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This paper focuses on the global exponential almost periodic synchronization of quaternion-valued neural networks with time-
varying delays. By virtue of the exponential dichotomy of linear differential equations, Banach’s fixed point theorem, Lyapunov
functional method, and differential inequality technique, some sufficient conditions are established for assuring the existence
and global exponential synchronization of almost periodic solutions of the delayed quaternion-valued neural networks, which
are completely new. Finally, we give one example with simulation to show the applicability and effectiveness of our main results.

1. Introduction

It is well known that the quaternion is a mathematical
concept discovered by Hamilton in 1843, which did not
arouse much attention for quite a long time, let alone
real world applications. Due to the noncommutativity of
quaternion multiplication, the study of quaternion is much
more difficult than that of plurality, which is one of the
reasons for the slow development of quaternion. Fortunately,
over the past two decades, the quaternion theory has achieved
a rapid development, especially in algebra, and found many
applications in the real world, like attitude control, quantum
mechanics, robotics, computer graphics, and so on [1–5].
For example, in the application of color image compression
technology, one can apply the quaternion theory to encode
and improve the color image; see [5]. In recent years, the
quaternion-valued neural networks, as an extension of the
real-valued neural networks and the complex-valued neural
networks [6, 7], research has become a hot topic. It should be
pointed out that, at present, almost all the investigations on
quaternion-valued neural networks are mainly dealing with
the stability, robustness, or dissipation of the equilibrium of
the neural networks; see [8–17].

On the one hand, since the concept of drive-response
synchronization for coupled chaotic systemswas proposed by

Pecora andCarroll in [18], chaos synchronization has become
a hot research topic due to its potential applications in secure
communication, automatic control, biological systems, and
information science; see, for instance, [19–26].

On the other hand, the almost periodicity is a gener-
alization of periodicity and is much more common than
the periodicity, and so, almost periodic oscillation is a
very important dynamic phenomenon for nonautonomous
neural networks [27–30]. However, so far, few results have
been available for the almost periodicity of complex-valued
neural networks [31] and quaternion-valued neural networks.
Moreover, in the past few years, although the problem of
periodic synchronization for real-valued systems has been
extensively studied by many scholars (see, for instance, [32–
43]), there are few articles dealing with the almost periodic
synchronization for real-valued systems, let alone dealing
with the almost periodic synchronization for complex-valued
or quaternion-valued neural networks. Very recently, some
authors study the synchronization for complex-valued neural
networks with time delays [44, 45]. Based on the LMImethod
and mathematical analysis technique, they obtain some
sufficient conditions for synchronization of complex-valued
neural networks. However, to the best of our knowledge,
there has been no paper published on the almost periodic
synchronization of the quaternion-valued neural networks,
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which remains as an open challenge. So, it is necessary to
investigate the synchronization of quaternion-valued neural
networks.

Motivated by the above statement, the main purpose of
this paper is to study the synchronization of quaternion-
valued neural networks.Themain contributions of this paper
can be summarized as follows: (1) this is the first time to
investigate the almost periodic synchronization of neural
networks. (2) Compared with other results, the results of this
paper are the ones about quaternion value and with time
delays. Therefore, the results are less conservative and more
general. (3) Our methods used in this paper can easily apply
to study the almost periodic synchronization for other types
of neural networks with delays.

This paper is organized as follows: In Section 2, we
give the model description and introduce some definitions
and preliminary lemmas and transform the quaternion-
valued system (9) into an equivalent real-valued system. In
Section 3, we establish some sufficient conditions for the
existence and global exponential synchronization of almost
periodic solutions of (9). In Section 4, we give an example
to demonstrate the feasibility of our results. This paper ends
with a brief conclusion in Section 5.

2. Model Description and Preliminaries

In this section, we shall first recall some fundamental defini-
tions and lemmas which are used in what follows.

First, we give some notations of this paper. Let R and
Q stand for the real field and the skew field of quaternions,
respectively.R𝑛×𝑛,Q𝑛×𝑛 denote the set of all 𝑛 × 𝑛 real-valued
and quaternion-valued matrices, respectively. The skew field
of quaternion is denoted by

Q fl {𝑥 = 𝑥𝑅 + 𝑖𝑥𝐼 + 𝑗𝑥𝐽 + 𝑘𝑥𝐾} , (1)

where 𝑥𝑅, 𝑥𝐼, 𝑥𝐽, 𝑥𝐾 are real numbers and the elements 𝑖, 𝑗
and 𝑘 obey Hamilton’s multiplication rules:

𝑖𝑗 = −𝑗𝑖 = 𝑘,
𝑗𝑘 = −𝑘𝑗 = 𝑖,
𝑘𝑖 = −𝑖𝑘 = 𝑗,
𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1.

(2)

Definition 1 (see [46], let 𝑓 ∈ BC(R,R𝑛)). Function 𝑓 is said
to be almost periodic if, for any 𝜖 > 0, it is possible to find
a real number 𝑙 = 𝑙(𝜖) > 0, for any interval with length 𝑙(𝜖);
there exists a number 𝜏 = 𝜏(𝜖) in this interval such that |𝑓(𝑡+𝜏) − 𝑓(𝑡)| < 𝜖, for all 𝑡 ∈ R.

We denote by AP(R,R𝑛) the set of all almost periodic
functions from R to R𝑛.

Definition 2. Quaternion-valued function𝑓 = 𝑓𝑅+𝑖𝑓𝐼+𝑗𝑓𝐽+𝑘𝑓𝐾 is an almost periodic function if and only if 𝑓𝑅, 𝑓𝐼, 𝑓𝐽
and 𝑓𝐾 are almost periodic functions.

Consider the following linear homogenous system

𝑥󸀠 (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) (3)

and linear nonhomogenous system

𝑥󸀠 (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) , (4)

where 𝐴(𝑡) is an almost periodic matrix function and 𝑓(𝑡) is
an almost periodic vector function.

Definition 3 (see [46]). System (3) is said to admit an
exponential dichotomy if there exist a projection 𝑃 and
positive constants 𝛼, 𝛽 such that the fundamental solution
matrix𝑋(𝑡) satisfies

󵄨󵄨󵄨󵄨󵄨𝑋 (𝑡) 𝑃𝑋−1 (𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛽𝑒−𝛼(𝑡−𝑠), 𝑡 ≥ 𝑠,
󵄨󵄨󵄨󵄨󵄨𝑋 (𝑡) (𝐼 − 𝑃)𝑋−1 (𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛽𝑒−𝛼(𝑠−𝑡), 𝑡 ≤ 𝑠. (5)

Lemma 4 (see [46]). If the linear system (3) admits an
exponential dichotomy, then system (4) has a unique almost
periodic solution that can be expressed as

𝑥 (𝑡) = ∫𝑡
−∞

𝑋 (𝑡) 𝑃𝑋−1 (𝑠) 𝑓 (𝑠) d𝑠
− ∫+∞
𝑡

𝑋(𝑡) (𝐼 − 𝑃)𝑋−1 (𝑠) 𝑓 (𝑠) d𝑠,
(6)

where𝑋(𝑡) is the fundamental solution matrix of (3).

Lemma 5 (see [46]). Let 𝑐𝑝 be an almost periodic function on
R and

𝑀[𝑐𝑝] fl lim
𝑇→∞

1𝑇 ∫𝑡+𝑇
𝑡

𝑐𝑝 (𝑠) d𝑠 > 0, 𝑝 = 1, 2, . . . , 𝑛. (7)

Then the linear system

𝑥󸀠 (𝑡) = diag (−𝑐1 (𝑡) , −𝑐2 (𝑡) , . . . , −𝑐𝑛 (𝑡)) 𝑥 (𝑡) (8)

admits an exponential dichotomy on R.

