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Abstract. In this paper, we analyze the relationship between commitment and
obligation from a logical viewpoint. The principle of commitment implying obligation
is proven in a specific logic of action preference which is a generalization of Meyer’s
dynamic deontic logic. In the proposed formalism, an agent’s commitment to goals
is considered as a special kind of actions which can change her deontic preference
and her obligation to doing some action is based on the preference and the effects
of the action. In the logic, it is shown that an agent has the obligation to doing any
action which is necessary for achieving as many committed goals as possible. The
semantics of our logic is based on the possible world models for dynamic logic of
actions. A binary preference relation between possible worlds is associated with the
model. Then the preference between actions are determined by comparing that of
their consequences. According to the semantics, while the preference will influence
the agent’s choice of actions, commitment is a kind of actions that will change
the agent’s preference. Thus we can show how obligations arise from commitments
via updating of deontic preference. The integrated semantics make it possible to
express and reasoning about the mutual relationship among these mental attitudes
in a common logic.

Keywords: Deontic logic, dynamic logic, logic of commitment, logic of preference,
agent-oriented programming, logic in AI.

1. Introduction

Deontic logic is the logic for reasoning about norms. Deontic reasoning
has been extensively exploited in ethics and legal philosophy since the
ancient times. However, the first modern formal system for deontic logic
is not established until the fifties(von Wright, 1951). Though the system
is influential on the later work, there arise many paradoxes when it is
applied to practical deontic reasoning, so alternative systems have also
been proposed since then for the resolution of paradoxes(Åqvist, 1984).
Among them, Meyer’s approach is one of the most interesting(Meyer,
1988). His system is based on the reduction to dynamic logic(Harel,
1984), so both actions and propositions can be represented and the dis-
tinction of “ought-to-do” and “ought-to-be” can be made clearly. This
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in turn clarifies much confusion caused by the inappropriate translation
of practical deontic reasoning to formal systems.

While the different formal systems are mainly the consequence of
fundamental studies of deontic reasoning, the applications of deontic
logics to computer science and artificial intelligence has received more
and more attention recently(Meyer and Wieringa, 1993). The applica-
tions include automated legal reasoning, electronic commerce, system
specification, and so on. Since Meyer’s system is strongly based on
dynamic logic and the latter is the logic for reasoning about computer
programs, it is in particular suitable for the potential application.

In addition to the reduction to dynamic logic, another important
feature of Meyer’s logic is the use of a special propositional atom V ,
meaning the violation of law (or something like sanction, punishment,
etc.). This special atom is originally introduced by Anderson(Anderson,
1958) for reducing deontic logic to alethic modal logic. By using the
special atom, an action is forbidden if the execution of it will necessarily
lead to states in which V holds, and it is permitted if not forbidden.
Moreover, an action is obligatory if failing to executing it will result in
violation of law.

Though Meyer’s logic is successful in reasoning about normative
actions, it is inadequate in the representation of action preference.
However, the norms are usually relative and conflict with other ones,
so we may have to make some decision choices between conflicting
actions. For example, the violation of constitution is considered more
serious than that of regulation laws, so we will try to obey the former
instead of the latter provided that it is impossible to enforce both
in the same time. Under the situations, we will need the capability
of reasoning about action preference. In (Liau, 1997), it is shown that
Meyer’s logic can be generalized to a logic of action preference(LAP ) by
using possibility theory constructs. Thus we can represent and reason
about an agent’s choice of action in LAP .

Recently, the notion of agent has served as a metaphor for computer
systems and resulted in the development of agent-oriented program-
ming(Shoham, 1993). The philosophical and logical analysis of the
properties of natural agents, especially human beings, and their mutual
relationships can provide insight for the design and implementation of
artificial agents. In particular, the mental attitudes of agents including
informational ones (e.g. knowledge and belief), motivational ones (e.g.
commitment and intention), and social ones (e.g. obligation and per-
mission) play important roles in such kind of systems. The analysis of
these attitudes has been the traditional concern of philosophical logic,
such as epistemic logic, doxastic logic(Hintikka, 1962), and deontic
logic(Åqvist, 1984). The mutual relationships of these attitudes can
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also be analyzed by integrating these individual logics. For example,
the relationship of knowledge and belief is considered in a logic where
the epistemic operator satisfies the properties of S5 and the doxastic
operator satisfies the axioms of KD45 in (Halpern, 1996b). Following
the same spirit, we analyze the relationship between commitment and
obligation from a logical viewpoint. The principle of commitment im-
plying obligation is proven in an extension of LAP2 that is a variant
of LAP . In the proposed formalism, an agent’s commitment to goals
is considered as a special kind of actions which can change her deontic
preference and her obligation to doing some action is based on the
preference and the effects of the action. In the logic, it is shown that
an agent has the obligation to doing any action which is necessary for
achieving as many committed goals as possible. The semantics of our
logic is based on the possible world models for dynamic logic of actions.
A binary preference relation between possible worlds is associated with
the model. Then the preference between actions are determined by com-
paring that of their consequences. According to the semantics, while the
preference will influence the agent’s choice of actions, commitment is
a kind of actions that will change the agent’s preference. Thus we can
show how obligations arise from commitments via updating of deontic
preference. The integrated semantics make it possible to express and
reasoning about the mutual relationship among these mental attitudes
in a common logic.

Though commitment is usually seen as a directional act between
two agents, for simplicity, we will only consider it from the viewpoint
of the agent who makes the commitment. Thus we can say that an
agent commits to some goals but in the same time omit the counter-
party towards whom the agent is making the commitment. This kind
of commitment is sometimes called internal commitment or goal com-
mitment. In this paper, when we refer to commitment, we always mean
internal commitment.

The rest of the paper is organized as follows. First, Meyer’s deontic
logic is reviewed in the next section. Then a logic of action preference
generalizing LAP will be presented. Its relationship with deontic log-
ics will also be discussed. In section 4, the notion of commitment is
incorporated into our logic. In section 5, some related literatures are
discussed. Finally, we give the conclusion and some perspective of the
works.
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2. Review of Dynamic Deontic Logic

The system of Meyer’s logic is called PDeL. The elementary symbols
of the PDeL language consist of

1. A set of propositional letters, PV = {p, q, r, . . .} and a special
propositional letter V not in PV , and

2. a set of atomic actions, A = {a, b, c, . . .} and two distinguished
action symbols ∅ and u.

The set of well-formed formulas(Φ1) and the set of action expressions(Π1)
are defined inductively in the following way.

1. Φ1 is the smallest set such that

− PV ∪ {V } ⊆ Φ1, and
− if ϕ,ψ ∈ Φ1 and α ∈ Π1, then ¬ϕ,ϕ ∨ ψ, [α]ϕ ∈ Φ1.

2. Π1 is the smallest set such that

− A ∪ {∅,u} ⊆ Π1, and
− if α, β ∈ Π1 and ϕ ∈ Φ1, then α;β, α ∪ β, α&β, α, ϕ→ α/β ∈

Π1.

Let Φ0 = {ϕ ∈ Φ1 | V does not occur in ϕ} denote the set of ordinary
dynamic logic formulas, and Π0 = {α ∈ Π1 | V does not occur in α}
be the set of pure action terms. The wff ¬[α]¬ϕ is abbreviated as 〈α〉ϕ
and the other classical connectives(�,⊥,∧,⊃,≡) are defined as usual.
The wff [α]ϕ means that if action α is done, ϕ will hold. The action
expressions α;β, α∪β, α&β denote the sequential composition, nonde-
terministic choice, and simultaneous execution of α and β respectively,
whereas α means the non-execution of α and ϕ→ α/β denotes that if
ϕ holds then execute α else execute β.

Note that the language of PDeL is not the traditional one for dy-
namic logic. First, the Kleene star α∗ is not in Π1. This is because in
the deontic reasoning domain, the repetition of some actions is not so
usual as in computer programs. On the other hand, the simultaneous
execution and non-execution of actions are nonstandard in dynamic
logic. In fact, the two constructs significantly complicate the formal
semantics of PDeL. In particular, Meyer gives a two-level construction
for the semantics of the action expressions. At the first level, each ac-
tion expression is associated with a collection of so-called synchronicity
sets(s-sets)1. Then at the second level, each s-set is mapped to a binary

1 An s-set is a set of primitive actions and denotes the simultaneous execution of
these actions.
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transition relation on the set of possible worlds. The composition of
these two mappings is roughly equivalent to the ordinary Kripke se-
mantics for dynamic logic in which each action expression is directly
mapped to a state transition relation. Since the precise description
of Meyer’s semantics unnecessarily complicates the matters, for the
purpose of our current need, we will only present the denotation of an
action expression as a state transition relation.

