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Abstract. Different pairs of scientific theories stand in different relations.
The present paper identifies a new type of intertheoretic relation, Integrative
Reduction, that is instantiated in linguistic syntax and semantics. We show
its commonalities with Nagelian reduction and establish their salient differ-
ences. To assess the epistemic value of Integrative Reduction, we analyze
it in the framework of Bayesian confirmation theory. More specifically, we
show that the prior and posterior probabilities and the degree of confirma-
tion of the conjunction of syntax and semantics is higher after the Integrative
Reduction than after the Nagelian reduction of syntax to semantics.
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1. Introduction

Reductive relations between theories take a central place in contemporary phi-
losophy of science. Their standard analysis is familiar: A scientific theory T2
(paradigmatically, thermodynamics) is reduced to a theory T1 (paradigmatically,
statistical mechanics) by connecting their non-logical vocabularies via bridge
laws, substituting terms from T1 by their counterparts from T2, and (thus) de-
riving every proposition in T2 from corresponding propositions in T1, cf. (Nagel,
1961). While recent research on intertheoretic relations has advanced our knowl-
edge of different types of reduction, its focus on the natural sciences has created
a bias towards a certain class of relations. The present paper seeks to coun-
terbalance this trend: Abstracting from Richard Montague’s theory of natural
language syntax and semantics, we identify a new type of intertheoretic relation
that is instantiated in linguistics.

Our new type of intertheoretic relation, which we call Integrative Reduction,
shares many salient properties of Nagelian reduction.1 Like Nagelian reduction,
Integrative Reduction aims to derive propositions of the reduced theory (T2) from
propositions of the reducing theory (T1). To this end, it establishes connections
between their non-logical vocabularies and substitutes terms in propositions of
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the reducing theory by their reduced-theory counterparts. Integrative Reduc-
tion differs from Nagelian reduction with respect to its deductive strength and
the connection between terms in the two theories’ non-logical vocabularies. In
contrast to Nagelian reduction, Integrative Reduction does not assume a bijec-
tive relation between terms in the vocabulary of the reduced and the reducing
theory, or between their associated objects. Thus, a property of an object in
the theory T2 may correspond to different properties of its counterpart in T1
(i.e. may be multiply realizable). Correspondingly, bridge laws and their asso-
ciated propositions may take the form of disjunctions. While a change in the
property of an object in T1 will, thus, not entail a change in the property of its
T2-counterpart, the converse cannot be excluded.

But the described directedness is not the defining feature of Integrative Re-
duction. Rather, the latter is defined by a special kind of connectability property.
As noted above, Nagelian reduction associates, with every scientific theory T ,
a set of non-logical constants L. Our new type of reduction identifies this set
with the union of the set Lp (for ‘primitive’ language), whose referential domain
contains primitive objects, and the set Ld (for ‘derived’ language), whose associ-
ated objects are constructions out of primitive objects. Bridge laws are taken to
reflect the dependency relation between both kinds of objects. As a consequence,
propositions of the reduced or the reducing theory will no longer be indepen-
dent, as is commonly assumed, cf. (Dijzadji-Bahmani et al., 2010b). Rather
than being able to reduce a theory’s propositions one-by-one (i.e. sequentially),
its propositions are now reduced simultaneously (i.e. integratively).

The present paper investigates the epistemic payoff of Integrative Reduction.
In a recent article, Dijzadji-Bahmani et al. (2010b) have shown the positive
impact of the establishment of Nagelian reductive relations on the confirmation
of theories by evidence. Our paper follows their example. To enable the use of
the Bayesian apparatus, we interpret propositions of the reduced and reducing
theory as objects of probabilistic evaluation. We assess the value of Integrative
Reduction by comparing the (prior and posterior) probabilities and the degree
of confirmation of the conjunction of integratively reduced propositions with the
probabilities and degree of confirmation of the conjunction of Nagelian and of
unreduced pairs of propositions.

The paper is organized as follows: Sections 2 and 3 present Montague’s for-
mal framework for the analysis of natural language syntax and semantics, and
review relevant concepts from Bayesian confirmation and network theory. The
remaining sections focus on the simultaneous development and evaluation of our
model of Integrative Reduction. Section 4 investigates our theories’ probabil-
ities and confirmation after the establishment of Nagelian reduction relations.
Section 5 demonstrates the epistemic value of Integrative Reduction: Following
the introduction of object-relating types, we investigate the probabilities and the
degree of confirmation of three different cases, stipulating multiple, two, or a
single basic type for the establishment of a relation between syntactic and se-
mantic propositions. We observe that, given the derivability of all propositions,
the assumption of a minimal number of primitive (types of) objects yields the
highest probabilities and effects a maximal flow of confirmation between the two
theories. We close by showing how the resulting model of Integrative Reduction
can be incorporated into a sophisticated variant of Schaffner’s revised model of
Nagelian reduction.
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2. Montague Grammar

We begin with a presentation of the two theories that we aim to relate. Sec-
tion 2.1 states their propositions and proposition-connecting mechanism. Sec-
tion 2.2 compares the Montagovian account of the syntax-semantic relation with
the Nagelian model of intertheoretic reduction. To enable a Bayesian analysis
of our new type of intertheoretic relation, Section 2.3 identifies syntactic and
semantic propositions with the objects of probabilistic evaluations.

2.1. Montague’s ‘Two Theories’ Theory. Richard Montague’s ‘Universal
Grammar’ provides a formal framework for the analysis and interpretation of
natural language syntax, based on (Montague, 1970a; 1973; 1970b). Montague
conceives of natural languages as interpreted formal systems: The syntax of a
language (hereafter ‘Categorial Grammar’, CG) is specified through the enu-
meration of grammatical categories, CAT = {N(oun),V(erb), S(entence), . . . },
their associated structures (‘expressions’), E = {En, Ev, Es, . . . } (with En =
{John,Mary,Fido, . . . }), and the definition of rules, G = {Gs, . . . }, governing
the behavior of syntactic operations like concatenation and conjunction. The
latter apply to tuples of expressions to yield unique complex expressions. Mon-
tague syntax thus constitutes an algebra, Acg = {{En, Ev, . . . },Gs, . . . }, over the
set of basic expressions. A language (e.g. English) is identified with the closure
of the set {En, Ev, . . . } under the rules of the algebra.2(Kamp, 1978; Janssen,
1986)Model-Theoretic Semantics (MS) matches the syntactic algebra on the level
of natural language meaning. The interpretation function I establishes a rela-
tion between syntactic expressions and their semantic referents. For every E-
constant c (e.g. John), we assume a denotation, �c� (e.g. ), such that �c� = I(c).
We call the set {Dn,Dv,Ds, . . . } (containing the domains of individual objects,
properties, truth-values, etc.) of E-denotations ‘D’ and stipulate that it be non-
empty. Every syntactic rule, Gki (with k ∈ CAT, i ∈ N)3 is associated with a
semantic rule, Ski , that governs the behavior of the syntactic operations’ seman-
tic counterparts (e.g. functional application, set intersection). The semantics of
a language thus constitutes an algebra Ams = {{Dn,Dv, . . . }, Ss, . . . } over the set
of denotations. Its interpretation is identified with the closure of this set under
the rules in S. Expressions and their denotations, as well as syntactic and se-
mantic rules, are related via a map from the syntactic algebra to the (polynomial
closure of the) semantic algebra.

