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ABSTRACT. In this paper, we formulate some approaches to belief fusion and revision using epis-
temic logic semantics. Fusion operators considered in this paper are majority merging, ar-
bitration, and general merging. Some modalities corresponding to belief fusion and revision
operators are incorporated into epistemic logics. The Kripke semantics of these extended log-
ics are presented. While most existing approaches treat belief fusion and revision operators as
meta-level constructs, we directly incorporate these operators into our object logic language.
By doing so, we both extend the expressive power of epistemic logic and enhance the techniques
of information fusion.
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1. Introduction

Philosophical analysis of knowledge and belief has stimulated the development of
epistemic logic [HIN 62]. This kind of logic has attracted the attention of researchers
from such diverse fields as artificial intelligence (AI), economics, linguistics, and the-
oretical computer science. AI researchers and computer scientists have developed
some technically sophisticated formalisms and applied them to the analysis of dis-
tributed and multi-agent systems [FAG 96, MEY 95].

Epistemic logic, in relation to AI and computer science, emphasizes the interac-
tion of agents. This results in the development of multi-agent epistemic logic. One
representative example of such logic is proposed by Fagin et al. [FAG 96]. This ap-

1. A preliminary version of this paper appeared in the proceedings of ECSQARU [LIA 03b].
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proach uses the term “knowledge” in a broad sense to cover belief and information.1 A
novel feature of their logic is the consideration of common knowledge and distributed
knowledge among a group of agents. Specifically, distributed knowledge can be de-
duced by pooling everyone’s knowledge. While proper knowledge must be true, the
belief of an agent may be wrong. This may cause conflict when merging beliefs. In
this case, everything can be deduced from the distributed beliefs due to the logical om-
niscience property of epistemic logic, so the merged result will be useless for further
reasoning.

Instead of pooling all beliefs of agents, there are other techniques for knowl-
edge base merging [CHO 94, CHO 97, KON 00, KON 98, KON 99, LIN 94, LIN 96,
LIN 99]. Most of these techniques treat belief fusion operators as meta-level con-
structs. Given a set of knowledge bases, these fusion operators return the merged re-
sults. More precisely, a fusion operator combines a set of knowledge bases T1, T2, · · · ,
Tk into a merged knowledge base T , where each knowledge base is a theory in a log-
ical langauge.

An operator closely related to belief fusion is belief revision. Given a knowledge
base T and a sentence ϕ, a belief revision operator returns the result of revising T
by ϕ. The best known framework for belief revision is the AGM theory proposed
in [ALC 85, GÄR 88]. The belief revision operator is a special kind of belief fusion
operator, in which the new information ϕ has higher priority than the original belief
T [MAY 01].

Some of the above-mentioned works present concrete operators that can be used
directly in the fusion process, while others stipulate the desirable properties of reason-
able belief fusion operators by postulates. Few of the approaches provide the capabil-
ity of multi-agent epistemic reasoning. Consequently, most information fusion logics
can not represent nested beliefs. For example, we may have to express something like
“John knows that Alice and Bob jointly know the key of the system.” However, this
can not be achieved by meta-level information fusion operators. In this paper, we pro-
pose that belief fusion operators can be incorporated into the object language of the
multi-agent epistemic logic. By doing so, we not only extend the expressive power
of information fusion logic, but also circumvent the inconsistency belief problem of
distributed belief operators in epistemic logic.

In next section, we review the multi-agent epistemic logic with distributed knowl-
edge operators from [FAG 96] (with slightly different notations). The semantics of
that logic is the basis of all logics developed in this paper. In Section 3 through 6,
we present epistemic logics for majority merging, arbitration, general merging, and
belief revision. We focus mainly on the semantics of these logics, although an ax-
iomatic system for arbitration is also presented. The semantic models of these logics
are all extensions of Kripke models of multi-agent epistemic logic with distributed

1. More precisely, the logic for belief is called doxastic logic. However, here we use the three
terms knowledge, belief, and information interchangeably, so we use epistemic logic to cover
these three concepts.
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knowledge. We also discuss related work for conditional logic in Section 6. Finally,
in Section 7, we present our conclusions and suggest directions for further research.

2. Preliminaries

LetL denote the multi-agent epistemic logic with distributed knowledge [FAG 96].
The alphabet of L contains the following symbols:

1) a countable set Φ0 = {p, q, r, . . .} of atomic propositions
2) the propositional constants⊥ (falsum or falsity constant) and> (verum or truth

constant)
3) the binary Boolean operator ∨ (or), and unary Boolean operator ¬ (not)
4) a set Ag = {1, 2, . . . , n} of agents
5) the modal operator-forming symbols [ and ]

The set of well-formed formulas (wffs) is defined as the smallest set that contains
Φ0 ∪ {⊥,>} and is closed under Boolean and modal operators:

WFF := p | ⊥ | > | ¬ϕ | ϕ ∨ ψ | [G]ϕ

where p ∈ Φ0, G ⊆ Ag, and ϕ,ψ ∈ WFF . The intuitive meaning of [G]ϕ is “The
group of agents G has distributed belief ϕ”. According to [FAG 96], a group has
distributed belief of ϕ if the belief of ϕ is distributed among its members, so that by
pooling their beliefs, the members of the group can deduce ϕ, even though no member
of the group individually believes ϕ.

Other classical Boolean connectives ∧ (and),⊃ (implication), and≡ (equivalence)
are defined as abbreviations. Also, we write 〈G〉ϕ as an abbreviation of ¬[G]¬ϕ.
When G is a singleton {i}, we write [i]ϕ instead of [{i}]ϕ, so [i]ϕ means that agent i
knows ϕ. Furthermore, the auxiliary symbols “(” and “)” (i.e. left and right parenthe-
ses) are used to avoid ambiguity of wffs.

For the semantics, a possible world model for L is a structure

(W, (Ri)1≤i≤n, V ),

where

– W is a set of possible worlds,
– Ri ⊆W ×W is a serial binary relation 2 over W for 1 ≤ i ≤ n, and
– V : Φ0 → 2W is a truth assignment that maps each atomic proposition to the set

of worlds in which the proposition is true.

From the binary relations Ri’s, a derived relation RG for each nonempty G ⊆ Ag is:

RG = ∩i∈GRi = {(w, u) | ∀i ∈ G, (w, u) ∈ Ri}.

2. A binary relation R is serial if ∀w∃uR(w, u).
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Let R(w) denote the set of possible worlds {u | (w, u) ∈ R} for any binary
relationR. Intuitively,Ri(w) is the set of worlds that agent i considers possible under
w according to his belief, soRG(w) is the set of worlds that are considered possible by
all agents in G. Such intuition is reflected in the definition of the satisfaction relation.
Let M = (W, (Ri)1≤i≤n, V ) be a model and Φ be the set of wffs for L, then the
satisfaction relation |=M⊆W ×Φ is defined by the following inductive rules (we use
the infix notation for the relation and omit the subscript M for brevity):

1) for each p ∈ Φ0, w |= p iff w ∈ V (p),
2) w 6|= ⊥ and w |= >,
3) w |= ¬ϕ iff w 6|= ϕ,
4) w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ,
5) w |= [G]ϕ iff for all u ∈ RG(w), u |= ϕ.

A set of wffs Σ is satisfied in a worldw, written asw |= Σ, ifw |= ϕ for all ϕ ∈ Σ.
We write Σ |=M ϕ if, for each possible world w in M , w |= Σ implies w |= ϕ, and
Σ |=L ϕ if Σ |=M ϕ for each L model M . When Σ = ∅, it can be omitted. We say
that a wff ϕ is valid in M if |=M ϕ and ϕ is valid if |=L ϕ. For brevity, the subscript
is usually omitted.

In this paper, we use the notations of pre-order extensively. Let S be a set, then
a pre-order over S is a reflexive and transitive binary relation ≤ on S. A pre-order
over S is called total (or connected) if for all x, y ∈ S, either x ≤ y or y ≤ x holds.
We will write x < y as the abbreviation of x ≤ y and y 6≤ x. For a subset S′ of S,
min(S′,≤) is defined as the set {x ∈ S′ | ∀y ∈ S′, y 6< x}.

