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Colorectal cancer (CRC), as a result of a multistep process and under multiple factors, is one of the most common life-threatening
cancers worldwide. To identify the “high risk” populations is critical for early diagnosis and improvement of overall survival
rate. Of the complicated genetic and environmental factors, which group is mostly concerning colorectal carcinogenesis remains
contentious. For this reason, this study collects relatively complete information of genetic variations and environmental exposure
for both CRC patients and cancer-free controls; amultimethod ensemblemodel for CRC-risk prediction is developed by employing
such big data to train and test the model. Our results demonstrate that (1) the explored genetic and environmental biomarkers are
validated to connect to the CRC by biological function- or population-based evidences, (2) the model can efficiently predict the
risk of CRC after parameter optimization by the big CRC-related data, and (3) our innovated heterogeneous ensemble learning
model (HELM) and generalized kernel recursive maximum correntropy (GKRMC) algorithm have high prediction power. Finally,
we discuss why the HELM and GKRMC can outperform the classical regression algorithms and related subjects for future study.

1. Introduction

During past decades, new strategies are developed to decrease
the incidence and to improve the prognosis of colorectal
cancer (CRC), from popularizing regular screening in indi-
viduals older than 50 years for prevention to taking some
new technologies like laparoscopic surgery, neoadjuvant
chemotherapies, and bio-targeted therapy into consideration
for more precise and individualized treatment. However,
CRC is still one of the important contributors to cancer
worldwide [1–7]. CRC ranks 4 in cancer incidences and
accounts for approximately 8–10% cancer-related death [8],
and the 5-year survival rate (40–50%) is still not as satisfied

as expected. CRC is now recognized as a result of multistep
process under very complicated gene-environment interac-
tions; either genetic variation and environmental factors or
dietary pattern and unfavorable lifestyle may jointly play the
important roles in colorectal neoplasia [9–12]. Accordingly,
to efficiently identify CRC-risk factors is the first step for
prevention and early diagnosis which is critical for decreasing
CRCmorbidity andmortality [13, 14]. Based on this hypothe-
sis, a consortium that includes institutions from South Korea,
Japan, and China cooperatively performs a multicenter case-
control study (KOJACH study) during 2000–2004 to explore
the CRC-risk factors in East Asia populations [15–18]. In this
cooperative study, information of family history, life styles,
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food, nutrition intakes, and single nucleotide polymorphisms
(SNPs) of each participant is collected for both CRC cases
and cancer-free controls. Then this study plans to develop
such a CRC predictive model that can not only investigate
which potential risk factors have the significant impact on
the occurrence of CRC regarding the collected data but also
efficiently and reliably predict the risk of CRC before being
diagnosed as early as possible.

There are some mathematical models already developed
and used to process different type of data for CRC occur-
rence prediction. For low dimensional data, Wu et al. [19]
and Huang et al. [20] propose the logistic regression and
the greedy Bayesian model. To process high dimensional
dichotomous data, Hahn and his colleagues [21–23] propose
to use multifactor dimensionality reduction (MDR) method
formapping them into the low dimensional space and Li et al.
[24] propose a novel forwardU test to estimate the possibility
of the risk of CRC. In addition, Andrew et al. [25],Meredith et
al. [26], and Rutledge et al. [27] employ the linear regression
models to predict the occurrence of CRC. However, these
previous models cannot simultaneously process our big high
dimensional CRC data with both continuous and discrete
data type to obtain enough high predictive accuracy.

For this reason, to avoid the shortcomings of the previous
research when they are used for such complicated data
collected in the KOJACH study as mentioned above, we
propose a robust CRC cancer predictive model based on our
latest study [28] with the following three innovations. Firstly,
we use a common standard to collect clinical CRC data
with information of genetic variations and environmental
exposure [29], since the quickly collected high dimensional
data not only have the large volume including 369 CRC
patients and 929 cancer-free controls, but also have 305
data types. Secondly, the biological classification, dimen-
sionality reduction, and regression analysis stages are inte-
grated into the CRC predictive model to make it robust
and reliable. Thirdly, both heterogeneous ensemble learning
model (HELM) and a generalized kernel recursive maximum
correntropy (GKRMC) algorithm are developed to increase
the predictive accuracy of the model.

The research results indicate that (1) both genetic and
environmental related factors play the significant role in the
occurrence of CRC; (2) CRC risk can be accurately and
efficiently identified with this model by using these explored
biomarkers as the classifiers; and (3) our innovated HELM
and GKRMC have higher predictive power than the classical
regression algorithms.

Finally, we analyze the outperformance reasons for both
HELM and GKRMC algorithm and discuss the future study
for the CRC predictive model.

2. Materials and Methods

The data used in this study is from the hospital-based case-
control study of colorectal cancer in Chongqing, China, by
the Department of Toxicology at the Third Military Medical
University [18]. The clinical case data is comprised of 369
pathologically diagnosed colorectal cancer patients.The con-
trol data consists of 929 cancer-free patients with frequency

matched by age, gender, and birthplace. All controls are
selected from the orthopedics and general surgery depart-
ment of the same hospitals and those who have cancer history
or any cancer-related diseases are excluded. All recruitments
sign a written informed consent.