Significantly, the above-described map is not strictly one-to-one. This is due
to the semantic ambiguity of nouns and verbs, and attendant impossibility of
mapping every element of the syntactic algebra onto a unique element of the
semantic algebra. Rather than being associated with a single class of semantic
referents, nouns (e.g. John) may be interpreted either as individual objects (i.e.
= �John��) or as generalized quantifiers (i.e. the set, �John���, of all of John’s

properties).4 This is made necessary by the possibility of conjoining proper

2For an introduction to Montague’s theory of syntax and semantics, the reader is referred
to (Partee, 1997; Gamut, 1991).

3Our use of category indices (i.e. i) is motivated by the fact that some categories (especially
the category ‘S’) are associated with different rules (cf. Montague’s rules S4, S9, S11, S14, S17
(Montague, 1973)). Their association with semantic rules T4, T9, T11, T14, T17 preserves the
above-noted correspondence. Since the remainder of this paper will only be concerned with the
sentence-formation rules S4 and T4, we hereafter suppress their number.
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names with quantifier phrases (cf. the expression John and every woman), and
restriction of coordination to same-domain objects, cf. (Partee, 1987). To pre-
serve function-argument structure, we similarly interpret intransitive verbs (e.g.
run) either as properties of individual objects (e.g. �run��) or as properties of
generalized quantifiers (e.g. �run���). Figure 1 (next page) illustrates the relation
between elements of the syntactic and semantic algebras.

Dn� �� � Dv� �� �
�John���, �run��, �run���,

,
�Mary��� �walk�� �walk��� T,F

En

D�
n D��
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D��
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. . .

. . . Gs
. . .

Ss . . .

hiiiiii hiiiiii
hiiiiiiiiiiiiii

John, run, John runs,
Mary walk Mary walks

Figure 1. Montague’s syntax-semantics map.

Since the identification of the domains Dn and Dv with the set {D�
n,D��

n}, re-
spectively {D�

v,D��
v} preserves the structure of the syntactic algebra, we hereafter

describe Montague’s syntax-semantic map as the homomorphism h. To facilitate
the representation of the Montagovian framework, we assume the existence of
only three classes of expressions or objects. We demonstrate in Section 5.2 that
our new model of reduction is easily extensible to the remaining categories (e.g.
adjectives, adverbs, determiners and their semantic correspondents).

In line with the constructive requirements of syntax and semantics, our pre-
sentation of the Montagovian framework has only stipulated rules for the for-
mation of complex expressions and entities (e.g. sentences and truth-values).
For future use, we also assume rules for the identity of basic objects. Thus,
the rules Gn,Gv are simple rewrite rules, taking words in the lexicon to expres-
sions in the syntax. The rules Sn, Sv constitute their semantic counterparts.
Note that, by the ambiguity noun- and verb-interpretations, the rules Sn, Sv
(but not Gn,Gv) will include two different cases, covering D�

n and D��
n, and D�

v

and D��
v, respectively.

The formation of minimally complex sentences (e.g. John runs) is governed
by the rule Gs, below:

Let [AB] represent the concatenation of the expressions A and B. The rule Gs

is then defined as follows, cf. (Montague, 1973, p. 251):

Gs. If R ∈ Ev and j ∈ En, then [jR�] ∈ Es,
where R

� is the result of replacing the main verb in R (e.g. run) by its third
person singular present form (runs). The concatenation of a noun (e.g. John)
with an inflected verb (runs) thus yields a sentence (John runs).

4Intuitively, �John��� abbreviates Montague’s �λP.P (John)�, where P ranges over first-order
properties, with John an individual constant. Properties of generalized quantifiers (e.g. the
property �run���) constitute similar abbreviations.
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Semantic rules follow their syntactic counterparts: Given the replacement
of syntactic categories, Ek, by referential domains, Dk, and interpretation
of concatenation and agreement as functional application, nothing changes.
Clause Ss (below) defines the semantic correspondent of rule Gs, cf. (Montague,
1973, p. 254).

Ss. If �R� ∈ Dv and �j� ∈ Dn, then �R�(�j�) ∈ Ds.

Note that, by the set-like character of Dn = {D�
n,D��

n} and Dv = {D�
v,D��

v}, the
rule Ss is understood as the conjunction of rules S�s and S��s , below:

S�s. If �R�� ∈ D�
v and �j�� ∈ D�

n, then �R��(�j��) ∈ Ds.

S��s . If �R��� ∈ D��
v and �j��� ∈ D��

n, then �R���(�j���) ∈ Ds.

According to S�s, the application of the first-order property �runs�� to the denota-
tion, , of John yields either truth (i.e. �runs��( ) = T) or falsity (F). According
to S��s , the application of the higher-order property �runs��� to the generalized
quantifier, �John���, denoted by John yields either truth (i.e. �runs���

Ä
�John���

ä
=

T) or falsity (F).

2.2. Montague’s Theory and Intertheoretic Reduction. Our exposition of
the Montagovian framework (Sect. 2) has described the syntax-semantics pair as
the instantiation of a specific type of reductive relation. The presented relation
shares many properties of Nagelian reduction. Like the semantic correspondent
of Nagelian bridge laws, the map h : Acg → Ams establishes a connection be-
tween the objects of our two theories. Further, it formalizes the derivability of
propositions in one theory through the replacement of non-logical terms (e.g.
semantic category names) in the relevant proposition from the other theory and,
thus, allows the explanation of phenomena in the realm of the former by means
of the latter.

The syntax-semantics map differs from Nagelian reduction with respect to
the relation between different-theory objects and the logical form of proposi-
tions. In Section 1, above, we have mentioned Nagel’s assumption of a bijective
relation between (pairs of) objects in the two related theories. The semantic am-
biguity of some syntactic categories in the Montagovian framework breaks this
correspondence. Rather than associating every syntactic category with a single
semantic counterpart, the homomorphism h sends some classes of expressions
(e.g. the categories ‘noun’ and ‘verb’) to more than one referential domain, and
certain propositions of one theory to a set (or conjunction) of propositions of the
other theory. As a consequence, the relation between Categorial Grammar and
Model-Theoretic Semantics is a directed relation: A change in the properties of
an object in one theory (e.g. its ‘lifting’ from the level of individual objects to
the level of generalized quantifiers) will not entail a change in the properties of
its other-theory counterpart.5

5The multiple realizability of properties is often considered to undermine reduction. Com-
mon arguments include the collapse of the associating relation between different-theory objects,
the disjunctive form (and possible open-endedness) of bridge laws, and the loss of the explana-
tory value of reduction, cf. (Fodor, 1974; Kim, 2008; Sober, 1999). For a presentation of
these arguments, and a (neo-)Nagelian defense, the reader is referred to (Dijzadji-Bahmani
et al., 2010a, Sect. 3.2 and 4). Our model of Integrative Reduction (developed in Sect. 5, 6)
will further witness the possibility of reductive relations that accommodate cases of multiple
realizability.
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The directed dependency between Categorial Grammar and Model-Theoretic
Semantics motivates our identification of Categorial Grammar (or ‘syntax’) with
the reduced theory and of (Model-Theoretic) Semantics with the reducing theory.
Figure 2 compares a simplified version of the syntax-semantics relation (right)
to the Nagelian account of reduction (middle).

T1 T
∗
1

T
∗
2T2

auxiliary

bridge laws

analogy

T1

T2

bridge laws

Ss

Gs

the map h
−1

assump’s
=

�
S�
s
, S��

s

�

strong

Figure 2. Schaffner’s revised model (left), the Nagelian model
(middle), and the ‘Montagovian’ model of reduction (right).

