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The long-periodic/infinite discrete Gabor transform (DGT) is more effective than the periodic/finite one in many applications.
In this paper, a fast and effective approach is presented to efficiently compute the Gabor analysis window for arbitrary given
synthesis window in DGT of long-periodic/infinite sequences, in which the new orthogonality constraint between analysis window
and synthesis window in DGT for long-periodic/infinite sequences is derived and proved to be equivalent to the completeness
condition of the long-periodic/infinite DGT. By using the property of delta function, the original orthogonality can be expressed
as a certain number of linear equation sets in both the critical sampling case and the oversampling case, which can be fast and
efficiently calculated by fast discrete Fourier transform (FFT).The computational complexity of the proposed approach is analyzed
and compared with that of the existing canonical algorithms.The numerical results indicate that the proposed approach is efficient
and fast for computing Gabor analysis window in both the critical sampling case and the oversampling case in comparison to
existing algorithms.

1. Introduction

The discrete Gabor transform (DGT) [1], extended from
the short-time Fourier transform (STFT), is an important
time-frequency analysis tool for processing and analyzing
the nonstationary signal [2–4], which multiplied a signal by
a time-shifted and frequency-modulated window function
with the aim of representing analyzed signals in a time-
frequency localized manner. As a general case of STFT,
DGT, sampled version of the STFT, is an efficient tool for
analyzing the energy distribution of analyzed signals in
the time-frequency domain/plane and more valuable than
Fourier transform (FT) inmany applicationswhich require to
extract temporal frequency information and localize simul-
taneously. According to the type of time-frequency atom,
the DGT can be classified into two categories: the complex-
valued discrete Gabor transform (CDGT) and the real-
valued Discrete Gabor transform (RDGT) [5–8]. The former
method for computing the DGT and its inverse transform all
involves complex operators while the latter one can utilize
discreteHartley’s cas transform (DHT) kernel, discrete cosine

transform (DCT) kernel, or discrete sine transform (DST)
kernel as the Gabor basis function which only involves real
operators. More specifically, in some real-time applications,
the CDGT ismore difficult to be implemented in hardware or
software and the RDGT for sampled speech and image has an
advantage of the computationally efficient implementation.

Over the past decades, the DGT has become a very valu-
able and widely used mathematic tool in diverse applications
[12–19] such as audio processing, speech processing, image
processing, sonar and radar signal processing, seismic signal
processing, and transient signal processing. The analyzed
signal, analysis window, and synthesis window in the periodic
DGT usually have the same periodic length, which may
confront difficulties in applying to some real-time appli-
cations of long-periodic signal sequences. To bridge these
gaps, the long-periodic DGT [9, 10, 19] of complex-valued
kernel and real-valued kernel has been presented to utilize the
short window to analyze and process the long-periodic (or
infinite) signal sequences in practical applications. Because
existing canonical algorithms [11, 20–27] are mainly used in
periodic/finite DGT and derived from Gabor frame theory,
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in this paper, a fast and effective algorithm, based on the
orthogonal analysis approach and FFT algorithm, is proposed
to obtain the analysis window for the long-periodic/infinite
DGT in both the critical sampling case and the oversampling
case.

The rest of the paper is organized as follows. In Section 2,
the long-periodic/infiniteDGTwill be reviewed. In Section 3,
a fast approach, which uses the new orthogonal constraint
relationship of the analysis window and the synthesis window
to deduce a series of independent linear equation sets,
is introduced to calculate analysis window in the long-
periodic/infinite DGT under both the critical sampling case
and the oversampling case. In Section 4, the detailed com-
parison of computational complexity of related algorithms
and numerical experiments have been given to show that
the proposed method can overcome the existing algorithms
in computing analysis window of the long-periodic/infinite
DGT. Finally, the paper is concluded with Section 5.

2. DGT for Long-Period and
Infinite Sequences

Let 𝑓[𝑘] represent a periodic and discrete-time signal with
length 𝐿 𝑠 and the length of analysis window 𝑔[𝑘] and synthe-
sis window ℎ[𝑘]. In order to use 𝑔[𝑘] and ℎ[𝑘] to analyze and
process the signal 𝑓[𝑘], the three periodic sequences 𝑓[𝑘],𝑔[𝑘], and 𝑔[𝑘] of length 𝐿0 = 𝐿+𝐿 𝑠 should be constructed as
follows:

𝑓 [𝑘] = 𝑓 [𝑘 + 𝑖𝐿0] = {{{
𝑓 [𝑘] 0 ≤ 𝑘 < 𝐿 𝑠
0 𝐿 𝑠 ≤ 𝑘 < 𝐿0, (1)