Food intake is evaluated by our previously developed
Semi-Quantitative Food Frequency Questionnaire [30]. The
SNP information of full-length genes plus 2,000 bp in the
upper stream of each candidate gene is obtained from the
HapMap [31]. After setting the minor allele frequency at
0.01 [32], the Haploview software [33] is used to screen the
tag SNPs and only one SNP is selected in each of linkage
disequilibrium blocks. As a result, there is a total of 46 tag
SNPs from the 127 reported SNPs of the three key alcohol-
metabolism genes (ADH1B, ALDH2, and CYP2E1) [34–36].
DNA is extracted from 2.5mL whole blood according to the
manufacturer’s instructions of Promega DNA Purification
Wizard kit. The DNA purification and Polymerase Chain
Reactions (PCR) are done by Eppendorf 5333 Mastercycler.
Genotyping of the selected TagSNPs is done by ABI 3130xl
Gene Analyzer. This study protocol is approved by the Third
Military Medical University Ethics Committee.

The items in the dataset include general information
(such as gender and age), polymorphismdistribution of genes
related to ethanol metabolism (the distribution of homozy-
gotes and heterozygotes of gene loci), and demographic char-
acteristics, food, and lifestyle habits (smoking and alcohol
consumption). To avoid any bias, a standard questionnaire is
generated in which each survey item has a specific definition.
The examination is carried out as a face-to-face query. Several
survey items, such as the amount of alcohol and cigarettes
consumed, are quantitatively estimated. Using age 60 as the
demarcation point, the surveyed patients are divided into
the elderly group and the young/middle-aged group. Alcohol
consumption is divided into healthy drinking (including
people who do not drink and people who drink no more
than 15 g per day) and nonhealthy drinking (including people
who drink more than 15 g per day). Based on smoking habits,
the participants are divided into nonsmokers and smokers
(including those who had quit smoking).

This study employs these data to build the predictive
CRC model with biological classification, dimensionality
reduction, and regression analysis stages, which will be
illustrated in detail in the next section.

2.1. Biological Classification. The biological classification is
carried out from the perspective of medical science to divide
the original dataset into four subclasses, which are as follows:
(1) polymorphism distribution of genes related to ethanol
metabolism: the data of the SNPs are listed in Supple-
mentary S1 in Supplementary Material available online at
https://doi.org/10.1155/2017/8917258; (2) demographic char-
acteristics information: the data of the demographic charac-
teristics are listed in Supplementary S2; (3) lifestyle habits: the
data of the lifestyles are listed in Supplementary S3; (4) food:
the data of the foods are listed in Supplementary S4.

2.2. Dimensionality Reduction for the Original Data. This
study employs three broadly used dimensionality reduction
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methods, namely, principal component analysis, entropy
of information, and relief method to obtain the mutually
explored biomarkers for each subclass.

(1) Sparse Principal Component Analysis (SPCA) Method.
Principal component analysis (PCA) [37–39] is a dimension-
ality reduction technique to ease complexity in multivariate
data analyses by replacing the original variables with a
small group of principal components. SPCA uses the Lasso
[40] to produce modified principal components with sparse
loadings. PCs are the uncorrelated linear combinations of
original variables ranked by their variances in the descending
order:

PC𝑖 = 𝑙1𝑖𝑋1 + 𝑙2𝑖𝑋2 + ⋅ ⋅ ⋅ + 𝑙𝑚𝑖𝑋𝑚
max (var (PC𝑖))
s.t.

𝑚∑
𝑗=1

𝑙2𝑗𝑖 = 1,
𝑚∑
𝑗=1

𝑙𝑗𝑖 ⋅ 𝑙𝑗𝑘 = 0,
0 ≤ 𝑘 < 𝑖,

(1)

where 𝑋1, 𝑋2, . . . , 𝑋𝑚 are the original variables and𝑙1𝑖, 𝑙2𝑖, . . . , 𝑙𝑚𝑖 are the coefficients of principal components
PC𝑖 corresponding to the original variables estimated by the
R-system packages.

(2) Entropy Method. Entropy measures the uncertainty asso-
ciated with a random variable [41–43] as

𝐻(𝑋) = −𝐸 [log𝑝 (𝑋)] = −∑
𝑥∈𝜒

𝑝 (𝑥) log𝑝 (𝑥) , (2)

where 𝑝(𝑥) = 𝑃(𝑋 = 𝑥), 𝑥 ∈ 𝜒, is the probability mass
function of the random variable X and 𝜒 is a finite set (e.g.,{1, 2, . . . , 𝑛}) or an enumerable infinite set (e.g., {1, 2, . . .}).
High entropy H(X) indicates high uncertainty about the
random variable X.

