
Research Article
A Novel SHLNN Based Robust Control and Tracking Method for
Hypersonic Vehicle under Parameter Uncertainty

Chuanfeng Li,1,2 Hao Wu,3 Zhile Yang,4 Yongji Wang,5 and Zeyu Sun1

1School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
2School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast BT9 5AH, UK
3Beijing Aerospace Automation Control Institute, Beijing 100854, China
4Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
5School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Correspondence should be addressed to Zhile Yang; zyang07@qub.ac.uk

Received 6 July 2017; Accepted 11 September 2017; Published 17 October 2017

Academic Editor: Guang Li

Copyright © 2017 Chuanfeng Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hypersonic vehicle is a typical parameter uncertain system with significant characteristics of strong coupling, nonlinearity, and
external disturbance. In this paper, a combined system modeling approach is proposed to approximate the actual vehicle system.
The state feedback control strategy is adopted based on the robust guaranteed cost control (RGCC) theory, where the Lyapunov
function is applied to get control law for nonlinear system and the problem is transformed into a feasible solution by linear matrix
inequalities (LMI) method. In addition, a nonfragile guaranteed cost controller solved by LMI optimization approach is employed
to the linear error system, where a single hidden layer neural network (SHLNN) is employed as an additive gain compensator to
reduce excessive performance caused by perturbations and uncertainties. Simulation results show the stability and well tracking
performance for the proposed strategy in controlling the vehicle system.

1. Introduction

The long-distance unpowered glide reentry vehicle is an
important hypersonic vehicle which has been of significant
aerodynamic configuration with high lift-to-drag ratio. It can
reach the target after long-distance gliding and fulfill a throw-
ing mission through reentering from orbit or suborbit. Given
strong ability to fulfill high-speed remote precision attack and
power projection, this vehicle is of great implication function
for strategic planning. However, the vehicle is a complex
nonlinear object, and how to design the control strategy to
ensure the stability of vehicle system has become a crucial
topic [1–6].

Conventional technologies are majorly based on per-
forming time-domain simulation and relied heavily on the
results of human experience. Since the birth of modern
control theory in the 1950s, control theory develops rapidly
and has been successfully adopted in the aerospace applica-
tion in the 1960s [7, 8]. In the recent few decades, robust
control has gained remarkable attentions due to the well

adaptation ability in dealing with objects in uncertain and
noisy environment [9–13]. With the maturation of robust
control theory, Kharitonov interval theory, 𝐻∞ control
theory, and structural singular value theory (𝜇 theory) have
been widely used in aircraft controller design and trajectory
tracking. For instance, the refinement of the existing method
by considering 16 segment plants instead of 16 Kharitonov
plants provides an efficient tool for designing all robustly
stabilizing PID controllers for an interval system [14]. An𝐻∞ method for designing reduced-order output-feedback
controllers for linear time-invariant retarded systems was
introduced to achieve a minimum bound on the 𝐻-infinity
performance level [15]. The clearance of flight control law for
a hypersonic gliding vehicle (HGV) and two linear clearance
criteria based on structural singular value (𝜇) theory were
proposed in [16]. However, since the aircraft is a nonlinear
system, of which the mathematical model has parametric
uncertainties, it is straightforward to deviate from the actual
control by using direct linearization method.
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Assume that the system is in instantaneous equilibrium,
basic formula of linearized equations is then applied, and
small deviation model of simplified equations is achieved
[17]. In order to consider the effects of nonlinearity on the
system, the article [18] shows the identifiability of a nonlinear
delayed-differential model describing aircraft dynamics. In
order to reduce the impact of model parameters perturbation
on the system, a mixed𝐻2/𝐻∞ control was proposed using
fuzzy singularly perturbed model with multiple perturbation
parameters [19]. A new strategy for missile attitude control
using a hybridization of Linear Quadratic Gaussian (LQG),
LoopTransfer Recovery (LTR), and LinearQuadratic Integral
(LQI) control techniques was established [20]. However, it
will result in relatively conservative results and will under-
mine the performance robustness of the system, due to the
robust LQG control to maintain the minimum performance
index. Guaranteed cost control (GCC) on uncertainty system
is an effective method to solve the flaws of LQG design
[21].

TheGCCmethod canmaintain the stability of the closed-
loop system particularly when the controlled object has
significant uncertainty. Meanwhile, it also ensures that the
secondary performance index does not exceed the upper
bound. A typical application of GCC method for a flexible
air-breathing hypersonic vehicle (FAHV) can be found in
[22]. In [23], the tracking GCC law was presented combined
with the decoupling control to accommodate the parameter
uncertainties without coupling. AmodifiedGCC strategy has
also been established for discrete-time uncertain systems
with both state and input delays [24]. A robust guaranteed
cost controller was proposed for quadrotor UAV system with
uncertainties to address set-point tracking problem [25].
In order to eliminate disturbance effects and guarantee the
robust stability of a quadrotor helicopter with state delay,
improved guaranteed cost control and quantum adaptive
control were developed [26]. A neural network (NN) based
approximate optimal GCC design was developed to find a
robust state feedback controller such that the closed-loop
system has not only a bounded response in a finite duration
of time for all admissible uncertainties but also a minimal
guaranteed cost [27].

However, in order to obtain stronger robustness, robust
control gains might be sensitive or fragile with respect to
some errors or variations in control gains of feedback con-
trol. Therefore, a concept of nonfragile control strategy has
been proposed, which gives a state feedback controller with
enough regulating margin when control gains are variated.
In [28], a synchronization problem for complex dynamical
networks with additive time-varying coupling delays via non-
fragile control was investigated. It has also been concerned
with a problem of nonfragile robust optimal guaranteed cost
control for a class of uncertain two-dimensional discrete
state-delayed systems and the state feedback controllers are
designed [29]. Robust nonfragile control of uncertain linear
system and application to vehicle active suspension were
described in [30]. In [31, 32], nonfragile guaranteed cost
control of parametric uncertain systems was studied and the
guaranteed cost nonfragile tracking control on the omnidi-
rectional rehabilitative training walker was examined.

Though numerous researchmethods have been proposed
in robust controller design, very limited work has been fo-
cused on the application of the hypersonic vehicles. Aiming at
the complex hypersonic vehicle nonlinear system, small devi-
ation linear equations are widely used in numerical analysis,
but itmay lead to the reducedmodelwhich canhardly achieve
sufficient effect in the application of nonlinear system. The
controller remains to be adjusted with considerable efforts
before it can guarantee required control index. In this paper,
we for the first time propose a linear and nonlinear combi-
nation in the course of system modeling, in order to make
the expectedmodel closer to the actual system.The Lyapunov
function can be applied to get control law for nonlinear
system when it satisfies certain Lipschitz conditions, and
the problem is transformed into a feasible solution with
linear matrix inequalities (LMI) method. Besides, adaptive
SHLNN based nonfragile guaranteed cost control strategy
is utilized to design the robust controller, with equivalent
solution derived from LMI optimization approach. SHLNN
are exploited as additive gain adjustments to eliminate the
influence of results show that conservative control gains and
counteract excessive upper bound of cost function are caused
by uncertainties.

