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The stability of nanoscale devices is directly related to elasticity and
the effect of temperature on the elasticity of thin films and nanocrystals.
The elastic instability induced by rising temperature will cause the failure
of integrated circuits and other microelectronic devices in service. The
temperature effect on the elastic modulus of thin films and nanocrystals
is unclear although the temperature dependence of the modulus of bulk
materials has been studied for over half a century. In this paper, a
theoretical model of the temperature-dependent elastic modulus of thin
films and nanocrystals is developed based on the physical definition of the
modulus by considering the size effect of the related cohesive energy and
the thermal expansion coefficient. Moreover, the temperature effect on the
modulus of Cu thin films is simulated by the molecular dynamics method.
The results indicate that the elastic modulus decreases with increasing
temperature and the rate of the modulus decrease increases with reducing
thickness of thin films. The theoretical predictions based on the model are
consistent with the results of computational simulations, semi-continuum
calculations and the experimental measurements for Cu, Si thin films and
Pd nanocrystals.

Keywords: cohesive energy; nanocrystals; thermal expansion; size effect;
vibration entropy

1. Introduction

Thin films and nanocrystals have wide applications in microelectronics, optics,
sensors, etc. The temperature increases in microelectronic integrated circuits and
microelectronic package due to miniaturisation of the devices and weak heat
dissipation. The elasticity and vibration behaviour becomes thermally softer with
increasing temperature [1], which directly affects the stability and reliability of
nanoscale devices. On the other hand, the reduced elastic modulus decreases the
thermal stress produced in the thermal barrier coatings used in high temperature
environments [2], which makes the components more durable. Therefore, an
understanding of the temperature effect on the elastic modulus of thin films
and nanocrystals is necessary in the fabrication and application of thin films and
nanocrystalline materials.

The temperature effect on the elastic modulus of bulk materials has been studied
since the 1960. Wachtman et al. [3] measured the Young’s modulus of aluminium
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oxide over the temperature range 350–1123K in 1961, and gave the phenomeno-
logical model of the temperature (T) dependence of the modulus E as:

EðT Þ ¼ E0 � AT exp �
T0

T

� �
ð1Þ

where E0 is the modulus at 0K; A and T0 are constants [3]. Several years later,
Anderson [4] derived an equation of the temperature-dependent bulk modulus based
on the Grüneisen theory [4]:

EðT Þ ¼ E0 �
��

V
3RTH

�

T

� �
¼ E0 �

��

V

Z T

0

CVdT ð2Þ

where � is the Grüneisen parameters, � is the Anderson–Grüneisen parameter, V is
the volume, R is the ideal gas constant, � is the Debye temperature, CV is the specific
heat, and HðxÞ ¼ 3

x3

R x
0

x3

ex�1 dx. Equation (2) indicates that the temperature effect on
the modulus is related to the temperature integral of the specific heat, i.e. the
cohesive energy. Following this idea, the temperature effects on the elasticity and
vibration frequency of Si, Ge and diamond were also calculated based on the bond-
order-length-strength model [5]. Molecular dynamics simulations and first principle
calculations were also carried out to study the temperature effect on the elasticity of
some metals and compounds [6–8].

However, the above models may not be suitable for thin films and nanocrystals.
Studies have shown that nanomaterials possess different physical, chemical and
mechanical properties compared to the corresponding bulk materials; especially for
thin films and nanocrystals with a length-scale smaller than 10–20 nm, the effective
elastic modulus is obviously size-dependent [9–12]. So what about the temperature
effect of thin films and nanocrystals? Recently, molecular dynamics simulations [13]
and semi-continuum method calculations [14] for Si thin films have been
performed, and the temperature effect on the modulus of Pd nanocrystals was also
measured [15]. A general theoretical model is desirable to describe the temperature
effect on the elastic modulus of thin films and nanocrystals and to understand the
underlying mechanism.

In this paper, an analytical equation for the temperature-dependent elastic
modulus of thin films and nanocrystals is established based on the intrinsic relation
between the modulus, the cohesive energy and bond length by considering the size
effects of the cohesive energy and the thermal expansion coefficient of the thin films
and nanocrystals. Furthermore, the elastic modulus of Cu thin films with different
thickness at a series of temperatures was simulated by the molecular dynamics
method. The theoretical predictions based on the model are in agreement with the
results of the computational simulations, the semi-continuum calculations and the
experimental measurements for Si, Cu thin films and Pd nanocrystals.