(3) Relief Method. Relief algorithm [44] is applied to clas-
sification of two kinds of data. Relief is a kind of feature
weighting algorithm, which gives different weights according
to the relevance of features and categories. Also, the relevance
of features and categories in relief algorithms is based on the
ability of features to distinguish between close samples. Relief
algorithm process is as follows:

𝑤𝑖 = 𝑤𝑖 + 𝑥(𝑖) −NM(𝑖) (𝑥) + 𝑥(𝑖) − NH(𝑖) (𝑥) ,
for 𝑖 = 1 : 𝑇. (3)

The key idea of relief is to iteratively estimate feature
weights according to their ability to discriminate between
neighboring patterns. In each of the iterations, a pattern x is
randomly selected and then two nearest neighbors of 𝑥 are
found, one from the same class (termed the nearest hit orNH)
and the other from a different class (termed the nearest miss
or NM). 𝑤𝑖 represents the weight of the ith feature.

2.3. Regression Analysis. After biological classification and
data dimensional reduction stages, we used the logistic
regression (LR), support vector machine (SVM), heteroge-
neous ensemble learning model (HELM), kernel recursive
lease squares (KRLS) [45], and our innovated generalized
kernel recursivemaximum correntropy (GKRMC) algorithm
to build up the predictive regression model.

(1) Logistic Regression. The logistic regression (LR) [46, 47]
(see (4)) can be considered as a type of semilinear regression
(Huang et al., 2006), which assumes that dependent variable
has 0 and 1 states.

log( 𝑝1 − 𝑝) = 𝛽0 + 𝛽1𝑥1 + ⋅ ⋅ ⋅ + 𝛽𝑘𝑥𝑘, (4)

where 𝑥1, 𝑥2, . . . , 𝑥𝑘 are covariates and 𝛽0, 𝛽1, . . . , 𝛽𝑘 are
the unknown coefficients for the covariates and 𝑝 is the
probability of the dependent variable equaling a “success” or
“case.”

(2) Support Vector Machine. Support vector machine (SVM)
[48] is a machine learningmethod proposed by Vapnik in the
early 1990s and successively extended by other researchers.
The general form of the equation of the separating line is
given as

𝑓 (𝑥) = (𝑊 ⋅ 𝑋) + 𝑏, (5)

where (𝑊 ⋅ 𝑋) represents the inner product of the vector
W and the X vector. If the linear discriminator function is
normalized so that all samples meet |𝑓(𝑥) ≥ 1|, then the
margin between the classification face (𝑊 ⋅ 𝑋) + 𝑏 = 1 and(𝑊 ⋅𝑋)+ 𝑏 = −1 is 2‖𝑊‖ (namely, the classification interval).

Minimizing the distance 2/‖𝑊‖, it is equivalent to max-
imizing 1/2||𝑊||2, and then we can get the optimal classifi-
cation face. Thus, the problem of seeking the optimal classi-
fication face is transformed into the following optimization
problem:

min 12𝑤𝑤 + 𝑐 ∑
𝑖=1:𝑁

𝜉𝑖. (6)

(3) Heterogeneous Ensemble Learning Model (HELM).
Ensemble learning [49] employs multiple learners to solve
a problem. The generalization ability of an ensemble is
usually significantly better than that of a single learner
[50]. The adaboost algorithm [51] is a type of ensemble
learning. Based on previous studies, most of the ensemble
learning algorithms are the integration of several of the
same (homomorphic ensemble) or different (anomaly
ensemble) weak classifiers. Here we propose such a HELM
algorithmbased on the adaboost algorithm that integrates the
advantages of both homomorphic and anomaly ensemble.
HELM algorithm process is illustrated in Figure 1.

Input. Sample set 𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)}, where𝑥𝑛 is the examples and 𝑦𝑛 ∈ {0, 1} is the label; weak classifier
L ∈ {L1 = svm,L2 = logistic regression,L3 = KRLS}. 𝑇
is the iteration number.
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Figure 1: Workflow of HELM algorithm.
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Process

(1) For𝑚 = 1, . . .,L,

(2) initialize the weight distribution 𝐷1(𝑖) = 1/𝑛 (𝑛
is the number of examples; 𝑖 is the index of the
example),

(3) for 𝑡 = 1, . . . , 𝑇
(4) based on the sample distribution 𝐷𝑡 and

L𝑚, we train the weak classifier ℎ𝑡,
(5) compute the error (𝜀𝑡) for ℎ𝑡

𝜀𝑡 = number of incorrectly classified example
total number of examples

, (7)

(6) compute the weight (𝛼𝑡) for ℎ𝑡
𝛼𝑡 = 12 ln1 − 𝜀𝑡𝜀𝑡 , (8)

(7) update the weight for each sample

𝐷𝑡+1 (𝑖) = 𝐷𝑡 (𝑖)
sum (𝐷)

{{{
exp (−𝛼𝑡) , if ℎ𝑡 (𝑥𝑖) = 𝑦𝑖,
exp (𝛼𝑡) , if ℎ𝑡 (𝑥𝑖) ̸= 𝑦𝑖, (9)

(8) end,
(9) obtain the ensemble learning classifier 𝐻𝑚 by

adboost algorithm [49, 50]

𝐻𝑚 (𝑥) = sign (𝑓 (𝑥)) = sign
𝑇∑
𝑡=1

𝛼𝑡ℎ𝑡 (𝑥) , (10)