The rest of this article is organized as follows. In Section 2,
motion model of hypersonic vehicle is formulated, where
the state equations of vehicle body are established to testify
the effectiveness of the proposed RGCC method. To prove
the following theorems, several lemmas and assumptions are
described in Section 3. Section 4 demonstrates the robust
GCC law in the form of theorem under the Lipschitz condi-
tions. In Section 5, a new adaptive nonfragile robust control
strategy is presented, in which a nonfragile guaranteed cost
controller solved by LMI optimization approach is applied.
In Section 6, SHLNN controller design for nonfragile GCC
strategy is treated as an additive gain compensator to reduce
excessive performance caused by perturbations and uncer-
tainties. Finally, simulation results of robust control and
attitude tracking control are conducted and better stability
and tracking performance by the proposed strategies for
hypersonic vehicle model are gained.

2. Kinematics Model of Hypersonic Vehicle

According to the instantaneous equilibrium condition, the
small deviation model of vehicle can be obtained based on
the basic formulation of linearization equations. By analyzing
motion mechanism and flight characteristics of the hyper-
sonic vehicle, the motion equations of the vehicle body coor-
dinate system are achieved as follows:

𝛼̇ = 𝑎11𝐹𝑥1 + 𝑎12𝐹𝑦1 + 𝑎13𝜔𝑥1 + 𝑎14𝜔𝑦1 + 𝑎15𝜔𝑧1,
𝛽̇ = 𝑏11𝐹𝑥1 + 𝑏12𝐹𝑦1 + 𝑏13𝐹𝑧1 + 𝑏14𝜔𝑥1 + 𝑏15𝜔𝑦1,
𝛾̇ = 𝑐11𝜔𝑥1 + 𝑐12𝜔𝑦1 + 𝑐13𝜔𝑧1,
𝐽𝑥1 𝑑𝜔𝑥1𝑑𝑡 + (𝐽𝑧1 − 𝐽𝑦1) 𝜔𝑧1𝜔𝑦1 = 𝑀𝑥1,
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𝐽𝑦1 𝑑𝜔𝑦1𝑑𝑡 + (𝐽𝑥1 − 𝐽𝑧1) 𝜔𝑥1𝜔𝑧1 = 𝑀𝑦1,
𝐽𝑧1 𝑑𝜔𝑧1𝑑𝑡 + (𝐽𝑦1 − 𝐽𝑥1) 𝜔𝑦1𝜔𝑥1 = 𝑀𝑧1,

(1)

where 𝛼 represents attack angle, 𝛽 denotes sideslip angle,
and 𝛾 is roll angle. 𝐹𝑥1, 𝐹𝑦1, 𝐹𝑧1 represent the components
acting on missile body coordinates; 𝜔𝑥1, 𝜔𝑦1, 𝜔𝑧1 represent
the 𝜔 on 𝑥-, 𝑦-, 𝑧-axis of missile body coordinates. 𝐽𝑥1, 𝐽𝑦1,𝐽𝑧1 are vehicle’s moment of inertias relative to each axis of
vehicle body coordinate system; 𝑑𝜔𝑥1/𝑑𝑡, 𝑑𝜔𝑦1/𝑑𝑡, 𝑑𝜔𝑧1/𝑑𝑡
are components of vehicle rotation angular acceleration
vector on each axis, respectively.

In these equations, values of parameters 𝑎, 𝑏, and 𝑐 are
varied in aerodynamic model of vehicle. During the entire
flight course, dramatic environmental changes will cause
tens or even hundreds of times change of the aerodynamic
parameters, which results in significant uncertainties on the
mathematical vehicle model.

3. State Equation Description Form of
Hypersonic Vehicle

Aiming at a classical nonlinear uncertain system, the state
equation can be described as follows:

𝑥̇ (𝑡) = (𝐴1 + Δ𝐴) 𝑥 (𝑡) + (𝐵1 + Δ𝐵) 𝑢 (𝑡) + 𝑓 (𝑥, 𝑡) ,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) . (2)

𝑥(𝑡) ∈ 𝑅𝑛 represents state vector, and 𝑥(0) = 𝑥0. 𝑢(𝑡) ∈ 𝑅𝑚

is control input vector, and 𝑓(𝑥, 𝑡) ∈ 𝑅𝑛 is a nonlinear part
and is a state-related nonlinear function which meets the
global Lipschitz condition in Assumption 5. 𝐴1 and 𝐵1 are
matrices with the certain dimension. Δ𝐴 and Δ𝐵 represent
parameter uncertainties, assuming that the uncertainties are
norm-bounded, which can be expressed as follows:

[Δ𝐴 Δ𝐵] = 𝐷𝐹 (𝑡) [𝐸1 𝐸2] , (3)

where 𝐷 ∈ 𝑅𝑛×𝑟, 𝐸1 ∈ 𝑅𝑞×𝑛, 𝐸2 ∈ 𝑅𝑞×𝑚 are known real
matrices with specific dimension, which characterize the
structure of uncertainty in the system, and 𝐹(𝑡) ∈ 𝑅𝑟×𝑞 is
an unknown time-varying matrix, but norm-bounded as
follows.

Ω = {𝐹 (𝑡) | 𝐹𝑇 (𝑡) 𝐹 (𝑡) ≤ 𝐼, ∀𝑡} . (4)

The performance indicator is defined as follows.

𝐽 = ∫∞

0
[𝑥𝑇 (𝑡) 𝑄𝑥 (𝑡) + 𝑢𝑇 (𝑡) 𝑅𝑢 (𝑡)] 𝑑𝑡, (5)

where 𝑄 and 𝑅 are symmetric positive definite weighted
matrices.

Lemma 1 (see [33]). For a given symmetric matrix, 𝐹 ∈ 𝑅𝑛×𝑛

is expressed as

𝐹 = [𝐹11 𝐹12𝐹21 𝐹22] , (6)

where 𝐹11 ∈ 𝑅𝑟×𝑟, 𝐹12 ∈ 𝑅𝑟×(𝑛−𝑟), 𝐹21 ∈ 𝑅(𝑛−𝑟)×𝑟, 𝐹22 ∈𝑅(𝑛−𝑟)×(𝑛−𝑟), and the conclusions are as follows.

(1) 𝐹 < 0;
(2) 𝐹11 < 0, 𝐹22 − 𝐹𝑇12𝐹−111 𝐹12 < 0;
(3) 𝐹22 < 0, 𝐹11 − 𝐹12𝐹−122 𝐹𝑇12 < 0.