Admittedly, the admission of surjective relations between objects of the reducing
and the reduced theory is nothing new. Schaffner’s revised model of Nagelian
reduction (Schaffner, 1967; 1974), as well as Nagel’s reformulation of his orig-
inal model (Nagel, 1977) (cf. the left diagram in Figure 2) accommodate cases
of multiple realizability. However, while Schaffner introduces a dedicated level
of ‘corrected’ propositions (whose auxiliary assumptions perform the necessary
(dis-)ambiguation), our model of the syntax-semantic relation locates this faculty
in the propositions themselves. Thus, the rule Ss is analyzed as the set {S�s, S��s}
of alternative sentence-formation rules. We leave the incorporation of the ‘Mon-
tagovian’ model of reduction into a sophisticated variant of Schaffner’s revised
model for Section 6.

As is clear from the above, our model of the syntax-semantic relation instan-
tiates only one particular type of an intertheoretic relation. There are many
others, ranging from ‘strict’ Nagelian reduction via the ‘weaker’ Nagel-Schaffner
reduction to undirected dependency relations, cf. (Darden and Maull, 1977; Hart-
mann, 1999; Mitchell, 2003). We expect that the relation between Categorial
Grammar and Model-Theoretic Semantics be found in the mid-range of this
spectrum. Significantly, the previously discussed Montagovian (or ‘Montague’-)
reduction (discussed, in more detail, in Sect. 4) may not be identified with the
relation of Integrative Reduction, which will only be introduced in Section 5.
Clearly, both models of the syntax-semantics relation share salient properties
(e.g. homomorphic connections, directedness). Notably, however, Montague re-
duction lacks the latter’s defining property: intratheoretic connectability. In
this sense, our Montagovian model of reduction constitutes only an intermediate
step towards the development of the model of Integrative Reduction. This is
not to deny that Montague reduction may be taken as an intertheoretic relation
in its own right. We will see, however, that Integrative Reduction constitutes a
considerable generalization and, in certain respects, an improvement of it.

We close the present subsection with a number of caveats about the syntax-
semantics relation. Our previous considerations have identified Montague re-
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duction as a weak, i.e. directed, variant of Nagelian reduction. Significantly,
however, the presented intertheoretic relation is even weaker than has been pre-
viously established. This is due to the greater structural richness of Categorial
Grammar, and attendant impossibility of providing a semantic account of all syn-
tactic properties. Word order and agreement are a case in point: To obtain the
‘right’ complex expressions, Montague’s syntactic rules specify the order of their
constituent basic expressions, and the conditions for their agreement. Without
this specification, we would concatenate the expressions John and run into the
complex expression Run John rather than John runs. Other problems regard the
denotation of the same semantic object by differently-formed expressions and
the existence of purely syntactic well-formedness constraints. All of the above
motivate our description of Montagovian (and also of Integrative) reduction as
a distinct type of intertheoretic relation, rather than strong Nagelian reduction.

Our characterization of the syntax-semantics map as a (very weak) reduc-
tive relation requires a further clarification: The presented accounts of reduction
(i.e. Nagel’s original and Schaffner’s revised model of reduction) assume the
existence of the relevant theories’ common domain of application. On this ac-
count, the reduced and the reducing theory both make (more-or-less) the same
claims (e.g. about the behavior of a given physical system). This is not the
case for our syntax-semantics pair. While Categorial Grammar accounts for the
well-formedness of syntactic structures, Model-Theoretic Semantics accounts for
their denotations’ constructive properties. Admittedly, the denotation relation
(formalized by the interpretation function I (cf. Sect. 2.1)) establishes a firm
connection between the objects of the two theories. This does not change the
fact, however, that their ‘reductive achievement’ will be comparatively weaker.

All of the above admonitions characterize our new type of intertheoretic
relation. While they will be ignored in the rest of this paper, their neglect
would distort our representation of the syntax-semantics relation. To enable
the Bayesian analysis of its associated model, the following subsection discusses
the use of probabilities in this part of linguistics. Section 3 gives a primer on
Bayesian confirmation and network theory.

2.3. Montagovian Rules and Probabilities. Our presentation of Montague’s
theory has presupposed the existence of two sets of rules, G, S, for the formation
of complex expressions and entities. Like hypotheses of any scientific theory, the
latter are obtained by the scientific method (discussed, here, for the formulation
of Gs): Following the isolation of simple sentences in a given data-set (typically,
an electronic text collection like the British National Corpus), linguists abstract
information about the sentences’ structural properties and propose a hypothesis
(e.g. Gs) about their formation. Hypotheses are tested through the analysis of
other (new) corpora: A given string of expressions (e.g. the sentence John runs,
Mary walks) is taken to support the hypothesis if its structure does, questions it if
it does not reflect the assumed formation process (i.e. if it ‘positively/negatively
instantiates’ Gs).

To enable a Bayesian analysis of our model(s) of the syntax-semantics re-
lation, we assign a probability to every syntactic or semantic rule. A rule’s
probability is informed by the frequentist data available at the time. Thus, the
probability of the truth of the hypothesized rule Gs will be very high (low) if a
very large (small) percentage of expressions of the described form instantiates Gs.
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Intuitively, a rule’s frequentist probability will influence a linguist’s psychologi-
cal confidence in its descriptive adequacy. Consequently, if a very large (small)
percentage of expressions of a given form instantiates the rule Gs, we expect the
linguist’s belief in the truth of Gs to be similarly high (or low).

Our previous considerations have defined the probability of a given rule via
their positive instantiations’ frequency in a given sample. Notably, however, only
syntactic rules are directly instantiated. This difference, which motivates our
reductive endeavor, will recur in the two theories’ pre-reductive confirmation (cf.
Thm. 1, Sect. 4.1). The semantic rule Ss derives its support from the linguistic
support of Gs via the assumption of the homomorphism h. While rules for the
construction of more complex objects (e.g. the denotation of the sentence Mary
walked for an hour or John runs fast) are directly supported by the established
entailment relations and speakers’ validity judgements, cf. (Dowty, 1979), the
restriction of entailment to sentences prevents the direct semantic support of the
simple rules Sn, Sv and (by extension) Ss. Their probabilities are defined by the
probabilities of their syntactic counterparts.

This concludes our discussion of the reductive and probabilistic aspects of
Montague’s theory. Before we move to our introduction to Bayesianism, however,
one final caveat is in order: Importantly, our attribution of probabilities to
Montagovian rules does not constitute a probabilistic extension of Montague
Grammar. The central aim of our paper is methodological, not substantive.
Consequently, we do not intend any revisions or additions to (our fragment of)
Montague’s theory. The attribution of probabilities is only a means to an end,
i.e. the possibility of providing a Bayesian analysis of its associated model. For
the latter, it will suffice to restrict ourselves to the use of probabilistic variables.
While nothing prevents us from plugging in actual values, this is not necessary
for the success of our analysis.

3. A Primer on Bayesianism

We analyze a rule’s evidential support via Bayesian confirmation theory: Its
central idea constitutes the interpretation of confirmation as probability-raising,
and associated distinction between two notions of probability, relative to the
receipt of a new piece of evidence: The initial, or prior, probability of a propo-
sition H (for ‘hypothesis’) is the probability of H before, its final, or posterior,
probability the probability after the evidence E is considered.

Bayesian conditionalization on E requires an update of the prior probabil-
ity, P(H), to the posterior probability, P �(H), of H, where P �(H) is typically
expressed in terms of the original probability measure, i.e. P �(H) = P(H|E),
provided that P(E) > 0. Our use of Bayes’ Theorem, a result from probability
theory, yields the following expression for the posterior probability of H:

P(H|E) =
P(E|H)P(H)

P(E)

=
P(E|H)P(H)

P(E|H)P(H) +P(E|¬H)P(¬H) (1)

=
P(H)

P(H) +P(¬H)x .