(10) calculate the accuracy of 𝐻𝑚
𝑃𝐻𝑚 = number of correctly classified example

total number of examples
, (11)

(11) end,

(12) assign a weight 𝑤𝐻𝑚 to each 𝐻𝑚
𝑤𝐻𝑚 = 𝑃𝐻𝑚𝑃𝐻1 + 𝑃𝐻2 + 𝑃𝐻3 . (12)

Output. Anomaly ensemble:

HELM (𝑥) = sign
3∑
𝑚=1

𝑤𝐻𝑚𝐻𝑚 (𝑥) . (13)

(4) Generalized Kernel Recursive Maximum Correntropy
(GKRMC) Algorithm. It is well known that linear regression
models can quickly estimate the occurrence rate of CRC.
Nonetheless, using nonlinearmodel should sacrifice the com-
puting cost to obtain the high predictive accuracy. Regarding
the nature of our collected data, this study developed a
nonlinear regression algorithm, GKRMC (Pseudocode 1),
which can significantly increase the predictive accuracy with
a reasonable computing cost. GKRMC is based on the kernel
recursive least squares (KRLS) algorithm [45, 52–55] and the
novel concept of the generalized correntropy [56]. Equation
(14) gives the corresponding weighted and regularized cost
function.

𝐽 = max
Ω

𝑗∑
𝑖=1

𝛽𝑖−𝑗𝐺𝛼,𝛽 (𝑑𝑗 − Ω𝑇𝜑𝑗) − 12𝛽𝑖𝛾2 ||Ω||2 , (14)

where 𝐺𝛼,𝛽(𝜀)= (𝛼/2𝛽Γ(1/𝛼))exp(−|𝜀/𝛽|𝛼)=𝛾𝛼.𝛽exp(−𝜆|𝜀|𝛼),Γ(⋅) is the gamma function, 𝛼 > 0 is the shape parameter, 𝛽 is
the forgetting factor and it is set to 1, 𝜑𝑖 stands for 𝜑(𝑢𝑖), with𝜑 being the nonlinear mapping induced by a Mercer kernel,𝛾2 is the regularization factor, 𝑖, 𝑗 denote the numerical order
of the samples, and 𝛾𝛼,𝛽 = 𝛼/(2𝛽Γ(1/𝛼)) is the normalization
constant. Setting its gradient with respect to Ω equal to zero,
one can obtain the solution as

Ω𝑖 = (Φ𝑖𝐵𝑖Φ𝑇𝑖 + 𝛾2𝛽𝑖𝜎1𝛼I)−1Φ𝑖𝐵𝑖𝑑𝑖, (15)

where Φ𝑖 = [𝜑1, 𝜑2, . . . , 𝜑𝑖], 𝜎1 = 𝛽𝛼/2 and I is an identity
matrix.

𝐵𝑖 = diag

[[[[[[[[[[[[[[[[[[[[[
[

𝛽𝑖−1 (𝑑1 − Ω𝑇𝜑1)𝛼−2 × ( 𝛼24𝜎1Γ (1/𝛼)) × exp(− 
𝑑1 − Ω𝑇𝜑1𝜎1


𝛼)

𝛽𝑖−2 (𝑑2 − Ω𝑇𝜑2)𝛼−2 × ( 𝛼24𝜎1Γ (1/𝛼)) × exp(− 
𝑑2 − Ω𝑇𝜑2𝜎1


𝛼)

...

(𝑑1 − Ω𝑇𝜑1)𝛼−2 × ( 𝛼24𝜎1Γ (1/𝛼)) × exp(− 
𝑑𝑖 − Ω𝑇𝜑𝑖𝜎1


𝛼)

]]]]]]]]]]]]]]]]]]]]]
]

. (16)
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Generalized Kernel Recursive Maximum Correntropy
Initialization:

Q1 = (𝛾2𝛽𝜎1𝛼 + 𝐺𝜎2 (u1 − u1))−1
a1 = Q1𝑑1

Computation:
Iterate for 𝑖 > 1:

h𝑖 = [𝐺𝜎2 (u𝑖 − u1), . . . , 𝐺𝜎2 (u𝑖 − u𝑖−1)]𝑇𝑦𝑖 = h𝑖
𝑇a𝑖−1𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖

z𝑖 = Q𝑖−1h𝑖𝜃𝑖 = (exp(−𝑒𝑖𝛼/2𝜎12))−1𝑟𝑖 = 𝛾2𝛽𝑖𝜎1𝛼𝜃𝑖 + 𝐺𝜎2 (u𝑖 − u𝑖) − z𝑖𝑇h𝑖

Q𝑖 = 𝑟𝑖−1 [Q𝑖−1𝑟𝑖 + z𝑖z𝑖𝑇 −z𝑖
−z𝑖𝑇 1 ]

a𝑖 = [a𝑖−1 − z𝑖𝑟𝑖−1𝑒𝑖
𝑟𝑖−1𝑒𝑖 ]

Pseudocode 1: Pseudocode of GKRMC.