Lemma 2. For 𝜎1(𝑦) = 𝑦𝑇𝑄1𝑦 ≥ 0, assuming there is 𝑦̃ ∈ 𝑅𝑚,
where 𝜎(𝑦̃) > 0, then the equivalent forms are as follows.

(1) 𝑦 ∈ 𝑅𝑚 makes 𝜎1(𝑦) ≥ 0, 𝑦𝑇𝑄0𝑦 > 0.
(2) 𝜏 ≥ 0makes 𝑄0 − 𝜏𝑄1 > 0.

Corollary 3. When 𝑃 > 0 and all 𝜉 ̸= 0, 𝜋 satisfying 𝜋𝑇𝜋 ≤𝜉𝑇𝐶𝑇𝐶𝜉 is established.
[𝜉𝜋]

𝑇 [𝐴𝑇𝑃 + 𝑃𝐴 𝑃𝐵
𝐵𝑇𝑃 0 ][

𝜉
𝜋] < 0. (7)

When 𝜏 ≥ 0 and 𝑃 > 0, then
[𝐴𝑇𝑃 + 𝑃𝐴 + 𝜏𝐶𝑇𝐶 𝑃𝐵

𝐵𝑇𝑃 −𝜏𝐼] < 0. (8)

Lemma 4. When𝐷, 𝐸, and 𝐹(𝑡) satisfy the certain dimension
real matrices, and 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼, one can get the inequality for𝜀 > 0.

𝐷𝐹 (𝑡) 𝐸 + 𝐸𝑇𝐹𝑇 (𝑡) 𝐷𝑇 ≤ 𝜀𝐷𝐷𝑇 + 𝜀−1𝐸𝑇𝐸. (9)

Assumption 5. Nonlinear function 𝑓(𝑥, 𝑡)meets global Lips-
chitz condition, namely,

󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑡)󵄩󵄩󵄩󵄩 ≤ ‖𝐺𝑥 (𝑡)‖ ,󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑡) − 𝑓 (𝑦, 𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝐺 (𝑥 (𝑡) − 𝑦 (𝑡))󵄩󵄩󵄩󵄩 . (10)

4. Robust Guaranteed Cost Control of
Hypersonic Vehicle

Theorem 6. According to the parameter uncertain system (2),
if 𝑓(𝑥, 𝑡) = 0 and it meets the performance (5), then there
exists 𝑢(𝑡) = 𝐾𝑥(𝑡) which satisfies the sufficient and necessary
conditions for robust guaranteed cost with parameter uncertain
closed-loop system: (1) there exists an appropriate constant 𝜀 >0, which makes inequality (11) have a positive definite solution𝑃 > 0; (2) the robustness performance index of closed-loop
system meets 𝐽 ≤ tr(𝑃) at the same time.

(𝐴1 + 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾)𝑇 𝑃
+ 𝑃 (𝐴1 + 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾 < 0. (11)

Corollary 7. Given that formula (11) is satisfied, there exist𝑃 and 𝑋 which establish the existence of appropriate positive
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constant, andmatrices𝑊 and𝑋 satisfy allowable uncertainties
[34].

[[[[[[[[[
[

Π 𝜀𝐷 (𝐸1𝑋 + 𝐸2𝑊)𝑇 𝑋 𝑊𝑇

∗ −𝜀𝐼 0 0 0
∗ ∗ −𝜀𝐼 0 0
∗ ∗ ∗ −𝑄−1 0
∗ ∗ ∗ ∗ −𝑅−1

]]]]]]]]]
]

< 0, (12)

where Π = (𝐴1𝑋 + 𝐵1𝑊)𝑇 + (𝐴1𝑋 + 𝐵1𝑊). “∗” denotes the
transpose of symmetric part in equalities, and the definitions in
the following matrix are the same. Furthermore, if inequality
(12) has a solution (𝑊,𝑋), it can be described as follows:

𝑢∗ (𝑡) = 𝑊𝑋−1𝑥 (𝑡) . (13)

This denotes a RGCC law of vehicle system. The performance
indicator upper bound is

𝐽 ≤ Trace (𝑋−1) = 𝐽∗. (14)

Proof. For system (2), order 𝑓(𝑥, 𝑡) = 0, and based on
Lemma 4 and (3), inequality (11) can be transformed into

(𝐴1 + 𝐵1𝐾)𝑇 𝑃 + 𝑃 (𝐴1 + 𝐵1𝐾) + 𝜀𝑃𝐷𝐷𝑇𝑃
+ 𝜀−1 (𝐸1 + 𝐸2𝐾)𝑇 (𝐸1 + 𝐸2𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾

< 0.
(15)

For inequality (15), based on Lemma 1, the following linear
matrix inequalities can be obtained.

[[[[[[
[

Π1 (𝐸1 + 𝐸2𝐾)𝑇 𝐼 𝐾𝑇

∗ −𝜀𝐼 0 0
∗ ∗ −𝑄−1 0
∗ ∗ ∗ −𝑅−1

]]]]]]
]
< 0. (16)

For inequality (16), multiply it by diag{𝑃−1, 𝐼, 𝐼, 𝐼}, and let𝑃−1 = 𝑋, 𝐾𝑋 = 𝑊; then inequality (12) is obtained based
on Lemma 1. We introduce the equation of 𝑉(𝑥(𝑡)) =𝑥𝑇(𝑡)𝑃𝑥(𝑡); then formula (17) for uncertain closed-loop sys-
tem is obtained:

𝑉̇ (𝑥 (𝑡)) = 𝑥̇𝑇 (𝑡) 𝑃𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝑃𝑥̇ (𝑡) = 𝑥𝑇 (𝐴1

+ 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾)𝑇 𝑃𝑥 (𝑡) + 𝑥𝑇𝑃 (𝐴1 + 𝐵1𝐾
+ Δ𝐴 + Δ𝐵𝐾) 𝑥 (𝑡)
= 𝑥𝑇 [(𝐴1 + 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾)𝑇 𝑃
+ 𝑃 (𝐴1 + 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾)] 𝑥 (𝑡) .

(17)

We know fromTheorem 6 that

𝑉̇ (𝑥 (𝑡)) < −𝑥𝑇 (𝑡) (𝑄 + 𝐾𝑇𝑅𝐾)𝑥 (𝑡)
∫∞

0
𝑉̇ (𝑥 (𝑡)) 𝑑𝑡 = 𝑉 (𝑥 (∞)) − 𝑉 (𝑥 (0))

< −∫∞

0
𝑥𝑇 (𝑡) (𝑄 + 𝐾𝑇𝑅𝐾)𝑥 (𝑡) 𝑑𝑡.

(18)

On the basis of the stability condition of system, we get𝑉(𝑥(∞)) = 0; then
∫∞

0
𝑥𝑇 (𝑡) (𝑄 + 𝐾𝑇𝑅𝐾)𝑥 (𝑡) 𝑑𝑡 < 𝑉 (𝑥 (0))
= 𝑥𝑇 (0) 𝑃𝑥 (0) .