In the above, the expression x := P(E|¬H)/P(E|H) is the likelihood ratio.
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According to Bayesian confirmation theory, a piece of evidence E confirms a
hypothesis H if the posterior probability of H (given E) is greater than the prior
probability of H, i.e. if P(H|E) > P(H). The piece of evidence, E, disconfirms H
if P(H|E) < P(H), and is irrelevant for H if P(H|E) = P(H).6

While the case of two propositions is easy to compute, the confirmatory
situation is often much more complicated. This is due to the fact that the
respective hypothesis may have a fine structure, and that there may be different
pieces of evidence that stand in certain probabilistic relations to each other. As
we will see is due course, the relation between syntax and semantics, upon which
we focus in this paper, exhibits a similarly high degree of complexity.

Bayesian networks prove to be a highly efficient tool for the computation
of the above-described scenarios.7 A Bayesian network is a directed acyclical
graph whose nodes represent propositional variables and whose arrows encode
the conditional independence relations that hold between the variables. The
rest of this paragraph introduces some useful vocabulary: Thus, Parent nodes
are nodes with outgoing arrows; child nodes nodes with incoming arrows. Root
nodes (marked in grey) are unparented nodes; descendant nodes are child nodes,
or the child of a child node, etc.

By the special choice of graph, paths of arrows may not lead back to them-
selves (thus motivating the graph’s acyclicity). Variables at each node can
take different numerical values, assigned by the probability function P. Thus,
Bayesian networks do not only provide a direct visualization of the probabilistic
dependency relations between variables, but come along with a set of efficient
algorithms for the computation of whichever conditional or unconditional prob-
ability over a (sub-)set of the variables involved we are interested in.

We illustrate the use of Bayesian networks by framing the confirmatory re-
lation between H and E. To do so, we first introduce two binary propositional
variables, H and E (printed in italic script). Each of them has two values
(printed in roman script): H or ¬H (i.e. ‘the hypothesized rule is true/false’),
and E or ¬E (‘the evidence obtains/does not obtain’), respectively. The relation
between E and H can then be represented in the graph in Figure 3.

H E

Figure 3. Bayesian network representation of the dependence
between E and H.

The arrow from H to E denotes a direct influence of the variable in the parent
to the variable in the child node. The truth or falsity of the hypothesis affects
the probability of the obtaining of E.

6Bayesianism is presented and critically discussed in (Howson and Urbach, 2005) and (Ear-
man, 1992). These texts also discuss Jeffrey conditionalization, which is an alternative up-
dating rule. For an introduction to Bayesian epistemology, see (Hájek and Hartmann, 2010)
and (Hartmann and Sprenger, 2010).

7For an introduction to Bayesian networks, see (Neapolitan, 2003; Pearl, 1988). (Bovens
and Hartmann, 2003) discusses applications from epistemology and the philosophy of science,
and provides a short introduction to the theory of Bayesian networks.
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To turn the graph from Figure 3 into a Bayesian network, we further require
the marginal probability distributions for each variable in a root node (i.e. the
prior probability, P(H), of H), and the conditional probability distributions for
every variable in a child node, given its parents. In the present case, the lat-
ter involves fixing the likelihoods P(E|H) and P(E|¬H). Using the machinery of
Bayesian networks, we can then obtain all other probabilities. As will be relevant
below, the graph’s probability distribution respects the Parental Markov Con-
dition (PMC): A variable represented by a node in a Bayesian network is inde-
pendent of all variables represented by its non-descendant nodes in the Bayesian
network, conditional on all variables represented by its parent nodes.

4. Reduction and Confirmation I: Nagelian Pairwise Reduction

To enable a Bayesian analysis of Montagovian reduction, we hereafter focus on
propositions in G and S. The ostensible exclusion of expression- and entity
classes (cf. the two leftmost pairs of nodes in Figure 1) from our probabilistic
considerations does not hamper the success of our proposed model of reduction.
This is due to the strong correspondence between basic-type objects and their
corresponding (syntactic or semantic) rules (cf. Sect. 2.1). The reductive relation
between syntax and semantics can be represented via the Bayesian network in
Figure 4:

Gn

Sn

Gv

Sv

Gs

Ss

En Ev Es

Figure 4. Post-reductive relations between pairs of propositions �Sk, Gk�.

For simplicity, we assume that every rule in G is supported by exactly one
piece of evidence. As specified in Section 2.3, we take the latter to be an intu-
itively well-formed expression whose structure reflects the rule’s assumed forma-
tion process. The inversion of the direction of arrows with respect to Figure 1
is motivated by the directedness of the syntax-semantics relation (cf. Sect. 2.2),
and attendant dependence of the probability of the truth of syntactic on the
probability of the truth of semantic rules. Moreover, the conditional depen-
dency of syntactic on semantic rules (cf. Fig. 4) enables us to obtain an aligned
chain of arrows, and, thus, to represent a flow of evidence from the syntactic to
the semantic theory.

Using Bayesian networks, Dizadji-Bahmani et al. (2010b) have recently
shown that the establishment of an intertheoretic reduction relation has a posi-
tive confirmational and epistemic impact on the two theories involved. We aim
to show the same for the Integrative Reduction of syntax to semantics. While
pieces of evidence Ek initially confirm (or disconfirm) only syntactic proposi-
tions Gk, the establishment of reductive relations effects a boost of the joint
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probabilities of, and flow of confirmation between, the syntactic and semantic
theory. The independence of proposition pairs �Sk, Gk� (cf. the lack of horizontal
arrows between propositional nodes in Figure 4) justifies our preliminary restric-
tion to the single-proposition case. Correspondingly, we abbreviate Ss as S, Gs

as G, and Es as E. Figures 5, 6 display the graphs associated with the pre- and
post-reductive dependence relations between S,G and E:

S G E

Figure 5. Pre-reductive dependence relations between S, G, and E.

S G E

Figure 6. Post-reductive dependence relations between S, G, and E.

We determine the confirmation of S and G via their relevant probabilities,
beginning with the pre-reductive situation (Fig. 5).

4.1. Pre-Reductive Confirmation. Let P1(S) and P1(G) be the marginal
probabilities of the root nodes S,G, with P1 the corresponding probability mea-
sure. Let P1(E|G) and P1(E|¬G) be the conditional probabilities of the child
node E. For convenience, we use the following abbreviation scheme:8

P1(S) = σ , P1(G) = γ , (2)

P1(E|G) = π , P1(E|¬G) = ρ .

We assume a positive confirmatory relation between E and G, such that π > ρ.