3. Merging by Majority

3.1. Review of basic concepts

Majority voting is used to resolve conflicts between agents. As an example, take
three knowledge bases T1 = {p}, T2 = {p}, and T3 = {¬p}. When combined, the
result obtained is {p} because there are two votes for p, and only one vote against it.
One of the most general majority merging functions is defined in [LIN 96]. A function
Merge is applied to weighted knowledge bases. Let wt : {Ti | 1 ≤ i ≤ k} → <+ be
a weight function that assigns a positive real number 3 to each component knowledge
base. A total pre-order over the set of propositional interpretations is defined as:

w �({T1,T2,··· ,Tk},wt) w
′ iff

k∑
i=1

dist(w, Ti) · wt(Ti) ≤
k∑
i=1

dist(w′, Ti) · wt(Ti),

3. In fact, they allow zero as the weight of a knowledge base. However, we require that a weight
is a strictly positive number.
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where dist is a function denoting the distance between a propositional interpretation
and a knowledge base. When the propositional language is finite, the Dalal distance
(or Hamming distance) between two interpretations of the language is used [DAL 88].
This distance is defined as the number of atoms whose valuations differ between these
two interpretations. Let dist(w,w′) denote the Dalal distance between two interpre-
tations w and w′. Then, the distance from w to a theory T , i.e. dist(w, T ), is defined
as:

dist(w, T ) = min{dist(w,w′) | w′ |= T}.

The merged result Merge(T1, T2, · · · , Tk;wt) is defined as:

{ϕ | ∀w ∈ min(Ω,�), w |= ϕ},

where Ω is the set of all propositional interpretations and � is �({T1,T2,··· ,Tk},wt). In
other words, the models ofMerge(T1, T2, · · · , Tk;wt) are the propositional interpre-
tations that have the shortest weighted total distance to the knowledge bases.

3.2. Epistemic logic for majority merging

The weighted merging operator proposed in [LIN 96] can be incorporated into
epistemic logic in the following way. Syntactically, a new class of modal operators,
[⊕(G,wt)], for any nonempty G ⊆ {1, 2, · · · , n} and any list wt consisting of n
positive real numbers, is added to our logic language. The wff of the majority merging
logic (Lmm) is defined as:

WFF ::= p | ⊥ | > | ¬ϕ | ϕ ∨ ψ | [G]ϕ | [⊕(G,wt)]ϕ

where p ∈ Φ0,G ⊆ Ag, and ϕ,ψ ∈WFF , andwt is a list of n positive real numbers.
We also assume Φ0 is finite for the language of Lmm.

The list wt is used to encode the importance or reliability of agents. If agent i is
considered more important or more reliable than agent j, then the ith element of wt
is greater than its jth element. It is tempting to propagate the weights into a group
of agents, so that we have a weight wt(G) for each group G. This weight may be
useful in the belief fusion of two groups of agents. However, we do not really need
this because if we want to merge the beliefs of two groups G1 and G2, we can simply
merge the beliefs of agents in G1 ∪G2.

Let (W, (Ri)1≤i≤n, V ) be a model for L, then for each w ∈W , define Vw : Φ0 →
{0, 1} and Aw : Ag → 2W as follows:

Vw(p) = 1 ⇔ w ∈ V (p) and Aw(i) = Ri(w),

for each p ∈ Φ0 and i ∈ Ag. A generalized Dalal distance (or Hamming distance)
δ : W ×W → {0, 1, · · · , |Φ0|+ n} is defined as

δ(w, u) = |{p ∈ Φ0 | Vw(p) 6= Vu(p)}|+ |{i ∈ Ag | Aw(i) 6= Au(i)}|,
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for each w, u ∈W . Note that the range of δ is finite.

Semantically, an Lmm model is an L model (W, (Ri)1≤i≤n, V ) satisfying the
following two conditions:

1) (Saturation) For each w ∈ W and p ∈ Φ0, there exists an u ∈ W such that
δ(w, u) = 1 and Vu(p) = 1− Vw(p).

2) (Indiscernibility) For each i ∈ Ag and w, u, u′ ∈ W , if u ∈ Ri(w) and
δ(u, u′) = 0, then u′ ∈ Ri(w).

Note that we can not use the original Dalal distance to measure the distance be-
tween possible worlds, because possible worlds are not merely truth assignments. If
there exist two possible worlds w and w′ such that w ∈ V (p) iff w′ ∈ V (p) for any
p ∈ Φ0 and R(w) 6= R(w′), then the original Dalal distance between w and w′ is
zero. However, it is misleading to consider w and w′ as equivalent worlds since epis-
temic sentences may have different truth values in these two worlds. The generalized
Dalal distance takes the epistemic aspect of possible worlds into account.

The first condition for Lmm models says that for each atomic proposition p and
each possible world w, there exists another world u, such that the only difference
between w and u is their truth assignment to p. Thus, the model is saturated with
possible worlds with different classical truth assignments. The second condition guar-
antees that no agent can discern between worlds with zero distance.

The distance from a possible world u to the belief state of an agent i in the possible
world w is then defined as:

distw(u, i) = min
w′∈W

{δ(u,w′) | (w,w′) ∈ Ri}.

A total pre-order �w(G,wt) over the possible worlds for each possible world w and
modal operator [⊕(G,wt)] is defined as:

u �w(G,wt) u
′ iff

∑
i∈G

distw(u, i) · wt(i) ≤
∑
i∈G

distw(u′, i) · wt(i),

where wt(i) denotes the ith number of the list wt. We can define the satisfaction of
the wff [⊕(G,wt)]ϕ by

w |= [⊕(G,wt)]ϕ iff for all u ∈ min(W,�w(G,wt)), u |= ϕ.

The validity in Lmm is defined as that for L and denoted by |=Lmm
.

The following theorem shows several important validity results in Lmm. For
brevity, we omit the subscript in |=Lmm

.

Theorem 1 For any G ⊆ Ag and any list wt consisting of n positive real numbers,
we have:

1) |= [⊕(G,wt)]ϕ ⊃ [G]ϕ
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2) |= ¬[G]⊥ ⊃ ([G]ϕ ⊃ [⊕(G,wt)]ϕ)
3) |= ¬[⊕(G,wt)]⊥
4) if G′ ⊆ G is a group such that

∑
i∈G′ wt(i) >

∑
i∈G wt(i)/2, then

|= (∧i∈G′ [i]l) ⊃ [⊕(G,wt)]l,

where l is an atomic proposition or its negation (i.e. a literal)

5) if i ∈ G is an agent such that wt(i) >
∑
j∈G−{i} wt(j), then

|= [i]ϕ ⊃ [⊕(G,wt)]ϕ

Proof: Let M be any Lmm model and w be any possible world in M . We prove that
each result is satisfied in w.

1) We show ∩i∈GRi(w) ⊆ min(W,�w(G,wt)). Let u ∈ ∩i∈GRi(w), then
distw(u, i) = 0 for each i ∈ G by definition. Thus, u ∈ min(W,�w(G,wt)) due to∑
i∈G distw(u, i) = 0. The result is then satisfied in w by the definition of satisfac-

tion.
2) We show that ∩i∈GRi(w) 6= ∅ implies min(W,�w(G,wt)) ⊆ ∩i∈GRi(w).

Let u ∈ min(W,�w(G,wt)). Observing the proof of 1), we can find that∑
i∈G distw(u, i) = 0 holds. Since each distw(u, i) is nonnegative, we have

distw(u, i) = 0 for each i ∈ G. This means that for each i ∈ G, there exists
w′ ∈ Ri(w) such that δ(u,w′) = 0. By the indiscernibility condition of the model,
we have u ∈ ∩i∈GRi(w). Again, the result is satisfied in w by the definition of
satisfaction.