𝑔 [𝑘] = 𝑔 [𝑘 + 𝑖𝐿0] = {{{
𝑔 [𝑘] 0 ≤ 𝑘 < 𝐿
0 𝐿 𝑠 ≤ 𝑘 < 𝐿0, (2)

ℎ̂ [𝑘] = ℎ̂ [𝑘 + 𝑖𝐿0] = {{{
ℎ [𝑘] 0 ≤ 𝑘 < 𝐿 𝑠
0 𝐿 𝑠 ≤ 𝑘 < 𝐿0, (3)

where 𝑖 = 0, ±1, ±2, ±3, . . . . The DGT for long-
periodic/infinite sequences [4, 19] is defined by the following:

𝑓 [𝑘] = 𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑐 [𝑚, 𝑛] ℎ̂ [𝑘 − 𝑚𝑎] exp(𝑗2𝜋𝑛𝑘𝑁 ) , (4)

and the Gabor coefficients 𝑐[𝑚, 𝑛] can be calculated by

𝑐 [𝑚, 𝑛] = 𝐿0−1∑
𝑘=0

𝑓 [𝑘] 𝑔 [𝑘 − 𝑚𝑎] exp(−𝑗2𝜋𝑛𝑘𝑁 )
= 𝐿𝑠−1∑
𝑘=0

𝑓 [𝑘] 𝑔 [𝑘 − 𝑚𝑎] exp(−𝑗2𝜋𝑛𝑘𝑁 ) ,
(5)

where 𝑗 = √−1 is the imaginary unit. The DGT for long-
periodic/infinite sequences can be obtained by (5) corre-
sponding to its expansion in (4). In (4) and (5), 𝐿0 = 𝑀𝑎 =𝑁𝜔, let the positive integers 𝑀, 𝑁 are the sampling points

in time and frequency, and let 𝜔 and 𝑎 denote a modulation
step in frequency and a translation interval in time. For a
numerically stable reconstruction, the constrained condition
by 𝐿0 ≤ 𝑀𝑁 (or 𝐿0 ≥ 𝜔𝑎) has to be satisfied. By choosing
proper parameters 𝑎 and 𝑁, the Gabor oversampling rate𝛽 = 𝑁/𝑎 = 𝑀/𝜔 is a positive integer. The biorthogonal
relationship [4, 19] of 𝑔[𝑘] and ℎ̂[𝑘], which are derived from
the completeness condition between (4) and (5), can be
rewritten as

𝑎𝑁𝛿 [𝑚] 𝛿 [𝑛] = 𝐿0−1∑
𝑘=0

ℎ̂ [𝑘 + 𝑚𝑁] exp(−𝑗2𝜋𝑛𝑘𝑎 )𝑔 [𝑘]
= 𝐿−1∑
𝑘=0

ℎ̂ [𝑘 + 𝑚𝑁] exp(−𝑗2𝜋𝑛𝑘𝑎 )𝑔 [𝑘] ,
(6)

where 𝛿[𝑘] denotes the discrete form of delta function, 0 ≤𝑚 ≤ 𝜔, and 0 ≤ 𝑛 ≤ 𝑎.
3. FFT-Based Method for Solving
the Analysis Sequences

To derive a new type biorthogonality relationship from the
completeness between (4) and (5), substituting (5) into (4)
yields

𝑓 [𝑘] = 𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝐿0−1∑
𝑘=0

𝑓 [𝑘] 𝑔 [𝑘 − 𝑚𝑎] exp(−𝑗2𝜋𝑛𝑘𝑁 )
⋅ ℎ̂ [𝑘 − 𝑚𝑎] exp(𝑗2𝜋𝑛𝑘𝑁 )

= 𝐿0−1∑
𝑘=0

𝑓 [𝑘]𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

ℎ̂ [𝑘 − 𝑚𝑎] 𝑔 [𝑘 − 𝑚𝑎]

⋅ exp(𝑗2𝜋𝑛𝑘𝑁 ) exp(−𝑗2𝜋𝑛𝑘𝑁 )
= 𝐿0−1∑
𝑘=0

𝑓 [𝑘]𝑀−1∑
𝑚=0

ℎ̂ [𝑘 − 𝑚𝑎] 𝑔 [𝑘 − 𝑚𝑎]

⋅ 𝑁−1∑
𝑛=0

exp(𝑗2𝜋𝑛𝑘𝑁 ) exp(−𝑗2𝜋𝑛𝑘𝑁 ) ,

(7)

recalling

𝑁−1∑
𝑛=0

exp(𝑗2𝜋𝑛𝑘𝑁 ) ⋅ exp(−𝑗2𝜋𝑛𝑘𝑁 )

= 𝑁−1∑
𝑛=0

exp(𝑗2𝜋𝑛 (𝑘 − 𝑘)
𝑁 )