Consider the following quaternion-valued neural net-
works with time-varying delays:

𝑥󸀠𝑝 (𝑡) = −𝑑𝑝 (𝑡) 𝑥𝑝 (𝑡) + 𝑛∑
𝑞=1
𝑎𝑝𝑞 (𝑡) 𝑓𝑞 (𝑥𝑞 (𝑡))

+ 𝑛∑
𝑞=1
𝑏𝑝𝑞 (𝑡) 𝑔𝑞 (𝑥𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))) + 𝑢𝑝 (𝑡) ,

(9)

where 𝑝 ∈ {1, 2, . . . , 𝑛} fl 𝑇 and 𝑥𝑝(𝑡) ∈ Q is the state
of the 𝑝th neuron at time 𝑡; 𝑑𝑝(𝑡) > 0 is the self-feedback
connection weight; 𝑎𝑝𝑞(𝑡) ∈ Q and 𝑏𝑝𝑞(𝑡) ∈ Q are the
connection weight and the delay connection weight from
neuron 𝑞 to neuron 𝑝 at time 𝑡, respectively; 𝑢𝑝(𝑡) ∈ Q is
an external input on the 𝑝th unit at time 𝑡; 𝑓𝑞(𝑥𝑞(𝑡)) ∈ Q and𝑔𝑞(𝑥𝑞(𝑡−𝜏𝑝𝑞(𝑡))) ∈ Q denote the activation functionswithout
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and with time-varying delays, respectively; 𝜏𝑝𝑞(𝑡) represents
the time-varying delay and satisfies 0 ≤ 𝜏𝑝𝑞(𝑡) ≤ 𝜏.

The initial value of (9) is given by

𝑥𝑝 (𝑠) = 𝜙𝑝 (𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝑝 ∈ 𝑇, (10)

where 𝜙𝑝 ∈ 𝐶([−𝜏, 0],Q).
The response system of (9) is designed as

𝑦󸀠𝑝 (𝑡) = −𝑑𝑝 (𝑡) 𝑦𝑝 (𝑡) + 𝑛∑
𝑞=1
𝑎𝑝𝑞 (𝑡) 𝑓𝑞 (𝑦𝑞 (𝑡))

+ 𝑛∑
𝑞=1
𝑏𝑝𝑞 (𝑡) 𝑔𝑞 (𝑦𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))) + 𝑢𝑝 (𝑡)

+ 𝜃𝑝 (𝑡) ,

(11)

where 𝑝 ∈ 𝑇, 𝑦𝑝(𝑡) ∈ Q denotes the state of the 𝑝th neuron at
time 𝑡 of the response system and 𝜃𝑝(𝑡) ∈ Q is a controller.

The initial condition associated with (11) is of the form

𝑦𝑝 (𝑠) = 𝜓𝑝 (𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝑝 ∈ 𝑇, (12)

where 𝜓𝑝 ∈ 𝐶([−𝜏, 0],Q).
In order to overcome the inconvenience of the noncom-

mutativity of quaternion multiplication, in the following, we
always assume the following:

(H1) Let 𝑥𝑞 = 𝑥𝑅𝑞 + 𝑖𝑥𝐼𝑞 + 𝑗𝑥𝐽𝑞 + 𝑘𝑥𝐾𝑞 , 𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 ∈ R.
Then 𝑓𝑞(𝑥𝑞) and 𝑔𝑞(𝑥𝑞) can be expressed as

𝑓𝑞 (𝑥𝑞) = 𝑓𝑅𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 ) + 𝑖𝑓𝐼𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 )
+ 𝑗𝑓𝐽𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 )
+ 𝑘𝑓𝐾𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 ) ,

𝑔𝑞 (𝑥𝑞) = 𝑔𝑅𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 ) + 𝑖𝑔𝐼𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 )
+ 𝑗𝑔𝐽𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 )
+ 𝑘𝑔𝐾𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 ) ,

(13)

where 𝑓]
𝑞 , 𝑔]𝑞 : R4 → R, 𝑞 ∈ 𝑇, ] ∈ {𝑅, 𝐼, 𝐽, 𝐾} fl 𝐸.

According to (H1), system (9) can be transformed into the
following real-valued system:

(𝑥𝑅𝑝)󸀠 (𝑡) = −𝑑𝑝 (𝑡) 𝑥𝑅𝑝 (𝑡) + 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝑅𝑞 [𝑡, 𝑥]
− 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝐼𝑞 [𝑡, 𝑥] − 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝐽𝑞 [𝑡, 𝑥]
− 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝐾𝑞 [𝑡, 𝑥]) + 𝑛∑

𝑞=1
(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝑅𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]

− 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝐼𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
− 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝐽𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]

− 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝐾𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]) + 𝑢𝑅𝑝 (𝑡) , 𝑝 ∈ 𝑇,
(𝑥𝐼𝑝)󸀠 (𝑡) = −𝑑𝑝 (𝑡) 𝑥𝐼𝑝 (𝑡) + 𝑛∑

𝑞=1
(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝐼𝑞 [𝑡, 𝑥]

+ 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝑅𝑞 [𝑡, 𝑥] + 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝐾𝑞 [𝑡, 𝑥]
− 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝐽𝑞 [𝑡, 𝑥]) + 𝑛∑

𝑞=1
(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝐼𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]

+ 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝑅𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
+ 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝐾𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
− 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝐽𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]) + 𝑢𝐼𝑝 (𝑡) , 𝑝 ∈ 𝑇,

(𝑥𝐽𝑝)󸀠 (𝑡) = −𝑑𝑝 (𝑡) 𝑥𝐽𝑝 (𝑡) + 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝐽𝑞 [𝑡, 𝑥]
+ 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝑅𝑞 [𝑡, 𝑥] − 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝐾𝑞 [𝑡, 𝑥]
+ 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝐼𝑞 [𝑡, 𝑥]) + 𝑛∑

𝑞=1
(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝐽𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]

+ 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝑅𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
− 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝐾𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
+ 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝐼𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]) + 𝑢𝐽𝑝 (𝑡) , 𝑝 ∈ 𝑇,

(𝑥𝐾𝑝 )󸀠 (𝑡) = −𝑑𝑝 (𝑡) 𝑥𝐾𝑝 (𝑡) + 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝐾𝑞 [𝑡, 𝑥]
+ 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝑅𝑞 [𝑡, 𝑥] + 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝐽𝑞 [𝑡, 𝑥]
− 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝐼𝑞 [𝑡, 𝑥]) + 𝑛∑

𝑞=1
(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝐾𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]

+ 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝑅𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
+ 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝐽𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
− 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝐼𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]) + 𝑢𝐾𝑝 (𝑡) , 𝑝 ∈ 𝑇,

(14)

where 𝑓]
𝑞 [𝑡, 𝑥] ≜ 𝑓]

𝑞 (𝑥𝑅𝑞 (𝑡), 𝑥𝐼𝑞(𝑡), 𝑥𝐽𝑞(𝑡), 𝑥𝐾𝑞 (𝑡)), 𝑔]𝑞[𝑡 − 𝜏𝑝𝑞(𝑡),𝑥] ≜ 𝑔]𝑞(𝑥𝑅𝑞 (𝑡 − 𝜏𝑝𝑞(𝑡)), 𝑥𝐼𝑞(𝑡 − 𝜏𝑝𝑞(𝑡)), 𝑥𝐽𝑞(𝑡 − 𝜏𝑝𝑞(𝑡)), 𝑥𝐾𝑞 (𝑡 −𝜏𝑝𝑞(𝑡))), 𝑝, 𝑞 ∈ 𝑇, ] ∈ 𝐸, and
𝑎𝑝𝑞 (𝑡) = 𝑎𝑅𝑝𝑞 (𝑡) + 𝑖𝑎𝐼𝑝𝑞 (𝑡) + 𝑗𝑎𝐽𝑝𝑞 (𝑡) + 𝑘𝑎𝐾𝑝𝑞 (𝑡) ,