3) Because the range of δ is finite, there does not exist any infinitely descending
chain for the ordering �w(G,wt). Consequently, min(W,�w(G,wt)) must be nonempty
and the result holds by the definition of satisfaction.

4) The proof is analogous to that of Theorem 4.1 in [LIN 96]. Assume that the
result is not satisfied, then w |= ∧i∈G′ [i]l and w 6|= [⊕(G,wt)]l hold. The former
implies that for all i ∈ G′ and u ∈ Ri(w), u |= l, whereas the latter implies that
there exists u0 ∈ min(W,�w(G,wt)) such that u0 |= ¬l. By the saturation condition,
there exists another world u′ |= l and δ(u0, u

′) = 1. This implies distw(u′, i) =
distw(u0, i)−1 for all i ∈ G′, and distw(u′, i) ≤ distw(u0, i)+1 for all i ∈ G−G′.
Thus,∑
i∈G

distw(u′, i) · wt(i) ≤
∑
i∈G

distw(u0, i) · wt(i) +
∑

i∈G−G′

wt(i)−
∑
i∈G′

wt(i)

<
∑
i∈G

distw(u0, i) · wt(i).

This contradicts u0 ∈ min(W,�w(G,wt)), so the result must be satisfied. Note that the
last inequality holds due to the assumption about the wt list.



254 Journal of Applied Non-Classical Logics. Volume 14 – n◦ 3/2004

5) We show that the assumption implies min(W,�w(G,wt)) ⊆ Ri(w). Let u ∈
min(W,�w(G,wt)) be a world not in Ri(w) and w′ be a world in Ri(w) such that
distw(u, i) = δ(u,w′). By the indiscernibility condition of the model, δ(u,w′)
is strictly positive. According to the definition of δ and distw, we can prove
distw(w′, j) ≤ distw(u, j) + δ(u,w′) for each j 6= i. Thus,∑

j∈G
distw(w′, j) · wt(j) ≤

∑
j∈G−{i}

(distw(u, j) + δ(u,w′)) · wt(j)

<
∑
i∈G

distw(u, i) · wt(i).

This means w′ ≺w(G,wt) u and contradicts u ∈ min(W,�w(G,wt)). Therefore,
min(W,�w(G,wt)) ⊆ Ri(w) holds and the result follows by the definition of satis-
faction.

The first result shows that majority merging is logically stronger than distributed
belief, and the second shows that they are actually equivalent when the distributed
belief of the merged agents is consistent. The third shows that majority merging can
indeed resolve conflicts between the beliefs of different agents, while the forth shows
that the merged belief reflects the majority view on literals. Note that the forth result
holds only for literals, instead of general formulas. The last result shows that if one
agent has dominating power, his belief will be fully kept in the merged belief. We ex-
pect that these results can serve as the basis of an axiomatic system for Lmm, although
it is still far from being complete.

The next theorem shows that Lmm is a conservative extension of L.

Theorem 2 For each wff ϕ in L, we have |=L ϕ iff |=Lmm ϕ.

Proof: The theorem is based on the following two facts. First, because each Lmm
model is also an L model, |=L ϕ implies |=Lmm

ϕ. Second, we show that if M =
(W, (Ri)1≤i≤n, V ) is an L model and w ∈ W such that w |=M ϕ, then there exists
an Lmm model M ′ such that ϕ is satisfiable in M ′. The construction of M ′ from M
and w is a little complicated, so we divide it into four smaller steps.

1) Unraveling (or unwinding, or unfolding): This is a well-known technique in
modal logic[BLA 01]. By using such a technique, M can be transformed into a tree-
like model4 with the root being w ([BLA 01], proposition 2.15). Therefore, without
loss of generality, we can assume that M is a tree-like model and w is the root of the
tree.

4. In our context, a model (W, (Ri)1≤i≤n, V ) is tree-like if (W,∪i∈AgRi) is a tree in the
graph-theoretic sense, where W is viewed as the set of nodes and ∪i∈AgRi is viewed as the set
of arcs.
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2) Cutting: Let us first define the modal depth of wffs in L as:

a) depth(p) = depth(⊥) = depth(>) = 0 if p is a propositional atom,
b) depth([G]ψ) = depth(ψ) + 1 for any nonempty G ⊆ Ag,
c) depth(¬ψ) = depth(ψ),
d) depth(ψ1 ∨ ψ2) = max(depth(ψ1), depth(ψ2)).

Let depth(ϕ) = m, then we cut off the worlds not reachable from the root w within
m steps. More precisely, let

U = {w′ |6 ∃(w0, w1, · · · , wk) such that k ≤ m,w0 = w,wk = w′,

and ∀0 ≤ j ≤ k − 1, (wj , wj+1) ∈ ∪i∈AgRi}

Let us define the model M0 = (W0, (R0
i )1≤i≤n, V

0), where

- W0 = W − U ,
- R0

i = (Ri ∩ (W0 ×W0)) ∪ {(u, u) |6 ∃u′ ∈W0 such that (u, u′) ∈ Ri},
- and V 0(p) = V (p) ∩W0 for each atom p.

Note that M0 is a tree-like model of depth m except each of its leaf nodes has a self-
loop for each agent i. It can be seen that we still have w |=M0 ϕ.

3) Adding arcs: To make the model satisfy the indiscernibility condition, we have
to add some necessary arcs into the finite depth tree M0. This can be achieved by
scanning the nodes backward from the leaf nodes to the root. It can be seen that the
indiscernibility condition is satisfied for the leaf nodes, which have distance m from
the root. For 1 ≤ k ≤ m, let us define Mk = (W0, (Rk

i )1≤i≤n, V
0), where

Rk
i = Rk−1

i ∪ {(u, u2) | u is a node with distance (m−k) from the root and

∃u1, u2 ∈W0 such that [ δk−1(u1, u2) = 0, (u, u1) ∈ Rk−1
i ,

and (u, u2) 6∈ Rk−1
i ]}

In the definition above, we use δk−1 to denote the generalized Dalal distance in the
modelMk−1. When all necessary arcs are added in this way,Mm is a model satisfying
the indiscernibility condition and we still have w |=Mm

ϕ.
4) Saturating: For each u ∈ W0 and p ∈ Φ0, if there does not exist u′ ∈ W0 such

that δm(u, u′) = 1 and Vu(p) = 1 − Vu′(p), then take a new world u0 and call it the
p-flipping world of u. Now, our model M ′ is defined as (W ′, (R′i)1≤i≤n, V ′), where

W ′ = W0 ∪ {u0 | u0 is the p-flipping world of some u ∈W0 for some p ∈ Φ0}

R′i = Rm
i ∪ {(u0, u

′) | u0 is the p-flipping world of some

u ∈W0 for some p ∈ Φ0 and (u, u′) ∈ Rm
i }

V ′(p) = V0(p) ∪ {u0 | u0 is the p-flipping world of some u 6∈ V0(p)}
Obviously, M ′ satisfies both the saturation and the indiscernibility conditions, so it is
an Lmm model. Furthermore, we have w |=M ′ ϕ. Therefore, our result is proved.
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Let us close this section with an example to show the expressive power of Lmm.

Example 1 Let Ag = {1, 2, · · · , 5}, Σ = {[1][2]p, [1][3]p, [1][4]p, [1][5]¬p}, wt1 =
(0.2, 0.1, 0.2, 0.3, 0.7), and wt2 = (0.2, 0.1, 0.2, 0.4, 0.4), then we have

Σ |=Lmm
[1]([1]p ⊃ [⊕(G,wt1)]p ∧ [1]¬p ⊃ [⊕(G,wt1)]¬p),

and
Σ |=Lmm

[1][⊕(G,wt2)]p.

The first sentence shows that agent 1 believes that his belief is crucially important
to the merged belief, according to the weight distribution wt1. The second sentence
shows that agent 1 believes that his belief does not have any influence on the merged
belief because, whether he believes p or not, the merged belief always contains p,
according to the weight distribution wt2. The reasoning of the importance of an agent
by itself is not possible in the meta-level approach to information fusion.