2. Theoretical model

It is known that the Young’s modulus E is related to the force constant k [16]:

E ¼
k

h
ð3Þ
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where h is the atomic distance in equilibrium or the bond length; the force constant

k ¼ d2uðrÞ
dr2

���
r¼h

, where u(r) denotes the interatomic potential, is a function of the atomic

distance r. Therefore, the Young’s modulus is inherently related to the atomic

interaction energy and the atomic distance. Let the interatomic potential of an ideal

crystal be uðrÞ ¼ pq
p�q e ð

h
rÞ
p 1
p� ð

h
rÞ
q 1
q

h i
, where e is the atomic binding energy or the

bond energy, the coefficients p and q are the parameters reflecting the shapes of the

potential curves (when p ¼ 12 and q ¼ 6, the potential is the Lennard–Jones (L-J)

potential) [17]. Therefore, k ¼ pqe=h2, combining with Equation (3), E ¼ c1e=h
3,

where c1 ¼ pq is a constant for the crystal. The equation indicates that the elastic

modulus is dependent on the bond length and the bond energy of crystals. Note that,

for metals and ceramics, the EAM potential and the Morse potential is more

appropriate, respectively, but the intrinsic relations between the force constant, the

elastic modulus, and the bond energy and bond length are the same as in the simple

L-J potential. The comparison between our model predictions for the size-dependent

elastic modulus of some metals based on the ideal crystal potential [18] and the

molecular dynamics simulations based on the EAM potential [9] also shows

consistency, since the size effect is only related to the relative change in physical

quantities compared to the corresponding bulk references.
The bond energy is related to the cohesive energy of crystals and the coordination

number of atoms. Let the coordination number of an atom in the bulk crystals

be Z, the corresponding cohesive energy of one molar single crystal U ¼ ðZN0Þe=2
for the bulk materials, where N0 is the Avogadro constant, i.e. e ¼ 2U=ðZN0Þ.

Therefore,

E ¼ c2
U

h3
ð4Þ

where c2 ¼ 2c1=ðZN0Þ is a constant independent of temperature. Equation (4)

indicates that the temperature effect on the elastic modulus is related to the

temperature effects of the cohesive energy and bond length, i.e. EðTÞ ¼ c2UðTÞ=h
3ðT Þ

with the temperature-dependent elastic modulus E(T), the cohesive energy U(T) and

the bond length h(T ). Therefore:

E Tð Þ

E0
¼

U Tð Þ

U0

h0
h Tð Þ

� �3
ð5Þ

where E0, U0 and h0 are the elastic modulus, the cohesive energy and the bond length

at 0K, respectively. Considering the thermal expansion effect and the binding energy

weakening with increasing temperature T:

U Tð Þ ¼ U0 �

Z T

0

CVdT ð6Þ

h Tð Þ ¼ h0 1þ

Z T

0

�dT

� �
, ð7Þ
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where � is the thermal expansion coefficient [5]. Therefore:

E Tð Þ

E0
¼

1�

R T

0
CVdT

U0

1þ
R T
0 �dT

h i3 ¼
1� CVT

U0

1þ �Tð Þ
3
: ð8Þ

Equation (8) indicates that the temperature-dependent elastic modulus E(T ) can

be obtained by the cohesive energy at 0K, the specific heat and the thermal

expansion coefficient. Note that the specific heat and the thermal expansion

coefficient themselves are also functions of the temperature.; when T4�, the

specific heat is a constant approximately, and considering that the thermal expansion

coefficient is normally in the range of 10�6, the temperature effects of � and CV is

neglected at room or higher temperature.
For thin films and nanocrystals, assuming that Equation (8) is still valid, the

cohesive energy U0 and the thermal expansion coefficient � are size-dependent.