𝑝, 𝑞 ∈ 𝑇,
𝑏𝑝𝑞 (𝑡) = 𝑏𝑅𝑝𝑞 (𝑡) + 𝑖𝑏𝐼𝑝𝑞 (𝑡) + 𝑗𝑏𝐽𝑝𝑞 (𝑡) + 𝑘𝑏𝐾𝑝𝑞 (𝑡) ,

𝑝, 𝑞 ∈ 𝑇,
𝑢𝑝 (𝑡) = 𝑢𝑅𝑝 (𝑡) + 𝑖𝑢𝐼𝑝 (𝑡) + 𝑗𝑢𝐽𝑝 (𝑡) + 𝑘𝑢𝐾𝑝 (𝑡) , 𝑝 ∈ 𝑇.

(15)
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It follows from (14) that

𝑋󸀠𝑝 (𝑡) = −𝑑𝑝𝑋𝑝 (𝑡) + 𝑛∑
𝑞=1
𝐴𝑝𝑞 (𝑡) 𝐹𝑞 [𝑡, 𝑥]

+ 𝑛∑
𝑞=1
𝐵𝑝𝑞 (𝑡) 𝐺𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥] + 𝑈𝑝 (𝑡) ,

𝑝 ∈ 𝑇,

(16)

where

𝐴𝑝𝑞 (𝑡) =
[[[[[[
[

𝑎𝑅𝑝𝑞 (𝑡) −𝑎𝐼𝑝𝑞 (𝑡) −𝑎𝐽𝑝𝑞 (𝑡) −𝑎𝐾𝑝𝑞 (𝑡)
𝑎𝐼𝑝𝑞 (𝑡) 𝑎𝑅𝑝𝑞 (𝑡) −𝑎𝐾𝑝𝑞 (𝑡) 𝑎𝐽𝑝𝑞 (𝑡)
𝑎𝐽𝑝𝑞 (𝑡) 𝑎𝐾𝑝𝑞 (𝑡) 𝑎𝑅𝑝𝑞 (𝑡) −𝑎𝐼𝑝𝑞 (𝑡)
𝑎𝐾𝑝𝑞 (𝑡) −𝑎𝐽𝑝𝑞 (𝑡) 𝑎𝐼𝑝𝑞 (𝑡) 𝑎𝑅𝑝𝑞 (𝑡)

]]]]]]
]
,

𝐵𝑝𝑞 (𝑡) =
[[[[[[
[

𝑏𝑅𝑝𝑞 (𝑡) −𝑏𝐼𝑝𝑞 (𝑡) −𝑏𝐽𝑝𝑞 (𝑡) −𝑏𝐾𝑝𝑞 (𝑡)
𝑏𝐼𝑝𝑞 (𝑡) 𝑏𝑅𝑝𝑞 (𝑡) −𝑏𝐾𝑝𝑞 (𝑡) 𝑏𝐽𝑝𝑞 (𝑡)
𝑏𝐽𝑝𝑞 (𝑡) 𝑏𝐾𝑝𝑞 (𝑡) 𝑏𝑅𝑝𝑞 (𝑡) −𝑏𝐼𝑝𝑞 (𝑡)
𝑏𝐾𝑝𝑞 (𝑡) −𝑏𝐽𝑝𝑞 (𝑡) 𝑏𝐼𝑝𝑞 (𝑡) 𝑏𝑅𝑝𝑞 (𝑡)

]]]]]]
]
,

𝐹𝑞 [𝑡, 𝑥] =
[[[[[[
[

𝑓𝑅𝑞 [𝑡, 𝑥]
𝑓𝐼𝑞 [𝑡, 𝑥]
𝑓𝐽𝑞 [𝑡, 𝑥]
𝑓𝐾𝑞 [𝑡, 𝑥]

]]]]]]
]
,

𝐺𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥] =
[[[[[[
[

𝑔𝑅𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
𝑔𝐼𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
𝑔𝐽𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]
𝑔𝐾𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]

]]]]]]
]
,

𝑋𝑝 (𝑡) = (𝑥𝑅𝑝 (𝑡) , 𝑥𝐼𝑝 (𝑡) , 𝑥𝐽𝑝 (𝑡) , 𝑥𝐾𝑝 (𝑡))𝑇 ,
𝑈𝑝 (𝑡) = (𝑢𝑅𝑝 (𝑡) , 𝑢𝐼𝑝 (𝑡) , 𝑢𝐽𝑝 (𝑡) , 𝑢𝐾𝑝 (𝑡))𝑇 .

(17)

The initial condition associated with (16) is of the form

𝑋𝑝 (𝑠) = Φ𝑝 (𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝑝 ∈ 𝑇, (18)

where Φ𝑝(s) = (𝜑𝑅𝑝(𝑠), 𝜑𝐼𝑝(𝑠), 𝜑𝐽𝑝(𝑠), 𝜑𝐾𝑝 (𝑠))𝑇, 𝜑]𝑝(𝑠) ∈ 𝐶([−𝜏,0],R), ] ∈ 𝐸.
Similarly, the response system (11) can be transformed

into the following real-valued system:

𝑌󸀠𝑝 (𝑡) = −𝑑𝑝 (𝑡) 𝑌𝑝 (𝑡) + 𝑛∑
𝑞=1
𝐴𝑝𝑞 (𝑡) 𝐹𝑞 [𝑡, 𝑦]

+ 𝑛∑
𝑞=1
𝐵𝑝𝑞 (𝑡) 𝐺𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑦] + 𝑈𝑝 (𝑡)

+ Θ𝑝 (𝑡) , 𝑝 ∈ 𝑇,

(19)

where 𝑌𝑝(𝑡) = (𝑦𝑅𝑝 (𝑡), 𝑦𝐼𝑝(𝑡), 𝑦𝐽𝑝(𝑡), 𝑦𝐾𝑝 (𝑡))𝑇, Θ𝑝(𝑡) = (𝜃𝑅𝑝(𝑡),𝜃𝐼𝑝(𝑡), 𝜃𝐽𝑝(𝑡), 𝜃𝐾𝑝 (𝑡))𝑇.
The initial condition associated with (19) is of the form

𝑌𝑝 (𝑠) = Ψ𝑝 (𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝑝 ∈ 𝑇, (20)

where Ψ𝑝 = (𝜓𝑅𝑝 , 𝜓𝐼𝑝, 𝜓𝐽𝑝, 𝜓𝐾𝑝 )𝑇, 𝜓]
𝑝(𝑠) ∈ 𝐶([−𝜏, 0],R), ] ∈ 𝐸.