From the network structure in Figure 5, we can read off the conditional and
unconditional independences E ⊥⊥ S|G resp. S ⊥⊥ G such that P1(S|E) = P1(S).
Evidence E does not confirm (or disconfirm) S. Hence, there is no flow of con-
firmation from the syntactic to the semantic theory. In the absence of the
map h : G → S (or related bridge laws), the variables G and S are proba-
bilistically independent before the reduction:

P1(S,G) = P1(S)P1(G) = γ σ . (3)

By equation (3), the prior probability of the conjunction of S and G equals the
product of the marginal probabilities of the positive instantiations of their root
nodes. Using the methodology of (Bovens and Hartmann, 2003), we obtain their
posterior probability as follows:

P∗
1 :=

P1(S,G,E)

P1(E)
=

P1(S,G,E)
�

S,G(S,G,E)
(4)

=
γ π σ

γ π + γ̄ ρ
,

8To prevent the equivocation of probabilistic and (subsequently introduced) type variables,
we denote numerical values by lowercase Greek letters.
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where the denominator of the fraction in the final line is a convex combination
of π and ρ weighed by γ, and where γ̄ := 1− γ.9

We close the present subsection by assessing the degree of confirmation of
the conjunction of S and G. To this aim, we use the difference measure d, cf.
(Carnap, 1950), defined for our case as follows:10

d1 := P1(S,G|E)−P1(S,G) . (5)

Thus, E confirms G if its consideration raises the probability of the conjunction
of S and G. By calculating d1, we show that the latter is indeed the case:

d1 =
γ γ̄ σ (π − ρ)

γ π + γ̄ ρ
. (6)

Assuming that γ,π, ρ, and σ lie in the open interval (0, 1) with π > ρ, the
above fraction is always strictly positive. We summarize our observation in the
following theorem:

Theorem 1. E confirms S and G iff E confirms G.

We next investigate the joint probabilities of S,G in the post-reductive situation.

4.2. Post-Reductive Confirmation. The consideration of Montague’s inter-
theory mapping (cf. the arrow from S to G in Fig. 4, 6) requires a restatement
of the above probabilities. Since G is no longer a root node in Figure 6 (and
is, thus, not assigned a prior probability), we replace the second equation in (2)
by (7), below, with P2 the new probability measure:

P2(G|S) = 1 , P2(G|¬S) = 0 . (7)

Equation (7) is warranted by Montague’s homomorphism h. All other assign-
ments are as for P1. Our introduction of the new measure P2 is motivated by
the move to a different probabilistic situation, and attendant need to assign the
received Montagovian propositions possibly distinct probabilistic values. Equal-
ity statements of the form P2(S) = P1(S) ensure the possibility of comparing
the respective propositions’ confirmation in different scenarios.

We interrupt our presentation of post-reductive confirmation by an observa-
tion on Montague’s syntax-semantics map. As we have argued in Section 2.2,
the latter assumes the function of bridge laws, establishing connections between
objects and propositions of the two theories. Naturally, linguists who question
the stipulated relation between certain pairs of objects (assuming, e.g., that sen-
tences sometimes denote propositions, not truth-values) may assign the relevant
syntactic rule a lower conditional probability than the one in (7). This does
not threaten the success of our enterprise: While a lower probability of G de-
creased the flow of confirmation to S (with the latter’s strength varying with the
value of P2(G|S)), the reduction would still be epistemically valuable (unless, of
course, P2(G|S) = 0).

The possibility of denying the perfect correspondence between pairs in Ek
and Dk marks a presupposition on the equations in (7). Thus, propositions hn,
hv, and hs (below) are implicit in the relevant probability measures:

9We will hereafter always abbreviate 1− x as x̄.
10As discussed in (Fitelson, 1999; Eells and Fitelson, 2000), results may depend on our

choice of confirmation measure. Whether (and to what extent) they do, will be a question for
future research.
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hn. Grammatical nouns denote (i.e. are interpreted in the domain of) objects.
hv. Grammatical verbs denote properties.
hs. Sentences denote truth-values.

Following the introduction of semantic types, we will revisit the question of the
content and epistemology of bridge laws in Sections 5.1, 5.2.

Let us return to the dependencies between, and confirmation of, S,G, and E.
As encoded by the arrow from S to G, Montague’s mapping effects a flow of
evidence from syntax to semantics. The confirmation of the relevant semantic
rule is defined simply as follows:

Theorem 2. E confirms S iff π > ρ.

According to the above theorem, our piece of evidence confirms the semantic
proposition if, as assumed in Section 4.1, E supports G. Equations (7) ensure a
positive flow of confirmation from G to S.

The prior and posterior probabilities of the conjunction of S and G are as
follows (all calculations are in the Appendix):

P2(S,G) = σ , (8)

P∗
2 := P2(S,G|E) = π σ

π σ + ρ σ̄
. (9)

The degree of confirmation of the conjunction of S and G under P2 is recorded
below:

d2 := P2(S,G|E)−P2(S,G) =
σ σ̄ (π − ρ)

π σ + ρ σ̄
. (10)

To show the epistemic value of Montagovian reduction, we next compare
the conjunction’s probabilities and degree of confirmation in both scenarios.
We accept a reduction if it raises the conjunction’s probabilities or evidential
support.

4.3. Comparing Situations. We begin by comparing the conjunction’s prior
probabilities, P1(S,G) and P2(S,G). While the propositional variables S,G are
independent before, they have become dependent after the reduction. This is
due to the fact that G is no longer a root node in Figure 6. In order to compare
the joint probabilities of S and G, we assume the identity of P2(G) and P1(G),
and P2(E|G) and P1(E|G), respectively. By the first equality in (7), we further
assume the equality in (11)

P2(G) = P2(G|S)P2(S) = σ (11)

such that γ = σ.

Using the above, we calculate the difference, ∆0, between the conjunction’s
pre- and post-reductive prior probabilities and obtain

∆0 := P2(S,G)−P1(S,G) = σ σ̄ . (12)

Intuitively, the reduction is epistemically valuable if the conjunction’s prior prob-
ability is higher post- than pre-reduction, i.e. if ∆0 > 0. Since we assume all
non-h-based probabilities to be non-extreme, we know that the latter is indeed
the case. Theorem 3 captures this requirement:

Theorem 3. ∆0 = 0 iff σ = 0 or 1; ∆0 > 0 iff σ ∈ (0, 1).

The difference between the conjunction’s posterior probabilities is also
strictly positive:
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∆1 := P2(S,G|E)−P1(S,G|E) = π σ σ̄

π σ + ρ σ̄
. (13)

We show this via the above assumptions, together with the fact that π > ρ.

Our propositions’ confirmation witnesses a similar increase. To establish this,
we calculate the difference between their conjunction’s pre- and post-reductive
degree of confirmation under the difference measure and obtain

∆2 := d2 − d1 =
σ σ̄

2 (π − ρ)

π σ + ρ σ̄
. (14)

As can be read off from the expression in (14), the positivity of ∆2, and at-
tendant epistemic value of Montague reduction, is conditional on the following
requirements:

Theorem 4. ∆2 > 0 iff σ ∈ (0, 1) and iff π > ρ.

We have seen that Montagovian (or Nagel-style) reduction increases the prob-
abilities and evidential support of the relevant conjunction. One problem re-
mains: While Montague’s syntax-semantics map renders E probabilistically rel-
evant for S, the stipulation of independent morphisms between all pairs �Sk, Gk�
does not assign the reduction an optimal epistemic value. This is due to the
fact that the probability of syntax reduced to semantics will correspond to the
product of the probabilities of all proposition pairs:11

P2(
�

k

�Sk,Gk�) = P2(Sn,Gn)P2(Sv,Gv)P2(Ss,Gs) (15)

= P2(Sn)P2(Sv)P2(Ss) , (by (7))

respectively

P2(
�

k

�Sk,Gk|Ek�) = P2(Sn,Gn|En)P2(Sv,Gv|Ev)P2(Ss,Gs|Es)

= P2(Sn|En)P2(Sv|Ev)P2(Ss|Es) . (16)

The probability of the conjunction decreases in inverse proportion to the number
of its conjuncts. Contrary to (Dijzadji-Bahmani et al., 2010b), the optimal
generalization of the network in Figure 6 to theories with multiple propositional
elements (cf. Fig. 4) is not conceptually straightforward, but requires insight
into the mutual dependencies between same-theory propositions or proposition-
reducing principles.

