Skip to main content
Log in

Cognitive Representation of a Complex Motor Action Executed by Different Motor Systems

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

The present study evaluates the cognitive representation of a kicking movement performed by a human and a humanoid robot, and how they are represented in experts and novices of soccer and robotics, respectively. To learn about the expertise-dependent development of memory structures, we compared the representation structures of soccer experts and robot experts concerning a human and humanoid robot kicking movement. We found different cognitive representation structures for both expertise groups under two different motor performance conditions (human vs. humanoid robot). In general, the expertise relies on the perceptual-motor knowledge of the human motor system. Thus, the soccer experts’ cognitive representation of the humanoid robot movement is dominated by their representation of the corresponding human movement. Additionally, our results suggest that robot experts, in contrast to soccer experts, access functional features of the technical system of the humanoid robot in addition to their perceptual-motor knowledge about the human motor system. Thus, their perceptual-motor and neuro-functional machine representation are integrated into a cognitive representation of the humanoid robot movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeele, S., & Bock, O. (2003). Transfer of sensorimotor adaptation between different movement categories. Experimental Brain Research, 148(1), 128–132.

    Article  Google Scholar 

  • Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116. doi:10.1038/nn.2182.

    Article  Google Scholar 

  • Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.

    Google Scholar 

  • Bläsing, B., Tenenbaum, G., & Schack, T. (2009). The cognitive structure of movements in classical dance. Psychology of Sport and Exercise, 10(3), 350–360.

    Article  Google Scholar 

  • Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.

    Article  Google Scholar 

  • Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(22), 1905–1910. doi:10.1016/j.cub.2006.07.065.

    Article  Google Scholar 

  • Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406. doi:10.1037/0033-295X.100.3.363.

    Article  Google Scholar 

  • Flach, R., Knoblich, G., & Prinz, W. (2004). Recognizing one’s own clapping: The role of temporal cues. Psychological Research, 69(1–2), 147–156. doi:10.1007/s00426-003-0165-2.

    Article  Google Scholar 

  • Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769–771.

    Article  Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.

    Article  Google Scholar 

  • Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Grezès, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.

    Article  Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14(1), 103–109. doi:10.1006/nimg.2001.0832.

    Article  Google Scholar 

  • Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522–525.

    Article  Google Scholar 

  • Knoblich, G., & Jordan, J. S. (2003). Action coordination in groups and individuals: Learning anticipatory control. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(5), 1006–1016. doi:10.1037/0278-7393.29.5.1006.

    Article  Google Scholar 

  • Knoblich, G., & Prinz, W. (2001). Recognition of self-generated actions from kinematic displays of drawing. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 456–465. doi:10.1037/0096-1523.27.2.456.

    Google Scholar 

  • Lees, A., & Nolan, L. (1998). The biomechanics of soccer: A review. Journal of Sport Science, 16(3), 211–234.

    Article  Google Scholar 

  • Lex, H., Weigelt, M., Knoblauch, A., & Schack, T. (2012). Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance. Experimental Brain Research, 223(4), 457–467.

    Article  Google Scholar 

  • Lex, H., Weigelt, M., Knoblauch, A., & Schack, T. (2014). The functional role of cognitive frameworks on visuomotor adaptation performance. Journal of Motor Behavior, 46(6), 389–396. doi:10.1080/00222895.2014.920290.

  • Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89–115. doi:10.1146/annurev.ps.32.020181.000513.

    Article  Google Scholar 

  • Meulenbroek, R. G., Rosenbaum, D. A., Thomassen, A. J., Loukopoulos, L. D., & Vaughan, J. (1996). Adaptation of a reaching model to handwriting: How different effectors can produce the same written output, and other results. Psychological Research, 59(1), 64–74.

    Article  Google Scholar 

  • Pfeifer, R., & Bongard, J. (2007). How the body shapes the way we think: A new view of intelligence. Cambidge: The MIT Press.

    Google Scholar 

  • Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318(5853), 1088–1093.

    Article  Google Scholar 

  • Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35(6), 1410–1418.

    Article  Google Scholar 

  • Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576–582.

    Article  Google Scholar 

  • Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001). Acquisition of intellectual and perceptual-motor skills. Annual Review of Psychology, 52, 453–470.

    Article  Google Scholar 

  • Schack, T. (2003). The relationship between motor representation and biomechanical parameters in complex movements: Towards an integrative perspective of movement science. European Journal of Sport Science, 3(2), 1–13. doi:10.1080/17461390300073201.

    Article  Google Scholar 

  • Schack, T. (2004). The cognitive architecture of complex movement. International Journal of Sport and Exercise Psychology, 2(4), 403–438.

    Article  Google Scholar 

  • Schack, T. (2011). Measuring mental representations. In G. Tenenbaum, R. C. Eklund, & A. Kamata (Eds.), Handbook of measurement in sport and exercise psychology (Vol. 1). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Schack, T., Bläsing, B., Hughes, C. M. L, Flash, T., & Schilling, M. (2014). Elements and construction of motor control. In: A. G. Papaioannou & D. Hackfort (Eds.), Routledge companion to sport and exercise psychology: Global perspectives and fundamental concepts (pp. 308–323). New York: Routledge.

  • Schack, T., & Mechsner, F. (2006). Representation of motor skills in human long-term memory. Neuroscience Letters, 391(3), 77–81. doi:10.1016/j.neulet.2005.10.009.

    Article  Google Scholar 

  • Schack, T., & Ritter, H. (2009). The cognitive nature of action—Functional links between cognitive psychology, movement science, and robotics. Progress in Brain Research, 174, 231–250. doi:10.1016/S0079-6123(09)01319-3.

    Article  Google Scholar 

  • Schack, T., & Ritter, H. (2013). Representation and learning in motor action—Bridges between experimental research and cognitive robotics. New Ideas in Psychology, 31(3), 258–269. doi:10.1016/j.newideapsych.2013.04.003.

    Article  Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis. Champaign, IL: Human Kinetics.

    Google Scholar 

  • Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70–76. doi:10.1016/j.tics.2005.12.009.

    Article  Google Scholar 

  • Ward, P., & Williams, A. M. (2003). Perceptual and cognitive skill development in soccer: The multidimensional nature of expert performance. Journal of Sport & Exercise Psychology, 25(1), 93–111.

    MathSciNet  Google Scholar 

  • Weigelt, M., Ahlmeyer, T., Lex, H., & Schack, T. (2011). The cognitive representation of a throwing technique in judo experts—Technological ways for individual skill diagnostics in high-performance sports. Psychology of Sport and Exercise, 12(3), 231–235.

    Article  Google Scholar 

Download references

Acknowledgments

This work gratefully acknowledges the financial support from Honda Research Institute Europe for the project: Cognitive planning and motor adaptation in manual action. We thank the reviewers for their critical comments and suggestions, which helped us to improve the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Lex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lex, H., Schütz, C., Knoblauch, A. et al. Cognitive Representation of a Complex Motor Action Executed by Different Motor Systems. Minds & Machines 25, 1–15 (2015). https://doi.org/10.1007/s11023-014-9351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-014-9351-9

Keywords

Navigation