Let 𝑍𝑝(𝑡) = 𝑌𝑝(𝑡) − 𝑋𝑝(𝑡), 𝑍𝑝(𝑡) = (𝑧𝑅𝑝(𝑡), 𝑧𝐼𝑝(𝑡), 𝑧𝐽𝑝(𝑡),𝑧𝐾𝑝 (𝑡))𝑇, 𝑝 ∈ 𝑇. Then, from (16) and (19), we obtain the
following error system:

𝑍󸀠𝑝 (𝑡) = −𝑑𝑝 (𝑡) 𝑍𝑝 (𝑡) + 𝑛∑
𝑞=1
𝐴𝑝𝑞 (𝑡)

⋅ (𝐹𝑞 [𝑡, 𝑦] − 𝐹𝑞 [𝑡, 𝑥]) + 𝑛∑
𝑞=1
𝐵𝑝𝑞 (𝑡)

⋅ (𝐺𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑦] − 𝐺𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥])
+ Θ𝑝 (𝑡) , 𝑝 ∈ 𝑇.

(21)

In order to realize the almost periodic synchronization of the
drive-response system, we choose the controller

𝜃𝑅𝑝 (𝑡) = 𝜖𝑝𝑧𝑅𝑝 (𝑡) ,
𝜃𝐼𝑝 (𝑡) = 𝜀𝑝𝑧𝐼𝑝 (𝑡) ,
𝜃𝐽𝑝 (𝑡) = 𝜌𝑝𝑧𝐽𝑝 (𝑡) ,
𝜃𝐾𝑝 (𝑡) = 󰜚𝑝𝑧𝐾𝑝 (𝑡) ,

(22)

where 𝜖𝑝, 𝜀𝑝, 𝜌𝑝, 󰜚𝑝 ∈ R+.

Definition 6. The response system (19) and the drive system
(16) can be globally exponentially synchronized, if there exist
positive constants𝑀 ≥ 1, 𝜆 > 0 such that

‖𝑍 (𝑡)‖ ≤ 󵄩󵄩󵄩󵄩𝜓 − 𝜑󵄩󵄩󵄩󵄩𝑀𝑒−𝜆𝑡, 𝑡 ≥ 0, (23)

where ‖𝑍(𝑡)‖ = max1≤𝑝≤𝑛{max]∈𝐸{|𝑧]𝑝(𝑡)|}}, ‖𝜓 − 𝜑‖ =
max1≤𝑝≤𝑛{max]∈𝐸{sup𝑠∈[−𝜏,0]|𝜓]

𝑝(𝑠) − 𝜑]𝑝(𝑠)|}}.
Let X = {𝑥 | 𝑥 = (𝑥𝑅1 , 𝑥𝐼1, 𝑥𝐽1, 𝑥𝐾1 , 𝑥𝑅2 , 𝑥𝐼2, 𝑥𝐽2, 𝑥𝐾2 , . . . , 𝑥𝑅𝑛 ,𝑥𝐼𝑛, 𝑥𝐽𝑛, 𝑥𝐾𝑛 )𝑇 fl (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ AP(R,R4𝑛)} with the

norm ‖𝑥‖X = max𝑝∈𝑇{max]∈𝐸{sup𝑡∈R|𝑥]𝑝(𝑡)|}}; then X is a
Banach space.

Throughout this paper, we assume that the following
conditions hold:

(H2) Function 𝑑𝑝 ∈ 𝐶(R,R+) with𝑀[𝑑𝑝] > 0, 𝑈𝑝 ∈ 𝐶(R,
R4×1), 𝐴𝑝𝑞, 𝐵𝑝𝑞 ∈ 𝐶(R,R4×4) and 𝜏𝑝𝑞 ∈ 𝐶1(R,R+)
with sup𝑡∈R𝜏󸀠𝑝𝑞(𝑡) = 𝛽 < 1 are almost periodic, where𝑝, 𝑞 ∈ 𝑇.
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(H3) There exist positive constants 𝑙]𝑞, 𝑚]
𝑞 such that for all𝑥], 𝑦] ∈ R,

󵄨󵄨󵄨󵄨󵄨𝑓]
𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 ) − 𝑓]

𝑞 (𝑦𝑅𝑞 , 𝑦𝐼𝑞, 𝑦𝐽𝑞, 𝑦𝐾𝑞 )󵄨󵄨󵄨󵄨󵄨
≤ 𝑙𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝑅𝑞 − 𝑦𝑅𝑞 󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝐼𝑞 − 𝑦𝐼𝑞󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝐽𝑞 − 𝑦𝐽𝑞󵄨󵄨󵄨󵄨󵄨
+ 𝑙𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝐾𝑞 − 𝑦𝐾𝑞 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑔]𝑞 (𝑥𝑅𝑞 , 𝑥𝐼𝑞, 𝑥𝐽𝑞, 𝑥𝐾𝑞 ) − 𝑔]𝑞 (𝑦𝑅𝑞 , 𝑦𝐼𝑞, 𝑦𝐽𝑞, 𝑦𝐾𝑞 )󵄨󵄨󵄨󵄨󵄨

≤ 𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝑅𝑞 − 𝑦𝑅𝑞 󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝐼𝑞 − 𝑦𝐼𝑞󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝐽𝑞 − 𝑦𝐽𝑞󵄨󵄨󵄨󵄨󵄨
+ 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝐾𝑞 − 𝑦𝐾𝑞 󵄨󵄨󵄨󵄨󵄨 ,

(24)

and 𝑓]
𝑞 (0, 0, 0, 0) = 𝑔]𝑞(0, 0, 0, 0) = 0, where 𝑞 ∈ 𝑇,

] ∈ 𝐸.
(H4) There exists a positive constant 𝜅 such that

max
{{{
Ω𝑝𝜅 + 𝑢]+𝑝𝑑−𝑝

}}}
≤ 𝜅,

max{Ω𝑝𝑑−𝑝 } fl 𝑟 < 1, 𝑝 ∈ 𝑇, ] ∈ 𝐸,
(25)

where

Ω𝑝 = Λ 𝑝 + Δ𝑝, 𝑝 ∈ 𝑇,
Λ 𝑝 = 𝑛∑

𝑞=1
(𝑎𝑅+𝑝𝑞 + 𝑎𝐼+𝑝𝑞 + 𝑎𝐽+𝑝𝑞 + 𝑎𝐾+𝑝𝑞 ) (𝑙𝑅𝑞 + 𝑙𝐼𝑞 + 𝑙𝐽𝑞 + 𝑙𝐾𝑞 ) ,

𝑝 ∈ 𝑇,
Δ𝑝 = 𝑛∑

𝑞=1
(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 )

⋅ (𝑚𝑅𝑞 + 𝑚𝐼𝑞 + 𝑚𝐽𝑞 + 𝑚𝐾𝑞 ) , 𝑝 ∈ 𝑇.

(26)

(H5) There exists a positive constant 𝜆 such that for 𝑝 ∈ 𝑇,

𝜆 − 𝑑−𝑝 + 𝜖𝑝 + Λ 𝑝 + Δ𝑝1 − 𝛽𝑒𝜆𝜏 < 0,
𝜆 − 𝑑−𝑝 + 𝜀𝑝 + Λ 𝑝 + Δ𝑝1 − 𝛽𝑒𝜆𝜏 < 0,

𝜆 − 𝑑−𝑝 + 𝜌𝑝 + Λ 𝑝 + Δ𝑝1 − 𝛽𝑒𝜆𝜏 < 0,
𝜆 − 𝑑−𝑝 + 󰜚𝑝 + Λ 𝑝 + Δ𝑝1 − 𝛽𝑒𝜆𝜏 < 0.

(27)

3. Main Results

In this section, we will study the existence of almost periodic
solutions of system (16).