5. Reduction and Confirmation II: Integrative Reduction

Integrative Reduction accounts for such intratheoretical connections. Its model
(presented in Sect. 5.2 and Sect. 6) is developed in abstraction from a sophisti-
cated version of Montague’s ‘two theories’ theory (introduced above). To increase
the perspicuity of the rule-connecting mechanism, Montague (1973) stipulates
a third level of types, i.e., logico-semantic rôles which mediate between syntac-
tic expressions and their semantic referents, cf. (Russell, 1908; Church, 1940).
Every syntactic category k is thus correlated with a semantic type α, whose
referential domain, Dα, constitutes the familiar denotation set of all expressions
in Eα. Figure 7 (next page) schematizes the use of types on the level of objects:

11We assume that P({X}) = P(X) s.t. P2(
�

k �Sk,Gk�) = P2(�Sn,Gn�, �Sv,Gv�, �Ss,Gs�) =
P2(Sn, Sv, Ss,Gn,Gv,Gs).
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En Ev Es

Dn Dv DsSets of Denotations

Basic Types

Sets of Expressions

Figure 7. The type basis of CG- and MS-categories.

To demonstrate the requirements on the use of an intermediate type-level, we
present three different cases, stipulating the existence of multiple, two, or a single
basic type for the reduction of syntactic to semantic propositions. We begin with
a discussion of the multi-type case.

5.1. Case 1: Separate Types. The assumption of a separate type for each
category pair does not improve upon the above-observed independence. Let the
types e, p, t, (p → t), and ((p → t) → t) be associated with individual objects
(‘entities’), properties, truth-values, generalized quantifiers, and properties of
generalized quantifiers, respectively. Assume that the type rule Ts, associated
with the construction of sentence-denotations, is defined as follows:

Ts. If R ∈ Xv and j ∈ Xn, then R ∗ j ∈ Xs, and
if R ∈ X((p→t)→t) and j ∈ X(p→t), then R ∗ j ∈ Xs

where X is neutral between the notation for expression sets, E , and referential
domains, D, and where ∗ is neutral between the concatenation/agreement oper-
ator, and the designation of functional application. Note the ambiguity of the
rule Ts. In contrast to the semantic rule Ss (cf. Sect. 2.1), the type rule Ts makes
the different possibilities of obtaining sentence-denotations explicit.

Following the notational convention from the beginning of Section 3, we
denote the values of variables Ts, Tn, and Tv by Ts,¬Ts,Tn,¬Tn, and Tv,¬Tv,
respectively. The graph in Figure 8 encodes the dependencies of propositional
variables after the newly introduced reduction:
As in the untyped case (cf. Sect. 4.3), the independence of triples �Sk, Tk, Gk�
warrants the derivation of their joint probabilities via the product of their indi-
vidual probabilities. For this reason, we initially restrict ourselves to the prior
and posterior probabilities of the conjunction of Ts, Ss, and Gs. To empha-
size our model’s connection with the network from Figure 6, we use a similar
abbreviation scheme, with P3 the new probability measure:

P3(Ts) = τ ,

P3(Ss|Ts) = 1 , P3(Ss|¬Ts) = 0 , (17)

P3(Gs|Ts) = 1 , P3(Gs|¬Ts) = 0 ,

P3(Es|Gs) = π , P3(Es|¬Gs) = ρ .

The equations in the last line are as for Figures 5, 6, above. The identities in
lines two and three are necessitated by the replacement of Ss and Gs by Ts as
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Gn

Tn

Sn

Gv

Tv

Sv

Gs

Ts

Ss

En Ev Es

Figure 8. Case 1: Separate types.

root nodes. Since, thus,

P3(Ss) = P3(Ts) = P3(Gs) , (18)

Theorem 2 also holds in the new model. This is due to the strong dependence of
syntactic and semantic on type rules, and assumption of a positive confirmatory
relation between E and G.

Admittedly, the attribution of our type rules’ probabilities seems less intuitive
than the assignment of probabilities to their syntactic or semantic counterparts.
This is amended by the equalities in the second line of (17). Thus, the probabil-
ities of rules Ts, Tn, Tv can be obtained via the probabilities of their semantic
(or syntactic) correlates Ss, Sn, Sv (Gs, Gn, Gv).

The close association of semantic and type rules prompts a general remark:
Our introduction to this paper (cf. Sect. 1) has announed the development of a
new type of intertheoretic relation on the model of Montague’s characterization
of the syntax-semantics relation. As we will show at the end of Section 5.2.2,
the introduction of a separate level of types only serves to elucidate the rela-
tion between same-theory objects and propositions. Given the establishment of
their constructive relations, and attendant identification of propositional inter-
dependencies, the set of types (and associated type-propositions) is dispensable.

The introduction of semantic types requires a revision of Montague’s entity-
connecting principles. In the context of Section 2.2, we have identified the
map h : E → D as the Montagovian counterpart of bridge laws. Logical types
refine the previously presented mechanism: Instead of merely associating differ-
ent syntactic and semantic categories, types provide a fully-fledged interface for
their interaction. Propositions fk, gk (below) express the content of Montagovian
maps g : TY → E and f : TY → D, where h = g

−1 ◦ f :
gn. Nouns are expr’s of type e. fn. Type-e expr’s are interpreted in Dn.
gv. Verbs are expr’s of type p. fv. Type-p expr’s are interpreted in Dv.
gs. Sentences are of type t. fs. Type-t expr’s are interpreted in Ds.

We will leave the discussion of propositional interdefineability, together with the
epistemology of types, for the following subsection.

Let us proceed to the confirmation of the conjunction of Ts, Ss, and Gs. The
prior and posterior probability of the above propositions are as follows:
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P3(Ts, Ss,Gs) = τ (19)

P∗
3 := P3(Ts, Ss,Gs|Es) =

π τ

π τ + ρ τ̄
. (20)

The probabilistic equivalence of the separately typed and untyped model is ob-
vious: Given the equalities P3(Ss) = P2(S), P3(Gs) = P2(G), and P3(Es|Gs) =
P2(E|G) such that τ = σ, it is easy to see the identity between the prior and
posterior probabilities of the tuples �Ts, Ss,Gs� and �S,G�. Like the joint prob-
ability of the latter, the joint probability of former form converges to 0 as their
number increases.

The difference, ∆3, of their associated degrees of confirmation witnesses con-
firmation stasis. Consequently, the conjunction of Ss and Gs is not better con-
firmed than its untyped competitor in the post-reductive situation. We sum-
marize our findings in the following theorem, where |CAT| and |TY| denote the
number of basic (syntactic or semantic) categories and types, respectively:

Theorem 5. If |TY| = |CAT|, then
�

k�Tk, Sk,Gk� has the same prior and
posterior probability and is confirmed to the same degree as

�
k �Sk,Gk� under

the difference measure.