(19)

Thereupon we get in a further way

𝐽 ≤ 𝐸 {𝑉 (𝑥 (0))}Trace (𝑋−1) = 𝐽∗. (20)

Proof is over.

Theorem 8. Aiming at uncertain nonlinear system (2) as well
as index (5), if there are matrices 𝑋, 𝑌 and quantity 𝜀 > 0,𝜏 > 0, the following inequality will hold:

[[[[[[[[[[[[[[
[

Θ1 𝜏𝐼 𝜀𝐷 Θ2 𝑋𝑄 𝑊𝑇𝑅 𝑋𝐺𝑇

∗ −𝜏𝐼 0 0 0 0 0
∗ ∗ −𝜀𝐼 0 0 0 0
∗ ∗ ∗ −𝜀𝐼 0 0 0
∗ ∗ ∗ ∗ −𝑄 0 0
∗ ∗ ∗ ∗ ∗ −𝑅 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝐼

]]]]]]]]]]]]]]
]

< 0, (21)

whereΘ1 = 𝐴1𝑋+𝑋𝐴𝑇
1+𝐵1𝑊+𝑊𝑇𝐵𝑇1 ,Θ2 = (𝐸1𝑋 + 𝐸2𝑊)𝑇.

Then 𝑢 = 𝐾𝑥(𝑡) is RGCC control law of system (2), where𝐾 = 𝑊𝑋−1, and performance index is 𝐽∗ ≤ 𝑥𝑇(0)𝑋−1𝑥(0).
Proof. Considering function 𝑉(𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡), we take𝑢 = 𝐾𝑥(𝑡) into (2):

𝑉̇ (𝑥 (𝑡)) + 𝑥𝑇 (𝑡) 𝑄𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝐾𝑇𝑅𝐾𝑥 (𝑡) = 𝑥̇𝑇 (𝑡)
⋅ 𝑃𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝑃𝑥̇ (𝑡) + 𝑥𝑇 (𝑡) 𝑄𝑥 (𝑡) + 𝑥𝑇 (𝑡)
⋅ 𝐾𝑇𝑅𝐾𝑥 (𝑡) = [𝑥 (𝑡) (𝐴1 + 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾)
+ 𝑓𝑇 (𝑥, 𝑡)] 𝑃𝑥 (𝑡) + 𝑥𝑇 (𝑡)
⋅ 𝑃 [(𝐴1 + 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾) 𝑥 (𝑡) + 𝑓 (𝑥, 𝑡)]
+ 𝑥𝑇 (𝑡) 𝑄𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝐾𝑇𝑅𝐾𝑥 (𝑡) = 𝑥𝑇 (𝑡)
⋅ [(𝐴1 + 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾)𝑇 𝑃
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+ 𝑃 (𝐴1 + 𝐵1𝐾 + Δ𝐴 + Δ𝐵𝐾)] 𝑥 (𝑡) + 𝑥𝑇 (𝑡)
⋅ 𝑃𝑓 (𝑥, 𝑡) + 𝑓𝑇 (𝑥, 𝑡) 𝑃𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝑄𝑥 (𝑡)
+ 𝑥𝑇 (𝑡) 𝐾𝑇𝑅𝐾𝑥 (𝑡) .

(22)

Order 𝜁𝑇(𝑡) = [𝑥𝑇(𝑡) 𝑓𝑇(𝑥, 𝑡)]; then
𝑉̇ (𝑥 (𝑡)) + 𝑥𝑇 (𝑡) 𝑄𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝐾𝑇𝑅𝐾𝑥 (𝑡)

= 𝑧𝑇 (𝑡) (Ω 𝑃
𝑃 0) 𝑧 (𝑡) ,

(23)

whereΩ = (𝐴1 +𝐵1𝐾+Δ𝐴+Δ𝐵𝐾)𝑇𝑃+𝑃(𝐴1 +𝐵1𝐾+Δ𝐴+Δ𝐵𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾.
Based on Assumption 5 we get

𝜁𝑇 (𝑡) [−𝐺𝑇𝐺 0
0 𝐼] 𝜁 (𝑡) ≤ 0. (24)

Considering Lemma 2 and Corollary 3, when 𝜏0 > 0, we can
get

[Ω 𝑃
𝑃 0] − 𝜏0 [

−𝐺𝑇𝐺 0
0 𝐼] < 0. (25)

Then,

𝑉̇ (𝑥 (𝑡)) + 𝑥𝑇 (𝑡) 𝑄𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝐾𝑇𝑅𝐾𝑥 (𝑡) < 0. (26)

Namely,

[Ω + 𝜏0𝐺𝑇𝐺 𝑃
𝑃 −𝜏0𝐼] < 0. (27)

Multiplying diag(𝑃−1 𝐼) on inequality (27) left and right, we
have

[𝑃−1 (Ω + 𝜏0𝐺𝑇𝐺)𝑃−1 𝐼
𝐼 −𝜏0𝐼] < 0. (28)

Multiplying inequality (28) by diag(𝐼 𝜏−10 𝐼) from both sides,
we get

[𝑃−1 (Ω + 𝜏0𝐺𝑇𝐺)𝑃−1 𝜏−10 𝐼
𝜏−10 𝐼 −𝜏−10 𝐼] < 0. (29)

Order 𝑃−1 = 𝑋, 𝐾𝑋 = 𝑊, and 𝜏−10 = 𝜏, and based on
Lemma 4, we get

[Ξ 𝜏𝐼
𝜏𝐼 −𝜏𝐼] < 0, (30)

where

Ξ = 𝐴1𝑋 + 𝑋𝐴𝑇
1 + 𝐵1𝑊+𝑊𝑇𝐵𝑇1 + 𝜀1𝐷𝐷𝑇 + 𝜀2𝐷𝐷𝑇

+ 𝜀−11 (𝐸1𝑋)𝑇 (𝐸1𝑋) + 𝜀−12 (𝐸2𝑊)𝑇 (𝐸2𝑊)
+ 𝑋𝑄𝑋 +𝑊𝑇𝑅𝑊 + 𝜏−1𝑋𝐺𝑇𝐺𝑋.

(31)

Based on Lemma 1 we know that (30) and (21) are equivalent.
The proof is finished. Then from (26), we get

𝑉̇ (𝑥 (𝑡)) < −𝑥𝑇 (𝑡) (𝑄 + 𝐾𝑇𝑅𝐾)𝑥 (𝑡) < 0. (32)

Under this condition, the system is stable.
Integrating both sides of formula (32), we have

∫∞

0
𝑉̇ (𝑥 (𝑡)) 𝑑𝑡 = 𝑉 (𝑥 (∞)) − 𝑉 (𝑥 (0))

< −∫∞

0
𝑥𝑇 (𝑡) (𝑄 + 𝐾𝑇𝑅𝐾)𝑥 (𝑡) 𝑑𝑡.