4. Arbitration

4.1. Review of basic concepts

Distance measure between possible worlds is also used in arbitration, which is
another type of merging operator [LIB 95, REV 93, REV 97]. Arbitration is the pro-
cess of settling a conflict between two or more parties. The arbitration operator be-
tween knowledge bases was first proposed in [REV 93] and then further articulated in
[REV 93, LIB 95, LIB 98]. Here, we are interested in the semantic characterization
of arbitration given in [LIB 95, LIB 98]. A knowledge base in [LIB 95, LIB 98] is
identified with a set of propositional interpretations. The semantic characterization
for this kind of arbitration is given by assigning to each subset of models A a binary
relation ≤A over the set of model sets satisfying the five conditions in Figure 1 (the
subscript is omitted when it means all binary relations of the form ≤A)

1) transitivity: if A ≤ B and B ≤ C then A ≤ C

2) if A ⊆ B then B ≤ A

3) A ≤ A ∪B or B ≤ A ∪B
4) B ≤A C for every C iff A ∩B 6= ∅

5) A ≤C∪D B ⇔
{
C ≤A∪B D and A ≤C B or
D ≤A∪B C and A ≤D B

Figure 1. Conditions for ≤A
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To understand these conditions, let us imagine a pseudo-distance measure µ : W×
W → <+ ∪ {0}, which satisfies at least the following two properties for any w, u ∈
W : (i) µ(w, u) = 0 iff w = u and (ii) µ(w, u) = µ(u,w). The measure µ is extended
to the domain 2W × 2W as µ(S, T ) = infw∈S,u∈T µ(w, u) for any S, T ⊆ W . Note
that we have µ(S, T1∪T2) = min(µ(S, T1), µ(S, T2)) by this definition. The ordering
A ≤C B can be defined as

A ≤C B ⇔ µ(A,C) ≤ µ(B,C). (1)

Then, the five conditions are fairly obvious properties of this definition.

The arbitration between two sets of models A and B is defined as

A4B = min(A,≤B) ∪min(B,≤A) (2)

Note that although the relation ≤A is defined between sets of models, only singleton
comparison is used in the definition of arbitration. By slightly abusing the notation,
≤A may also denote an ordering between models.

4.2. Epistemic logic for arbitration

To incorporate the arbitration operator of [LIB 95, LIB 98] into epistemic logic,
first note that according to (2), arbitration is commutative, but not necessarily associa-
tive. Thus, the arbitration operator should be a binary operator between two agents.
We can add a class of modal operators for arbitration into our logic just as in the case
of majority merging. However, to be more expressive, we will also consider the inter-
action between arbitration and other epistemic operators. We therefore define the set
of arbitration expressions(AE) over Ag recursively as the smallest set containing Ag
and closed under the binary operators +, ·, and 4:

AE ::= i | a+ b | a · b | a4b

where i ∈ Ag and a, b ∈ AE.

Here, + and · correspond respectively to the distributed belief and the “everybody
knows” operators in multi-agent epistemic logic [FAG 96]. The wff for arbitration
logic (Lar) is defined as:

WFF ::= p | ⊥ | > | ¬ϕ | ϕ ∨ ψ | [a]ϕ

where p ∈ Φ0, a ∈ AE, and ϕ,ψ ∈ WFF . We no longer need the operator [G]
because it is a special case of operators [a]. In other words, we can take [i1 + i2 +
· · ·+ ik] as [G] where G = {i1, i2, · · · , ik}. For example, [1 + 2 + 3]ϕ means that ϕ
can be deduced if the beliefs of agents 1, 2, and 3 are pooled, even though none of the
three agents individually believes ϕ, and [2 · 5]ϕ means that both agent 2 and agent
5 believe ϕ, whereas [143]ϕ means that the arbitration of the beliefs of agent 1 and
agents 3 can deduce ϕ.
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For semantics, an Lar model is

(W, (Ri)1≤i≤n, V,≤)

where

– (W, (Ri)1≤i≤n, V ) is an L model,
– ≤ is a function that assigns a binary relation ≤A⊆ 2W × 2W satisfying the five

conditions in Figure 1 to each subset of possible worlds A ⊆W .

Note that the first two conditions in Figure 1 imply that ≤A is a pre-order over 2W .
For each arbitration expression, we can define the binary relations Ra+b,Ra·b and
Ra4b over W recursively as:

Ra+b = Ra ∩Rb (3)

Ra·b = Ra ∪Rb (4)

Ra4b(w) = min(Ra(w),≤Rb(w)) ∪min(Rb(w),≤Ra(w)) (5)

The satisfaction for wff [a]ϕ is:

u |= [a]ϕ iff for all w ∈ Ra(u), w |= ϕ.

4.3. An axiomatic system for Lar

Since a set of possible worlds W may be infinite in our logic, the minimal models
in (5) may not exist. We define coherent models as those satisfying the limit assump-
tion [ARL 92] for each binary relation ≤A such that A ⊆W :

for any nonempty U ⊆W , min(U,≤A) is nonempty.

An axiomatic system for valid inference in coherent models is presented in Fig-
ure 2, where a, b, and c are meta-variables for arbitration expressions, i is meta-
variable for agents, and ϕ and ψ are meta-variables for wffs. Axioms (a) through
(e) are basic axioms of epistemic logic. Axioms (f) through (k) correspond to the pos-
tulates 2 through 4, and 6 through 8 of [LIB 95]. Postulate 5 of [LIB 95] corresponds
to the following derived theorem:

[a4b]⊥ ⊃ [a]⊥ ∧ [b]⊥,

which can be derived by using axioms (a), (d) and (k).

The derivability in the axiomatic system is defined as follows. A wff ϕ is derivable
from Lar (or simply ϕ is a theorem of Lar), if there is a finite sequence ϕ1, . . . , ϕm
such that ϕ = ϕm and every ϕi is an instance of an axiom schema, or is obtained from
earlier ϕj’s by the application of an inference rule. We write `Lar

ϕ if ϕ is a theorem
of Lar. Let Σ ∪ {ϕ} be a subset of wffs, then ϕ is derivable from Σ in the system



Belief Fusion and Revision 259

1) Axioms:

a) P: all tautologies of the propositional calculus
b) ([a]ϕ ∧ [a](ϕ ⊃ ψ)) ⊃ [a]ψ
c) ¬[{i}]⊥
d) [a]ϕ ∨ [b]ϕ ⊃ [a+ b]ϕ
e) [a · b]ϕ ≡ ([a]ϕ ∧ [b]ϕ)
f) [a4b]ϕ ≡ [b4a]ϕ
g) [a4b]ϕ ⊃ [a+ b]ϕ
h) ¬[a+ b]⊥ ⊃ ([a+ b]ϕ ⊃ [a4b]ϕ)
i) ([a4(b · c)]ϕ ≡ [a4b]ϕ) ∨ ([a4(b · c)]ϕ ≡ [a4c]ϕ)
∨([a4(b · c)]ϕ ≡ [(a4b) · (a4c)]ϕ)

j) [a]ϕ ∧ [b]ϕ ⊃ [a4b]ϕ
k) ¬[a]⊥ ⊃ ¬[a+ (a4b)]⊥

2) Rules of Inference:

a) Modus ponens(MP):

ϕ ϕ ⊃ ψ
ψ

b) Necessitation(Nec):
ϕ

[a]ϕ

Figure 2. An axiomatic system for the logic of arbitration

Lar, written as Σ `Lar ϕ, if there is a finite subset Σ′ of Σ such that `Lar

∧
Σ′ ⊃ ϕ.

Theorem 3 shows the soundness of the axiomatic system, though, as yet, it is unclear
whether the system is complete.

Theorem 3 For any wff ϕ, `Lar
ϕ implies |=Lar

ϕ, where |=Lar
ϕ denotes that ϕ is

valid in all coherent Lar models.