5.2. Case 2: Two Types. The desired increase in confirmation requires the
identification of connections between same-theory propositions. Montague’s
framework provides this link: Rather than taking different semantic or syn-
tactic categories and rules to be structurally independent, Montague observes
a strong connection in their constructive properties: Thus, the assumption of
basic types e, t enables the construction of complex (i.e. derived) types for the
representation of all other referential domains (paradigmatically, the domain of
properties). This is due to the fact that functions Dn → {T,F} represent the
set of entities of which a given property is true (false). In a world w, that is
inhabited by John, Mary, and Fido, the property �is a dog� is, thus, identified
with the set {x ∈ Dn | �is a dog�(x) = T} =

¶
�Fido�

©
.12

While types e and t (or their associated rules) are directly involved in the
reduction of rules Ss, Sn and Gs, Gn, they only serve as ‘building blocks’ in
the formulation of rules Sv,Gv. The above-described mechanism leaves open
two possibilities for the construction of derived-type rules: While rules for the
behavior of complex expressions or objects can be directly formulated in terms of
derived types (cf. the graph in Fig. 9), their statement can, alternatively, involve
rules for the obtaining of basic expressions and objects (cf. the graph in Fig. 10).
As we will see in due course, both formulations yield the same probabilities.

5.2.1. Case 2.i: Two Types Direct. We begin by determining the joint proba-
bilities and confirmation of directly typed propositions (cf. Fig. 9, next page).

Let P4(Ts) = τ and P4(Tn) = τ
� be the marginal probabilities of Ts,Tn, respec-

tively. We specify conditional probabilities via the following scheme:

12The latter assumption underlies our description of generalized quantifiers and their prop-
erties as objects of type (p → t) and type ((p → t) → t), respectively.
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Figure 9. Case 2.i: Two types direct.

P4(Sv|Tn,Ts) = 1 , P4(Sv|¬Tn,Ts) = 0 ,

P4(Sv|Tn,¬Ts) = 0 , P4(Sv|¬Tn,¬Ts) = 0 ,

P4(Gv|Tn,Ts) = 1 , P4(Gv|¬Tn,Ts) = 0 , (21)

P4(Gv|Tn,¬Ts) = 0 , P4(Gv|¬Tn,¬Ts) = 0 ,

P4(Ev|Gv) = π
��

, P4(Ev|¬Gv) = ρ
��
.

The probabilities of Ss,Gs,Es resp. Sn,Gn,En are as in (17). Their dependencies
(cf. ll. 1–4) are justified by propositions fs, gs and fn, gn, above. The equations in
lines 3–4 and 1–2 ensure a positive flow of confirmation from G to T and from T
to S, respectively.

The prior and posterior probabilities of the conjunction of the variables’
positive instantiations are as follows:

P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv) = τ τ
�
, (22)

P∗
4 := P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv|Es,En,Ev) . (23)

Its degree of confirmation under the difference measure, d4, is positive under the
conditions from Theorem 6:

Theorem 6. If π > ρ,π
�
> ρ

�
,π

��
> ρ

�� and if τ and τ
� ∈ (0, 1), then d4 > 0.

To show the epistemic value of the two- over the three-typed case, we must
first specify the probabilities of the (initially neglected) rules for entity- and
property-types: The values of P3(Sn),P3(Gn), P3(En) are as for P4. The con-
ditional probabilities of Sv,Gv and Ev are analogous to their entity- and truth-
value correlates. We state the marginal probability of Tv below:

P3(Tv) = τ
��
. (24)

By the above-observed independence (Sect. 5.1, cf. Sect. 4.3), the prior and pos-
terior probability of (Ts,Tn,Tv, Ss, Sn, Sv,Gs,Gn,Gv), cf. (25) and (26), below,
amount to the product of their respective probabilities.

P3(Ts,Tn,Tv, Ss, Sn, Sv,Gs,Gn,Gv) = τ τ
�
τ
��
, (25)
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(P∗
3)

� := P3(Ts,Tn,Tv, Ss, Sn, Sv,Gs,Gn,Gv|Es,En,Ev) (26)

=
Å

π τ

π τ + ρ τ̄

ãÇ
π
�
τ
�

π� τ � + ρ� τ̄ �

åÇ
π
��
τ
��

π�� τ �� + ρ�� τ̄ ��

å
.

By the positivity of the difference measure d2 (cf. Sect. 4.2), the degree of con-
firmation of the above conjunction, d5, is positive under the conditions from
Theorem 7:

Theorem 7. If τ, τ �, or τ
�� = 0, then d5 = 0. If π < ρ,π

�
< ρ

�, and π
��
< ρ

��,
then d5 < 0. If τ, τ �, τ �� and π,π

�
,π

�� ∈ (0, 1) and if π > ρ,π
�
> ρ

�
,π

��
> ρ

��,
then d5 > 0.

For comparability, we assume equalities between P4(Sk|Tk) and P3(Sk|Tk),
P4(Gk| Tk) and P3(Gk|Tk), and P4(Ek|Gk) and P3(Ek|Gk) (with (e → t) ≡ p ∈
TY). We begin by comparing the conjunction’s prior probabilities, reflected in
the difference ∆4:

∆4 := P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv)−P3

Ä�

k

¨
Tk, Sk,Gk

∂ä

= τ τ
�
τ̄
�� (27)

As is clear from the relevant term in (27), the positivity of ∆4 depends in partic-
ular on the non-certainty of Tv such that τ �� �= 1. Theorem 8, below, summarizes
the positivity conditions for ∆4:

Theorem 8. ∆4 = 0 iff either (i) τ = 0, (ii) τ
� = 0, or (iii) τ

�� = 1. ∆4 > 0
iff τ, τ

�, and τ
�� ∈ (0, 1).

The establishment of the positivity of the difference, ∆5 := P∗
4 − (P∗

3)
�, of

the conjunction’s posterior probabilities is more involved. Theorem 9, below,
captures the conditions for ∆5 > 0. Its proof is included in the Appendix.

Theorem 9. ∆5 > 0 if π��
> ρ

��.

Notably, the positivity condition from Theorem 9 is only sufficient, not necessary.
However, since our rules’ confirmation by the relevant piece(s) of evidence con-
stitutes one of our permanent assumptions (cf. Sect. 4.1), we content ourselves
with this criterion.

The conditions for a higher degree of confirmation are motivated by our
previous observations: Given the difference ∆6 := d4 − d5, the replacement of
three- by two-typed propositions of the syntactic and the semantic theory will
increase the flow of confirmation between the two theories only if ∆6 > 0, i.e. if

∆6 =
�
P∗

4 −P4

Ä�

k

¨
Tk, Sk,Gk

∂ä�
−

�
(P∗

3)
� −P3

Ä�

k

¨
Tk, Sk,Gk

∂ä�
(28)

Hence, ∆6 > 0 iff ∆5 > τ τ
�
τ̄
��.

As can be seen from (28), it is ‘easier’ to raise the posterior probability of
Montague’s theories by establishing a relation between different syntactic and
semantic objects than it is to increase their degree of confirmation. Especially
if (P∗

3)
� is (comparatively) high, the confirmation may not be greater after the

reduction.

Our findings are captured in the following theorem, where TY2 and TYn

are the basic-type sets associated with theories of two- and n-typed syntax/
semantics, with TY2 ⊆ TYn.
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Theorem 10. If |TY2| < |TYn|, then the conjunction of two-typed proposi-
tions has a higher prior and posterior probability and is better confirmed under
the difference measure than the conjunction of their n-typed counterparts if the
following holds:

i. The marginal probability of the truth of the propositions for members
of TYn is non-extreme.

ii. For every proposition Ti associated with a member, i, of TYn\TY2, the
likelihood of Ti on Gi is higher than the likelihood of ¬Ti on Gi.

iii. The difference between the posterior probability of the conjunction of two-
and n-typed propositions is greater than the product of the marginal prob-
ability of the truth of the propositions for members of TY2 and the prob-
ability of the falsity of the propositions for members of TYn\TY2.