A Kripke model for PDeL is a quadruple 〈W, |=1, [| · |]1, opt〉, where
W is a set of possible worlds and opt is a nonempty subset of W ,
meaning the best elements ofW , whereas |=1⊆W×Φ1 and [|·|]1 : Π1 →
P(W ×W ) define the truth relation and the action denotation function
respectively. A Kripke mode for PDeL is also called a deontic model.
It is required that |=1 and [| · |]1 must satisfy the following constraints.

− For all w ∈W , ϕ,ψ ∈ Φ1, and α ∈ Π1,

(|=10) w |=1 V ⇔ w �∈ opt,
(|=11) w |=1 ϕ ∨ ψ ⇔ w |=1 ϕ or w |=1 ψ,

(|=12) w |=1 ¬ϕ⇔ w �|=1 ϕ,

(|=13) w |=1 [α]ϕ ⇔ ∀u ∈ [|α|]1(w), u |=1 ϕ, where [|α|]1(w) = {u |
(w, u) ∈ [|α|]1}.

− For all w ∈W , α, β ∈ Π1, and ϕ ∈ Φ1,

([| · |]11): [|∅|]1 = ∅, [|u|]1 =W ×W .

([| · |]12): [|α ∪ β|]1 = [|α|]1 ∪ [|β|]1.
([| · |]13): [|α;β|]1 = [|α|]1 ◦ [|β|]1.2
([| · |]14): [|α&β|]1 ⊆ [|α|]1 ∩ [|β|]1.
([| · |]15): (negated actions)

1. [|α|]1 = [|α|]1
2. [|α ∪ α|]1 = [|u|]1, [|α&α|]1 = [|∅|]1.
3. [|α ∪ β|]1 = [|α&β|]1
4. [|α&β|]1 = [|α ∪ β|]1
5. [|α;β|]1 = [|α ∪ (α;β)|]1
6. [|ϕ→ α/β|]1 = [|ϕ→ α/β|]1

([|·|]16): (conditional actions) [|ϕ→ α/β|]1(w) =
{

[|α|]1(w), if w |=1 ϕ,
[|β|]1(w), if w �|=1 ϕ.

2 i.e. the relational composition of [|α|]1 and [|β|]1.

long.tex; 6/10/1999; 10:37; p.5



6 Churn-Jung Liau

As usual, the denotation of an action is just a state transition relation.
However, unlike standard compound actions in traditional dynamic
logics, the denotations of α and α&β are not functionally determined
by those of their component actions. This makes it impossible to define
the denotation function only for primitive actions and then extend it to
all actions. The reason that equality does not hold for ([| · |]14) is due to
the open specification of the action denotation in Meyer’s semantics. As
mentioned above, there are two mappings f1 and f2 which respectively
assign a collection of s-sets to an action expression and a state transition
relation to a collection of s-sets, and [|·|]1 is equal to f2◦f1. Indeed, under
some moderate condition, we have f1(α&β) = f1(α)∩f1(β). Moreover,
let T1, T2 denote collections of s-sets, then we have f2(T1) ⊆ f2(T2) if
T1 ⊆ T2. Thus, the inequality of ([| · |]14) holds. However, we don’t have
f2(T1∩T2) = f2(T1)∩f2(T2) since different s-sets may have overlapping
state transition relations. Therefore, when T1 ∩ T2 = ∅ but there are
some s-sets in T1 and T2 which are mapped to overlapped relations,
then f2(T1 ∩ T2) will be empty whereas f2(T1) ∩ f2(T2) be not. For
example, assume under a state w, the door is closed, let α denote the
action “close the door”, then since α&α is a failing action, [|α&α|]1 = ∅,
but w is obviously in both sets of alternatives after the execution of α
and α, i.e., (w,w) ∈ [|α|]1 and (w,w) ∈ [|α|]1.

The deontic wffs are defined as abbreviations,

Fα = [α]V,

Pα = ¬Fα = 〈α〉¬V,
Oα = Fα = [α]V,

for all α ∈ Π1.
If M = 〈W, |=1, [| · |]1, opt〉 is a deontic model, then we write M |=1 ϕ

if for all w ∈ W , w |=1 ϕ. Let S be a subset of Φ1 and ϕ ∈ Φ1, then
S |=1 ϕ if for all models M and w in M , w |=1 ψ for all ψ ∈ S implies
w |=1 ϕ. If S = ∅ (resp. S = {ψ}), then it is also written as |=1 ϕ (resp.
ψ |=1 ϕ).

3. A Logic of Action Preference

In this section, we introduce a logic of action preference, called LAP2,
to distinguish it from the original LAP .

The language of LAP2 is an extension of PDeL with two addition-
al binary connectives � and �. The formation rules for well-formed
formulas (Φ2) and action expressions (Π2) of LAP2 are as follows:
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1. Φ2 is the smallest set such that

− Φ1 ⊆ Φ2,

− if ϕ,ψ ∈ Φ2 and α ∈ Π2, then ¬ϕ,ϕ ∨ ψ, [α]ϕ ∈ Φ2, and
− If α and β ∈ Π2, then α � β, α � β ∈ Φ2.

2. Π2 is the smallest set such that

− Π1 ⊆ Π2, and
− if α, β ∈ Π2 and ϕ ∈ Φ2, then α;β, α ∪ β, α&β, α, ϕ→ α/β ∈

Π2.

The wff α � β(resp. α � β) is also written as β ≺ α (resp. β � α).
The wff α � β means that α is strictly preferred to β, whereas α � β
denote that α is preferred to β. Formally, a preferential model for LAP2
is a quadruple 〈W, |=2, [| · |]2,≥〉, whereW is a set of possible worlds and
≥ is a reflexive and transitive binary relation on W . In the preferential
models, let us define Opt(W,≥) = {w ∈ W |� ∃u ∈ W (u > w)}, i.e.,
the set of optimal worlds. Furthermore, we assume in any preferential
model, the set of optimal worlds is nonempty (i.e. the set W has at
least a ≥-maximal element). Let u > v denote u ≥ v and v �≥ u for
u, v ∈ W . For X,Y ⊆ W , we also write X ≥ Y (resp. X > Y ) if there
exists u ∈ X such that for all v ∈ Y , u ≥ v(resp. u > v). Note that
the ordering between subsets of possible worlds is induced from that
between individual worlds by some optimistic criterion. This is not the
only way to define the set ordering. For other possible alternatives and
related issues, see section 5.

Then [|·|]2 : Π2 → P(W×W ) must still satisfy ([|·|]11)–([|·|]16), where-
as |=2⊆ W × Φ2 now have to satisfy (|=11)–(|=13) and the following
constraints:

(|=20’) w |=2 V ⇔ ∃u ∈W (u > w),

(|=24) w |=2 α � β iff [|α|]2(w) ≥ [|β|]2(w),

(|=25) w |=2 α � β iff [|α|]2(w) > [|β|]2(w),

The definition of S |=2 ϕ is analogous to that for |=1 when S∪{ϕ} ⊆ Φ2.
LAP2 has some interesting properties similar to LAP . These properties
all easily follow from the semantics.

PROPOSITION 1.

1. |=2 (α1 ∪ α2 � β) ≡ (α1 � β) ∨ (α2 � β)
2. |=2 (β � α1 ∪ α2) ⊃ (β � α1) ∧ (β � α2)
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3. |=2 (α1&α2 � β) ⊃ (α1 � β) ∧ (α2 � β)
4. |=2 ¬(α&β � β)
5. |=2 ¬(α � α ∪ β)
6. |=2 (α;β1 � α;β2) ⊃ 〈α〉(β1 � β2)

7. |=2 (ϕ→ α1/α2 � β) ≡ (ϕ ⊃ α1 � β) ∧ (¬ϕ ⊃ α2 � β)
Furthermore, the same results (except 4. and 5.) hold by replacing

� with �.