Theorem 7. Let (𝐻1)–(𝐻4) hold. Then system (16) has a
unique almost periodic solution in the region X∗ = {𝜑 | 𝜑 ∈
X, ‖𝜑‖X ≤ 𝜅}.
Proof. For any 𝜑 ∈ X, we consider the linear almost periodic
differential equation system

𝑋󸀠𝑝 (𝑡) = −𝑑𝑝𝑋𝑝 (𝑡) + 𝑛∑
𝑞=1
𝐴𝑝𝑞 (𝑡) 𝐹𝑞 [𝑡, 𝜑]

+ 𝑛∑
𝑞=1
𝐵𝑝𝑞 (𝑡) 𝐺𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝜑] + 𝑈𝑝 (𝑡) ,

𝑝 ∈ 𝑇.

(28)

Combining (H2) and Lemma 5, we can conclude that the
linear system

𝑋󸀠𝑝 (𝑡) = −𝑑𝑝 (𝑡) 𝑋𝑝 (𝑡) , 𝑝 ∈ 𝑇 (29)

admits an exponential dichotomy on R; furthermore, by
Lemma 4, we conclude that system (28) has a unique almost
periodic solution that can be expressed as

𝑋𝜑 (𝑡) = (𝑋𝜑1 (𝑡) , 𝑋𝜑2 (𝑡) , . . . , 𝑋𝜑𝑛 (𝑡))𝑇 , (30)

where

𝑋𝜑𝑝 (𝑡) = ∫𝑡
−∞

𝑒−∫𝑡𝑠 𝑑𝑝(𝑢)d𝑢( 𝑛∑
𝑞=1
𝐴𝑝𝑞 (𝑠) 𝐹𝑞 [𝑠, 𝜑]

+ 𝑛∑
𝑞=1
𝐵𝑝𝑞 (𝑠) 𝐺𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑] + 𝑈𝑝 (𝑠)) d𝑠,

𝑝 ∈ 𝑇.

(31)

Now, we define an operator Φ : X∗ → X as follows:

Φ𝜑 = 𝑋𝜑. (32)

First, we show that, for any 𝜑 ∈ X∗, we have Φ𝜑 ∈ X∗. From
(32), we have
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󵄨󵄨󵄨󵄨󵄨(Φ𝜑)𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

−∞
𝑒−∫𝑡𝑠 𝑑𝑝(𝑢)d𝑢( 𝑛∑

𝑞=1
(𝑎𝑅𝑝𝑞 (𝑠) 𝑓𝑅𝑞 [𝑠, 𝜑] − 𝑎𝐼𝑝𝑞 (𝑠) 𝑓𝐼𝑞 [𝑠, 𝜑] − 𝑎𝐽𝑝𝑞 (𝑠) 𝑓𝐽𝑞 [𝑠, 𝜑] − 𝑎𝐾𝑝𝑞 (𝑠) 𝑓𝐾𝑞 [𝑠, 𝜑])

+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑠) 𝑔𝑅𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑] − 𝑏𝐼𝑝𝑞 (𝑠) 𝑔𝐼𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑] − 𝑏𝐽𝑝𝑞 (𝑠) 𝑔𝐽𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑] − 𝑏𝐾𝑝𝑞 (𝑠) 𝑔𝐾𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑])

+ 𝑢𝑅𝑝 (𝑠)) d𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫
𝑡

−∞
𝑒−∫𝑡𝑠 𝑑𝑝(𝑢)d𝑢( 𝑛∑

𝑞=1
(𝑎𝑅+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝑅𝑞 [𝑠, 𝜑]󵄨󵄨󵄨󵄨󵄨 + 𝑎𝐼+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝐼𝑞 [𝑠, 𝜑]󵄨󵄨󵄨󵄨󵄨 + 𝑎𝐽+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝐽𝑞 [𝑠, 𝜑]󵄨󵄨󵄨󵄨󵄨 + 𝑎𝐾+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝐾𝑞 [𝑠, 𝜑]󵄨󵄨󵄨󵄨󵄨)

+ 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑔𝑅𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑]󵄨󵄨󵄨󵄨󵄨 + 𝑏𝐼+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑔𝐼𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑]󵄨󵄨󵄨󵄨󵄨 + 𝑏𝐽+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑔𝐽𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑]󵄨󵄨󵄨󵄨󵄨 + 𝑏𝐾+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑔𝐾𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑]󵄨󵄨󵄨󵄨󵄨)

+ 𝑢𝑅+𝑝 ) d𝑠 ≤ ∫𝑡
−∞

𝑒−∫𝑡𝑠 𝑑𝑝(𝑢)d𝑢( 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞 + 𝑎𝐼+𝑝𝑞 + 𝑎𝐽+𝑝𝑞 + 𝑎𝐾+𝑝𝑞 ) × (𝑙𝑅𝑞 + 𝑙𝐼𝑞 + 𝑙𝐽𝑞 + 𝑙𝐾𝑞 ) 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩X

+ 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) (𝑚𝑅𝑞 + 𝑚𝐼𝑞 + 𝑚𝐽𝑞 + 𝑚𝐾𝑞 ) 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩X + 𝑢𝑅+𝑝 ) d𝑠 ≤ 1𝑑−𝑝 (Λ 𝑝𝜅 + Δ𝑝𝜅 + 𝑢
𝑅+
𝑝 ) = Ω𝑝𝜅 + 𝑢𝑅+𝑝𝑑−𝑝 ,

𝑝 ∈ 𝑇.

(33)

In a similar way, we can get

󵄨󵄨󵄨󵄨󵄨(Φ𝜑)]𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ Ω𝑝𝜅 + 𝑢]+𝑝𝑑−𝑝 , 𝑝 ∈ 𝑇, ] = 𝐼, 𝐽, 𝐾. (34)

By (H4), we have 󵄩󵄩󵄩󵄩Φ𝜑󵄩󵄩󵄩󵄩X ≤ 𝜅, (35)

which implies that Φ𝜑 ∈ X∗, so the mapping Φ is a self-
mapping from X∗ to X∗. Next, we shall prove that Φ is a
contraction mapping. In fact, for any 𝜑, 𝜓 ∈ X∗, we have

󵄨󵄨󵄨󵄨󵄨(Φ𝜑 − Φ𝜓)𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

−∞
𝑒−∫𝑡𝑠 𝑑𝑝(𝑢)d𝑢( 𝑛∑

𝑞=1
(𝑎𝑅𝑝𝑞 (𝑠) (𝑓𝑅𝑞 [𝑠, 𝜑] − 𝑓𝑅𝑞 [𝑠, 𝜓]) − 𝑎𝐼𝑝𝑞 (𝑠) (𝑓𝐼𝑞 [𝑠, 𝜑] − 𝑓𝐼𝑞 [𝑠, 𝜓]) − 𝑎𝐽𝑝𝑞 (𝑠) (𝑓𝐽𝑞 [𝑠, 𝜑] − 𝑓𝐽𝑞 [𝑠, 𝜓]) − 𝑎𝐾𝑝𝑞 (𝑠) (𝑓𝐾𝑞 [𝑠, 𝜑] − 𝑓𝐾𝑞 [𝑠, 𝜓]))

+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑠) (𝑔𝑅𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑] − 𝑔𝑅𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜓]) − 𝑏𝐼𝑝𝑞 (𝑠) (𝑔𝐼𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑] − 𝑔𝐼𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜓]) − 𝑏𝐽𝑝𝑞 (𝑠) (𝑔𝐽𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑] − 𝑔𝐽𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜓]) − 𝑏𝐾𝑝𝑞 (𝑠) (𝑔𝐾𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜑] − 𝑔𝐾𝑞 [𝑠 − 𝜏𝑝𝑞 (𝑠) , 𝜓]))) d𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑡
−∞

𝑒−∫𝑡𝑠 𝑑𝑝(𝑢)d𝑢( 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞 + 𝑎𝐼+𝑝𝑞 + 𝑎𝐽+𝑝𝑞 + 𝑎𝐾+𝑝𝑞 ) × (𝑙𝑅𝑞 + 𝑙𝐼𝑞 + 𝑙𝐽𝑞 + 𝑙𝐾𝑞 ) 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X +
𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) (𝑚𝑅𝑞 + 𝑚𝐼𝑞 + 𝑚𝐽𝑞 + 𝑚𝐾𝑞 ) 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X) d𝑠 ≤ 1𝑑−𝑝 (Λ 𝑝 + Δ𝑝)
󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X = Ω𝑝𝑑−𝑝

󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X , 𝑝 ∈ 𝑇.