Proof: The validity of axioms (a) through (e) is easily proven from the semantics of
L. Also, it is easy to show that the inference rules are validity-preserving. The proof
of the validity of axioms (f) through (k) is essentially the same as that for theorem
5 of [LIB 98]. Note that the limit assumption for coherent models is needed for the
validity of axiom (k).
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Recalling that we can abbreviate [i1+i2+· · ·+ik] as [G] whereG = {i1, i2, · · · , ik},
each L wff is also an Lar wff. The next theorem shows that Lar is a conservative ex-
tension of L.

Theorem 4 For each L wff ϕ, |=L ϕ iff |=Lar
ϕ.

Proof: To prove this theorem, we only need to show the following two facts:

1) If M = (W, (Ri)1≤i≤n, V,≤) is a coherent Lar model, then M ′ =
(W, (Ri)1≤i≤n, V ) is an L model such that for all w ∈ W and L wff ϕ, we have
w |=M ϕ iff w |=M ′ ϕ.

2) If M = (W, (Ri)1≤i≤n, V ) is an L model, then there exist ≤ such that M ′ =
(W, (Ri)1≤i≤n, V,≤) is a coherent Lar model, and for all w ∈ W and L wff ϕ, we
have w |=M ϕ iff w |=M ′ ϕ. To prove this, let ≤ be defined as 5:

A ≤C B ⇔ A ∩ C 6= ∅ ∨B ∩ C = ∅.

It is then easily verified that ≤ satisfies the conditions given in Figure 1. Furthermore,
for any nonempty U ⊆W ,

min(U,≤A) =
{
U ∩A if U ∩A 6= ∅
U otherwise

according to the definition. Therefore, M ′ satisfies the limit assumption.

The next example shows some valid inference in ar.

Example 2 This example is related to the notion of trust[LIA 03a]. One consequence
of agent 1 trusting agent 2 is that the former believes in the judgement of the latter. In
epistemic logic, this is written as [1]([2]ϕ ⊃ ϕ). Now, let

Σ = {[1]([3](ϕ ∧ ψ) ⊃ (ϕ ∧ ψ)), [2]([3](ϕ ∧ ψ) ⊃ (ϕ ∧ ¬ψ))}.

This means that agent 1 fully trusts agent 3 for his judgement on ϕ ∧ ψ, whereas
agent 2 only partially trusts agent 3 for his judgement on the same thing. Therefore,
if both agent 1 and 2 receive information ϕ and ψ from agent 3, then due to different
judgements on the reliability of information source 3, their beliefs are in conflict. By
using arbitration, we can extract their common beliefs, i.e. ϕ. Formally, we have

Σ |=Lar
([1][3]ϕ ∧ [1][3]ψ ∧ [2][3]ϕ ∧ [2][3]ψ) ⊃ [142]ϕ.

5. Alternatively, we can define µ : W ×W → {0, 1} as µ(x, y) = 0 iff x = y and then define
≤ by equation 1.
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5. General Merging

5.1. Review of basic concepts

In [KON 98], an axiomatic framework unifying the majority merging and arbitra-
tion operators is presented. A set of postulates common to majority and arbitration
operators is proposed to characterize the general merging operators, and additional
postulates for differentiating them are considered. In [KON 98], a knowledge base is
also a finite set of propositional sentences. The general merging operator is defined
as a mapping from a multi-set 6 of knowledge bases (called a knowledge set) to a
knowledge base. Therefore, the arbitration operator defined using this approach can
merge more than two knowledge bases, whereas the definition of the arbitration oper-
ator in [LIB 95, LIB 98] can only merge two knowledge bases. The merging operator
is denoted by 4. For each knowledge set E, 4(E) is a knowledge base. A semantic
characterization based on syncretic assignment is given for the merging operators. A
syncretic assignment maps each knowledge set E to a pre-order ≤E over interpreta-
tions such that conditions reflecting the postulated properties of the merging operators
must be satisfied. Then 4(E) is the knowledge base whose models are the minimal
interpretations according to ≤E .

This framework is further extended to deal with integrity constraints in [KON 99].
LetE be a knowledge set and ϕ be a propositional sentence denoting the integrity con-
straints. The merging of knowledge bases in E with integrity constraint ϕ, 4ϕ(E),
is a knowledge base that implies ϕ. The models of 4ϕ(E) are characterized by
min(Mod(ϕ),≤E). 4ϕ(E) is called an IC merging operator. According to the se-
mantics, it is obvious that 4(E) is a special case of IC merging operator 4>(E).
When E contains exactly one knowledge base, the operator is reduced to the AGM re-
vision operator proposed in [ALC 85]. Therefore, IC merging is able to cover majority
merging, arbitration, and the AGM revision operator.

5.2. Epistemic logic for general merging

The wff of IC merging logic(Lic) is defined as:

WFF ::= p | ⊥ | > | ¬ϕ | ϕ ∨ ψ | 2ϕ | [G]ϕ | [4ϕ(G)]ψ

where p ∈ Φ0, G ⊆ Ag, and ϕ,ψ ∈ WFF . Note that in addition to the distributed
belief operator and the fusion operator, we also add the alethic modal operator 2,
which will be useful in the statement of some valid properties of the logic. As usual,
we write ¬2¬ϕ as �ϕ.

6. A multi-set, also called a bag, is a collection of elements over a domain which allows multiple
occurrences of elements.
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We call a subset of possible worlds a belief state. Let U = {U1, U2, . . . , Uk}
denote a multi-set of belief states, then

⋂
U = U1 ∩ · · · ∩ Uk. An Lic model is a

quadruple
(W, (Ri)1≤i≤n, V,≤)

where

– (W, (Ri)1≤i≤n, V ) is an L model,
– ≤ is an assignment mapping each multi-set of belief states U to a total pre-order

≤U over W satisfying the following conditions:

1) If w,w′ ∈
⋂
U , then w ≤U w′,

2) If w ∈
⋂
U and w′ 6∈

⋂
U then w <U w

′,
3) For any w ∈ U1, there exists w′ ∈ U2, such that w′ ≤{U1,U2} w, where U1

and U2 are two belief states,
4) If w ≤U1 w

′ and w ≤U2 w
′, then w ≤U1tU2 w

′, where t denotes the union
of two multi-sets,

5) If w <U1 w
′ and w ≤U2 w

′, then w <U1tU2 w
′.

These conditions are model-theoretic counterparts of those for syncretic assignments
in [KON 98, KON 99]. Condition 1 states that possible worlds appearing in the belief
states of all agents are equally plausible. Condition 2 states that a possible worlds that
appears in the belief states of all agents is more plausible than those that don’t. Con-
dition 3 requires that all agents are treated fairly. Therefore, even if agent 1 considers
w possible, it is not more plausible than all other worlds in the belief state of agent 2.
Conditions 4 and 5 require that if two groups of agents agree on the ordering of w and
w′, then the united group of these two groups does not reverse the ordering.

For a group of agents G and a possible world u, let us define a total pre-order ≤uG
over W as:

w ≤uG w′ iff w ≤{Ri(u)|i∈G} w
′.

The truth condition of [4ϕ(G)]ψ is defined as that for conditional logic [BOU 94b,
BOU 94a]. Formally, u |= [4ϕ(G)]ψ iff

(i) there are no possible worlds in W satisfying ϕ, or

(ii) there exists w0 ∈W such that w0 |= ϕ and for any w ≤uG w0, w |= ϕ ⊃ ψ.

Furthermore, the satisfaction of the alethic modal formula 2ϕ is defined as: u |= 2ϕ
iff for all w ∈W , w |= ϕ.

Note that in IC merging, a knowledge set consists of a multi-set of objective sen-
tences, whereas for the modal operator [4ϕ(G)], G is a set of agents whose beliefs
may contain any epistemic sentences. Also, an integrity constraint in [KON 99] must
be an objective sentence, whereas ϕ may be arbitrary complex wffs of our extended
language. Furthermore, instead of selecting minimal models of ϕ, since the set of
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possible worlds may be infinite in our case, we adopt the system-of-spheres semantics
as described in [BOU 94b, BOU 94a] for the fusion operator [4ϕ(G)].