The action preference wffs can be combined with the conditional
action wffs to denote a decision choice action. More specifically, define

α⊕ β = (α � β)→ α/(α ≺ β → β/(α ∪ β)).
Then doing α⊕ β will mean doing α or β selectively according to the
strict preference relation �. The same definition can be carried out for
�.

It can easily be seen that a preferential model is a generalization of
deontic model. Just like LAP , LAP2 is also a conservative extension
of PDeL.

PROPOSITION 2. If S ∪ {ϕ} ⊆ Φ1, then S |=1 ϕ iff S |=2 ϕ.

Proof: Since a deontic model can be seen as a special case of preferen-
tial model, it can be easily shown that if S |=2 ϕ then S |=1 ϕ by the
definition of logical consequence. On the other hand, if S �|=2 ϕ, then
there exist a preferential model 〈W, |=2, [| · |]2,≥〉 and a w ∈W such that
for all ψ ∈ S, w |=2 ψ but w �|=2 ϕ. Let M = 〈W, |=1, [| · |]1, opt〉, where
[| · |]1 is a restriction of [| · |]2 to Π1, opt = Opt(W,≥) = {w ∈ W |� ∃u ∈
W (u > w)}, and |=1 is the restriction of |=2 to the set W ×Φ1, then it
can be verified that M is indeed a deontic model by induction on the
complexity of formulas and action expressions. By the definition, M is
a counter-model of S |=1 ϕ.

This result shows that LAP2 is at least as expressive as PDeL
in deontic reasoning. Furthermore, LAP2 facilitates the expression of
comparative preference reasoning directly in its language.

In the preferential models, the relation ≥ is a preorder. A preorder
is also called a ranked order (total preorder) if for all u, v ∈W , we have
either u ≥ v or v ≥ u. In the LAP model, since the preferential relation
is represented by a possibility distribution(Zadeh, 1978), it is really
a ranked order with upper and lower bounds. Though ranked orders
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may produce more interesting properties, the commitment actions we
will discuss in the next section may sometimes induce incomparability
between worlds, so the generalization from LAP to LAP2 models is
indeed necessary for the logic of commitment.

4. A Logic of Commitment

Our logic of commitment is called LC. The language of LC is an ex-
tension of LAP2 with two additional action-forming operators ! and @.
The formation rules for well-formed formulas (Φ3) and action expres-
sions (Π3) of LC are as follows:

1. Φ3 is the smallest set such that

− Φ2 ⊆ Φ3,
− if ϕ,ψ ∈ Φ3 and α ∈ Π3, then ¬ϕ,ϕ ∨ ψ, [α]ϕ ∈ Φ3, and
− If α and β ∈ Π2, then α � β, α � β ∈ Φ3.

2. Π3 is the smallest set such that

− Π2 ⊆ Π3,
− if ϕ ∈ Φ0, then !ϕ,@ϕ ∈ Π3, and
− if α, β ∈ Π3, then α;β, α ∪ β ∈ Π3.

The actions of types !ϕ and @ϕ are called commitment and fulfillment
actions respectively. The intended meaning of !ϕ is the agent commits
to the goal ϕ, whereas @ϕ means that the commitment to ϕ is deleted
since ϕ has been achieved.

Note that we do not allow the comparison between commitments
since they are not state transition actions. Also, only commitments to
Φ0 goals are legal actions under our syntax. In other words, we will not
allow the commitments to an action preference statement. Furthermore,
though commitments to a formula ¬ϕ is allowed, the non-commitment
to ϕ (i.e. !ϕ) is not a legal action expression. We do not need the
simultaneous commitments !ϕ&!ψ either since it is equivalent to !(ϕ ∧
ψ).

Before giving the formal semantics, we need some notations. As
usual, let Φ∗

0 denote the set of all finite sequences of wffs in Φ0. We will
use σ, τ, . . . to denote the elements of Φ∗

0. The symbol λ will denote the
empty sequence. Let σ = ϕ1 ·ϕ2 · · ·ϕn and ϕ ∈ Φ0, then σ\ϕ is defined
as ϕ′1 · ϕ′2 · · ·ϕ′k, where ϕ′i is the ith element of σ such that ϕ �|=1 ϕ

′
i.

In other words, σ\ϕ is the result of removing all formulas implied by ϕ
from σ. LetW be a set of possible worlds and U ⊆W×Φ∗

0, then PW (U)
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is the projection of U on W , defined by PW (U) = {w | (w, σ) ∈ U}.
Let 〈W, |=1, [| · |]1, opt〉 be a deontic model, then for a preorder ≥ on W ,
and a sequence σ ∈ Φ∗

0, the preorder induced from ≥ and σ by fair
strategy, denoted by ≥fair

σ , is defined inductively as follows:

1. ≥fair
λ =≥,

2. ≥fair
σ·ϕ = {(u, v) | u ≥fair

σ v ∧ (v |=1 ϕ⇒ u |=1 ϕ)}
Analogously, the preorder induced by first-come-first-serve strategy,
denoted by ≥fcfs

σ , is defined inductively as follows:

1. ≥fcfs
λ =≥,

2. ≥fcfs
σ·ϕ = {(u, v) | u >fcfs

σ v or u ≥fcfs
σ v ∧ v ≥fcfs

σ u ∧ (v |=1 ϕ ⇒
u |=1 ϕ)}

In what follows, we will write ≥σ for ≥fair
σ or ≥fcfs

σ and distinguish
them only when it is necessary.

The intended use of ≥σ is to update the preference ordering by
a sequence of unfulfilled goals. In the preceding sections, a state is
just a possible world, so the state transition relation corresponding to
an action just changes a possible world into another one among the
possible alternatives when the action is performed. However, because
commitment and fulfillment are not actions in a traditional sense, we
will extend a state to a pair consisting of a possible world and a sequence
of unfulfilled goals. While the execution of ordinary actions change
the possible world component of the extended state, commitment and
fulfillment may add or delete formulas to the sequence of unfulfilled
goals. Then the preference ordering under an extended state is deter-
mined by the initial one ≥ and the sequence of goals σ. The fair and
fcfs strategies represent different ways by which the preference ordering
can be determined.

To illustrate the difference of the two strategies, we consider a se-
quence consisting of only two goals ϕ and ψ and assume the initial
preference ordering ≥= W ×W . The evolution of the preference or-
dering after the commitment of ϕ and ψ is shown in figure 1, where
(a→b→c) and (a→b→d) represent respectively the preference updat-
ing by fair and fcfs strategies. The circles represent nonempty sets of
possible worlds satisfying the formulas contained in them. The arrows
represent preferences for all worlds between two circles connected by
them. Thus a unidirectional arrow represents that the preferences are
strict and the bidirectional ones mean that the two classes of possible
worlds are in fact in the same rank of the preference ordering. Since our
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initial ordering is W ×W , all worlds are equivalent under the ordering.
This is shown in figure 1(a), where there exists a bidirectional arrow
between any two circles. Then, after the commitment of a goal ϕ, the
worlds satisfying ϕ are preferred to those not. The effects of fair and fcfs
strategies are of no difference when only one goal is committed. This is
shown in figure 1(b) by a unidirectional arrow from the circle labelling
¬ϕ,¬ψ to that labelling ϕ,ψ. For the sake of clarity, we intentionally
omit the arrows that can be derived by the transitivity of the ordering
from figure 1(b), (c), (d). The things get different when another goal ψ
is also committed. For the fair strategy, both unfulfilled goals are con-
sidered equally important, so essentially a world is preferred to another
one, if the goals satisfied in the latter are contained in those satisfied in
the former. The resultant ordering is shown in figure 1(c). The direction
of the arrows is consistent with the subset relation between sets of
positive formulas in the circles. In particular, note that the two circles
labelling ϕ,¬ψ and ¬ϕ,ψ are not comparable. On the other hand, for
the fcfs strategy, the things are quite different. Since ϕ is committed
before ψ, it is considered more important under the strategy. Thus a
world satisfying ϕ,¬ψ is preferred to those satisfying ¬ϕ,ψ. This is
shown in figure 1(d), where the ordering is linear between the circles.