= 𝑁𝜔−1∑
𝑚=0

𝛿 [𝑘 − 𝑘 − 𝑚𝑁] ,
(8)
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and putting (8) into (7) leads to

𝑓 [𝑘] = 𝑁 ⋅ 𝐿0−1∑
𝑘=0

𝑓 [𝑘]𝑀−1∑
𝑚=0

ℎ̂ [𝑘 − 𝑚𝑎] 𝑔 [𝑘 − 𝑚𝑎]

⋅ 𝜔−1∑
𝑚=0

𝛿 [𝑘 − 𝑘 − 𝑚𝑁] = 𝑁

⋅ 𝐿0−1∑
𝑘=0

(𝑀−1∑
𝑢=0

ℎ̂ [𝑘 + 𝑢𝑎] 𝑔 [𝑘 + 𝑢𝑎]

⋅ 𝜔−1∑
𝑚=0

𝛿 [𝑘 − 𝑘 − 𝑚𝑁])𝑓 [𝑘] .

(9)

According to the completeness of the transform, the follow-
ing constraint relationship has to be satisfied:

𝛿 [𝑘 − 𝑘] = 𝑁 ⋅ 𝑀−1∑
𝑢=0

ℎ̂ [𝑘 + 𝑢𝑎] 𝑔 [𝑘 + 𝑢𝑎]
⋅ 𝜔−1∑
𝑚=0

𝛿 [𝑘 − 𝑘 − 𝑚𝑁] ,
(10)

so

𝑁 ⋅ 𝑀−1∑
𝑢=0

ℎ̂ [𝑘 + 𝑢𝑎] 𝑔 [𝑘 + 𝑢𝑎]

= {{{
1, 𝑘 = 𝑘
0, 𝑘 ̸= 𝑘, (𝑘 − 𝑘) mod 𝑁 = 0.

(11)

Equation (11) can be expressed as a equivalent form in the
following:

𝛿 [𝑚] = 𝑁 ⋅ 𝑀−1∑
𝑢=0

ℎ̂ [𝑘 + 𝑚𝑁 + 𝑢𝑎] 𝑔 [𝑘 + 𝑢𝑎] , (12)

where 0 ≤ 𝑚 < 𝜔 and 0 ≤ 𝑘 < 𝐿0. Let 𝑘 = 𝑞 + 𝑝𝑎, 0 ≤ 𝑝 ≤𝑀 − 1, and 0 ≤ 𝑞 ≤ 𝑎 − 1; then (12) can be written as

𝛿 [𝑚] = 𝑁𝑀−1∑
𝑢=0

ℎ̂ [𝑞 + 𝑝𝑎 + 𝑚𝑁 + 𝑢𝑎] 𝑔 [𝑞 + 𝑝𝑎 + 𝑢𝑎]
= 𝑁𝑀+𝑝−1∑

𝑢=𝑝

ℎ̂ [𝑞 + 𝑚𝑁 + 𝑢𝑎] 𝑔 [𝑞 + 𝑢𝑎]

= 𝑁(𝑀−1∑
𝑢=𝑝

ℎ̂ [𝑞 + 𝑚𝑁 + 𝑢𝑎] 𝑔 [𝑞 + 𝑢𝑎]

+ 𝑀+𝑝−1∑
𝑢=𝑀

ℎ̂ [𝑞 + 𝑚𝑁 + 𝑢𝑎] 𝑔 [𝑞 + 𝑢𝑎])

= 𝑁(𝑀−1∑
𝑢=𝑝

ℎ̂ [𝑞 + 𝑚𝑁 + 𝑢𝑎] 𝑔 [𝑞 + 𝑢𝑎]

+ 𝑝−1∑
𝑢=0

ℎ̂ [𝑞 + 𝑚𝑁 + 𝑢𝑎] 𝑔 [𝑞 + 𝑢𝑎])
= 𝑁𝑀−1∑
𝑢=0

ℎ̂ [𝑞 + 𝑚𝑁 + 𝑢𝑎] 𝑔 [𝑞 + 𝑢𝑎] .
(13)

Obviously, (13) can be rewritten in matrix form as follows:

𝑁
[[[[[[[
[

Ĥ(0) 0 ⋅ ⋅ ⋅ 0
0 Ĥ(0) ⋅ ⋅ ⋅ 0... ... d

...
0 0 ⋅ ⋅ ⋅ Ĥ(𝑎−1)

]]]]]]]
]

[[[[[[[
[

ĝ(0)

ĝ(1)...
ĝ(𝑎−1)

]]]]]]]
]

=
[[[[[[
[

ê
ê...
ê

]]]]]]
]

, (14)

where ê = [1, 0, . . . , 0]T is an 𝜔-long unit vector with first
element being one and others being zeros; ĝ(𝑞) is a 𝑀-long
vector composed by