The cohesive energy and the melting latent heat are both related to the thermal

stability of the crystals. Recently, a physical model of the size-dependent melting

latent heat (melting enthalpy) Hm(D) has been established [19]:

Hm Dð Þ

Hm Bð Þ
¼ 1�

1

D=Dm � 1

� �
exp
�2Sm

3R

1

D=Dm � 1

� �
:

It is a product of the size-dependent melting temperature (the exponent term) and the

melting entropy, where D denotes the thickness of thin films or the diameter of the

nanoparticles, B represents the corresponding bulk, Hm(B) is the bulk melting

enthalpy, Dm is the critical size of the solid–liquid transition, and Sm is the bulk

melting entropy. The Hm(D) function as a general function for the size dependence

of the phase transition heat is suitable for all kinds of the first-order phase transitions

[20]. Therefore, the size-dependent cohesive energy (approximately equal to the

sublimation heat) can be obtained as:

U0 Dð Þ ¼ U0 Bð Þ 1�
1

D=Dc � 1

� �
exp �

2Sc

3R

1

D=Dc � 1

� �
ð9Þ

where U0(B) is the bulk cohesive energy, Dc ¼ h0ðBÞ=2 is the critical size of the

solid–vapour transition with the bulk atomic diameter h0(B), Sc ¼ U0ðBÞ=Tc is the

bulk sublimation entropy of the solid–vapour transition with the boiling temperature

Tc. When D ¼ 2Dc ¼ h0ðBÞ, U0ðDÞ ¼ 0, which is reasonable since the structures

of the solid and the vapour are indistinguishable for an atom. When D�Dc,

U0ðDÞ !U0ðBÞ.
According to the Lindemann model and the Grüneisen theory, the thermal

expansion coefficient is related to the Debye temperature � [21], � ¼
c3

�2V2=3M
, where c3

is a constant, V is the molar volume, M is the atomic weight compared to C12 [22],

� ¼ c4

ffiffiffiffiffiffiffiffiffiffiffi
Tm

M0V2=3

q
with a constant c4, the melting temperature Tm and the molecular

mass M0 [23], therefore, � / 1=Tm. The size-dependent melting temperature

function Tm(D) is the exponent term in the Hm(D) function as mentioned above,
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i.e. TmðDÞ
TmðBÞ
¼ exp �2Sv

3R
1

D=Dm�1

� 	
with the bulk melting temperature Tm(B) and the

vibration part of the melting entropy Sv [19]; therefore:

� Dð Þ ¼ � Bð Þ exp
2Sv

3R

1

D=Dm � 1

� �
, ð10Þ

where the critical size Dm is, respectively, 2h0(B) and 6h0(B) for thin films
and nanoparticles [19]. For metals, Sv ¼ Sm ¼ HmðBÞ=TmðBÞ, for semiconductors,
Sv ¼ Sm � R approximately [24]. Substituting Equations (9) and (10) into Equation
(8), the temperature effect on the elastic modulus of thin films and nanocrystals can
be predicted.

Note that the referred elastic modulus E0 in Equation (8) is also size-dependent
for thin films and nanocrystals, according to Equation (4):

E0 Dð Þ

E0 Bð Þ
¼

Z Bð Þ

Z Dð Þ

U0 Dð Þ

U0ðBÞ

h0 Bð Þ

h0 Dð Þ

� �3
ð11Þ

where the change in the coordinate number of atoms in nanosystems caused by the
effect of surface broken bonding is considered since the surface–volume ratio is
larger for thin films and nanocrystals, ZðDÞ ¼ n½ZðBÞ �m� þ ð1� nÞZðBÞ denotes the
coordinate number of atoms of thin films and nanocrystals, where n ¼ Dm=D
represents the ratio of atomic number on the surface to that in the volume, m is the
broken bonding number of atoms on the surface, Z(B) denotes the coordinate
number of atoms of the corresponding bulk crystals. The size-dependent cohesive
energy can be obtained in terms of Equation (9). The size-dependent bond length can
be obtained by the size-dependent intrinsic lattice strain " of nanocrystals [25].
According to the Laplace–Young equation and the thermodynamic definition of the

surface stress, " ¼ h0ðDÞ�h0ðBÞ
h0ðBÞ

¼ �
f
3D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dmh0ðBÞSvHmðBÞ= KVRð Þ

p
, where the K is the

bulk modulus of the crystals, f is 1 and 2 for nanocrystals with grain boundaries
and single crystal thin films, respectively, the negative denotes the lattice contraction,
the positive denotes the lattice expansion [25]. Therefore, the size-dependent bond
length is:

h0 Bð Þ

h0 Dð Þ
¼

1

1� f
3D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dmh0 Bð ÞSvHm Bð Þ= KVRð Þ

p : ð12Þ

Substituting Equations (9) and (12) into Equation (11), the size-dependent referred
elastic modulus can be obtained.