Using the matrix inversion lemma [54], we have

(Φ𝑖𝐵𝑖Φ𝑇𝑖 + 𝛾2𝛽𝑖𝜎1𝛼I)−1Φ𝑖𝐵𝑖
= Φ𝑖 (Φ𝑇𝑖 Φ𝑖 + 𝛾2𝛽𝑖𝜎1𝛼𝐵−1𝑖 )−1 . (17)

Substituting (17) into (15) yields

Ω𝑖 = Φ𝑖 (Φ𝑇𝑖 Φ𝑖 + 𝛾2𝛽𝑖𝜎1𝛼𝐵−1𝑖 )−1 𝑑𝑖. (18)

The weight vector can be expressed explicitly as a linear
combination of the transformed data; that is, Ω𝑖 = Φ𝑖𝑎𝑖,
where the coefficients vector 𝑎𝑖 = (Φ𝑇𝑖 Φ𝑖 + 𝛾2𝛽𝑖𝜎𝛼1𝐵−1𝑖 )−1𝑑𝑖
can be computed using the kernel trick. Denote 𝑄𝑖 =
(Φ𝑇𝑖 Φ𝑖 + 𝛾2𝛽𝑖𝜎𝛼1𝐵−1𝑖 )−1; we have

𝑄𝑖 = [Φ𝑇𝑖−1Φ𝑖−1 + 𝛾2𝛽𝑖𝜎𝛼1𝐵−1𝑖−1 Φ𝑇𝑖−1𝜑𝑖
𝜑𝑇𝑖 Φ𝑖−1 𝜑𝑇𝑖 𝜑𝑖 + 𝛾2𝛽𝑖𝜎𝛼1 𝜃𝑖]

−1

, (19)

where 𝜃𝑖 = (𝑑𝑖 − Ω𝑇𝜑𝑖)𝛼−2 × (𝛼2/2𝜎1Γ(1/𝛼)) ×
exp(−|(𝑑𝑖 − Ω𝑇𝜑𝑖)/𝜎1|𝛼). It is easy to observe that

𝑄−1𝑖 = [𝑄−1𝑖−1 ℎ𝑖
ℎ𝑇𝑖 𝜑𝑇𝑖 𝜑𝑖 + 𝛾2𝛽𝑖𝜎𝛼1 𝜃𝑖] , (20)

where ℎ𝑖 = Φ𝑇𝑖−1𝜑𝑖. Using the block matrix inversion identity,
we can derive

𝑄−1𝑖 = [𝑄𝑖−1𝑟𝑖 + 𝑧𝑖𝑧𝑇𝑖 −𝑧𝑖
−𝑧𝑇𝑖 1 ] , (21)

where 𝑧𝑖 = 𝑄𝑖−1ℎ𝑖 and
𝑟𝑖 = 𝛾2𝛽𝑖𝜎𝛼1 𝜃𝑖 + 𝜑𝑇𝑖 𝜑𝑖 − 𝑧𝑇𝑖 ℎ𝑖. (22)

ui

G2
(u2, ∙)

G2
(u1, ∙)

G2
(ui−1, ∙)

G2
(ui, ∙)

(i)1

(i)2

(i)i−1

(i)i
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Figure 2: Network topology of GKRMC at ith iteration.

So,

𝑎𝑖 = 𝑄𝑖𝑑𝑖 = 𝑟−1𝑖 [𝑄𝑖−1𝑟𝑖 + 𝑧𝑖𝑧𝑇𝑖 −𝑧𝑖
−𝑧𝑇𝑖 1 ] [𝑑𝑖−1𝑑𝑖 ]

= [𝑎𝑖−1 − 𝑧𝑖𝑟−1𝑖 𝑒𝑖
𝑟−1𝑖 𝑒𝑖 ] ,

𝑒𝑖 = 𝑑𝑖 − Ω𝑇𝜑𝑖.

(23)

Then we obtain the GKRMC algorithm, in which the
coefficients update follows (23) and 𝑟𝑖 is computed by (22).
This study uses𝐺𝜎2(⋅) to denote theGaussian kernel for RKHS
[57], with 𝜎2 being the kernel size. The GKRMC produces a
RBF [58] type network, which is a linear combination of the
kernel functions (Figure 2). 𝑎𝑖 denotes the coefficient vector
of the network at iteration 𝑖 and (𝑎𝑖)𝑗 denotes the jth scalar in𝑎𝑖.
3. Results

3.1. The Results of the Biological Classification. In past
decades, a number of candidate factors implicated in CRC
risk are proposed by epidemiology studies, which can be
divided into two groups in total, genetic factors and non-
genetic factors. The genetic factors’ group consists of many
SNPs, and the nongenetic factors’ group is comprised of
several kinds of environment factors. According to the
biological characteristics and the manner that human beings
are exposed to environmental factors in whole lifetime, the
raw big CRC-related genetic and environmental data can be
classified into four biological categories: SNPs, demographic
characteristics, lifestyles, and foods as in Table 1.