(33)

According to system stability conditions, 𝑉(𝑥(∞)) = 0; then
∫∞

0
𝑥𝑇 (𝑡) (𝑄 + 𝐾𝑇𝑅𝐾)𝑥 (𝑡) 𝑑𝑡 < 𝑉 (𝑥 (0))
= 𝑥𝑇 (0) 𝑃𝑥 (0) .

(34)

That is,

𝐽∗ ≤ 𝐸 {𝑉 (𝑥 (0))} = 𝐸 {𝑥𝑇 (0) 𝑃𝑥 (0)} = tr (𝑋−1) . (35)

Theorem 9. Towards uncertain system (2) as well as perfor-
mance index (5), the following optimization problem

min
𝜀,𝜏,𝑋,𝑌,𝑀

Trace (𝑀)
[[[[[[[[[[[[[[
[

Θ1 𝜏𝐼 𝜀𝐷 Θ2 𝑋𝑄 𝑊𝑇𝑅 𝑋𝐺𝑇

∗ −𝜏𝐼 0 0 0 0 0
∗ ∗ −𝜀𝐼 0 0 0 0
∗ ∗ ∗ −𝜀𝐼 0 0 0
∗ ∗ ∗ ∗ −𝑄 0 0
∗ ∗ ∗ ∗ ∗ −𝑅 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝐼

]]]]]]]]]]]]]]
]

< 0,

[𝑀 𝐼
∗ 𝑋] > 0

(36)

has a solution (𝜀̃, 𝜏̃, 𝑋̃, 𝑊̃, 𝑀̃); then 𝑢∗(𝑡) = 𝑊̃𝑋̃−1𝑥(𝑡) will be
the optimal state feedback GCC law for such system. More free
variables were introduced into the problem above, so that the
solution to (36) was less conservative.

5. Nonfragile Guaranteed Cost Control
Containing Nonlinear Perturbation

In order to reduce the system tracking error, we suppose that
the output 𝑦𝑑𝑟 of system is constant vector which is a nonzero
constant vector, and then the error vector is 𝑒 = 𝑦(𝑡) − 𝑦𝑑𝑟 =𝑥(𝑡) − 𝑦𝑑𝑟. So the error system can be deduced such that

̇𝑒 = (𝐴1 + Δ𝐴) 𝑒 + (𝐵1 + Δ𝐵) 𝑢𝑘 + (𝐴1 + Δ𝐴) 𝑦𝑑𝑟
+ 𝑓𝐿 (𝑥, 𝑡) . (37)
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For formula (37), design controller is with guaranteed cost.
Consider that reference state input 𝑦𝑑𝑟 is bounded and
assume that nonlinear function 𝑓𝐿(𝑒, 𝜉, 𝑡) = 𝑓𝐿(𝑥(𝑡)) satisfies

𝑓𝑇
𝐿 (𝑒, 𝜉, 𝑡) 𝑓𝐿 (𝑒, 𝜉, 𝑡) ≤ 𝑒𝑇 (𝑡) 𝐺𝑇𝐺𝑒 (𝑡) , (38)

where𝐺 is a constantmatrix.Meanwhile, it satisfies𝐺𝑇𝐺 > 0.
It is clear that the regulator of system (37) is equal to

design of the tracking controller for system (2). Let 𝑢(𝑡) =𝑢𝑘𝑒 + V𝑡𝑟 = 𝐾𝑒 + V𝑡𝑟, and (37) can be expressed as

̇𝑒 = ((𝐴1 + Δ𝐴) + (𝐵1 + Δ𝐵)𝐾) 𝑒 + (𝐵1 + Δ𝐵) V𝑡𝑟
+ (𝐴1 + Δ𝐴) 𝑦𝑑𝑟 + 𝑓𝐿 (𝑒, 𝜉, 𝑡) . (39)

To realize the regulation and control of system (37), it is
requested that 0 is the balance point of this system; thus let

(𝐵1 + Δ𝐵) V𝑡𝑟 + (𝐴1 + Δ𝐴) 𝑦𝑑𝑟 + 𝑓𝐿 (𝑒, 𝜉, 𝑡) = 0. (40)

If this system is progressively stable, then 𝑢∞ is approximated
to meet formula (41).

When 𝑡 → ∞, 𝑒(𝑡) → 0, ̇𝑒(𝑡) → 0, 𝑓𝐿(𝑒, 𝜉, 𝑡) → 0,𝑢(∞) → 𝑢∞ = V𝑡𝑟, then get

(𝐵1 + Δ𝐵) 𝑢∞ + (𝐴1 + Δ𝐴) 𝑦𝑑𝑟 = 0. (41)

That is,

V𝑡𝑟 = 𝑢∞ = −𝐵1+𝐴1𝑦𝑑𝑟. (42)

Let 𝐾𝑐 = −𝐵1+𝐴1; a feedback controller with uncertainties is
given as

𝑢 (𝑡) = V𝑘 + V𝑡𝑟 = (𝐾 + Δ𝐾) 𝑒 (𝑡) + 𝐾𝑐𝑦𝑑𝑟, (43)

where 𝐾 is state feedback matrix and 𝐾𝑐 is feedforward
compensation matrix. Δ𝐾 is an uncertain matrix with corre-
sponding dimension, which is norm-bounded in assumption
and satisfies

Δ𝐾 = 𝐷𝐾𝑁𝐾 (𝑡) 𝐸𝐾, (44)

where𝐷𝐾, 𝐸𝐾 are known matrices and𝑁𝐾(𝑡) is an unknown
time-varying matrix, represents a neural network control
output, and satisfies

𝑁𝑇
𝐾 (𝑡)𝑁𝐾 (𝑡) ≤ 𝐼. (45)

Order 𝑢𝑒(𝑡) = 𝑢(𝑡) − 𝑢∞, and define quadratic performance
index as the tracking performance of system; we have

𝐽𝑒 = ∫∞

0
(𝑒𝑇 (𝑡) 𝑄𝑒 (𝑡) + 𝑢𝑒𝑇 (𝑡) 𝑅𝑢𝑒 (𝑡)) 𝑑𝑡. (46)

Definition 10. For uncertain system (37) and cost function
(46), 𝐾∗ can be defined as a nonfragile guaranteed cost
control gain matrix with the corresponding upper bound 𝐽∗
of cost function, only if there exists a controller (43) satisfying
inequality (45), which makes the closed-loop system with
systemuncertainties in (3) and nonlinear perturbation in (38)
asymptotically stable, where𝐾∗ is a constant gain matrix and𝐽∗ ≥ 𝐽 is a positive constant.