(36)

Similarly, we can get

󵄨󵄨󵄨󵄨󵄨(Φ𝜑 − Φ𝜓)]𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ Ω𝑝𝑑−𝑝
󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X ,

𝑝 ∈ 𝑇, ] = 𝐼, 𝐽, 𝐾.
(37)

By (H4), we have
󵄩󵄩󵄩󵄩Φ𝜑 − Φ𝜓󵄩󵄩󵄩󵄩X ≤ 𝑟 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X . (38)

Hence,Φ is a contractionmapping.Therefore, system (16) has
a unique almost periodic solution in the regionX∗ = {𝜑 ∈ X :‖𝜑‖X ≤ 𝜅}. The proof is complete.

Theorem 8. Suppose that (𝐻1)–(𝐻5) hold. Then the drive sys-
tem (16) and the response system (19) are globally exponentially
synchronized based on the controller (22).

Proof. In view of the error system (21), we have

󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨󸀠 ≤ −𝑑−𝑝 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝑅𝑞 [𝑡, 𝑦] − 𝑓𝑅𝑞 [𝑡, 𝑥]󵄨󵄨󵄨󵄨󵄨
+ 𝑎𝐼+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝐼𝑞 [𝑡, 𝑦] − 𝑓𝐼𝑞 [𝑡, 𝑥]󵄨󵄨󵄨󵄨󵄨
+ 𝑎𝐽+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝐽𝑞 [𝑡, 𝑦] − 𝑓𝐽𝑞 [𝑡, 𝑥]󵄨󵄨󵄨󵄨󵄨
+ 𝑎𝐾+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝐾𝑞 [𝑡, 𝑦] − 𝑓𝐾𝑞 [𝑡, 𝑥]󵄨󵄨󵄨󵄨󵄨)
+ 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑔𝑅𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑦] − 𝑔𝑅𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]󵄨󵄨󵄨󵄨󵄨
+ 𝑏𝐼+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑔𝐼𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑦] − 𝑔𝐼𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]󵄨󵄨󵄨󵄨󵄨
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+ 𝑏𝐽+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑔𝐽𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑦] − 𝑔𝐽𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]󵄨󵄨󵄨󵄨󵄨
+ 𝑏𝐾+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑔𝐾𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑦] − 𝑔𝐾𝑞 [𝑡 − 𝜏𝑝𝑞 (𝑡) , 𝑥]󵄨󵄨󵄨󵄨󵄨)
+ 𝜖𝑝 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ (𝜖𝑝 − 𝑑−𝑝) 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 +

𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞 + 𝑎𝐼+𝑝𝑞
+ 𝑎𝐽+𝑝𝑞 + 𝑎𝐾+𝑝𝑞 ) (𝑙𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑙𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨) +

𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 )
⋅ (𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨
+ 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨) ,

𝑝 ∈ 𝑇.
(39)

In a similar way, we can obtain

󵄨󵄨󵄨󵄨󵄨𝑧]𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨󸀠 ≤ (𝜖𝑝 − 𝑑−𝑝) 󵄨󵄨󵄨󵄨󵄨𝑧]𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 +
𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞 + 𝑎𝐼+𝑝𝑞 + 𝑎𝐽+𝑝𝑞
+ 𝑎𝐾+𝑝𝑞 ) (𝑙𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑙𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨) +

𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 )
⋅ (𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨

+ 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨) ,
𝑝 ∈ 𝑇, ] = 𝐼, 𝐽, 𝐾.

(40)

Now, we consider the Lyapunov function as follows:

𝑉 (𝑡) = 𝑉1 (𝑡) + 𝑉2 (𝑡) + 𝑉3 (𝑡) + 𝑉4 (𝑡) (41)

where

𝑉1 (𝑡) = 𝑛∑
𝑝=1

(󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑒𝜆𝑡 +𝑊𝑝) ,

𝑉2 (𝑡) = 𝑛∑
𝑝=1

(󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑒𝜆𝑡 +𝑊𝑝) ,

𝑉3 (𝑡) = 𝑛∑
𝑝=1

(󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑒𝜆𝑡 +𝑊𝑝) ,

𝑉4 (𝑡) = 𝑛∑
𝑝=1

(󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑒𝜆𝑡 +𝑊𝑝) ,

𝑊𝑝 = 11 − 𝛽
𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 )

⋅ ∫𝑡
𝑡−𝜏𝑝𝑞(𝑡)

(𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑠)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑠)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑠)󵄨󵄨󵄨󵄨󵄨
+ 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑠)󵄨󵄨󵄨󵄨󵄨) 𝑒𝜆(𝑠+𝜏)d𝑠,

(42)

Computing the derivative of 𝑉(𝑡) along the solutions of the
error system (21), we can get

𝑉󸀠1 (𝑡) = 𝑛∑
𝑝=1

{󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨󸀠 𝑒𝜆𝑡 + 𝜆𝑒𝜆𝑡 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 11 − 𝛽
𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) (𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨) × 𝑒𝜆(𝑡+𝜏) − 11 − 𝛽
⋅ 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) (𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨) × 𝑒𝜆(𝑡−𝜏𝑝𝑞(𝑡)+𝜏) (1 − 𝜏󸀠𝑝𝑞 (𝑡))} ≤ 𝑛∑
𝑝=1

{(𝜆 − 𝑑−𝑝 + 𝜖𝑝) 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑞=1

[(𝑎𝑅+𝑝𝑞 + 𝑎𝐼+𝑝𝑞 + 𝑎𝐽+𝑝𝑞 + 𝑎𝐾+𝑝𝑞 ) × (𝑙𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨) + (𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) (𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨)]

+ 11 − 𝛽
𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) (𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨) 𝑒𝜆𝜏

− 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) (𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))󵄨󵄨󵄨󵄨󵄨)} 𝑒𝜆𝑡 ≤
𝑛∑
𝑝=1

{(𝜆 − 𝑑−𝑝 + 𝜖𝑝) 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 +
𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞 + 𝑎𝐼+𝑝𝑞 + 𝑎𝐽+𝑝𝑞 + 𝑎𝐾+𝑝𝑞 )

× (𝑙𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑙𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨) + 11 − 𝛽
𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) (𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑡)󵄨󵄨󵄨󵄨󵄨) 𝑒𝜆𝜏}𝑒𝜆𝑡 ≤
𝑛∑
𝑝=1

[𝜆 − 𝑑−𝑝 + 𝜖𝑝 + 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞 + 𝑎𝐼+𝑝𝑞 + 𝑎𝐽+𝑝𝑞 + 𝑎𝐾+𝑝𝑞 )

× (𝑙𝑅𝑞 + 𝑙𝐼𝑞 + 𝑙𝐽𝑞 + 𝑙𝐾𝑞 ) + 11 − 𝛽
𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 ) × (𝑚𝑅𝑞 + 𝑚𝐼𝑞 + 𝑚𝐽𝑞 + 𝑚𝐾𝑞 ) 𝑒𝜆𝜏] 𝑒𝜆𝑡 ‖𝑍 (𝑡)‖ = 𝑛∑
𝑝=1

[𝜆 − 𝑑−𝑝 + 𝜖𝑝 + Λ 𝑝 + Δ𝑝1 − 𝛽𝑒𝜆𝜏] 𝑒𝜆𝑡 ‖𝑍 (𝑡)‖ .