3.2. Results of Original Data Dimensionality Reduction. To
process the dataset of SNPs, demographic characteristics,
lifestyle and food, SPCA, and entropy and relief methods are
employed, respectively.

Table 2 shows the principal components for the SNPs,
demographic characteristics, and lifestyle and food by SPCA
method, respectively. The result of the SPCA is listed in
Supplementary S5.
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Table 1: Results of biological classification.

Categories Illustration
SNPs Polymorphism distribution of genes

Demographic
characteristics

Including factors like age, sex, body weight,
income levels, and educations, which represents
the individually biological or social-psychological

features

Lifestyles Behavioral factors, such as smoking and alcohol
drinking

Foods The amount of food intake

Table 2: The results by SPCA method.

SNPs

rs10046, rs10505477, rs1152579, rs1229984,
rs1255998, rs1256030, rs1256049, rs1271572,
rs12953717, rs1329149, rs16941669, rs17033,
rs1801132, rs2075633, rs2077647, rs3798758,
rs3820033, rs4767939, rs4767944, rs4939827,
rs676387, rs6905370, rs6983267, rs7296651,
rs7837688, rs827421, rs886205, rs928554,
rs9322354, rs9340799

Demographic
characteristics

Cholesterol, blood triglyceride, psychological
trauma, depression, age, exercise, BMI, physical
activity, activity, marriage status, emotion status

Lifestyles
Smoking, drinking, coffee consumption, drinking
and smoking in the same time point, tea
consumption

Foods
Grains, melons, bean products, roots, vegetables,
fruits, eggs and milk, mushrooms, oil, seasoning,
meat, seafood, pickles

We consider that the features with high weight will result
in the colorectal cancer when the relief algorithm is applied
to extract key features from the dataset. The result of relief
algorithm is shown in Figure 3. In the upper part of Figures
3(a), 3(b), 3(c), and 3(d), the horizontal axis shows the feature
numerical number and the vertical axis shows the feature
weight. In the lower part of Figures 3(a), 3(b), 3(c), and
3(d), the horizontal axis shows the feature weight and the
vertical axis shows the feature value, while the bars in Figure 3
represent the numbers of the features according to the feature
weight.

Table 3 shows the results of dimensionality reduction by
entropy method for the SNPs, demographic characteristics,
and lifestyle and food, respectively. The entropy 𝐻(𝑋) in (2)
is for data dimensionality reduction.

Regarding the results of Figure 3, Table 4 shows the
common factors for the SNPs, demographic characteristics,
and lifestyle and food by relief method, respectively.

Figure 4 shows the interaction results for the three
dimensionality reduction methods. Figure 4(a) indicates that
rs1256030 is the mutually explored biomarker by SPCA,
entropy, and relief; rs10046, rs1152579, rs676387, rs6905370,
rs928554, and rs6983267 are the mutually explored biomark-
ers by SPCA and entropy and rs4939827, rs4767944,
rs1801132, rs4767939, rs10505477, rs3798758, and rs2075633
are the mutually explored biomarker by SPCA and relief.

Table 3: The results by entropy method.

SNPs rs6983267, rs1256030, rs10046, rs928554,
rs1152579, rs690537, rs676387

Demographic
characteristics

Age, BMI, blood triglyceride, depression, mental
stress, psychological trauma

Lifestyles Drinking and smoking in the same time point,
drinking

Foods Vegetables, nuts, mushrooms, seasoning, pickles,
grains

Table 4: The results by relief method.

SNPs
rs10505477, rs1256030, rs1801132, rs2071454,
rs2075633, rs2228480, rs2249695, rs2486758,
rs3798758, rs4767939, rs4767944, rs4939827

Demographic
characteristics

Age, BMI, physical activity, activity, family
number, emotion status, temperament, mental
stress, psychological trauma, depression,
cholesterol

Lifestyles Drinking, tea consumption, drinking and
smoking in the same time point

Foods Nuts, vegetables, meat, eggs and milk, seafood

Figure 4(b) indicates that age, depression, blood triglyc-
eride, and BMI are the mutually explored biomarkers by
SPCA, entropy, and relief; blood triglyceride is the mutu-
ally explored biomarker by SPCA and entropy; cholesterol,
activity, emotion status, and physical activity are themutually
explored biomarkers by SPCA and relief and mental stress is
the mutually explored biomarkers by entropy and relief.

Figure 4(c) indicates that drinking and drinking and
smoking in same time point are the mutually explored
biomarkers by SPCA, entropy, and relief; tea consumption is
the mutually explored biomarker by SPCA and relief.

Figure 4(d) indicates that vegetables are the mutually
explored biomarkers by SPCA, entropy, and relief; mush-
rooms, seasoning, pickles, and grains are the mutually
explored biomarkers by SPCA and entropy; eggs and milk,
meat, and seafood are the mutually explored biomarkers by
SPCA and relief and nuts is the mutually explored biomarker
by entropy and relief.

We have 36 featuresmutually explored by every two of the
SPCA, entropy, and relief methods.

ByU test [59], Table 5 shows that 13 out of 36 features have
small p value.

Table 6 shows that 13 features with small p value are
important biomarkers.