The next theorem shows several important valid wffs in Lic.

Theorem 5
1) |= [4ϕ(G)]ϕ
2) |= �ϕ ⊃ ¬[4ϕ(G)]⊥
3) |= ¬[G]¬ϕ ⊃ ([G](ϕ ⊃ ψ) ≡ [4ϕ(G)]ψ)
4) |= 2(ϕ1 ≡ ϕ2) ⊃ ([4ϕ1(G)]ψ ≡ [4ϕ2(G)]ψ)
5) |= [4ϕ1∧ϕ2(G)]ψ ⊃ [4ϕ1(G)](ϕ2 ⊃ ψ)
6) |= ¬[4ϕ1(G)]¬ϕ2 ⊃ ([4ϕ1(G)]ψ ⊃ [4ϕ1∧ϕ2(G)]ψ)

Proof: We only prove 3) and the remaining ones can be proven analogously. Let
M = (W, (Ri)1≤i≤n, V,≤) be an Lic model and w ∈ W . Assume w |= ¬[G]¬ϕ
holds, then there exists u0 ∈ ∩i∈GRi(w) such that u0 |= ϕ holds. First, by conditions
1) and 2) for Lic models, we have u ≤wG u0 iff u ∈ ∩i∈GRi(w) for any u ∈ W .
Thus, if w |= [G](ϕ ⊃ ψ) holds, then for any u ≤wG u0, u |= ϕ ⊃ ψ. Therefore,
w |= [4ϕ(G)]ψ. Second, if w |= [4ϕ(G)]ψ holds, then there exists w0 |= ϕ such
that for any u ≤wG w0, u |= (ϕ ⊃ ψ). Again, by conditions 1) and 2) for Lic models,
we have u ≤wG w0 for any u ∈ ∩i∈GRi(w). Therefore, w |= [G](ϕ ⊃ ψ) holds.

Note that the set of L wffs is a subset of Lic wffs. The next theorem shows that
Lic is a conservative extension of L.

Theorem 6 For each L wff ϕ, |=L ϕ iff |=Lic
ϕ.

Proof: To prove this theorem, we only need to show the following two facts:

1) If M = (W, (Ri)1≤i≤n, V,≤) is an Lic model, then M ′ = (W, (Ri)1≤i≤n, V )
is an L model such that for all w ∈W and L wff ϕ, we have w |=M ϕ iff w |=M ′ ϕ.

2) If M = (W, (Ri)1≤i≤n, V ) is an L model, then there exist ≤ such that M ′ =
(W, (Ri)1≤i≤n, V,≤) is an Lic model, and for all w ∈ W and L wff ϕ, we have
w |=M ϕ iff w |=M ′ ϕ. To prove this, let ≤ be defined as:

w ≤U w′ ⇔ |{U ∈ U | w ∈ U}| ≥ |{U ∈ U | w′ ∈ U}|.

It is then easily verified that ≤ indeed satisfies the conditions for Lic models.

The next example is a realistic scenario to show the expressive power of Lic.

Example 3 Let us consider the following scenario. There are two managers (agents
1 and 2) in a company. Agent 1 receives reports from three assistants (agents 3,4 and
5), whereas agent 2 is responsible for collecting external information from sources 6
and 7. Agent 1 forms his belief by merging the beliefs of his assistants, but agent 2
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only believes the information that both agents 6 and 7 believe. These constraints are
written as two schemata:

S1(ϕ) = [4>({3, 4, 5})]ϕ ⊃ [1]ϕ

and
S2(ϕ) = [2]ϕ ⊃ ([6]ϕ ∧ [7]ϕ).

Note that S1(ϕ) and S2(ϕ) are schemata, so any instance of them should be respected.
Now, assume these two managers have to meet to make a decision about if ψ holds,
and the decision problem depends on a finite number of issues p1, p2, · · · , pk. Let
ϕ denote ∧1≤i≤k(S1(pi) ∧ S2(pi)), then the decision problem of the managers is to
test if Σ |= [4ϕ({1, 2})]ψ holds, where Σ contains the beliefs from the assistants
and the external sources. Note that the problem is not expressible by the original IC
merging operator because the integrity constraints contain sentences that express the
inter-relationship among the beliefs of the different agents.

6. Belief Change and Conditional Logic

6.1. Review of basic concepts

Unlike belief fusion, where the component knowledge bases are equally important,
belief change is an asymmetric operator, where new information always outweighs
old. The two main belief change operators are belief revision and update. They are
characterized by different postulates [ALC 85, KAT 91a, KAT 91b]. In [KAT 91a], a
uniform model-theoretic framework is provided for the semantic characterization of
the revision and update operators. In that context, a knowledge base is a finite set
of propositional sentences, so it can also be represented by a single sentence (i.e. the
conjunction of all sentences in the knowledge base).

For a revision operator, it is assumed that there is a total pre-order ≤ψ over the
propositional interpretations for each knowledge base ψ. The revision operators sat-
isfying the AGM postulates in [ALC 85] select the minimal models of ϕ with respect
to the ordering ≤ψ . More precisely, let ψ be a knowledge base and ϕ denote the new
information. The result of revising ψ by ϕ, denoted by ψ ◦ ϕ, will have the set of
models

Mod(ψ ◦ ϕ) = min(Mod(ϕ),≤ψ).

For an update operator, assume that, for each propositional interpretation w, there
exists a partial pre-order ≤w over the interpretations for closeness to w. Update op-
erators select for each model w in Mod(ψ) the set of models from Mod(ϕ) that are
closest to w. The updated theory is characterized by the union of all such models.
That is,

Mod(ψ � ϕ) =
⋃

w∈Mod(ψ)

min(Mod(ϕ),≤w),
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where ψ � ϕ is the result of updating the knowledge base ψ by ϕ.

Both belief revision and update may occur in the observation of new information
ϕ. For belief revision, it is assumed that the world is static, so if new information is
incompatible with the agent’s original beliefs, the agent may have an incorrect belief
about the world. The agent will try to accommodate the new information by min-
imally changing his original beliefs. However, for belief update, it is assumed that
the world is dynamic, so the agent’s belief may become outdated, though it may have
been correct for the original world. The agent will assume that possible worlds are
those resulting from the minimal change of the original world. In [BOU 95], a gener-
alized update model is proposed which combines aspects of both revision and update.
It shows that a belief update model is inadequate without modelling the dynamic as-
pect (i.e. the events causing the update) simultaneously. Since modelling the dynamic
change of external worlds is beyond the scope of this paper, we will not model belief
update in our logic. Therefore, we will only focus on the belief revision operator.

6.2. Epistemic logic for belief revision

Let us now consider the possibility of incorporating the belief revision operator
into epistemic logic. In addition to the original definition of revising a knowledge
baseψ with new informationϕ, there is an alternative reading for the revision operator.
That is, we can consider ◦ as a prioritized belief fusion operator that gives priority to
its second argument [MAY 01]. In knowledge base revision, these two interpretations
are essentially equivalent. However, from the perspective of our logic in multi-agents
systems, they may be quite different. Roughly speaking, i ◦ ϕ denotes the result of
revising the beliefs of agent i with new information ϕ, whereas i ◦ j is the result of
merging the beliefs of agents i and j by giving priority to j. Therefore, in the logic
of revision (Lrv), we define the set of revision expressions (RE) and the set of wffs in
the following way:

RE ::= i | r ◦ i | r ◦ ϕ
where i ∈ Ag is an agent symbol and ϕ is any wff in L, and

WFF ::= p | ⊥ | > | ¬ϕ | ϕ ∨ ψ | 2ϕ | [G]ϕ | [r]ϕ

where i ∈ Ag, p ∈ Φ0, G ⊆ Ag, r ∈ RE, and ϕ,ψ ∈WFF .