(43)

Similarly, we can get

𝑉󸀠2 (𝑡)
≤ 𝑛∑
𝑝=1

[𝜆 − 𝑑−𝑝 + 𝜀𝑝 + Λ 𝑝 + Δ𝑝1 − 𝛽𝑒𝜆𝜏] 𝑒𝜆𝑡 ‖𝑍 (𝑡)‖ ,

𝑉󸀠3 (𝑡)
≤ 𝑛∑
𝑝=1

[𝜆 − 𝑑−𝑝 + 𝜌𝑝 + Λ 𝑝 + Δ𝑝1 − 𝛽𝑒𝜆𝜏] 𝑒𝜆𝑡 ‖𝑍 (𝑡)‖ ,
𝑉󸀠4 (𝑡)



8 Complexity

≤ 𝑛∑
𝑝=1

[𝜆 − 𝑑−𝑝 + 󰜚𝑝 + Λ 𝑝 + Δ𝑝1 − 𝛽𝑒𝜆𝜏] 𝑒𝜆𝑡 ‖𝑍 (𝑡)‖ .
(44)

From (H5), we obtain

𝑉󸀠 (𝑡) ≤ 0, (45)

which implies that 𝑉(𝑡) ≤ 𝑉(0) for all 𝑡 ≥ 0.
On the other hand, we have

𝑉1 (0) ≤ 𝑛∑
𝑝=1

{󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑝 (0)󵄨󵄨󵄨󵄨󵄨 + 11 − 𝛽
𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 + 𝑏𝐼+𝑝𝑞 + 𝑏𝐽+𝑝𝑞 + 𝑏𝐾+𝑝𝑞 )

× ∫0
0−𝜏𝑝𝑞(0)

(𝑚𝑅𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝑅𝑞 (𝑠)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐼𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐼𝑞 (𝑠)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐽𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐽𝑞 (𝑠)󵄨󵄨󵄨󵄨󵄨 + 𝑚𝐾𝑞 󵄨󵄨󵄨󵄨󵄨𝑧𝐾𝑞 (𝑠)󵄨󵄨󵄨󵄨󵄨) 𝑒𝜆(𝑠+𝜏)d𝑠} ≤ {1 + 11 − 𝛽
𝑛∑
𝑝=1

𝑛∑
𝑞=1

𝑒𝜆𝜏𝜆 Δ𝑝}󵄩󵄩󵄩󵄩𝜓 − 𝜙󵄩󵄩󵄩󵄩 .
(46)

Similarly, we can get

𝑉2 (0) ≤ {1 + 11 − 𝛽
𝑛∑
𝑝=1

𝑛∑
𝑞=1

𝑒𝜆𝜏𝜆 Δ𝑝}󵄩󵄩󵄩󵄩𝜓 − 𝜙󵄩󵄩󵄩󵄩 ,

𝑉3 (0) ≤ {1 + 11 − 𝛽
𝑛∑
𝑝=1

𝑛∑
𝑞=1

𝑒𝜆𝜏𝜆 Δ𝑝}󵄩󵄩󵄩󵄩𝜓 − 𝜙󵄩󵄩󵄩󵄩 ,

𝑉4 (0) ≤ {1 + 11 − 𝛽
𝑛∑
𝑝=1

𝑛∑
𝑞=1

𝑒𝜆𝜏𝜆 Δ𝑝}󵄩󵄩󵄩󵄩𝜓 − 𝜙󵄩󵄩󵄩󵄩 .

(47)

It is obvious that ‖𝑍(𝑡)‖𝑒𝜆𝑡 ≤ 𝑉(𝑡); thus, for 𝑡 ≥ 0, we have
‖𝑍 (𝑡)‖ ≤ 𝑉 (𝑡) 𝑒−𝜆𝑡 ≤ 𝑉 (0) 𝑒−𝜆𝑡 ≤ 𝑀󵄩󵄩󵄩󵄩𝜓 − 𝜙󵄩󵄩󵄩󵄩 𝑒−𝜆𝑡, (48)

where

𝑀 = {1 + 11 − 𝛽
𝑛∑
𝑝=1

𝑛∑
𝑞=1

𝑒𝜆𝜏𝜆 Δ𝑝} > 1. (49)

Therefore, the drive system (16) and the response system
(19) are globally exponentially synchronized based on the
controller (22). The proof is complete.

4. An Example

In this section, we give an example to illustrate the feasibility
and effectiveness of our results obtained in Section 3.

Example 1. Consider the following quaternion-valued neural
networks with time-varying delay:

𝑥󸀠𝑝 (𝑡) = −𝑑𝑝 (𝑡) 𝑥𝑝 (𝑡) + 2∑
𝑞=1
𝑎𝑝𝑞 (𝑡) 𝑓𝑞 (𝑥𝑞 (𝑡))

+ 2∑
𝑞=1
𝑏𝑝𝑞 (𝑡) 𝑔𝑞 (𝑥𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))) + 𝑢𝑝 (𝑡) ,

(50)

and its response system

𝑦󸀠𝑝 (𝑡) = −𝑑𝑝 (𝑡) 𝑦𝑝 (𝑡) + 2∑
𝑞=1
𝑎𝑝𝑞 (𝑡) 𝑓𝑞 (𝑦𝑞 (𝑡))

+ 2∑
𝑞=1
𝑏𝑝𝑞 (𝑡) 𝑔𝑞 (𝑦𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))) + 𝑢𝑝 (𝑡)

+ 𝜃𝑝 (𝑡) .

(51)

The coefficients are taken as follows:

𝑑1 (𝑡) = 4 + |cos (2𝑡)| ,
𝑑2 (𝑡) = 6 − 󵄨󵄨󵄨󵄨󵄨sin (√3𝑡)󵄨󵄨󵄨󵄨󵄨 ,
𝑎11 (𝑡) = 0.1 sin (√2𝑡) + 𝑖0.3 cos 𝑡 + 𝑗0.2 sin 𝑡

+ 𝑘0.4 cos (√2𝑡) ,
𝑎12 (𝑡) = 0.3 cos (√3𝑡) + 𝑖0.1 sin (2𝑡)

+ 𝑗0.5 sin (√2𝑡) + 𝑘0.2 sin 𝑡,
𝑎21 (𝑡) = 0.4 sin (2𝑡) + 𝑖0.5 cos 𝑡 + 𝑗0.1 cos (√3𝑡)

+ 𝑘0.2 sin 𝑡,
𝑎22 (𝑡) = 0.3 sin 𝑡 + 𝑖0.4 sin (√3𝑡) + 𝑗0.1 cos 𝑡

− 𝑘0.2 cos (3𝑡) ,
𝑏11 (𝑡) = 0.2 cos 𝑡 + 𝑖0.4 sin 𝑡 − 𝑗0.3 sin (√2𝑡)