Now, we are ready to define the semantics of LC. A commitment
model is a sextuple 〈W, |=1, [| · |]1, |=3, [| · |]3,≥〉, where

1. W is a set of possible worlds and ≥ is a preorder on W ,

2. |=1⊆W × Φ1 satisfies (|=1 1)–(|=1 3),

3. [| · |]1 : Π1 → P(W ×W ) satisfies ([| · |]11)–([| · |]16),
4. |=3⊆ (W × Φ∗

0)× Φ3 must satisfy

(coherence): if ϕ ∈ Φ0, then w, σ |=3 ϕ⇔ w |=1 ϕ,

(|=30) w, σ |=3 V ⇔ ∃u ∈W (u >σ w),

(|=31) w, σ |=3 ϕ ∨ ψ ⇔ w, σ |=3 ϕ or w, σ |=3 ψ,

(|=32) w, σ |=3 ¬ϕ⇔ w, σ �|=3 ϕ,

(|=33) w, σ |=3 [α]ϕ ⇔ ∀(u, τ) ∈ [|α|]3(w, σ), (u, τ |=3 ϕ), where
[|α|]3(w, σ) = {(u, τ) | (((w, σ), (u, τ)) ∈ [|α|]3},

(|=34) w, σ |=3 α � β iff PW ([|α|]3(w, σ)) ≥σ PW ([|β|]3(w, σ)), and

(|=35) w, σ |=3 α � β iff PW ([|α|]3(w, σ)) >σ PW ([|β|]3(w, σ)), and

5. [| · |]3 : Π3 → P((W × Φ∗
0)× (W × Φ∗

0)) must satisfy

(coherence): if α ∈ Π0, then [|α|]3(w, σ) = {(u, σ) | u ∈ [|α|]1(w)},
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(d) After action !ϕ; !ψ, ≥fcfsϕ·ψ

Figure 1. The comparison of fair and fcfs strategies

(commitment): [|!ϕ|]3(w, σ) = {(w, σ · ϕ)},
(fulfillment): [|@ϕ|]3(w, σ) = {(u, σ\ϕ) | u |=1 ϕ},

and ([| · |]12)–([| · |]16) with [| · |]1 being replaced by [| · |]3(in ([| · |]16),
w is also replaced by w, σ).

For all S∪{ϕ} ⊆ Φ3, S |=3 ϕ if for all commitment modelM = 〈W, |=1

, [| · |]1, |=3, [| · |]3,≥〉, w in W , and σ ∈ Φ∗
0, w, σ |=3 ψ for all ψ ∈ S

implies w, σ |=3 ϕ. The given preorder ≥ is the initial preference of the
agent and the commitment action !ϕ updates it according to the fair
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or fcfs strategy, so we in fact define two kinds of commitment models.
To distinguish between them, sometimes we will add the superscript
fair or fcfs to the truth relation |=3 and action denotation function
[| · |]3. Note that |=3 and [| · |]3 only agree with |=1 and [| · |]1 respectively
in the set Φ0 and Π0 since the evaluation of the symbol V relies on the
preference relation induced by the commitment actions. Thus, the wffs
in Φ1\Φ0 and the action expressions in Π1\Π0 will be taken care of by
|=3 and [| · |]3 directly.

It can be seen that for all α ∈ Π2, if ((w, σ), (u, τ)) ∈ [|α|]3, then
σ = τ . In other words, the action expressions in Π2 are purely state-
transition ones, so the conditions (|=3 4) and (|=3 5) are well-motivated.
On the other hand, the commitment actions keep the state unchanged
though they indeed update the preference relation. The fulfillment
actions may both change the states and update the preference re-
lation. However, we do not specify how the world state is changed
when the goal is fulfilled, so any (ordinary) action that can change
the current state into one satisfying the goal may be taken. Thus,
if the current extended state is (w, σ) and @ϕ is performed, we will
possibly reach (u, σ\ϕ) for any u which is accessible from w by some
ordinary action and satisfies ϕ. Since there exists some universal action
u in our logic, any world u ∈ W is accessible from w by u, so we do
not have to add the restriction of accessibility to the semantics for
@ϕ. However, the existence of u is somewhat over-idealized since in
a real situation we may have no way to reach another given state.
To accommodate this case, we may change the semantics of u into
[|u|]1 ⊆ W × W to mean the accessibility relation by any possible
actions and the semantic restriction for fulfillment action is modified
as [|@ϕ|]3(w, σ) = {(u, σ\ϕ) | u |=1 ϕ, (w, u) ∈ [|u|]1}.

Furthermore, an action α ∈ Π2 is called commitment-invariant if
it does not have any subexpression of the form ϕ→ β1/β2 with occur-
rence of V , �, or � in ϕ. It can be shown by induction that if α is a
commitment-invariant action, then for any σ, τ ∈ Φ∗

0, ((w, σ), (u, σ)) ∈
[|α|]3 iff ((w, τ), (u, τ)) ∈ [|α|]3, i.e., the results of doing α only depend
on the current world situation but not on the unfulfilled goals since
it does not contain any conditional choice which has to be evaluated
according to the current preference.

The following proposition illustrates how the commitment actions
change an agent’s preference between other actions.

PROPOSITION 3. Let |=3 denote either |=fair
3 or |=fcfs

3 and α, β be
commitment-invariant actions, then

1. |=3 (α � β) ∧ (([α]ϕ ∧ [β]ϕ) ∨ ([α]¬ϕ ∧ [β]¬ϕ)) ⊃ [!ϕ](α � β)
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14 Churn-Jung Liau

2. |=3 ((α � β) ∧ [α]ϕ ∧ [β]¬ϕ) ⊃ [!ϕ](α � β)
3. |=3 (α � β) ∧ (([α]ϕ ∧ [β]ϕ) ∨ ([α]¬ϕ ∧ [β]¬ϕ) ∨ ([α]ϕ ∧ [β]¬ϕ)) ⊃

[!ϕ](α � β)

4. |=fcfs
3 α � β ⊃ [!ϕ]α � β

Proof: We will prove the first one and the remaining ones are analo-
gous. Let 〈W, |=1, [| · |]1, |=3, [| · |]3,≥〉 be a commitment model, w ∈ W
and σ ∈ Φ∗

0. According to (|=3 4),

w, σ |=3 α � β
⇔ PW ([|α|]3(w, σ)) ≥σ PW ([|β|]3(w, σ))
⇔ ∃u(((w, σ), (u, σ)) ∈ [|α|]3 ∧ ∀v(((w, σ), (v, σ)) ∈ [|β|]3 ⇒ u ≥σ v)),

and since ϕ ∈ Φ∗
0, according to coherence

w, σ |=3 (([α]ϕ ∧ [β]ϕ) ∨ ([α]¬ϕ ∧ [β]¬ϕ))
⇒ (u, σ |=3 ϕ ∧ v, σ |=3 ϕ) ∨ (u, σ �|=3 ϕ ∧ v, σ �|=3 ϕ)
⇔ (u |=1 ϕ ∧ v |=1 ϕ) ∨ (u �|=1 ϕ ∧ v �|=1 ϕ)
⇒ u ≥σ·ϕ v.

Since α, β are commitment-invariant, we have u ∈ PW ([|α|]3(w, σ · ϕ))
and v ∈ PW ([|β|]3(w, σ · ϕ)), so

PW ([|α|]3(w, σ · ϕ)) ≥σ·ϕ PW ([|β|]3(w, σ · ϕ))
⇔ w, σ · ϕ |=3 α � β
⇔ w, σ |=3 [!ϕ](α � β).

Thus a commitment action may change a preference into a strict
one either by fair or fcfs strategy. However, strict preference may be
destroyed by fair strategy but not by the fcfs one.

On the other hand, the change of preference caused by fulfillment
actions may be arbitrary since they may have global effect on the
preference relation. In general, a fulfillment action will flatten some
ordering by achieving some previously committed goals. To understand
the total effect of a sequence of commitment and fulfillment actions, we
will consider a special kind of modelsM0 = 〈W, |=1, [| · |]1, |=3, [| · |]3,≥0〉,
where ≥0= W ×W . Such models are also called neutral models. Let
M0 denote the class of all neutral models.

Given a σ ∈ Φ∗
0, a maximal consistent subset of σ inM0 is a maximal

subset of σ, S, such that |S|M0 = {w | w |=1 S} is nonempty. Let
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ConM0(σ) denote the set of all maximal consistent subsets of σ in M0,
then ϕσ is defined as

ϕσ =
∨
{
∧
S | S ∈ ConM0(σ)}.