Theorem 11. For an uncertain system (37) and cost function
(46), if there exist symmetric positive definitematrices𝑃 and𝐾,
with a scalar quantity 𝜀1 > 0, satisfying the following equation

𝑀 = [
[
𝑄 + 𝐾̃𝑇𝑅𝐾̃ + Λ 1 + Λ𝑇

1 + Λ 2 𝑃
𝑃 −𝜀−11 𝐼

]
]
< 0, (47)

K is a nonfragile guaranteed cost control gain matrix and 𝐽∗ =𝑒𝑇0𝑃𝑒0 is the upper bound of cost function (46), where

Λ 1 = 𝑃 (𝐴̃ + 𝐵̃𝐾̃) ,
Λ 2 = 𝜀−11 𝐺𝑇𝐺,
𝐴̃ = 𝐴 + Δ𝐴,
𝐵̃ = 𝐵 + Δ𝐵,
𝐾̃ = 𝐾 + Δ𝐾.

(48)

Proof. Select the Lyapunov function𝑉(𝑡) = 𝑒𝑇(𝑡)𝑃𝑒(𝑡), where𝑃 is a positive definite matrix, and based on the control law
(43), the time derivative of 𝑉(𝑡) with respect to time 𝑡 yields
[35]

𝑉̇ (𝑒) = [ 𝑒 (𝑡)
𝑓𝐿 (𝑒, V, 𝑡)]

𝑇 [Λ𝑇
1 + Λ 1 𝑃
𝑃 0][

𝑒 (𝑡)
𝑓𝐿 (𝑒, V, 𝑡)] . (49)

And (37) can be transformed into

[ 𝑒 (𝑡)
𝑓𝐿 (𝑒, V, 𝑡)]

𝑇 [−𝐺𝑇𝐺 0
0 𝐼][

𝑒 (𝑡)
𝑓𝐿 (𝑒, V, 𝑡)] < 0. (50)

According to matrix inequality (47), it can be concluded that

[ 𝑒 (𝑡)
𝑓𝐿 (𝑒, V, 𝑡)]

𝑇𝑀[ 𝑒 (𝑡)
𝑓𝐿 (𝑒, V, 𝑡)] < 0. (51)

Multiply 𝜀1 and add (51) to the left side of (50); it can be
derived as 𝑉̇(𝑒) < −𝑒𝑇𝑄𝑒 − 𝑒𝑇𝐾̃𝑇𝑅𝐾̃𝑒 = −𝑒𝑇𝑄𝑒 − V𝑇𝑘𝑅V𝑘 <0. According to Lyapunov stability theory, system (37) is
asymptotically stable.

After the integration of (51) on both sides from 𝑡 = 0 to 𝑡 =∞ and equation 𝑒(∞) = 0 inferred from asymptotic stability
of the closed-loop system, it can be concluded that

𝐽 = ∫∞

0
𝑒𝑇 (𝑄 + 𝐾̃𝑇𝑅𝐾̃) 𝑒 𝑑𝑡 < 𝑉 (𝑒 (0)) − 𝑉 (𝑒 (∞))

= 𝑒0𝑇𝑃𝑒0 = 𝐽∗.
(52)

This completes the proof.

In order to carry out nonfragile guaranteed cost controller
for the system, the equivalent LMI expression of condition
(45) is given based onTheorem 12.
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Theorem 12. For given positive definite matrices 𝑃 and𝐾, the
closed-loop system (37) has a feasible solution (𝜌, 𝜀1, 𝜀2, 𝑌, 𝑋),
which guarantees the establishment of condition (47) for all
allowable uncertainty. A nonfragile state feedback controller

gain matrix 𝐾 = 𝑌𝑋−1 and an upper bound cost function𝐽̂ ≤ Trace(𝑋−1) = 𝐽̂∗ exist, if and only if there exist 𝜌, 𝜀1,𝜀2 > 0, symmetric positive definite matrix 𝑋, and real matrix𝑌, such that the following LMI holds:

[[[[[[[[[[[[[[[[[[
[

Λ + 𝜌𝐷𝐷𝑇 ∗ ∗ ∗ ∗ ∗ ∗ ∗
𝐸1𝑋 + 𝐸2𝑌 −𝜌𝐼 ∗ ∗ ∗ ∗ ∗ ∗

𝑋 0 −𝑄−1 ∗ ∗ ∗ ∗ ∗
𝑌 0 0 −𝑅−1 ∗ ∗ ∗ ∗

𝐸𝐾𝑋 0 0 0 −𝜀2𝐼 ∗ ∗ ∗
𝜀2𝐷𝑇

𝐾𝐵𝑇 𝜀2𝐷𝑇
𝐾𝐸𝑇

2 0 𝜀2𝐷𝑇
𝐾 0 −𝜀2𝐼 ∗ ∗

𝑋 0 0 0 0 0 −𝜀1 (𝐺𝑇𝐺)−1 ∗
𝜀1𝐼 0 0 0 0 0 0 −𝜀1𝐼

]]]]]]]]]]]]]]]]]]
]

< 0, (53)

whereΛ = 𝐴𝑋+𝐵𝑌+(𝐴𝑋 + 𝐵𝑌)𝑇 and ∗ is the corresponding
symmetric part of the matrix.

Proof. Following proof process of Theorem 11, we can trans-
form the existence condition (47) based on Lemmas 1 and 2
into the following expression:

[[[[[[[
[

Λ 2 + Λ 3 + Λ 4 + Λ 5 ∗ ∗ ∗
𝐸1 + 𝐸2𝐾̃ −𝜌𝐼 ∗ ∗

𝐼 0 −𝑄−1 ∗
𝐾̃ 0 0 −𝑅−1

]]]]]]]
]
< 0, (54)

where Λ 3 = 𝑃(𝐴 + 𝐵𝐾̃) + (𝐴 + 𝐵𝐾̃)𝑇𝑃, Λ 4 = 𝜌𝑃𝐷𝐷𝑇𝑃,Λ 5 = 𝜀1𝑃𝑇𝑃. Substituting (44) into left side of (54), it can be
decomposed as

𝑌1 + Σ1 + Σ𝑇1 < 0, (55)

where

𝑌1 =
[[[[[[[
[

Λ 2 + Λ 4 + 𝐺𝑇𝐺 ∗ ∗ ∗
𝐸1 + 𝐸2𝐾 −𝜌𝐼 ∗ ∗

𝐼 0 −𝑄−1 ∗
𝐾 0 0 −𝑅−1

]]]]]]]
]
,

Σ1 =
[[[[[[
[

𝑃𝐵𝐷𝐾

𝐸2𝐷𝐾0
𝐷𝐾

]]]]]]
]
𝑁𝐾 [𝐸𝐾 0 0 0] .