+ 𝑘0.1 sin (√2𝑡) ,
𝑏12 (𝑡) = 0.5 sin 𝑡 − 𝑖0.2 cos 𝑡 − 𝑗0.3 cos (√2𝑡)

− 𝑘0.1 cos 𝑡,
𝑏21 (𝑡) = 0.2 cos (2𝑡) − 𝑖0.5 sin (2𝑡) + 𝑗0.3 sin (3𝑡)

− 𝑘0.4 cos (√3𝑡) ,
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𝑏22 (𝑡) = −0.6 cos 𝑡 − 𝑖0.1 cos (√3𝑡) + 𝑗0.2 cos 𝑡
− 𝑘0.5 sin (3𝑡) ,

𝑓q (𝑥𝑞) = 132 tan (𝑥𝑅𝑞 + 𝑥𝐼𝑞) + 𝑖 132 sin𝑥𝐼𝑞 + 𝑗 132 󵄨󵄨󵄨󵄨󵄨𝑥𝐽𝑞󵄨󵄨󵄨󵄨󵄨
+ 𝑘 132 sin𝑥𝐾𝑞 ,

𝑔𝑞 (𝑥𝑞) = 124 sin 𝑥𝑅𝑞 + 𝑖 124 󵄨󵄨󵄨󵄨󵄨𝑥𝐼𝑞 + 𝑥𝐾𝑞 󵄨󵄨󵄨󵄨󵄨 + 𝑗 124 sin𝑥𝐽𝑞
+ 𝑘 124 󵄨󵄨󵄨󵄨󵄨𝑥𝐾𝑞 󵄨󵄨󵄨󵄨󵄨 ,

𝜏11 (𝑡) = 15 |sin 2𝑡| ,
𝜏12 (𝑡) = 𝜏21 (𝑡) = 16 |cos 𝑡| ,
𝜏22 (𝑡) = 14 |sin 𝑡| ,
𝑢1 (𝑡) = 2 sin (√2𝑡) − 𝑖 cos 𝑡 + 𝑗 sin 𝑡 + 𝑘3 cos 𝑡,
𝑢2 (𝑡) = 2 cos 𝑡 + 𝑖3 sin (√3𝑡) − 5𝑗 cos 𝑡 − 𝑘4 sin 𝑡.

(52)
By a simple calculation, we have

𝑑−1 = 4,
𝑑−2 = 5,
𝑎𝑅+11 = 0.1,
𝑎𝐼+11 = 0.3,
𝑎𝐽+11 = 0.2,
𝑎𝐾+11 = 0.4,
𝑎𝑅+12 = 0.3,
𝑎𝐼+12 = 0.1,
𝑎𝐽+12 = 0.5,
𝑎𝐾+12 = 0.2,
𝑎𝑅+21 = 0.4,
𝑎𝐼+21 = 0.5,
𝑎𝐽+21 = 0.1,
𝑎𝐾+21 = 0.2,
𝑎𝑅+22 = 0.3,
𝑎𝐼+22 = 0.4,
𝑎𝐽+22 = 0.1,
𝑎𝐾+22 = 0.2,

𝑏𝑅+11 = 0.2,
𝑏𝐼+11 = 0.4,
𝑏𝐽+11 = 0.3,
𝑏𝐾+11 = 0.1,
𝑏𝑅+12 = 0.5,
𝑏𝐼+12 = 0.2,
𝑏𝐽+12 = 0.3,
𝑏𝐾+12 = 0.1,
𝑏𝑅+21 = 0.2,
𝑏𝐼+21 = 0.5,
𝑏𝐽+21 = 0.3,
𝑏𝐾+21 = 0.4,
𝑏𝑅+22 = 0.6,
𝑏𝐼+22 = 0.1
𝑏𝐽+22 = 0.2,
𝑏𝐾+22 = 0.5,
𝑢𝑅+1 = 2,
𝑢𝐼+1 = 1,
𝑢𝐽+1 = 1,
𝑢𝐾+1 = 3,
𝑢𝑅+2 = 2,
𝑢𝐼+2 = 3,
𝑢𝐽+2 = 5,
𝑢𝐾+2 = 4,
𝜏 = 14 ,
𝑙]𝑞 = 132 ,
𝑚]
𝑞 = 124 ,

𝑞 = 1, 2, ] ∈ 𝐸,
Λ 1 = 0.525,
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Figure 1: The states of four parts of 𝑥1 and 𝑥2.
Λ 2 = 0.55,
Δ 1 = 0.7,
Δ 2 ≈ 0.9333.

(53)

Take 𝜅 = 2; then we haveΩ1 = 1.225,Ω2 = 1.4833,

max
]∈𝐸

{Ω1𝜅 + 𝑢]
+

1𝑑−1 , Ω2𝜅 + 𝑢]
+

2𝑑−2 } ≈ {1.3625, 1.5933}
= 1.5933 < 𝜅 = 2,

max{Ω1𝑑−1 ,
Ω2𝑑−2 } ≈ {0.30625, 0.29666} = 0.30625 < 1.

(54)

Moreover, take 𝜖1 = 1, 𝜖2 = 1.5, 𝜀1 = 0.8, 𝜀2 = 1.8, 𝜌1 = 1.2,𝜌2 = 1.6, 󰜚1 = 0.5, 󰜚2 = 1.9, 𝜆 = 1, 𝛽 = 1/5,
𝜆 − 𝑑−1 + 𝜖1 + Λ 1 + Δ 11 − 𝛽𝑒𝜆𝜏 ≈ −0.3515 < 0,

𝜆 − 𝑑−2 + 𝜖2 + Λ 2 + Δ 21 − 𝛽𝑒𝜆𝜏 ≈ −0.4520 < 0,
𝜆 − 𝑑−1 + 𝜀1 + Λ 1 + Δ 11 − 𝛽𝑒𝜆𝜏 ≈ −0.5515 < 0,
𝜆 − 𝑑−2 + 𝜀2 + Λ 2 + Δ 21 − 𝛽𝑒𝜆𝜏 ≈ −0.1520 < 0,
𝜆 − 𝑑−1 + 𝜌1 + Λ 1 + Δ 11 − 𝛽𝑒𝜆𝜏 ≈ −0.1515 < 0,
𝜆 − 𝑑−2 + 𝜌2 + Λ 2 + Δ 21 − 𝛽𝑒𝜆𝜏 ≈ −0.3520 < 0,
𝜆 − 𝑑−1 + 󰜚1 + Λ 1 + Δ 11 − 𝛽𝑒𝜆𝜏 ≈ −0.8515 < 0,
𝜆 − 𝑑−2 + 󰜚2 + Λ 2 + Δ 21 − 𝛽𝑒𝜆𝜏 ≈ −0.0520 < 0.

(55)

We can verify that all the assumptions of Theorems 7 and
8 are satisfied. Therefore, the drive system (50) and its
response system (51) are globally exponential synchronized
(see Figures 1–3).
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Figure 2: The states of four parts of 𝑦1 and 𝑦2.
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5. Conclusion

In this paper, we consider the global exponential almost
periodic synchronization of quaternion-valued neural net-
works with time-varying delays. By means of the exponential
dichotomy of linear differential equations, Banach’s fixed
point theorem, Lyapunov functional method, and differential
inequality technique, we establish the existence and global
exponential synchronization of almost periodic solutions for
system (9). To the best of our knowledge, this is the first
time to study the almost periodic synchronization problem
for neural networks. Furthermore, the method of this paper
can be used to study other types of neural networks.
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