ĝ(𝑞) = [𝑔 [𝑞] , 𝑔 [𝑞 + 𝑎] , . . . , 𝑔 [𝑞 + (𝑀 − 1) 𝑎]]T , (15)

and Ĥ(𝑞) is a 𝜔 × 𝑀matrix constructed by

Ĥ(𝑞) =
[[[[[[[[
[

ℎ̂(𝑞)0,0 ℎ̂(𝑞)0,1 ⋅ ⋅ ⋅ ℎ̂(𝑞)0,𝑀−1
ℎ̂(𝑞)1,0 ℎ̂(𝑞)1,1 ⋅ ⋅ ⋅ ℎ̂(𝑞)1,𝑀−1... ... d

...
ℎ̂(𝑞)𝜔−1,0 ℎ̂(𝑞)𝜔−1,1 ⋅ ⋅ ⋅ ℎ̂(𝑞)𝜔−1,𝑀−1

]]]]]]]]
]

, (16)

where ℎ̂(𝑞)𝑢,V = ℎ̂[𝑞 + 𝑢𝑁 + V𝑎], 0 ≤ 𝑢 < 𝜔, and 0 ≤ V <𝑀. Equation (14) can be split into 𝑎 unrelated linear equation
sets:

𝑁 ⋅ Ĥ(𝑞)ĝ(𝑞) = ê 0 ≤ 𝑞 ≤ 𝑎 − 1. (17)

Due to the fact that most of elements in ℎ̂[𝑘] and 𝑔[𝑘] were
zeros according to (2) and (3), let Δ𝜔, Δ𝑀 be the positive
integer constrained by 𝐿 = Δ𝜔𝑁 = Δ𝑀𝑎: (15) and (16) are
rewritten as follows:

ĝ(𝑞) =

[[[[[[[[[[[[[[[[
[

𝑔 (𝑞)
𝑔 (𝑞 + 𝑎)...

𝑔 (𝑞 + (Δ𝑀 − 1) 𝑎)
0...
0

]]]]]]]]]]]]]]]]
]

= [g(𝑞)
0

] ,
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Ĥ(𝑞) =

[[[[[[[[[[[[[[[[[
[

ℎ(𝑞)0,0 ⋅ ⋅ ⋅ ℎ(𝑞)0,Δ𝑀−1 0 ⋅ ⋅ ⋅ 0
ℎ(𝑞)1,0 ⋅ ⋅ ⋅ ℎ(𝑞)1,Δ𝑀−1 0 ⋅ ⋅ ⋅ 0... d

... ... ... ...
ℎ(𝑞)Δ𝜔−1,0 ⋅ ⋅ ⋅ ℎ(𝑞)Δ𝜔−1,Δ𝑀−1 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0... ⋅ ⋅ ⋅ ... ... ⋅ ⋅ ⋅ ...
0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]]]]]]]]]
]

= [H(𝑞) 0
0 0

] ,
(18)

where

g(𝑞) =
[[[[[[
[

𝑔 (𝑞)
𝑔 (𝑞 + 𝑎)...

𝑔 (𝑞 + (Δ𝑀 − 1) 𝑎)

]]]]]]
]

,

H(𝑞) =
[[[[[[[[
[

ℎ(𝑞)0,0 ℎ(𝑞)0,1 ⋅ ⋅ ⋅ ℎ(𝑞)0,Δ𝑀−1ℎ(𝑞)1,0 ℎ(𝑞)1,1 ⋅ ⋅ ⋅ ℎ(𝑞)1,Δ𝑀−1... ... d
...

ℎ(𝑞)Δ𝜔−1,0 ℎ(𝑞)Δ𝜔−1,1 ⋅ ⋅ ⋅ ℎ(𝑞)Δ𝜔−1,Δ𝑀−1

]]]]]]]]
]

,
(19)

ℎ(𝑞)𝑢,V = ℎ[𝑞 + 𝑢𝑁 + V𝑎], 0 ≤ 𝑢 < Δ𝜔 − 1, and 0 ≤ V < Δ𝑀 − 1.
Equation (17) can then be rewritten in the following form:

𝑁 ⋅ [H(𝑞) 0
0 0

][g(𝑞)
0

] = ê = [e
0
] , (20)

where e = [1, 0, . . . , 0]T is a unit vector of length Δ𝜔 − 1.
Obviously, the following formula can be easily obtained by
(20):

𝑁 ⋅H(𝑞)g(𝑞) = e, (21)

where 0 ≤ 𝑞 ≤ 𝑎 − 1.
3.1. Fast Approach for Computing Analysis Window in the
Critical Sampling Case. In the critical sampling case, the
oversampling rate 𝛽 = 𝑀/𝜔 = 𝑁/𝑎 = Δ𝑀/Δ𝜔 = 1; (21)
can be rewritten in following form:

H(𝑞)g(𝑞) = 1𝑁 ⋅ h(𝑞), (22)

H(𝑞) = H(𝑞)
T
H(𝑞), (23)

h(𝑞) =
[[[[[[
[

ℎ (𝑞)
ℎ (𝑞 + 𝑎)...