Note that a revision expression allows us to represent a revision sequence, which
is directly related to iterated revision in [BOU 93, DAR 97]. Furthermore, since an
agent index i is also a revision expression, the wff [i]ϕ has a different meaning than
[{i}]ϕ. It appears that [{i}]ϕ can no longer be abbreviated as [i]ϕ. However, it turns
out that our semantics makes [{i}]ϕ and [i]ϕ equivalent.

To interpret the modal operator in our semantic framework, we define an Lrv
model as

(W, (Ri)1≤i≤n, V,≤)

where



266 Journal of Applied Non-Classical Logics. Volume 14 – n◦ 3/2004

– (W, (Ri)1≤i≤n, V ) is an L model,
– ≤ is an assignment mapping each belief state (i.e. subset of possible worlds) U

to a total pre-order ≤U over W such that

- if w,w′ ∈ U , then w ≤U w′, and
- if w ∈ U and w′ 6∈ U , then w <U w′.

Let S = (U1, U2, · · · , Uk) denote a sequence of belief states, then S · U denotes
the sequence (U1, U2, · · · , Uk, U). The assignment ≤ is extended to sequences of
belief states in the following way:

1) ≤(U)=≤U
2) w <S·U w′ if w ∈ U and w′ 6∈ U ,
3) w ≤S·U w′ iff w ≤S w′, when both w,w′ ∈ U or both w,w′ 6∈ U .

For each wff ϕ, let the truth set of ϕ, denoted by |ϕ|, be defined as {w ∈W | w |= ϕ}.
For each possible world u, define a function τu mapping any revision expression r into
a sequence of belief states τu(r) as follows:

1) τu(i) = (Ri(u)),
2) τu(r ◦ i) = τu(r) · Ri(u),
3) τu(r ◦ ϕ) = τu(r) · |ϕ|.

The satisfaction condition for the wff [r]ϕ is

u |= [r]ϕ iff there exists w0 ∈W such that for any w ≤τu(r) w0, w |= ϕ.

According to the semantics, the satisfaction of [i]ϕ is u |= [i]ϕ iff there existsw0 ∈W
such that for any w ≤Ri(u) w0, w |= ϕ. This is equivalent to the original ∀w ∈
Ri(u), w |= ϕ by the definition of ≤Ri(u). Furthermore, [i ◦ ϕ]ψ is semantically
equivalent to [4ϕ({i})]ψ described in Section 5.

The next theorem shows important valid wffs in Lrv .

Theorem 7
1) |= ¬[r]⊥
2) |= �ϕ ⊃ [r ◦ ϕ]ϕ
3) |= [r](ϕ ⊃ ψ) ⊃ ([r]ϕ ⊃ [r]ψ)
4) |= [r ◦ >]ϕ ≡ [r]ϕ
5) |= [r ◦ ⊥]ϕ ≡ [r]ϕ
6) |= 2(ϕ1 ≡ ϕ2) ⊃ ([r ◦ ϕ1]ψ ≡ [r ◦ ϕ2]ψ)
7) |= [r ◦ (ϕ ∧ ψ1)]ψ2 ⊃ [r ◦ ϕ](ψ1 ⊃ ψ2)
8) |= (�ϕ ∧ ¬[r ◦ ϕ]¬ψ1) ⊃ ([r ◦ ϕ](ψ1 ⊃ ψ2) ⊃ [r ◦ (ϕ ∧ ψ1)]ψ2)
9) |= ¬[{i, j}]⊥ ⊃ ([i ◦ j]ϕ ≡ [{i, j}]ϕ)

10) |= [i]ϕ ⊃ [r ◦ i]ϕ
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Proof: Let M = (W, (Ri)1≤i≤n, V,≤) be any Lrv model and u be any world in W .
We show that all these wffs are satisfied in u.

1) and 2): Follow from the definition of the satisfaction condition immediately.

3): Holds because ≤S is a total pre-order for any sequence of belief states S.

4) and 5): Hold because ≤τu(r◦>) and ≤τu(r◦⊥) are both equal to ≤τu(r).

6): If u |= 2(ϕ1 ≡ ϕ2), then we have |ϕ1| = |ϕ2| and τu(r ◦ ϕ1) = τu(r ◦ ϕ2).
Therefore, the result follows immediately.

7): If u |= [r ◦ (ϕ ∧ ψ1)]ψ2, then there exists w0 ∈W such that

∀w ≤τu(r◦(ϕ∧ψ1)) w0, w |= ψ2. (6)

There are two cases:

Case 1: If |ϕ ∧ ψ1| 6= ∅, then without loss of generality, we can assume w0 |=
ϕ ∧ ψ1 (otherwise, we can find another w′0 ≤τu(r◦(ϕ∧ψ1)) w0 satisfying
the condition). From (6), this implies

∀w ≤τu(r) w0, w |= ϕ ∧ ψ1 ⇒ w |= ψ2. (7)

Let us now consider any w ≤τu(r◦ϕ) w0. By the assumption for this
case, we have w |= ϕ and w ≤τu(r) w0. If w |= ¬ψ1 holds, then we
have w |= ψ1 ⊃ ψ2. If w |= ψ1 holds, then we have w |= ψ2 by (7).
Therefore, for any w ≤τu(r◦ϕ) w0, we have w |= ψ1 ⊃ ψ2. This means
u |= [r ◦ ϕ](ψ1 ⊃ ψ2).

Case 2: If |ϕ∧ψ1| = ∅, then we have two subcases. If |ϕ| = ∅, then the result
follows from 3), 5) and 6). If |ϕ| 6= ∅, then let us take a u0 |= ϕ. For any
w ≤τu(r◦ϕ) u0, we have w |= ϕ, so w |= ¬ψ1 and w |= ψ1 ⊃ ψ2 hold.
This means u |= [r ◦ ϕ](ψ1 ⊃ ψ2).

8): The proof is analogous to that of 7) and is omitted.

9): Follows from the fact that min(W,≤τu(i◦j)) = Ri(u) ∩ Rj(u) if Ri(u) ∩
Rj(u) 6= ∅.

10): Due to the seriality assumption, Ri(u) is nonempty. Let us take a w0 ∈ Ri(u),
then for any w ≤τu(r◦i) w0, we have w ∈ Ri(u). Therefore, u |= [i]ϕ implies
u |= [r ◦ i]ϕ.

As in the cases of Lar and Lic, we also have the following theorem.

Theorem 8 For each L wff ϕ, |=L ϕ iff |=Lrv
ϕ.



268 Journal of Applied Non-Classical Logics. Volume 14 – n◦ 3/2004

Proof: To prove this theorem, it is sufficient to show the following two facts:

1) IfM = (W, (Ri)1≤i≤n, V,≤) is anLrv model, thenM ′ = (W, (Ri)1≤i≤n, V )
is an L model such that for all w ∈W and L wff ϕ, we have w |=M ϕ iff w |=M ′ ϕ.

2) If M = (W, (Ri)1≤i≤n, V ) is an L model, then there exists ≤ such that M ′ =
(W, (Ri)1≤i≤n, V,≤) is an Lrv model and for all w ∈ W and L wff ϕ, we have
w |=M ϕ iff w |=M ′ ϕ. To prove this, let ≤ be defined as

w ≤U w′ ⇔ w ∈ U ∨ w′ 6∈ U,

for any U ⊆W . It is then easy to verify that ≤U is indeed a total pre-order satisfying
the required conditions.

Example 4 Let us use a simple scenario to illustrate the expressive power of Lrv .
Assume a decision maker bases his decision on information from three agents (1,2
and 3). The most reliable information provider is agent 1, the least reliable one is
agent 3, and the reliability of agent 2 lies somewhere between that of agents 1 and
2. As in the case of Example 3, these information providers may obtain information
from other sources, so their beliefs have to satisfy some constraint ϕ. Note that ϕ
may contain epistemic sentences, as well as objective sentences, as in the case of
Example 3. So, to make a decision, the decision maker has to test the validity of

Σ |=Lrv
[3 ◦ 2 ◦ 1 ◦ ϕ]ψ

where Σ contains source beliefs and ψ is the decision problem of the decision maker.