3.3. Results of Regression. According to the dimensionality
reduction analysis, there are 13 biomarkers selected as the
classifier for these four biological datasets. Next, we employ
LR, SVM, KRLS, HELM, and GKRMC algorithm to build
up the predictive cancer model based on these selected
classifiers.

Table 7 presents four measures (accuracy, sensitivity,
specificity, and precision) to assess how good or how “accu-
rate” the classifier is.
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Figure 3: Feature selection by relief algorithm: (a) SNPs feature (note: the feature numerical number in the upper figure is regarding
Supplementary S1 from columns B(1) to AU(46)), (b) demographic characteristics feature (note: the Feature numerical number in the upper
figure is regarding Supplementary S2 from columns A(1) to U(21)), (c) lifestyle feature (note: the feature numerical number in the upper figure
is regarding Supplementary S3 from columns B(1) to I(8)), and (d) food feature (note: the feature numerical number in the upper figure is
regarding Supplementary S4 from columns B(1) to O(14)).

There are 1298 cases-control samples, 369 of which are
case and 929 of which are control. Cross validation [60]
method randomly chooses 75% of samples (973 samples) as
the training dataset and the rest (325 samples) are used for
testing dataset. Since cross validation introduces the random
effect, we have to repeat the experiment 10 times. Figure 5
shows that GKRMC always has the greatest sensitive, preci-
sion, and accuracy values as well as greater specificity value
compared to KRLS. Moreover, Table 8 lists the average value
and standard deviation of the classification measurement for
each algorithm.

4. Discussion and Conclusion

For CRC tumorigenesis, both genetic and environmental
factors, as well as their interaction, playing important role
in CRC risk is already the common view of most previously

studies [61], but to figure out how to predict the occurrence
of CRC by using the risk factors is still a challenge today. In
the present study, we use big data of 1298 samples from aCRC
case-control study in which relatively complete information
of genetic and demographic characteristics and life style
and food intake is simultaneously collected; furthermore, we
expect to develop such a CRC-risk predictive model that not
only can explore which risk factors included in the collected
big dataset have significant impact on the occurrence of CRC,
but also can accurately predict the occurrence of CRC as early
as possible.

Such big datasets are classified into four different cat-
egories in the biological classification stage. And 13 of
all explored potential biomarkers consisting of 4 SNPs, 6
demographic characteristics, 1 lifestyle factor, and 2 foods are
screened out in data dimensionality reduction stage.
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Figure 4: Venn plots of (a) SNPs, (b) demographic characteristics, (c) lifestyle, and (d) food.

Table 5: p value of 13 important biomarkers.

Biomarkers p value
rs10046 0.0172
rs1256030 0.0004
rs6766387 0.0015
rs6983267 0.0000
age 0.0152
BMI 0.0019
Physical activity 0.0030
Emotion status 0.0247
Mental stress 0.0213
Cholesterol 0.0000
Drinking and smoking in the same time point 0.0000
Vegetables 0.0000
Seafood 0.0023

Table 6: Mutually explored biomarkers.

SNPS rs10046, rs1256030, rs676387, 6983267
Demographic
characteristics

Age, BMI, physical activity, emotion status,
mental stress, cholesterol

Lifestyle Drinking and smoking in the same time point
Foods Vegetables, seafood

Unlike pure mathematical formulae, the biological ratio-
nality of such model depends on whether the selected

biomarkers can be biologically explained as validated etiology
of colorectal cancer supported by either population-based
association study or biological function-based mechanisms
experimental study. And then, these explored biomarkers can
be used as the classifiers for the predictivemodel to access the
risk of colorectal cancer in the regression analysis stage.

In fact, results from substantial epidemiology studies
focusing onCRC risk/protective factors provide evidences for
the associations between each category and risk of CRC. For
the genetic variations, at least 2 (rs10046, rs6983267) of the 4
currently selected SNPs listed in Table 5were reported to have
significant association with CRC risk in either genome-wide
association studies or candidate gene based study [59, 62].
Particularly, SNP rs6983267 is one of the most significant
variations associated with increasing CRC risk in Caucasians,
Asians, and Africans [63]. Regarding the other two selected
SNPs (rs1256030, rs676387) located, respectively, in estrogen
receptor beta gene (ESR2) and 17 𝛽-hydroxysteroid dehydro-
genases gene (HSD17B1) (both are estrogenmetabolism path-
way genes), though there is no direct evidence supporting
their association with CRC, they both are found significantly
associated with cancers such as liver and ovarian cancers [64,
65]. Moreover, considerable evidence from epidemiological
and metabolic studies support that the estrogen metabolism
pathway genes undoubtedly play an important role in CRC
and other cancers [66], which implies the potential that the
two SNPs may affect the susceptibility of CRC.

For demographic factors, almost all the 6 selected factors
have been reported to be the unfavorable factors for CRC risk
in a bunch of previous studies [67, 68].
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Table 7: The definition of the classification measurement.