Let S be a subset of the sequence σ, then the characteristic formula of
S with respect to σ is defined by

χ(S, σ) =
∧

(S ∪ {¬ϕ | ϕ ∈ σ, ϕ �∈ S}).

LEMMA 1. If M0 ∈M0, w is a world of M0, and σ ∈ Φ∗
0, then

1. for all β ∈ Π2, w, σ |=fair
3 [β]¬ϕσ ≡ Oβ,

2. for all S2 ⊆ S1 ⊆ σ and α, β ∈ Π2, w, σ |=fair
3 〈α〉χ(S1, σ) ∧

[β]χ(S2, σ) ⊃ α � β

3. for all S2 ⊂ S1 ⊆ σ and α, β ∈ Π2, w, σ |=fair
3 〈α〉χ(S1, σ) ∧

[β]χ(S2, σ) ⊃ α � β

Proof: First, for a possible world u inM0, let us define u(σ) = {ϕ ∈ σ |
u |=1 ϕ}. Then, by induction on the length of σ, we can prove the fol-
lowing properties for any possible worlds u, v (we omit the superscript
“fair” for simplicity):

(i) if u ≥ v and v(σ) ⊆ u(σ), then u ≥σ v

(ii) if v(σ) �⊆ u(σ), then u �≥σ v.

Thus, in the neutral model M0, we have u ≥σ v iff v(σ) ⊆ u(σ) since
u ≥ v holds from the initial, so for any u, u |=1

∧
S for some S ∈

ConM0(σ) iff � ∃v(v >σ u). Furthermore, since S ⊆ Φ0, u |=1
∧
S iff

u, σ |=3
∧
S.

We are now ready to prove the lemma.

1. For any possible world u, we have

u, σ |=3 ¬ϕσ

⇔ u, σ �|=3

∧
S,∀S ∈ ConM0(σ)

⇔ ∃v(v >σ u)
⇔ u, σ |=3 V.

This implies u, σ |=3 ¬ϕσ ≡ V for any possible world u, so w, σ |=3

[β]¬ϕσ ≡ [β]V , i.e., w, σ |=3 [β]¬ϕσ ≡ Oβ.
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16 Churn-Jung Liau

2. The proof is

w, σ |=3 〈α〉χ(S1, σ) ∧ [β]χ(S2, σ)
⇔ (∃u ∈ PW ([|α|]3(w, σ)), u, σ |=3 χ(S1, σ)) ∧ (∀v ∈ PW ([|β|]3(w, σ)), v, σ |=3 χ(S2, σ))
⇒ ∃u ∈ PW ([|α|]3(w, σ))∀v ∈ PW ([|β|]3(w, σ)).v(σ) ⊆ u(σ), since S2 ⊆ S1

⇔ ∃u ∈ PW ([|α|]3(w, σ))∀v ∈ PW ([|β|]3(w, σ)).u ≥σ v

⇔ PW ([|α|]3(w, σ)) ≥σ PW ([|β|]3(w, σ))
⇔ w, σ |=3 α � β.

3. The proof is analogous to 2. except that ⊆ (resp. ≥σ) is replaced
by ⊂ (resp. >σ).

Note that in the proof 2. above, the derivation of v(σ) ⊆ u(σ) from
S2 ⊆ S1 depends on the fact that u(resp. v) satisfies exactly all goals
in S1(resp. S2) but not any one outside it, so the characteristic formula
χ(S1, σ)(resp. χ(S1, σ)) cannot be replaced by

∧
S1(resp.

∧
S2). That

is, the negative part in the definition of the characteristic formulas is
indeed necessary.

Let s = α1 · α2 · · ·αn be a sequence of action expressions such that
each αi is in the forms of !ϕ or @ϕ. Define αs as the result of replacing
all “·” in s by the action composition operator “;”. The unfulfilled
commitment sequence corresponding to s, denoted by σs, is defined
inductively by

1. σλ = λ,

2. σs·!ϕ = σs · ϕ,
3. σs·@ϕ = σs\ϕ.

PROPOSITION 4. If M0, w, and s are defined as above, then

1. for all β ∈ Π2, w, λ |=fair
3 [αs]([β]¬ϕσs ≡ Oβ).

2. for all S2 ⊆ S1 ⊆ σs and α, β ∈ Π2, w, λ |=fair
3 [αs](〈α〉χ(S1, σs) ∧

[β]χ(S2, σs) ⊃ α � β)
3. for all S2 ⊂ S1 ⊆ σs and α, β ∈ Π2, w, λ |=fair

3 [αs](〈α〉χ(S1, σs) ∧
[β]χ(S2, σs) ⊃ α � β)

Proof: The proof follows easily from the preceding lemma since w, λ |=fair
3

[αs]ϕ iff w, σs |=fair
3 ϕ for any ϕ ∈ Φ3 by definition of σs and the
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semantics of commitment and fulfillment actions.

The first part of the proposition says that if executing β is necessary
to fulfill a maximal consistent subset of commitments, then it is obliga-
tory to do β. This is the principle of commitment implying obligation.
On the other hand, it also states that the only obligation is to achieve
as many committed goals as possible. This is due to the neutrality of
the model, so the only obligation is caused by the commitment action.
If the initial model is not neutral, then we may have some obligations
even before any goal commitment.

However, that an agent ought to do β does not mean that she will
really do it. She may just not have the capability or opportunity to do
it(for a formal model of capability and opportunity, see (van der Hoek
et al., 1994)). In this case, the second and third parts of the proposition
means that the agent should do her best to fulfill the commitments. In
other words, we are modeling a sincere agent in the sense that she
prefers the actions that can achieve as many commitments as possible.

The preceding proposition states the principle of commitment imply-
ing obligation under the fair strategy. For the fcfs strategy, an analogous
result holds and it can also be proved in a similar way. Given σ =
ϕ1 · ϕ2 · · ·ϕn ∈ Φ∗

0, define

1. S0 = ∅,

2. Si =
{
Si−1 ∪ {ϕi} if |Si−1 ∪ {ϕi}|M0 �= ∅,
Si−1 otherwise, for 1 ≤ i ≤ n.

Let ψσ =
∧
Sn, then we have

LEMMA 2. If M0 ∈ M0, w is a world of M0, and σ ∈ Φ∗
0, then

w, σ |=fcfs
3 [β]¬ψσ ⊃ Oβ.

PROPOSITION 5. For all w inM0 and β ∈ Π2, w, λ |=fcfs
3 [αs]([β]¬ψσs ⊃

Oβ).

The second and third parts of Lemma 1 and Proposition 4 also hold
for the fcfs case provided that the condition S2 ⊂ S1 (resp. S2 ⊆ S1)
is replaced by S2 � S1 (resp. S2 ( S1), where S2 � S1 is defined with
respect to a σ = ϕ1 · ϕ2 · · ·ϕn in the following way:

S2 � S1 ⇔ ∃1 ≤ i ≤ n(ϕi ∈ S1∧ϕi �∈ S2∧∀j < i(ϕj ∈ S2 ⇒ ϕj ∈ S1)),

and S2 ( S1 is S2 � S1 or S1 = S2.
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5. Related Works

The idea of considering actions updating the preference relation comes
originally from the update semantics for default logic(Veltman, 1996).
In the semantics, each subset of worlds (i.e. a proposition) is associated
with a preference relation and a default of the form ϕ � ψ, where ϕ
and ψ are classical logic formulas, will cause the modification of the
preference associated with the subset of ϕ-worlds. Then if the agent
knows that ϕ holds, she will prefer to believe ψ rather than ¬ψ. Thus, in
update semantics for default logic, the default will change the cognitive
preference of an agent, whereas in our case, the commitment actions
will update the action preference and have influence on the agent’s
choice of actions. Furthermore, in the update semantics, only the fair
strategy is considered while we consider both fair and fcfs ones.

The motivation for the logical semantics of commitment is to provide
a formal account to some mental attitudes used in agent-oriented pro-
gramming (Shoham, 1993). However, in (Shoham, 1993), commitment
and obligation are not distinguished. Here, we model both of them in
a common logic, and the first part of Proposition 4 in fact provide a
formal relationship between them. That is, for a value-neutral agent,
the unfulfilled commitment decides her obligations.