ℎ (𝑞 + (Δ𝑀 − 1) 𝑎)

]]]]]]
]

=
[[[[[[
[

ℎ (𝑞)
ℎ (𝑞 + 𝑎)...

ℎ (𝑞 + (Δ𝜔 − 1) 𝑎)

]]]]]]
]

.
(24)

Because H(𝑞) is a right circulant matrix by Δ𝑀 × Δ𝑀 (orΔ𝜔 × Δ𝜔), so (22) can be written as a circular convolution
in following form:

h
(𝑞) ∗ g(𝑞) = 1𝑁 ⋅ h(𝑞), (25)

where h
(𝑞)

is the first column ofH(𝑞) as the following form:

h
(𝑞) = h(𝑞) ∗ ĥ(𝑞), (26)

ĥ(𝑞) =
[[[[[[
[

ℎ (𝑞)
ℎ (𝑞 + (Δ𝜔 − 1) 𝑎)...

ℎ (𝑞 + (Δ𝜔 − (Δ𝜔 − 1)) 𝑎)

]]]]]]
]

=
[[[[[[
[

ℎ (𝑞)
ℎ (𝑞 + (Δ𝜔 − 1) 𝑎)...

ℎ (𝑞 + 𝑎)

]]]]]]
]

.
(27)

By utilizing the circular convolution theorem [28], the
FFT algorithm can then be used to transform (25) into
component-wise multiplication by recalling (26) as follows:

𝐹Δ𝜔 (h(𝑞) ∗ g(𝑞)) = 𝐹Δ𝜔 (h(𝑞)) ⋅ 𝐹Δ𝜔 (ĥ(𝑞))
⋅ 𝐹Δ𝜔 (g(𝑞)) = 1𝑁 ⋅ 𝐹Δ𝜔 (h(𝑞)) ,

(28)

where 𝐹Δ𝜔 is the Δ𝜔-point DFT. Thus, h(𝑞) can be fast
computed by

g(𝑞) = 1𝑁 ⋅ 𝐹−1Δ𝜔( 1𝐹Δ𝜔 (ĥ(𝑞))) . (29)

The computation of (29) is obviously much faster than that
using the standard Gaussian elimination method to solve the
linear equation set.

Remark 1. More similar result to (29), the author in [11]
provides a method, based on Gabor frame theory [20] and
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discrete Zak transform [29], to obtain dual Gabor window
in periodic/finite DGT under the critical sampling. However,
in present paper, the proposed method uses the orthogonal
analysis approach and FFT algorithm to solve the analysis
window for long-periodic/infinite signal sequences.

3.2. Fast Approach for Computing Analysis Window in the
Oversampling Case. In the oversampling case, the oversam-
pling rate 𝛽 = 𝑀/𝜔 = 𝑁/𝑎 = Δ𝑀/Δ𝜔 ≥ 2 can be
a positive integer by setting Δ𝑀 and Δ𝜔 properly. Because
the rank of H(𝑞) is less than the number of rows, (21) is
an underdetermined linear equation which could have no
solution or have an infinite number of solutions. Equation
(21) could be rewritten in the following form in order to use
convolution theory and FFT algorithm as that in the critical
sampling case.

𝑁 ⋅ [H(𝑞)0 ,H(𝑞)1 , . . . ,H(𝑞)
𝛽−1

]
[[[[[[[[
[

g(𝑞)0
g(𝑞)1...
g(𝑞)
𝛽−1

]]]]]]]]
]

= e, (30)

where 0 ≤ 𝑖 ≤ 𝛽−1 andH(𝑞)𝑖 is aΔ𝜔×Δ𝜔 left circulant matrix
composed by

H(𝑞)𝑖 =
[[[[[[[
[

ℎ𝑞,𝑖0,0 ℎ𝑞,𝑖0,1 ⋅ ⋅ ⋅ ℎ𝑞,𝑖0,Δ𝜔−1ℎ𝑞,𝑖1,0 ℎ𝑞,𝑖1,1 ⋅ ⋅ ⋅ ℎ𝑞,𝑖1,Δ𝜔−1... ... d
...

