).
Across the 300,000 trials there were 50 different word
and nonword lexicons of approximately 500 strings each
as described in the text.

We do not report statistical tests on the empirical mea-
sures that the model produces: at 300k simulated trials
for each noise and policy setting, the confidence intervals
around the reported means are negligible.

Statistical Methods. Data analysis on the human
data was carried out using mixed effects regression
(Pinheiro & Bates, 2000) using the lme4 package for
the R environment for statistical computing (R Devel-
opment Core Team, 2011). For inference, models with
maximal random-effects structures were fit: in trial-level
analyses of condition this included by-participant and by-
trial random intercepts, and by-trial random slopes (by-
subject random slopes are not necessary because ours was
a between-subjects design). In string-level analysis of
condition this additionally included random slopes and in-
tercepts of word and list position. In string-level analysis
of frequency this included random slopes and intercepts
of position but only random intercept of word (since fre-
quency is a between-word factor). In string-level analysis
of position this included a random slope and intercept of
word. Linear models were fit to all timing measures, and
a logit model was fit to accuracy. The first and last strings
in each trial were excluded from analysis, as were strings
appearing after a nonword.

Response times and single fixation durations (SFDs)
that were farther than 3 standard deviations from the mean
of those respective measures were removed. Some addi-
tional response times had to be removed due to a bug in
response collection code.

Hypothesis tests were conducted using a single pair
of normalized orthogonal contrasts. The first contrast,
and the one of theoretical interest, is the contrast between
the accuracy and speed payoffs (i.e. coding accuracy and
speed as ±0.5 and balanced as 0). The second contrast
is included for orthogonality but is not theoretically in-
formative, so we do not report it here. This contrast de-
sign allowed us to retain the balanced condition for pur-
poses of improving our error estimates, increasing over-
all power. We treated log frequency and position as nu-
meric linear predictions for the purposes of those hypoth-
esis tests. The effect of each contrast is reported as the
p value of a likelihood ratio test (using the Chi squared
distribution) comparing two models identical except for
the presence of the contrast set of theoretical interest.

The belief update. Here we detail the Bayesian belief
update. Some definitions: A trial consists of a presenta-
tion of a list of l strings of h letters S 1S 2 . . . S l−1S l. Let
the set of all word strings be denoted {Wi}ni=1 and the set
of nonword strings be denoted {Ni}mi=1. Let T denote the
multinomial random variable for trial type; it can take on
mutually exclusive and exhaustive values W for word-
trial, and N k for a nonword trial with the nonword being
at position 1 ≤ k ≤ l. Let Pr(T = W) denote the prob-
ability of a word trial and Pr(T = N k) denote the proba-
bility of a non-word trial with nonword in position k. We
will assume that for all k, i, and Pr(S k = Wi|T = W) =

Pr(S k = Wi|T = N j,k) and we will denote these equal
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quantities by Pr(S k = Wi|T , N k) for probability of a
word string Wi given that this is a trial that cannot have a
nonword at position k, and finally Pr(S k = Ni|T = N k)
for the probability of nonword Ni at position k given that
it is a trial with a nonword at position k.

For each string W (similarly for N), let µi j be the h×26
matrix of 1’s and 0’s representing the indicator coding for
the string, where each row i corresponds to a position in
the string and each column corresponds to a letter of the
alphabet. µi j = 1 if the ith position in W has the jth letter,
otherwise µi j = 0. A sample s from word W (or nonword
N) is a h × 26 real-valued matrix, where each element si j
is sampled independently from a normal distribution with
mean 1 or 0 as given by the indicator coding and standard
deviation σ, the sample noise parameter:

si j ∼ N(µi j, σ
2).

The likelihood of a sample s given some word string W
(or nonwordstring N) is:

Pr(s|W) =
∏

i, j

f (si j; µi j, σ
2)

where f (x; µ, σ2) is the probability density function of the
Gaussian distribution with mean µ and standard deviation
σ.

Let a sample from location k be denoted sk. On re-
ceiving sample sk, the belief update proceeds as follows.
First, we compute some intermediate variables:

Prold(sk |T , N k)

=

n∑

j=1

Pr(sk |S k = W j,T , N k)Prold(S k = W j|T , N k)

=

n∑

j=1

Pr(sk |S k = W j)Prold(S k = W j|T , N k)

Prold(sk |T = N k)

=

m∑

j=1

Pr(sk |S k = N j,T = N k)Prold(S k = N j|T = N k)

=

m∑

j=1

Pr(sk |S k = N j)Prold(S k = N j|T = N k),

Prold(sk)

=Prold(sk |T , N k)Prold(T , N k)+

+ Prold(sk |T = N k)Prold(T = N k)

where Prold(T , N k) = Prold(T =W) +
∑

j,k Prold(T =

N j) = 1.0 − Prold(T = N k).
Next, we update the string-level beliefs:

Prnew(S k = Wi|T , N k, sk)

=
Pr(sk |S k = Wi,T , N k)Prold(S k = Wi|T , N k)

Prold(sk |T , N k)

=
Pr(sk |S k = Wi)Prold(S k = Wi|T , N k)

Prold(sk |T , N k)
Prnew(S k = Ni|T = N k, sk)

=
Pr(sk |S k = Ni,T = N k)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)

=
Pr(sk |S k = Ni)Prold(S k = Ni|T = N k)

Prold(sk |T = N k)

Finally, we update the trial level beliefs:

Prnew(T =W|sk)

=
Prold(sk |T =W)Prold(T =W)

Prold(sk)
=

=
Prold(sk |T , N k)Prold(T =W)

Prold(sk)
Prnew(T = N j,k |sk)

=
Prold(sk |T = N j)Prold(T = N j)

Prold(sk)

=
Prold(sk |T , N k)Prold(T = N j)

Prold(sk)
,

Prnew(T = N k |sk) =

=
Prold(sk |T = N k)Prold(T = N k)

Prold(sk)

In order to make decisions, in addition to the proba-
bility that the trial is a word trial or not that we compute
above, we also need the probability that the string at po-
sition k is a word or nonword, i.e., Pr(S k ∈ ∪n

i=1Wi) and
Pr(S k ∈ ∪m

i=1Ni):

Pr(S k ∈ ∪n
i=1Wi) =

n∑

i=1

Prnew(S k = Wi|T , N k)Prnew(T , N k)

Pr(S k ∈ ∪m
i=1Ni) = 1.0 − Prnew(S k ∈ ∪n

i=1Wi)

The full process then iterates on the next sample, with
each Prnew becoming the next Prold.