Some motivational attitudes, including preference, goal, and com-
mitment, have been also formalized in (van Linder et al., 1995b). How-
ever, in (van Linder et al., 1995b), the preference is a unary operator
applied to wffs, whereas the commitment is a operator applied to action
expressions. On the contrary, in our logic, the preference is a binary
connective between action expression and the commitment operator
is applied to a wff. So the semantics of LC and that in (van Linder
et al., 1995b) are quite different. Moreover, the action terms is more
restrictive in (van Linder et al., 1995b) since negated and simultaneous
actions are not allowed there.

Essentially, the logics of commitment can be divided into four cat-
egories according to the syntax of commitment representation as fol-
lows:

1. “Commitment to goal” as an act,

2. “Commitment to act” as an act (or meta-act),

3. “Commitment to goal” as a proposition,

4. “Commitment to act” as a proposition.

The logic LC reported here belongs to the first category since the
action-forming operator “!” is applied to some goal (expressed as a
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wff in Φ0) and the resultant expression represents an act. While the
logic in (van Linder et al., 1995b) belongs to the second category,
there are also some alternative formalisms in the same category. For
example, in (Dignum et al., 1996; Dignum and van Linder, 1996), an
integrated semantics for different mental attitudes are developed. In
those papers, an expression of the form “COMMIT (α)” is a meta-
act if α is an act. The principle “commitment entails obligations” also
hold in those logics. However, their logics are based on deontic instead
of preference semantics, so the effect of “COMMIT (α)” is to update
the set of ideal worlds. This kind of semantics, as argued above, would
not allow committing to conflicting actions, so according to (Dignum
et al., 1996)(p.92), if COMMIT (α) would bring us into a structure in
which some world has no ideal successor, it is defined to be equivalent
to fail (denoted by ∅ in PDeL). For commitment to act, it seems
reasonable that commitment to conflicting actions simultaneously is
not expectable, however, commitment to conflicting goals seems not so
unusual in the real situation.

Furthermore, there are also logics belonging to the third category.
This kind of logics usually have the well-known BDI architecture as
their semantic basis(Cavedon et al., 1997; Singh, 1997b; Singh, 1997a).
In (Cavedon et al., 1997), a wff of the form SCOMI(τ, µ, ϕ) means the
agent team τ has a social intention- commitment to µ with respect to
the goal ϕ. If not taking the syntactic difference of action and propo-
sition into account, our commitment action can be seen as a special
case of the form SCOMI(τ, τ, ϕ), where τ is a fixed individual agent.
However, the semantics between these two logics are very different.
Since the semantics of social commitment in (Cavedon et al., 1997) is
based on standard Kripke semantics, it also suffers from the notorious
logical omniscience problem(Fagin et al., 1996) (or more correctly, side-
effect problem in the context of commitment), i.e., if a team agent
commits to the goal ϕ, then it also commits to all logical consequence of
ϕ. While in our semantics, !ϕ indeed makes all worlds satisfying ϕ (and
any formulas logically equivalent to ϕ) preferred to those not, it does
not make all worlds satisfying the logical consequence of ϕ change in the
same way. On the other hand, the constructs in (Cavedon et al., 1997)
facilitate the comparison of different levels of social commitment from
a subservient agent who always fulfill her commitment to vindictive
agent who refuses to adopt a team goal. These different constructs,
providing a basis to modeling of social attitudes of agents, are lacking
in our logic, so to model the multi-agent environment, our logic must
be extended further. (Also see the next section for some suggestions.).

In (Singh, 1997b), the notion of commitment is related with econom-
ic rationality, so a wff of the form Cx(p, c) means the agent x commits
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to the goal p to the level c, where c is a real number. In that framework,
cmay be the utility of achieving p, and after some attempt to execution
of action for achieving p, the cost should be subtracted from c, so if
after repeated attempts to fulfilling some goal without success, the
commitment level of that goal will decrease to zero and become not
intended any more. In our logic, we cannot model the utility of goals
directly. However, we can imagine to associate a priority level to each
of our commitment. Though in our semantics of commitment, we only
consider the fair and fcfs strategy, the priority mechanism can be easily
added to the fcfs strategy. We only need to rearrange the unfulfilled
commitment sequence in the decreasing ordering of priority and then
apply the fcfs strategy.

The semantics of commitment is also investigated in a diachronic
deontic logic(DDL) proposed in (Brown, 1996). In DDL, commitment
is called incurring of obligation, so incurA is a wff representing the
obligation A is incurred. Syntactically, this kind of commitment belongs
to the third category, however, its semantics is very similar in spirit to
that of (Dignum et al., 1996). For DDL, each state is associated with
a set of propositions called obligation set, and then incurA is true
in a state s if the proposition A is in the obligation set of s but not
in the previous moment of s. The essential difference between DDL
and LC from the viewpoint of semantics for commitment is that the
incurring of an obligation in DDL just change the obligation set of
that state, whereas in LC, the commitment action update preference
ordering between possible worlds. However, unlike the logic in (Dignum
et al., 1996), the obligation set is not required to be consistent, so
simultaneous incurring of conflicting obligations is allowed.

Since our logic emphasizes the influence of goal commitment on
preference, it has some relationship with qualitative decision theo-
ry(Wellman and Doyle, 1991). In (Wellman and Doyle, 1991), it is
shown that goals can be defined in terms of preference and preferences
can be derived from sets of goals. Roughly speaking, the former corre-
sponds to the logic of preference, whereas the latter to LC. However,
the process of inducing goals from preference ordering in (Wellman and
Doyle, 1991) is quite different from the semantics of LAP2. According
to Wellman and Doyle’s semantics, a proposition ϕ is a goal if ϕ is
preferred to ¬ϕ ceteris paribus. In other words, ϕ is a goal if for any
possible worlds w1 and w2, when the only difference of w1 and w2 is
that w1 |= ϕ but w2 |= ¬ϕ, then w1 ≥ w2. The definition also induces
a preference between a proposition and its negation, however, it does
not say anything about the preference between any two propositions.
In fact, how to induce a preference ordering between any two sets of
possible worlds from that imposed on the individual worlds remains
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a controversial issue. In LAP2, we adopt a quite weak definition. A
stronger definition is to require that X > Y if all worlds in X are
preferred to each in Y . However, this definition runs into the so-called
strong preference problem(von Wright, 1963), so a revised definition
is proposed in (van der Torre and Tan, 1997). In the revised version,
ϕ is preferred to ψ if every ϕ world is preferred to or incomparable
with any ψ world and ϕ is obligatory if ϕ is preferred to ¬ϕ and the
optimal worlds are all ϕ worlds. Even other alternatives are possible,
for example, in (Halpern, 1996a), it is defined that X �∗ Y is for each
v ∈ Y , there exists u ∈ X such that u > v and u dominates Y , where
u dominates Y iff for no w ∈ Y is it the case that w > u. On the other
hand, in (Bell and Huang, 1997), X � Y is defined as all the most
normal worlds in X are preferred to each of the most normal worlds in
Y , where the most normal worlds are selected according to another nor-
mality criteria. All these definitions show that no agreement has been
achieved about how to induce a goal from preference yet and we do not
claim ours is the better one. Rather we believe each of these definitions
may be better in some aspects to others and worse in other aspects.
However, we remark that though the formalization of the relationship
between commitment and obligation relies somewhat on our adoption
of the optimistic set ordering, the principle of commitment implying
obligation itself is not influenced by the choice of different definitions.
Thus, slightly modified versions of the main results in section 4 will
hold if some alternative definitions of the set ordering are used.

Another recent development of qualitative decision theory is the
possibilistic logic framework advocated by Dubois et al. in a series of
papers3 (Dubois and Prade, 1995; Dubois and Prade, 1997; Dubois and
Prade, 1998; Dubois et al., 1997a; Dubois et al., 1997b; Dubois et al.,
1997c; Dubois et al., 1998). The possibilistic logic framework meets
with our logics at least at the following two points for some special
cases.

First, in the possibilistic logic framework, both uncertainty of knowl-
edge and priorities of goals can be represented by a possibilistic logic
base. A possibilistic logic base K = {(ϕi, ci) | 1 ≤ i ≤ n} is a set
of possibilistic logic formulas, where ϕi is a classical logic formulas
and ci is a level in a finite set C ⊂ [0, 1]. When representing a set of
prioritized goals, (ϕi, ci) means that the priority of achieving ϕi is ci
and the semantics of possibilistic logic naturally providing an approach
of deriving preference from a set of prioritized goals.