3. Molecular dynamics simulations

The molecular dynamics (MD) simulations of the biaxial tension of Cu thin films
at different temperatures were carried out to validate the temperature effect on the
elastic modulus. The structures of Cu thin films with a thickness of 12 and 2.2 nm
were established with x, y and z being the [100], [010] and [001] directions,
respectively; the periodic boundary condition is set in the x and y directions, and
the z direction is free. The embedded atom method (EAM) potential was used [26].

578 L. Liang et al.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 2

2:
49

 0
3 

M
ar

ch
 2

01
3 



The displacement load was applied; equal strains were applied in the x and y
directions. The Virial stress was taken in the stress calculation. The simulations were
performed at the several temperatures in range 300–800K; the stress–strain curves
and thus the biaxial modulus were obtained at the different temperatures.

4. Results and discussion

The simulation results for Cu thin films, previous MD simulations [13] and the
calculations based on the semi-continuum method [14] for Si thin films, plus
the experimental measurements for Pd nanocrystals [15] were all compared to the
theoretical predictions based on our model. Figures 1–3 show the temperature-
dependent elastic modulus of Si and Cu thin films and Pd nanocrystals. It can be seen
that the modulus decreases with increasing temperature, and the rate of the decrease
increases with decreasing thickness of the thin films (Figures 1 and 2). The model’s

Figure 1. Temperature-dependent Young’s modulus of Si thin films. The lines are predictions
based on Equation (8). The symbols are the results of MD simulations (circles: 2.2 nm
thickness [13]) and calculations based on the semi-continuum method (squares: 10.9 nm [14]).

Figure 2. Temperature-dependent biaxial modulus of Cu thin films. The lines are predictions
based on Equation (8). Circles (12 nm) and forks (2.2 nm) are the results of our MD
simulations.
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predictions based on Equation (8) with related parameters [27–30] in Table 1 are
in agreement with the results of the MD simulations performed by ourselves and
another group [13], the calculation based on the semi-continuum approach [14] and
experimental observations [15]. Figures 4 and 5 show the thickness-dependent
Young’s modulus of Si and Cu thin films. The modulus changes nonlinearly
with reducing thickness and the predictions based on Equation (11) are also
consistent with the results of the MD simulations [13] and the calculation based on
the continuum mechanics combined with consideration of the surface effect [31].
Figure 5 also shows that the modulus of nanocrystalline Cu decreases with reducing
grain diameters; the model’s prediction also agrees with the MD simulation results
[10]. The size effect of the elastic modulus does not appear to follow the Hall–Petch
relation, as with flow stress and the hardness of nanocrystals, which may be
attributed to a different physical mechanism between elasticity and plasticity.

The model indicates that the temperature and size effects on the elastic modulus
of thin films and nanocrystals are associated, since they are both intrinsically related

Figure 3. Temperature-dependent bulk modulus of Pd nanocrystals. The line is the prediction
based on Equation (8). Triangles are the results of experimental observations (4100K)
considering the effect of density and adulterant [15].

Table 1. Related parameters in Equations (8)–(12).

Si Cu Pd

h0(B) (nm) [27] 0.3368 0.2826 0.304
U0(B) (kJmol�1) [28] 446 336 376
Tc (K) [29] 3540 2836 3237

Sc (Jmol�1K�1) 125.989 118.477 116.157
Hm(B) (kJmol�1) [29] 50.55 13.05 17.6
Tm(B) (K) [29] 1685 1357.6 1825
Sv (Jmol�1K�1) 21.686 9.613 9.644
�(B) (10�6K�1) [29] 4.2 16.5 11.2
CV (Jmol�1K�1) [29] 20 24.435 25.98
K (GPa) [30] 235.4 137.8 187
V (cm3mol) [29] 12.1 7.1 8.9
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to the cohesive energy and bond length. The thermal expansion coefficient increases
and the cohesive energy decreases with reducing thickness of the thin films in terms
of Equations (10) and (9), respectively; therefore, according to Equation (8), the rate
of decrease in the elastic modulus of thinner films increases as temperature increases,
compared to that of thicker films (Figures 1 and 2). The trend is the same for
nanocrystals. Experimental observations have also proved that the decrease in the
modulus of the Al film with a grain size of 65 nm is clearly faster than that of bulk
Al with a grain size of 300 mm with increasing temperature [32].