(56)

According to matrix inequality lemma, for all matrices 𝑁𝑘

meeting 𝑁𝑇
𝐾𝑁𝐾 ≤ 𝐼 and a scalar 𝜀2 > 0, (55) is equivalent

to

𝑌1 + 𝜀2
[[[[[
[

𝑃𝐵𝐷𝐾𝐸2𝐷𝐾0
𝐷𝐾

]]]]]
]

[[[[[
[

𝑃𝐵𝐷𝐾𝐸2𝐷𝐾0
𝐷𝐾

]]]]]
]

𝑇

+ 𝜀−12
[[[[[
[

𝐸𝑇
𝐾0
0
0

]]]]]
]

[[[[[
[

𝐸𝑇
𝐾0
0
0

]]]]]
]

𝑇

< 0.

(57)

Applying Schur complement andmultiplying each side of
(57) by diagmatrix {𝑃−1, 𝐼, 𝐼, 𝐼, 𝐼, 𝜀2𝐼, 𝐼, 𝜀1𝐼}, the linearmatrix
inequality (53) including variables 𝜌, 𝜀1, 𝜀2 and matrices 𝑌
and 𝑋 can be obtained and parametric expression of the
nonfragile guarantee cost control gain is given as 𝐾 = 𝑌𝑋−1,
where𝑋 = 𝑃−1, 𝑌 = 𝐾𝑃−1. Proof is then finished.

Theorem 13. For (37) and cost function (46), there exist an
optimal nonfragile guaranteed cost control gain matrix 𝐾∗ =𝑌∗(𝑋∗)−1 and a minimal upper bound Trace(𝑆) of the cost
function 𝐽∗, and the following optimization problem

min
𝜌,𝜀1 ,𝜀2 ,𝑌,𝑋,𝑆

Trace (𝑆) (58)

has a solution as (𝜌∗, 𝜀1∗, 𝜀2∗, 𝑌∗, 𝑋∗, 𝑆∗), satisfying both the
linear matrix inequality (53) and the following equation:

[𝑆 ∗
𝐼 𝑋] > 0. (59)

Proof. If (𝜌∗, 𝜀1∗, 𝜀2∗, 𝑌∗, 𝑋∗, 𝑆∗) is a feasible solution of (58),
it is also feasible to (53). According to Theorems 11 and 12,𝐾∗ = 𝑌∗(𝑋∗)−1 is a feasible nonfragile guaranteed cost
control gain matrix for the system. And using Lemma 1, (59)
is equivalent to 𝑆 > 𝑋−1 > 0, and the minimum of Trace(𝑆)
will ensure the minimization of Trace(𝑋−1), which is the
minimization of cost function’s upper bound.This completes
the proof.
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Figure 1: SHLNN based nonfragile robust control structure.

6. SHLNN Controller Design for Nonfragile
Guaranteed Cost Control Strategy

SHLNN controller, with multilayer architecture, is composed
of artificial neurons which simulate biologic ones. SHLNN
can achieve mapping to arbitrary nonlinear function. The
basic structure includes weighted summation, nonlinear
function map, and linear dynamic states, and the input-
output relationship is defined as follows [36, 37]:

𝑦 (𝑊,𝑉, 𝑥) = 𝑔 (𝑊𝑇𝑓 (𝑉𝑇𝑥)) . (60)

Take the output of SHLNN 𝑁𝐾(𝑡) as additive gain per-
turbation of the gain matrix 𝐾 in (37); it will eliminate the
influence of conservative nonfragile guaranteed cost control
gains by online learning mechanism. As a result, the system
error can quickly converge to zero and reduce the upper
bound of cost function finally [38]. The stability of closed-
loop system is guaranteed by Theorem 12. The cost function
of NN controller is given as

𝐸 (𝑡) = 12𝑒𝑇 (𝑡) 𝑒 (𝑡) . (61)

If 𝐸(𝑡) can be minimized by SHLNN, the tracking error𝑒(𝑡) will be reduced as small as possible correspondingly, and
better tracking performance can be achieved in the system.As
for (37), the proposed control structure is shown in Figure 1.

If 𝑁𝐾(𝑡) is used as network output, the constraint con-
dition 𝑁𝑇

𝐾(𝑡)𝑁𝐾(𝑡) ≤ 𝐼 should be satisfied, so modification
of the SHLNN structure is needed. We choose hyperbolic
tangent function 𝜎(∙) as activation function 𝑔(∙) for output
layer and keep the mapping relation 𝑓(∙) unchanged in
hidden layer, where

𝑓 (𝑧) = 𝑔 (𝑧) = 𝜎 (𝑧) = 𝑒𝑧 − 𝑒−𝑧𝑒𝑧 + 𝑒−𝑧 . (62)

Through the modification above, network outputs can be
constrained between −1 and +1 by the hyperbolic tangent
function 𝜎(∙), which satisfies𝑁𝑇

𝐾(𝑡)𝑁𝐾(𝑡) ≤ 𝐼.
Suppose Δ𝐾 can be transformed as

Δ𝐾 = [[[
[

𝐷𝐾1𝑀
𝐷𝐾𝑙

]]]
]

𝑇

𝑙×𝑚

[[[
[

𝑁𝐾1
0 0

0 𝑂 0
0 0 𝑁𝐾𝑙

]]]
]𝑙×𝑙

[[[
[

𝐸𝐾1𝑀
𝐸𝐾𝑙

]]]
]𝑙×𝑛

, (63)

where 𝑁𝐾 is a matrix of 𝑙 × 𝑙. Consider each SHLNN as an
output; partial derivative of (43) can be expressed as

𝜕𝑢 (𝑡)𝜕𝑁𝐾𝑖
(𝑡) = 𝐷𝐾𝑖

𝐸𝐾𝑖
𝑒 (𝑡) = 𝑝 (𝑡) , (𝑖 = 1, 𝐿, 𝑙) . (64)

If the system input is defined as vector𝜋, we can describe neu-
ral network equations as 𝑂𝑉 = 𝑉𝑇𝜋 and 𝑂𝑊 = 𝑊𝑇𝜎(𝑂𝑉), in
which 𝜎𝑊 and 𝜎𝑉 represent derivatives of activation function
to weighted matrices𝑊 and𝑉, respectively. According to the
chain rule of SHLNNweight, an update scheme is inferred as
follows:

𝑊̇𝑖 = 𝜅𝑊𝑖𝑒 sgn( 𝜕𝑒𝜕𝑢)𝑝 × 𝜎 × 𝜎𝑇𝑊 + 𝜆𝑖𝑊𝑖,
𝑉̇𝑖 = 𝜅𝑉𝑖𝑒 sgn( 𝜕𝑒𝜕𝑢)𝑝 × 𝜋 (𝜎𝑉 ×𝑊𝑇𝜎𝑊)𝑇 + 𝜆𝑖𝑉𝑖,

(65)

where 𝜅𝑊𝑖 and 𝜅𝑉𝑖 stand for learning rates and 𝜆𝑖 represents
the inertial coefficient, 𝑖 = 1, . . . , 𝑙.
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7. Simulation Results Analysis

7.1. State Regulating Simulation of Hypersonic Vehicle. For a
specific hypersonic vehicle system, the relevant parameters of
the system equation are given as follows.