3 Thanks to Dr. Prade for calling my attention to this line of development and
generously providing me with their papers.
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For example, if we start from a neutral model and assume our com-
mitment actions are of the form !p, where p is a classical propositional
formula, then after a sequence of commitment actions !p1; !p2; · · · ; !pi,
we will have a sequence of goals G = (p1 · p2 · · · · pn). If we adopt
the fair strategy, then the most straightforward possibilistic logic base
corresponding to G will be K = {(pi, 1) | 1 ≤ i ≤ n} since all goals
are equally important. However, in the possibilistic framework, the
violation of any goal is not acceptable, whereas in the LC semantics,
we consider that even if some goals are violated, the situation in which
more goals are satisfied is definitely better than the others. There is
however an alternative way to encode a set of equally important goals
in a possibilistic logic base. Let {Sj | 1 ≤ j ≤ k} be the set of all
consistent subsets of G and m be the maximal cardinality of the sets
Sj’s. Then we can define a set of modified goals

ϕi =
∨
{χ(Sj , G) | |Sj | = i},

for all 1 ≤ i ≤ m, i.e., ϕi is the characteristic formula of exactly i goals
in G being satisfied. Let K ′ = {(ϕi,

1
i ) | 1 ≤ i ≤ m}, then the induced

ordering be closer to that induced by LC semantics since it ranks the
possible worlds according to the number of goals in G being satisfied.
The only difference is that since partial order is allowed in our logic,
two worlds satisfying same number but not the same set of goals are
incomparable, whereas in possibilistic framework, the two worlds will
be put in the same rank.

On the other hand, the fcfs strategy is a kind of priority strategy
since the goal committed earlier has higher priority. Its special feature
is that the priorities of any two goals are distinct. Thus, in this case, the
possibilistic logic base corresponding to G is naturally K = {(pi, ci) |
1 ≤ i ≤ n}, where c1 > c2 > · · · > cn. The induced rank order is then
somewhat similar to our ordering, however, the main difference is that
when the most important goal is violated, our ordering will consider the
worlds satisfying the secondly important goal are better than those not,
whereas possibilistic semantics will rank them as the same. According
to possibilistic logic, it seeks to satisfy the secondly important goals
only when the most important one has been satisfied and the solution
is totally unacceptable if the most important one is violated.

The second meeting point of our logics with possibilistic logic frame-
work will be the comparison of LAP2 semantics with the pessimistic
and optimistic utility functions. In the possibilistic logic framework,
when the knowledge about the real world is uncertain, the agent can
not know exactly what the consequence is after doing some action α,
so the possible consequences of doing α is represented as a possibility
distribution πα. On the other hand, the agent’s preference (possibly
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determined by her committed goals according to the way described
above) is represented by another possibility distribution µ, then the
pessimistic utility of α, a counterpart to expected utility in classical
decision theory, is defined as

E∗(α) = min
w∈Ω

max(µ(w), 1 − πα(w)),

and the optimistic one is defined as

E∗(α) = max
w∈Ω

min(µ(w), πα(w)).

Since in LAP2, the preference is a partial ordering, we will only consider
the special case where the preference is a rank ordering, i.e., the case
of LAP . Since in our logics, the epistemic aspect is not considered, the
only uncertainty about the consequence after the execution of α is due
to the nondeterminism of α, so πα will be replaced by a subset of Ω
in our case. Let us denote the subset by [α]. Then, the pessimistic and
optimistic utility functions defined above are respectively reduced to

E∗(α) = min
w∈[α]

µ(w)

and
E∗(α) = max

w∈[α]
µ(w).

Then the semantics of α � β in LAP2 is precisely a generalization of
the criteria E∗(α) > E∗(β). A generalization of the pessimistic criteria
would also be straightforward.

6. Concluding Remarks

In the preceding sections, a logic for reasoning about some mental
attitudes of agents is developed. We start from the dynamic deontic
logic, generalize it to a logic of action preference, and then incorporate
the commitment and fulfillment actions to get the logic of commitment.
We would like to emphasize again that the generalization from deontic
logic to preference logic is necessary for the handling of conflicting
commitments. If we still use the deontic model as the base of LC
and consider the commitment !ϕ as the action modifying the optimal
worlds opt to the ϕ-worlds, then when a sequence of commitments are
consistent, we can still keep the set opt nonempty. However, if we have a
commitment sequence !p; !q and p and q are inconsistent, then this will
result in an empty set of optimal worlds, and consequently no actions
are permitted after the commitment. In the preference-based model,

long.tex; 6/10/1999; 10:37; p.23



24 Churn-Jung Liau

this can be easily handled since the worlds satisfying most committed
goals are the relatively optimal ones, so the agent can try to achieve as
many goals as possible and leave the unfulfilled ones to the future.

6.1. Perspectives

In the logic of commitment, a commitment action only changes the pref-
erence of the agent and does not cause any state transition, whereas a
fulfillment action result in both preference change and state transition,
so the latter can be seen as partially complementary to the former.
We can imagine a proper complementary operator to commitment,
i.e. retraction . Let 6(ϕ) denote the retraction of the goal ϕ. Then
for a sequence σ ∈ Π∗

0, we can have a weak and strong retraction
operators. Specifically, define σ−w ϕ as the result of deleting ϕ from σ
and σ−sϕ as the result of deleting all formulas ψ |=1 ϕ from σ. Then the
semantics for weak retraction is to define [|6ϕ|]3(w, σ) = {(w, σ −w ϕ)},
whereas that for strong retraction is [|6ϕ|]3(w, σ) = {(w, σ−sϕ)}. Which
interpretation of the retraction actions is appropriate will depend on
the application. If the retraction is meant to model the avoidance of
something to happen, then the strong interpretation is more appropri-
ate. On the other hand, if it is intended to model the canceling of a
particular goal, then the weak one may be better.

In the development of LC, we only consider the single agent case, so
the commitment may be considered as an internal one. If the logic
is extended to the multi-agent environment, then we must consid-
er the problem of external commitment. When an agent wants to
achieve some goals but can not, she may ask other agents for help.
If agent a accept the request of b and commits to achieve ϕ, then
b may retract ϕ from her own commitments while a would add ϕ
to hers. So in this case, the action of agent a committing to ϕ for
b, !(a, b, ϕ) is defined as !(a, ϕ); 6(b, ϕ). The semantics of the action
expressions !(a, ϕ) and 6(b, ϕ) is modified to fit the multiagent frame-
work. Formally, [| · |]3 : Π3 → P((W × (Φ∗

0)
n) × (W × (Φ∗

0)
n)), where

n is the number of agents, is defined to satisfy constraints like this:
[|!(a, ϕ)|]3(w, σ1, · · · , σa, · · · , σn) = {(w, σ1, . . . , σa · ϕ, . . . , σn)}.

Another aspect we ignore in this paper is the informational attitudes
of agents. For example, in the definition of decision choice action α⊕β,
we use the preference wff α � β directly. However, in the practice, it
is possible that the agent does not know which action is better for her.
So if we introduce the modal operator B into our language, we can
redefine the choice action as

α⊕ β = B(α � β)→ α/(B(β � α)→ β/(α ∪ β)).
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The standard semantics of belief or epistemic modal operators((Fagin
et al., 1996)) can be modularly added to ours. Nevertheless, in addition
to the influence of agent’s belief on her action, some actions modifying
her belief, such as ask, tell, etc., can also be added to the language.
However, the semantics of such actions involves the construction of
common knowledge and may be rather complicated. Some pioneer-
ing work has been done in this topic(van Linder et al., 1994; van
Linder et al., 1995a; van Linder et al., 1995c; Gerbrandy and Groen-
eveld, 1997), however, further study of the interaction of these mental
attitudes is still needed. In general, we are convinced that belief, pref-
erence (including obligation), and action (including commitment and
speech acts) (BPA) are three of the most important mental attitudes
for description of agents. We believe that the BPA architecture may
constitute a basis for the logical analysis of multi-agent systems.

Finally, in this paper, we mainly focus on the semantics for the
logic of commitments. The proof-theoretical aspect of the logic remains
unexamined yet. The development of an axiomatic system and some
proof methods and the further restriction of the language to a tractable
fragment are all topics deserving further study.
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Åqvist, L.: 1984, “‘Deontic logic”’. In: D. Gabbay and F. Guenthner (eds.): Handbook
of Philosophical Logic, Vol II: Extensions of Classical Logic. D. Reidel Publishing
Company, pp. 605–714.