ℎ𝑞,𝑖Δ𝜔−1,0 ℎ𝑞,𝑖Δ𝜔−1,1 ⋅ ⋅ ⋅ ℎ𝑞,𝑖Δ𝜔−1,Δ𝜔−1

]]]]]]]
]

, (31)

where ℎ𝑞,𝑖𝑢,V = ℎ[𝑞 + 𝑢𝑁 + V𝑁 + 𝑖𝑎] and g(𝑞)𝑖 is a vector with
length Δ𝜔 constructed by

g(𝑞)𝑖 =
[[[[[[
[

𝑔 [𝑞 + 𝑖𝑎]
𝑔 [𝑞 + 𝑁 + 𝑖𝑎]...

𝑔 [𝑞 + (Δ𝜔 − 1)𝑁 + 𝑖𝑎]

]]]]]]
]

. (32)

Then we rewrite (30) as

H(𝑞)𝑖 g
(𝑞)
𝑖 = 1𝑁 ⋅ h(𝑞)𝑖 , (33)

where

H(𝑞)𝑖 = H(𝑞)𝑖
T
H(𝑞)𝑖 . (34)

Let

g(𝑞)𝑖 = 𝜆𝑖g(𝑞)𝑖
s.t.
𝛽−1∑
𝑖=0

𝜆𝑖 = 1,

h(𝑞)𝑖 =
[[[[[[
[

ℎ [𝑞 + 𝑖𝑎]
ℎ [𝑞 + 𝑁 + 𝑖𝑎]...

ℎ [𝑞 + (Δ𝜔 − 1)𝑁 + 𝑖𝑎]

]]]]]]
]

.

(35)

Then, (33) also can be rewritten as a circular convolution:

h
(𝑞)

𝑖 ∗ g(𝑞)𝑖 = h(𝑞)𝑖 ∗ ĥ(𝑞)𝑖 ∗ g(𝑞)𝑖 = 1𝑁 ⋅ h(𝑞)𝑖 , (36)

where h
(𝑞)

𝑖 is the first column ofH(𝑞)𝑖 as follows:

h
(𝑞)

𝑖 = h(𝑞)𝑖 ∗ ĥ(𝑞)𝑖 ,

ĥ(𝑞)𝑖 =
[[[[[[
[

𝑔 [𝑞 + 𝑖𝑎]
𝑔 [𝑞 + (Δ𝜔 − 1)𝑁 + 𝑖𝑎]...

𝑔 [𝑞 + (Δ𝜔 − (Δ𝜔 − 1))𝑁 + 𝑖𝑎]

]]]]]]
]

=
[[[[[[
[

𝑔 [𝑞 + 𝑖𝑎]
𝑔 [𝑞 + (Δ𝜔 − 1)𝑁 + 𝑖𝑎]...

𝑔 [𝑞 + 𝑁 + 𝑖𝑎]

]]]]]]
]

.

(37)

By using the circular convolution theorem and the FFT
operator, (36) can be expressed in the following form:

𝐹Δ𝜔 (h(𝑞)𝑖 ∗ g(𝑞)𝑖 ) = 𝐹Δ𝜔 (h(𝑞)𝑖 ) ⋅ 𝐹Δ𝜔 (ĥ(𝑞)𝑖 )
⋅ 𝐹Δ𝜔 (g(𝑞)𝑖 ) = 1𝑁 ⋅ 𝐹Δ𝜔 (h(𝑞)𝑖 ) , (38)

so g(𝑞)𝑖 can be solved by

g(𝑞)𝑖 = 1𝑁 ⋅ 𝐹−1Δ𝜔( 1
𝐹Δ𝜔 (ĥ(𝑞)𝑖 )) . (39)

Due to the fact that 𝑔[𝑘] should be close to ℎ[𝑘] in the sense
of the least square error (LSE) as shown in [30],

min
𝑁H(𝑞)g(𝑞)=e

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
g(𝑞)󵄩󵄩󵄩󵄩g(𝑞)󵄩󵄩󵄩󵄩 − h(𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

2

. (40)

𝑔(𝑞)[𝑘] has to satisfy the least of ℓ2 norm which make 𝑔(𝑞)[𝑘]
a Gaussian-type function of the localization property:

min {󵄩󵄩󵄩󵄩󵄩g(𝑞)󵄩󵄩󵄩󵄩󵄩22} = min{𝛽−1∑
𝑖=0

󵄩󵄩󵄩󵄩󵄩g(𝑞)𝑖 󵄩󵄩󵄩󵄩󵄩22}

= min{𝛽−1∑
𝑖=0

𝜆2𝑖 󵄩󵄩󵄩󵄩󵄩g(𝑞)𝑖 󵄩󵄩󵄩󵄩󵄩22}

s.t.
𝛽−1∑
𝑖=0

𝜆𝑖 = 1.