Measure Formula Illustration

Sensitivity TP
P

TP: the number of true positives
P: the number of positives

Specificity TN
N

TN: the number of true negatives
N: the number of negatives

Precision TP
TP + FP

TP: the number of true positives
FP: the number of false positives

Accuracy TP + TN
P +N

TP: the number of true positives
TN: the number of true negatives

P: the number of positives
N: the number of negatives
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Figure 5: Predictive performance for the LR, SVM, KRLS, HELM, and GKRMC.
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Table 8: The mutually explored biomarkers.

LR SVM KRLS HELM GKRMC
Sensitivity 0.9251 ± 0.0256 0.9255 ± 0.0233 0.9694 ± 0.0137 0.9621 ± 0.0066 0.9762 ± 0.0175
Specificity 0.1876 ± 0.0437 0.2300 ± 0.0459 0.0262 ± 0.0145 0.1680 ± 0.0033 0.0864 ± 0.0408
Precision 0.7351 ± 0.0288 0.7372 ± 0.0315 0.7184 ± 0.0170 0.7400 ± 0.0066 0.7418 ± 0.0197
Accuracy 0.7095 ± 0.0217 0.7163 ± 0.0258 0.7049 ± 0.0213 0.7305 ± 0.0087 0.7351 ± 0.0230

For lifestyles, alcohol drinking and smoking are proved
as two significant risk factors of CRC [18, 68]. Alcohol
drinking, in a dose-response manner, evidently contributes
to the increase of CRC risk. Meanwhile, obvious positive
associations between CRC risk and cigarette smoking are
observed in most measures [69].

For food, extensive epidemiologic and experimental stud-
ies confirm their important roles in the development of CRC.
For example, higher consumption of vegetables and seafood
is always associated with relatively lower CRC risk due to
their relatively high content of antioxidant nutrients such
as dietary fiber, vitamins, and long-chain unsaturated fatty
acids [70–73]. On the contrary, the excessive consumption
of smoked/salted/processed meat is linked to higher risk of
colorectal neoplasia [73].

In general, it is demonstrated that the 13 currently
explored biomarkers can be used as the classifiers in the
regression analysis stage, which is supported by these man-
ually reviewed experimental evidences [59, 63, 67, 69–71].

Although LR and SVM may perform very well for linear
systems, their performancewill get worse when applied to the
nonlinear and non-Gaussian situations [74], which is rather
common in real world applications. Therefore, we suggest
using nonlinear regression algorithm to process our dataset,
which is comprised of continuous and discrete data with
multivariate data type. However, using classical nonlinear
algorithm such as KRLS will suffer from outliers.

To overcome the shortcoming of both linear and conven-
tional nonlinear regression algorithms, this study proposes an
ensemble learning model (HELM) and a generalized kernel
recursive maximum correntropy (GKRMC) algorithm to
increase the predictive power of the model. Next, we analyze
the reason why HELM and GKRMC can outperform LR,
SVM, and KRLS algorithms.

HELM is an ensemble learning algorithm, which inte-
grates linear and nonlinear classifiers to classify the data
points. Based on the previous study [75], the diversity of
weak classifiers is one of the evaluation criteria for ensemble
algorithm. HELM includes both linear (SVM and logistic
regression) and nonlinear (KRLS) classifiers and its superior
performance has been shown in Figure 5.

The cost function of GKRMC (see (14)) is so robust that is
not sensitive to large outliers as KRLS, since an exponentially
weighted mechanism 𝐺𝛼,𝛽(𝑑𝑖 − Ω𝑇𝜑𝑖) of (14) can assign
greater weight to the samples with smaller error but not to
the samples with greater error. Since the big dataset usually
consists of outliers [29, 76], GKRMC can achieve the higher
predictive accuracy with the less standard deviation (Table 8)
than KRLS. As mentioned before, the predictive power of

GKRMC should be better than LR, SVM, and KRLS due to
the nature of nonlinear regression (Figure 5).

In conclusion, this study proposes a robust CRC-risk
predictive model to analyze the big data with information
of genetic variations and environmental exposure for the
CRC patients and cancer-free controls. The research results
indicate that both genetic and environmental related factors
explored by our model play the significant roles in the
occurrence of CRC and the innovated HELM and GKRMC
can increase the predictive power of the model.

However, this novel predictive model is the first step
in predicting the risk of CRC tumor growth. Except for
the environment factors and SNPs involved in the cur-
rent model, if other factors such as pathway-pathway and
pathway-environment interactions are included, there will
be a higher chance to find a set of variations which may be
integrative biomarkers, as proved in other researches [77, 78].
A limitation of our study is that there is only a finite number
of tag SNPs located in a relatively small number of genes,
which results in the nonuse of employing pathway interaction
intomodel construction. Also, how to improve the GKRMC’s
specificity is an important topic for future study, which
will further improve the whole system’s performance. While
extensions will be necessary to account in greater detail
for the complexity of the CRC involved, we believe that if
properly combined with more experimental data such as
RNA sequence analysis and recent modeling techniques[79–
86], advanced in silico platforms such as this one will evolve
into powerful integrative research platforms that improve our
understanding of CRC tumorigenesis.
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