𝐴1

=

[[[[[[[[[[[[[
[

−0.0299 1.0000 0 0 0 0
−0.6345 −0.0184 0 0 0 0

0 0 −0.0058 0.9879
−0.0063 0 0.1543

0 0 −1.0467 0 0 0
0 0 0 0 0 1.0000

−0.0009 0 56.5463 0 0 −0.0167

]]]]]]]]]]]]]
]

,

𝐵1 =
[[[[[[[[[[[
[

−0.0008 0 0
−4.3885 0 0

0 −0.0001 0.0001
0 −0.3703 1.9365
0 0 0
0 0.6356 −27.4183

]]]]]]]]]]]
]

,

𝐷 = diag (1 1 1 1 1 1) ,

𝐸1 =
[[[[[[[[[[[
[

0 0 0 0 0 0
0.0346 0.0001 0.0001 0 0 0
0 0 0 0.0001 0 0.0009

0.0001 0 0.0088 0 0 0
0 0 0.01 0 0 0

0.0012 0 0.2974 0 0 0.0001

]]]]]]]]]]]
]

,

𝐸2 =
[[[[[[[[[[[
[

0 0 0
0.0177 0 0
0 0 0
0 0.0015 0.0103
0 0 0
0 0.0025 0.1295

]]]]]]]]]]]
]

,

𝑄 = diag (20 0.1 20 0.1 20 0.1) ,
𝑅 = diag (1 1 1) .

(66)

According toTheorem 6, matrix𝐾 can be achieved.

𝐾

= [[
[
7.3272 4.1847 0.0280 0.0079 −0.0012 0.0007
0.0091 0.0005 40.3491 19.6845 −2.7003 1.0848
0.0009 0.0002 4.3130 0.9314 3.2004 1.7965

]]
]
. (67)

From the above equations, we can get the performance
index 𝐽∗ = 4.0560 through Matlab simulation. Given the
initial state vector X0 = [0.2 0.1 0.1 0.1 0.1 0.1]𝑇, the
simulation results of x(𝑡) and 𝑢(𝑡) are shown in Figures 2
and 3, respectively. From Figure 2, six response curves of

angles and angular velocities show that the regulating system
is stable and controllable, with short settling time. Through
the definition of 𝐽(𝑡) = ∫𝑡

0
[𝑥𝑇(𝜏)𝑄𝑥(𝜏) + 𝑢𝑇(𝜏)𝑅𝑢(𝜏)]𝑑𝜏, the

evolution process of 𝐽(𝑡) is shown in Figure 4, which shows
that the system has a given performance index upper bound.

7.2. Robust Tracking Control Simulation Result of Hypersonic
Vehicle. In numerical simulation, we decompose Δ𝐴 and Δ𝐵
like Section 7.1. Suppose there exists 𝐺𝑇𝐺 = 0.5𝐼 in (38) and
number of SHLNNnetwork outputs in thematrix𝑁𝐾 is three.
Furthermore, in order to guarantee the ability to counteract
system uncertainties, gain matrices𝐷𝐾 and 𝐸𝐾 are given as

𝐷𝐾 = [[
[
0.5 0 0
0 0.5 0
0 0 0.5

]]
]
,

𝐸𝐾 = [[
[
20 15 0 0 0 0
0 0 10 5 0 0
0 0 0 0 20 15

]]
]
.

(68)

So the gainmatrixK can be obtained by LMIoptimization
approach according toTheorems 12 and 13.

K

= [[
[
29.7482 22.4213 0.0166 0.0044 −0.0012 0.0004
0.0306 0.0004 74.1146 31.5391 −8.0931 −0.4972
0.0008 0.0000 3.9106 0.7396 11.1610 8.4109

]]
]
. (69)

Three SHLNN outputs are utilized to adjust gain coef-
ficients of pitch, yaw, and roll, respectively. The network
inputs are chosen as 𝜋𝛼 = [𝛼𝑐, 𝛼̇𝑐, 𝑒𝛼, 𝑢𝛼]𝑇, 𝜋𝛽 = [𝑒𝛽, 𝑢𝛽]𝑇,𝜋𝛾 = [𝛾𝑐, 𝛾̇𝑐, 𝑒𝛾, 𝑢𝛾]𝑇, with predefined network outputs 𝑁𝐾𝑖.
Moreover, learning rates in (65) are 𝜅𝑊1 = 𝜅𝑉1 = 𝜅𝑊2 =𝜅𝑉2 = 0.4, 𝜅𝑊3 = 𝜅𝑉3 = 0.2, with inertial coefficients𝜆1 = 𝜆2 = 𝜆3 = 0.1.

To test the tracking effect of the above control law,
square waves are selected as the command of pitch and
roll channels with the alterative amplitudes from 2.5∘ to 5∘
and −10∘ to 10∘ correspondingly, with time period as 20
seconds. In Figure 5, tracking performance results of GCC
method and the proposed scheme are presented, where dash
lines stand for standard GCC method results and solid lines
are the responses using nonfragile robust control strategy.
Figure 6 denotes the three channel angular velocity curves
and Figure 7 is the curves of elevator and rudder angles
in pitch, yaw, and roll channels. Figure 8 illustrates the
regulating process of the control gainmatrix𝐾+Δ𝐾 elements,
whereΔ𝐾 is adjusted by the three SHLNN outputs. As shown
above, the tracking effect of nonfragile robust control gives
a good improvement in dynamic performance and tracking
errors are apparently decreased. Therefore, the nonfragile
guaranteed cost control method, integrated with SHLNN
controller to update gain values, is effective in improving the
control performance as proposed.
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8. Conclusions

On the basis of RGCC design theory, the state feedback
control law is obtained in this paper by applying Lyapunov
function and satisfying overall Lipschitz condition. Specif-
ically, the state-related nonlinear equation is built with a
nonlinear part. The equations establishment formulates the
process for solving the solution with LMI. Furthermore,
adaptive SHLNN based nonfragile guaranteed cost control
strategy is utilized to design the robust controller, with equiv-
alent solution derived from LMI optimization approach,
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Figure 5: Tracking curves of three channel angles.

where SHLNN are exploited as additive gain adjustments
to eliminate the influence of conservative control gains and
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counteract excessive upper bound of cost function caused by
uncertainties. Finally, simulation verifications are carried out
with a specific model of hypersonic vehicle, and feasibility
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channels.

and adaptability of the proposed algorithm are demonstrated
accordingly, where the proposed method has better tracking
performance in attitude control on the vehicle.
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