(41)
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Equation (41) can be converted into the following optimum
problem and easily solved by the Lagrangian approach:

𝐽 (𝜆) = 12 (k𝜆)T (k𝜆) + 𝑢 (1 − eT𝜆)
s.t. eT𝜆 = 1, (42)

where 𝜆 = [𝜆0, 𝜆1, . . . , 𝜆𝛽−1]T, e = [1, 1, . . . , 1]T is a vector
with length 𝛽, 𝜇 is a Lagrangian parameter, and

k =
[[[[[[[[
[

g(𝑞)0 0 ⋅ ⋅ ⋅ 0
0 g(𝑞)1 ⋅ ⋅ ⋅ 0... ... d

...
0 0 ⋅ ⋅ ⋅ g(𝑞)

𝛽−1

]]]]]]]]
]

. (43)

Taking a derivative of 𝐽(𝜆) with respect to 𝜆 leads to

𝜕𝐽 (𝜆)𝜕𝜆 = kTk𝜆 − 𝜇e = 0, (44)

then the solution of 𝜆 can be obtained from (44):

𝜆 = 𝜇 (kTk)−1 e, (45)

and putting this solution into constraint condition in (42) to
solve 𝜇 leads to

𝜆 = 1𝑊 [[
[

1󵄩󵄩󵄩󵄩󵄩g(𝑞)0 󵄩󵄩󵄩󵄩󵄩22
, 1󵄩󵄩󵄩󵄩󵄩g(𝑞)1 󵄩󵄩󵄩󵄩󵄩22

, . . . , 1󵄩󵄩󵄩󵄩󵄩󵄩g(𝑞)𝛽−1󵄩󵄩󵄩󵄩󵄩󵄩22
]]
]

, (46)

where𝑊 = ∑𝛽−1𝑖=0 1/ ‖ g(𝑞)𝑖 ‖22.
Remark 2. In sparse applications, the synthesis window
without considering localization property (𝜆 = 1/𝛽e) can
be used to reconstruct the original signal, in which a certain
well-localized window function will be directly utilized as an
analysis window.

Remark 3. The proposed algorithm can be easily generalized
and applied to other DGT for both the periodic/finite
sequences and the long-periodic/infinite sequences including
complex-valued (DFT-based) and real-valued (DHT-based,
DCT-based) and multiwindow discrete Gabor transforms
(M-DGT) because those Gabor basis functions in DGT can
lead to the similar form of the biorthogonal relationship
equation.

4. Computational Complexity Analysis and
Numerical Experiments

When calculating the multiplication times of related algo-
rithms, we assume that the 𝑁-point FFT requires an order
of 𝑁 log2𝑁 multiplications. Due to the fact that the original
linear equation of biorthogonal relationship can be split
into 𝑎 unrelated subequation sets in the critical sampling

case and 𝑎𝛽 subequation sets in the oversampling case, FFT
method can be utilized to compute analysis window both
in the critical sampling case and in the oversampling case.
The computational complexity of the single subequation
set which carries Δ𝜔-point FFT and Δ𝜔-point inverse FFT
(IFFT). The computational complexity of 𝜆 is at order
of 𝛽Δ𝜔 in the oversampling case while it is zero in the
critical sampling case. Therefore, as mentioned above, the
computational complexity of proposed approach is equal to
that of total 𝑎 subequation set, which is at the order of

𝑎 × (2Δ𝜔 log2 (Δ𝜔)) = 2𝐿 × log2Δ𝜔, (47)

in the critical sampling case and

𝑎 × (𝛽 × (2Δ𝜔 log2Δ𝜔) + 𝛽Δ𝜔) = 2𝐿 log2Δ𝜔 + 𝐿, (48)

in the oversampling case. The comparison of computational
complexity and numerical experiments between proposed
approach and existing methods have been given in Tables 2
and 1 which clearly shows that the total number of multipli-
cations of proposed approach is less than that of others in
both the critical sampling case and the oversampling case. In
Tables 2 and 1, the symbols Δ𝜔, CS, and OS denote 2Δ𝜔 − 1,
the critical sampling case, and the oversampling case, respec-
tively. In Table 1, a detailed numeric comparison experiments
on the number of multiplications related to computational
time between the proposed algorithm and existing methods
under different Gabor sampling scheme are given by using
the formula of computational complexity of each algorithm
in Table 2, which clearly demonstrates the efficiency and the
advantage of decreasing the computation of the proposed
approach as compared to existing algorithms. Example for
computing analysis window: a Gaussian synthesis windowℎ[𝑘] with length 𝐿 = 256 is given (49) and shown in Figure 1.