Bell, J. and Z. Huang: 1997, “‘Dynamic goal hierarchies”’. In: L. Cavedon, A.
Rao, and W.Wobcke (eds.): Intelligent Agent Systems : Theoretical and Practical
Issues: Workshop at PRICAI’96. pp. 88–103.

Brown, M.: 1996, “‘Doing as we ought: Towards a logic of simply dischargable obliga-
tions”’. In: M. Brown and J. Carmo (eds.): Deontic Logic, Agency, and Normative
Systems: The 3rd International Workshop on Deontic Logic in Computer Science.
pp. 47–65.

Cavedon, L., A. Rao, and G. Tidhar: 1997, “‘Social and individual commitmen-
t”’. In: L. Cavedon, A. Rao, and W.Wobcke (eds.): Intelligent Agent Systems :
Theoretical and Practical Issues: Workshop at PRICAI’96. pp. 152–163.

long.tex; 6/10/1999; 10:37; p.25



26 Churn-Jung Liau

Dignum, F., J.-J. Meyer, R. Wieringa, and R. Kuiper: 1996, “‘A modal approach
to intentions, commitments and obligations: intention plus commitment yields
obligation”’. In: M. Brown and J. Carmo (eds.): Deontic Logic, Agency, and Nor-
mative Systems: The 3rd International Workshop on Deontic Logic in Computer
Science. pp. 80–97.

Dignum, F. and B. van Linder: 1996, “‘Modelling social agents: Communication
as action”’. In: J. Muller, M. Wooldridge, and N. Jennings (eds.): Intelligent
agents III : Agent Theories, Architectures, and Languages : ECAI’96 Workshop
(ATAL). pp. 205–218.

Dubois, D., D. L. Berre, H. Prade, and R. Sabbadin: 1998, “‘Logical representation
and computation of optimal decisions in a qualitative setting”’. In: Proc. of the
15th National Conference on Artificial Intelligence.

Dubois, D., H. Fargier, and H. Prade: 1997a, “‘Decision making under ordinal prefer-
ences and uncertainty”’. In: Proc. of the 13th Annual Conference on Uncertainty
in Artificial Intelligence. pp. 571–164.

Dubois, D. and H. Prade: 1995, “‘Possibility theory as a basis for qualitative deci-
sion theory”’. In: Proc. of the 14th International Joint Conference on Artificial
Intelligence. pp. 1924–1930.

Dubois, D. and H. Prade: 1997, “‘Constraint satisfaction and decision under un-
certainty based on qualitative possibility theory”’. In: Proc. of the 6th IEEE
International Conference on Fuzzy Systems. pp. 23–30.

Dubois, D. and H. Prade: 1998, “‘Posiibilistic logic in decision”’. In: Proc. of the
ECAI’98 Workshop: Decision Theory Meets Artificial Intelligence–Qualitative
and Quantitative Approaches. pp. 11–21.

Dubois, D., H. Prade, and R. Sabbadin: 1997b, “‘A possibilistic logic machinery
for qualitative decision”’. In: Proc. of AAAI Spring Symposium on Qualitative
Preferences in Deliberation and Practical Reasoning. pp. 47–54.

Dubois, D., H. Prade, and R. Sabbadin: 1997c, “‘Decision under qualitative uncer-
tainty with Sugeno integrals—An axiomatic approach ”’. In: Proc. of the 7th
International Fyzzy Systems Association World Congress. pp. 441–446.

Fagin, R., J. Halpern, Y. Moses, and M. Vardi: 1996, Reasoning about Knowledge.
MIT Press.

Gerbrandy, J. and W. Groeneveld: 1997, “‘Reasoning about information change”’.
Journal of Logic, Language, and Information 6, 147–169.

Halpern, J.: 1996a, “‘Defining relative likelihood in partially-ordeded preferential
structures”’. In: E. Horvitz and F. Jensen (eds.): Proceedings of the 12th Annual
Conference on Uncertainty in Artificial Intelligence. pp. 299–306.

Halpern, J.: 1996b, ‘Should knowledge entail belief?’. Journal of Philosophical Logic
25, 483–494.

Harel, D.: 1984, “‘Dynamic logic”’. In: D. Gabbay and F. Guenthner (eds.): Hand-
book of Philosophical Logic, Vol II: Extensions of Classical Logic. D. Reidel
Publishing Company, pp. 497–604.

Hintikka, J.: 1962, Knowledge and Belief. Cornell University Press.
Liau, C.-J.: 1997, “‘A semantics for logics of preference based on possibility theory”’.

In: Proc. of the 7th International Fyzzy Systems Association World Congress.
Prague, pp. 243–248.

Liau, C.-J.: 1998, “‘A logic for reasoning about action, preference, and commitmen-
t”’. In: Proc. of the 13th European Conference on Artificial Intelligence. pp.
552–556.

Meyer, J.-J. C.: 1988, “‘A different approach to deontic logic: Deontic logic viewed
as a variant of dynamic logic”’. Notre Dame J. of Formal Logic 29(1), 109–136.

long.tex; 6/10/1999; 10:37; p.26



A Logical Analysis of Relationship ... 27

Meyer, J.-J. C. and R. Wieringa: 1993, Deontic Logic in Computer Science:
Normative System Specification. John Wiley & Sons Ltd.

Shoham, Y.: 1993, “‘Agent-oriented programming”’. Artificial Intelligence 60(1),
51–92.

Singh, M.: 1997a, “‘Commitment among autonomous agents in information-rich
environments”’. In: M. Boman and W. V. deVelde (eds.): Multi-agent rationality
: 8th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World. pp. 141–155.

Singh, M.: 1997b, “‘Commitment in the architecture of a limited, rational agen-
t”’. In: L. Cavedon, A. Rao, and W.Wobcke (eds.): Intelligent Agent Systems :
Theoretical and Practical Issues: Workshop at PRICAI’96. pp. 72–87.

van der Hoek, W., B. van Linder, and J.-J. Meyer: 1994, “‘A logic of capability”’.
In: A. Nerode and Y. V. Matiyasevich (eds.): Logical Foundation of Computer
Science. pp. 366–378.

van der Torre, L. and Y. Tan: 1997, “‘Prohairetic deontic logic and qualitative
decision theory”’. In: Proceedings of AAAI Spring Symposium on Qualitative
Preferences in Deliberation and Practical Reasoning.

van Linder, B., W. van der Hoek, and J.-J. Meyer: 1994, “‘Tests as epistemic
updates”’. In: A. Cohen (ed.): Proc. of ECAI. pp. 331–335.

van Linder, B., W. van der Hoek, and J.-J. Meyer: 1995a, “‘Actions that make you
change your mind”’. In: I. Wachsmuth, C. Rollinger, and W. Brauer (eds.): Proc.
of KI-95. pp. 185–196.

van Linder, B., W. van der Hoek, and J.-J. Meyer: 1995b, “‘Formalizing motiva-
tional attitudes of agents: On preference, goals and commitments”’. In: M.
Wooldrige, J. Muller, and M. Tambe (eds.): Intelligent Agents II: Agent Theories,
Architectures, and Languages. pp. 17–32.

van Linder, B., W. van der Hoek, and J.-J. Meyer: 1995c, “‘Seeing is believing: and
so are hearing and jumping”’. In: M. Gori and G. Soda (eds.): Proc. of AI*IA-95.
pp. 402–413.

Veltman, F.: 1996, “‘Defaults in update semantics”’. Journal of Philosophical Logic
25, 221–261.

von Wright, G.: 1951, “‘Deontic logic”’. Mind 60, 1–15.
von Wright, G.: 1963, The Logic of Preference. Edinburgh University Press.
Wellman, M. and J. Doyle: 1991, “‘Preferential semantics for goals”’. In: Proceedings

of the 9th National Conference on Artificial Intelligence. pp. 698–703.
Zadeh, L.: 1978, “‘Fuzzy sets as a basis for a theory of possibility”’. Fuzzy Sets and

Systems 1(1), 3–28.

long.tex; 6/10/1999; 10:37; p.27



long.tex; 6/10/1999; 10:37; p.28