6.3. Related work in conditional logic

There have been various attempts to formalize the belief change process through
modal logic, or conditional logic systems [BOU 91, BOU 92a, BOU 92b, BOU 93,
FRI 94, RYA 96, SEG 95]. In [BOU 92a], a modal logic CO∗ is proposed for mod-
elling the belief revision. CO∗ is an extension of the logic CO proposed in [BOU 91].
In CO∗, revision of a theory by a sentence is represented using a conditional con-
nective. The connective is not primitive, but rather defined using two unary modal
operators 2 and

←
2 7. These modal operators are interpreted with respect to a total pre-

order R over the possible worlds, which is assumed to rely on a background theory
K. Thus, w |= 2ϕ iff ϕ is true in all possible worlds that are as plausible as w given
the theory K, and w |=←2 ϕ iff ϕ is true in all possible worlds that are less plausible
than w given K. By defining

↔
2 ϕ as 2ϕ∧ ←2 ϕ and

↔
3 ϕ as ¬ ↔2 ¬ϕ, the conditional

ϕ
KB→ ψ is defined as

↔
2 ¬ϕ∨ ↔3 (ϕ ∧2(ϕ ⊃ ψ)),

7. The same symbol 2 is also used in Lic and Lrv with different semantics.



Belief Fusion and Revision 269

where KB is a finite representation of the theory K. Since there is only one global
ordering R in a CO∗ model, the logic is appropriate only for the revision of a single
theory K. On the other hand, our logic allows the revisions of many agents’ belief
states. Furthermore, since the ordering R in a CO∗ model is global, ϕ KB→ ψ is true in
a world iff it is true in all worlds, thus no iterated revisions are allowed in the model.
In [BOU 93], this restriction is lifted by allowing the revision of the ordering R to R′

simultaneously. The idea is to move the most plausible ϕ-models with respect to R
to the most plausible level of R′ and keep the rest of R unchanged. Our assignment
of a total pre-order to a sequence of belief states is based on the same idea. However,
while the definition of [BOU 93] presumes the existence of minimal models for any
propositional formulas, we do not need this assumption.

In [FRI 94], a logic with conditional and epistemic operators is used in belief revi-
sion. Conditional and epistemic sentences are interpreted in an abstract belief change
system (BCS). The two basic components of a BCS are a set of belief states and a
belief change function. The latter maps each belief state and sentence of some base
language into a new belief state. In a more concrete preferential interpretation, each
belief state s is interpreted as a subset of possible world K(s), and a pre-order �s
over the possible worlds is associated with s. In this regard, �s corresponds to ≤K(s)

in our semantic models and the conditional wff ϕ > ψ in the logic L> of [FRI 94] is
roughly equivalent to our wff [i ◦ ϕ]ψ for a fixed agent i. However, since in L>, the
antecedent ϕ of a conditional is restricted to a wff in the base language L, it does not
allow epistemic wffs of the form Bϕ. It is argued that the antecedent must be observ-
able whereas conditional wffs are unobservable, so we should not allow conditional
wffs in the antecedent. However, in multi-agent systems, one agent may learn the be-
liefs of other agents through communication, so we should not exclude this flexibility.
Another significant difference between BCS and our logic is that BCS only allows
revision of a belief state by a sentence, while in our system the prioritized fusion of
two belief states held by two agents is incorporated.

A dynamic doxastic logic for belief revision is proposed in [SEG 95] and further
developed in [SEG 01]. By using the notations of [SEG 95], the doxastic operator
B and two kinds of dynamic modal operators [+ϕ] and [−ϕ] for propositional wff
ϕ are taken as the basic constructs of the language. The operators [+ϕ] and [−ϕ]
correspond to the expansion and contraction operators of AGM theory respectively.
Thus, the revision operator [◦ϕ] is defined as [−(¬ϕ)][+ϕ] according to Levi’s identity
[ALC 85]. The wffs of the language are interpreted with respect to a hypertheory. A
hypertheory H is a set of subsets of possible worlds linearly ordered by inclusion,
and is similar to the widening ranked model defined in [LEH 95]. However, the latter
assumes that the subsets of models are indexed by natural numbers. A hypertheory is
said to be replete ifW (i.e. the set of all possible worlds) is inH . From the hypertheory
H , a pre-order ≤H over W can be defined as:

w′ ≤H w ↔ ∀U ∈ H ∧ w ∈ U∃U ′ ∈ H,U ′ ⊆ U ∧ w′ ∈ U ′.
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When H is replete, the ordering ≤H is total. When the wffs [+ϕ]ψ and [−ϕ]ψ
are evaluated with respect to a hypertheory H , it causes evaluation of ψ in some
revised hypertheory H ′. The semantics are essentially equivalent to that proposed
in [BOU 93], although the revisions of the corresponding pre-order are somewhat
different in the two approaches. Therefore, the logic only allows the belief revision
of a single agent by some new information, and the prioritized fusion of multi-agent
beliefs can not be represented in such logic.

7. Concluding Remarks

In this paper, we assume that agent belief states are represented as a subset of
possible worlds, i.e. Ri(w) is the belief state of agent i in world w. However, more
fine-grained representations have also been proposed, such as total pre-orders over
the set of possible worlds [BOU 93, DAR 97, LEH 95, SEG 95], ordinal conditional
functions [BOU 95, SPO 88, WIL 94], possibility distributions [BEN 97, BEN 03,
DUB 92, DUB 00], belief functions [SME 00] and pedigreed belief states [MAY 01].
Perhaps the most popular representation among them is an ordering of the possible
worlds. While a set of possible worlds can be seen as the minimal worlds with respect
to a given ordering, the fusion of two orderings is more general than the revision of
an ordering by a set of possible worlds [MAY 01]. Thus, AGM revision is in fact a
special case of the fusion operator in [MAY 01]. Indeed, in our extended models, the
assignment ≤ has mapped each subset of possible worlds to a total pre-order between
worlds. However, to fully utilize the semantic power of an ordering, the logic lan-
guage should be extended to cover the conditional connectives. Since the focus of our
paper is on integrating belief fusion operators into an epistemic reasoning framework,
this extension is beyond its scope. Nevertheless, the development of logical systems
that incorporate fusion operators based on fine-grained representations of belief states
is an interesting research direction.

We present the semantics of epistemic logics for information fusion. However, to
do practical reasoning, we must develop proof methods for these logics. There have
been previous works on developing axiomatic or Gentzen-style calculi for informa-
tion fusion logics [BOL 95, BOL 96, BOL 97, BOL 99, CHO 01, CHO 02, CHO 03b,
LIA 04].

In [BOL 95, BOL 96, BOL 97, BOL 99], logics for information fusion based on
possibility theory are proposed. The Hilbert-style or Gentzen-style proof systems of
those logics are also presented. The logic PL⊗n in [BOL 99] is an extension of QML in
[LIA 92, LIA 93, LIA 96] with a distributed belief operator, so the fusion operator in
PL⊗n is different to the merging operators used in this paper. An axiomatic system and
theorem prover for the majority fusion logicMF are developed in [CHO 01, CHO 02,
CHO 03b]. The logicMF and its proof system have been applied to the analysis of the
STANAG 2002 recommendations of NATO about information evaluation [CHO 03a].
The belief bases in MF are sets of literals, so it does not allow nested modalities. In



Belief Fusion and Revision 271

spite of these differences, the development of proof theory for epistemic fusion logics
could take these previous works as good starting points.

Furthermore, we have presented several validity formulas for each logic intro-
duced in this paper. Most of them are translated from postulates of corresponding
information fusion operators. In the case of arbitration, all postulates in [LIB 95] can
be translated into corresponding wffs in Lar. Therefore, we make them into an ax-
iomatic system. Though we can not yet prove the completeness of the system, we
tend to believe it is indeed complete. In other cases, not all postulates in correspond-
ing information fusion operators can be expressed in our framework. This suggests
that further extensions of syntax and semantics of Lmm, Lic and Lrv may be needed.
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