ℎ [𝑘] = √√220 exp(−𝜋(𝑘 − 127.520 )2) . (49)

The analysis windows 𝑔[𝑘] in Figure 2 are computed by the
proposed method, [9, 10] in the critical sampling case, withΔ𝑀 = 16, Δ𝜔 = 16 and the oversampling rate 𝛽 = Δ𝑀/Δ𝜔 =1.The analysis windows 𝑔[𝑘] in Figures 3 and 4 are computed
by the proposedmethod [9, 10] in the oversampling case, with
the oversampling rate 𝛽 = Δ𝑀/Δ𝜔 = 4 (Δ𝑀 = 32, Δ𝜔 = 8)
and 8 (Δ𝑀 = 32, Δ𝜔 = 4), respectively. The similarity
between the synthesis window 𝑔[𝑘] and its corresponding
analysis window ℎ[𝑘] is proportional to the oversampling rate𝛽, the reason being similar to that given in [30].The proposed
algorithm for the reconstruction of the original signal is also
simulated, which is virtually error-free reconstruction (MSE
= 10−18).
5. Conclusion

The DGT for long-periodic/infinite signal sequences has
become an important time-frequency analysis tool in many
real-time applications, which can use the short window to
process and analyze the long-periodic signal sequences. This
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Table 1: Numerical comparison of multiplications between proposed approach and other existing methods.

𝐿 Δ𝑀 Δ𝜔 𝛽 Total number of multiplications
Applicability

[9] [10] [11]
Proposed
algorithm

256 32 32 1 794624 258209280 2560 2560 CS
64 16 4 151552 9810880 7168 2304 OS
256 8 32 35328 122415 34304 1792 OS

512 64 64 1 6324224 2106322432 6144 6144 CS
128 16 8 286720 17715136 24576 4608 OS
512 8 64 70144 241455 134144 3584 OS

1024 128 128 1 50462720 17014709760 14336 14336 CS
256 32 8 2260992 146317248 59392 11264 OS
1024 16 64 544768 2029663 335872 9216 OS

ℎ
[k

]

0.3

0.2

0.1

0

k

0 64 128 192 256

Figure 1: A Gaussian synthesis window ℎ[𝑘], 𝐿 = 256.

g
[k

]

0.5

0

−0.5

k

0 64 128 192 256

(a)

g
[k

]

0.5

0

−0.5

k

0 64 128 192 256

(b)

g
[k

]

0.5

0

−0.5

k

0 64 128 192 256

(c)

Figure 2: Analysis windows 𝑔[𝑘] in the critical case (Δ𝑀 = 16, Δ𝜔 = 16, 𝛽 = 1) obtained by the proposed method [9, 10].
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g
[k

]

0.08

0
−0.01

k

0 64 128 192 256

(a)

g
[k

]

0.07

0

−0.01

k

0 64 128 192 256

(b)

g
[k

]

0.07

0

−0.01

k

0 64 128 192 256

(c)

Figure 3: Analysis windows 𝑔[𝑘] in the oversampling case (Δ𝑀 = 32, Δ𝜔 = 8, 𝛽 = 4) obtained by the proposed method [9, 10].

k

0 64 128 192 256
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0

−0.005

g
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(a)
k

0 64 128 192 256

0.035

0

−0.005

g
[k

]

(b)

k

0 64 128 192 256

0.035

0

−0.005

g
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Figure 4: Analysis windows 𝑔[𝑘] in the oversampling case (Δ𝑀 = 32, Δ𝜔 = 4, 𝛽 = 8) obtained by the proposed method [9, 10].
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Table 2: Comparison of computational complexity between proposed approach and other existing methods.

References Computational complexity Applicability

[9] Δ𝜔3 𝐿Δ𝑀 + 2𝐿 × Δ𝜔2 + 𝐿 × Δ𝜔 CS, OS

[10] (Δ𝜔 𝐿Δ𝑀)3 + 2𝐿 × (Δ𝜔 𝐿Δ𝑀)2 + 𝐿 × (Δ𝜔 𝐿Δ𝑀) CS, OS

[11]
2𝐿 × log2 Δ𝜔, CS, OS(𝛽 + 2)𝐿 × log2Δ𝜔 + 𝛽𝐿

Proposed algorithm 2𝐿 × log2 Δ𝜔, CS, OS2𝐿 × log2 Δ𝜔 + 𝐿

paper proposed an effective approach to calculate the analysis
window of DGT for long-periodic sequences, in which the
original biorthogonal equation can be decomposed into a
certain number of linear subequation sets that convolution
operators and FFT could be utilized to obtain the analysis
window for arbitrary given synthesis window function. The
computational complexity analysis and comparison between
proposed approach and existing methods have been shown
in a comparative study described in Section 4, which clearly
indicates that the proposed approach is more competitive
against the existing algorithms. In addition, the numerical
experiments have been given to demonstrate the efficiency
and validity of proposed approach, which make the long-
periodic DGT attractive for real-time signal processing and
analysis.
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