Note that the model is related to some thermodynamic material parameters,
such as cohesive energy, specific heat, melting entropy, etc., which reflect the intrinsic

Figure 5. Thickness (diameter)-dependent Young’s modulus of Cu thin films and nanocrys-
tals. The lines are predictions based on Equation (11) with E0(B)¼ 137.8GPa [30], Z(B)¼ 12,
and m¼ 4, f¼ 1 and 2, respectively, for nanocrystals and thin films in Equation (12) and the
negative is taken considering the lattice contraction [31]. Circles and squares are the calculated
results based on continuum mechanics for thin films (h100i direction) [31] and MD simulations
for nanocrystals [10].

Figure 4. Thickness-dependent Young’s modulus of Si thin films. The line is the prediction
based on Equation (11) with E0(B)¼ 113GPa [30], Z(B)¼ 16, and m¼ 6, f¼ 2 in Equation
(12) and the positive is taken considering the lattice expansion [13]. Circles are the results
of MD simulations (h100i direction) [13].
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correlation of elasticity and those thermodynamic quantities, although the quantities
may be difficult to obtain for some complex compounds. The model gives a general
understanding of the intrinsic physical correlation between the elastic modulus, the
cohesive energy and the bond length, despite the chemical bonding type and
configuration of solids, since the model is established based on the corresponding
reference state and predicts the relative change in the modulus compared to the
corresponding bulk value at the referred temperature.

At the lower temperature, Equation (8) can be rearranged as EðT Þ ¼
E0 � ðE0=U0Þ

R T
0 CVdT, when the denominator is neglected considering the smaller

value of the thermal expansion coefficient, which is consistent with the Anderson
expression in Equation (2) and E0/U0 can give the value of the adjusting parameter
��/V. At the higher temperature, the term exp(�T0/T ) equals (1�T0/T ) approxi-
mately; thus the Wachtman expression in Equation (1) can be rearranged as
EðT Þ ¼ ðE0 þ AT0Þ � AT approximately, which is also consistent with our expres-
sion, and the parameters A ¼ E0

U0

CV

ð1þ�TÞ3
and T0 ¼ ðU0=CVÞ½1� ð1þ �T Þ

3
� can be

obtained according to Equation (8). When the temperature is very low (T5�),
EðTÞ ! E0 and the E�T curve shows a plateau, which agrees with previous results
[3–5]. Note that the change in the elastic modulus at the low temperature is
intrinsically non-linear owing to the Debye approximation nature and the T3

approximation of the specific heat, although not shown in Figures 1–3. The slope of
the linear part of the E�T curve is inversely proportional to the atomic cohesive
energy U0. It is also reasonable, corresponding to the above discussion, that the slope
of a smaller sample is greater than that of a larger one, because the cohesive energy
drops with deceasing size and the effect of the thermal expansion coefficient is weak.

5. Conclusion

An analytical theoretical model, without any adjustable parameters, for the
temperature-dependent elastic modulus of thin films and nanocrystals is developed
based on the physical definition of the modulus considering the size effects of the
cohesive energy and the thermal expansion coefficient. The temperature dependence
of the elastic modulus of Cu thin films is further simulated by the MD method.
The results show that the elastic modulus decreases with increasing temperature, and
the rate of the decrease increases with reducing thickness of thin films. The model is
a general formation of the Anderson equation and the Watchmen expression. The
theoretical predictions are in agreement with the results of the MD simulations,
calculations based on continuum mechanics and experimental observations for Cu,
Si thin films and Pd nanocrystals. The theory reveals that the temperature and size
effects of elasticity are closely related for thin films or nanocrystals. The model will
be valuable guide to the design and applications of thin films and nanoscale devices
in finite temperature environments.
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