5.2.2. Case 2.ii: Two Types Indirect. To compare the probabilities of the directly
with those of the indirectly typed propositions, we next consider the probabilities
of the network in Figure 10.

Gn

Tn

Sn

Gv

Sv

Gs

Ts

Ss

En Ev Es

Figure 10. Case 2.ii: Two types indirect.

The mediated formulation of derived-type rules (cf. the chains of arrows
from Tn and Ts via Sn, Ss to Sv) requires the replacement of the first two lines
in (21) by the equalities in (29), below (with P5 the new probability measure):

P5(Sv|Sn, Ss) = 1 , P5(Sv|¬Sn, Ss) = 0 , (29)

P5(Sv|Sn,¬Ss) = 0 , P5(Sv|¬Sn,¬Ss) = 0 .

The conditional probability of Gv is similarly defined: Rather than depending
only on the probabilities of Tn and Ts, the probability of the truth of Sv is
now also dependent on the probabilities of Sn, Ss. This is not to claim a fun-
damental difference between the presently and previously introduced models:
Notably, our choice of different type-rule formulations does not impact the theo-
ries’ probabilities and confirmation. This is due to the probabilistic equivalence
of chains of arrows (Ts → Ss) ◦ (Ss → Sv), (Ts → Sv), and corresponding identi-
ties P5(Sv) = P4(Sv), P5(Gv) = P4(Gv). The confirmation of indirectly typed
propositions is thus the same as that of directly typed propositions.
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We have motivated the presentation of the model of our new type of in-
tertheoretic reduction by the need to identify dependencies between same-theory
objects (and, thus, propositions). Our investigation into the probabilistic im-
pact of different rule-formulations yields further insight into the latter require-
ment: While the use of types (as a surrogate for term-connecting bridge laws)
increases the perspicuity of the effected reduction, the improvement of our
theories’ confirmation is not conditional on the introduction of an intermedi-
ate type level. This is warranted by the identity of P5(Ss),P5(Ts),P5(Gs)
and P5(Sn),P5(Tn),P4(Gn), respectively.13 The only requirement lies in the
establishment of definitional connections between same-theory objects.

The latter constitute the core feature of Integrative Reduction. We define
Integrative Reduction as a weak variant of Nagelian reduction that differs from
the latter in its directedness and the establishment of constructive relations be-
tween same-theory objects and propositions. Consequently, a separately-typed
directed variant of the Nagelian model (along the lines of Sect. 5.1) does not
qualify as a proper model of Integrative Reduction.14 This is due to the proba-
bilistic equivalence of their associated propositions, and attendant collapse of the
separately-typed model of Integrative Reduction into a variant of the Nagelian
model. We conclude this section with considerations about the optimal number
of basic types (or primitive semantic objects).

5.3. Case 3: One Type. Our previous findings suggest an inverse propor-
tionality between the theories’ probabilities, or degree of confirmation, and the
number of basic types: As the latter decreases, the former rises. To check this
hypothesis, and identify possible constraints, we now turn to the last case. Fig-
ure 11 displays a graph associated with the assumption of a single type, e, for
the formulation of syntactic and semantic rules. By the results from Section 5.2,
our type choice does not influence the confirmation of Montagovian propositions.

Gn

Tn

Sn

Gv

Sv

Gs

Ss

En Ev Es

Figure 11. Case 3: One type.

13This constitutes the probabilistic basis for linguists’ choice between ‘direct’ and ‘indirect’
interpretations of natural language into set-theoretic models, cf. (Partee, 1997).

14Note, however, the possibility of treating Integrative Reductions of any kind (including
non-proper reductions) as a generalization of Nagelian reduction.
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A glance at the graph in Figure 11 reveals the large number of root nodes and
conditional independencies. This is due to the impossibility of constructing the
remaining types (e.g. (e → t), t) from a single base type (here, e), and related
need to separately introduce their associated syntactic and semantic rules.

The abbreviation scheme, below, contains the marginal and conditional prob-
abilities of all nodes in the Bayesian network in Figure 11:

P6(Tn) = τ
�

, (30)P6(Ss) = σ , P6(Sv) = σ
��

P6(Gs) = γ , P6(Gv) = γ
�� , P6(Sn|Tn) = 1

P6(Sn|¬Tn) = 0 , P6(Gn|Tn) = 1 , P6(Gn|¬Tn) = 0

P6(En|Gn) = π
� , P6(En|¬Gn) = ρ

� , P6(Es|Gs) = π

P6(Es|¬Gs) = ρ , P6(Ev|Gv) = π
�� , P6(Ev|¬Gv) = ρ

��

The probabilities of Tn, Sn,Gn, and En are as in (17). The other values in the
first, second, ultimate and penultimate lines correspond to those from (2). By
the absence of property- or truth-value types, the positive flow of confirmation
between Gn,Tn, and Sn (cf. ll. 4, 5) is disabled at the verbal and sentential level.

The independence of tuples �Tn, Sn, Gn�, �Ss, Gs�, �Sv, Gv� facilitates the
comparative assessment of our theories’ probabilities and confirmation. While
the prior and posterior probability of the conjunction (Tn, Sn,En) correspond
to the probabilities of the separately typed case in Section 5.1 (granted the
usual comparability conditions), the probabilities of (Ss,Gs) and (Sv,Gv) are
parallel to those of the pre-reductive untyped case (cf. Sect. 4.1; Fig. 4). Their
multiplication yields the following prior probability:

P6(Tn, Sn, Ss, Sv,Gn,Gs,Gv) = P6(Tn, Sn,Gn)P6(Ss,Gs)P6(Sv,Gv) (31)

By the above argument, (31) is greater than the prior probability of the con-
junction of untyped propositions in the pre-reductive, but smaller than the con-
junction of separately typed propositions in the post-reductive situation. The
same holds, by an argument from P∗

2 and (P∗
3)

�, of the conjunction’s posterior
probability:

P∗
6 := P6(Tn, Sn, Ss, Sv,Gn,Gs,Gv|En,Es,Ev) . (32)

We assess the conjunction’s evidential support via the measure d6 and observe
that the positivity conditions for d6 > 0 are similar to the positivity conditions
for d5 (cf. Thm. 7):

Theorem 11. If γ, γ��,σ,σ��, or τ � = 0, then d6 = 0. If π < ρ,π
�
< ρ

�, and π
��
<

ρ
��, then d6 < 0. If γ, γ��,σ,σ��

, τ
� and π,π

�
,π

�� ∈ (0, 1) and if π > ρ,π
�
> ρ

�
,π

��
>

ρ
��, then d6 > 0.

To compare our theories’ degree of confirmation with the support of the
separately typed model, we calculate ∆7 := d6 − d5 and obtain the following
theorem:

Theorem 12. If π > ρ,π
�
> ρ

�
,π

��
> ρ

�� and γ, γ
��
,σ,σ

��, and τ
� ∈ (0, 1), then

∆7 < 0.

The concession of a Montagovian map between the elements in �Ss, Gs�
and �Sv, Gv� (cf. Sect. 4.2) hardly improves this situation: While the homo-
morphism h cancels some of the above-observed independencies – requiring a
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restatement of the relevant probabilities in (33), below – the theories’ proba-
bilities and degree of confirmation do not exceed that of the separately typed
model. To mark the move to a different probabilistic situation, we introduce the
new probability measure P7. Significantly,

P7(Gs|Ss) = 1 , P7(Gs|¬Ss) = 0 , (33)

P7(Gv|Sv) = 1 , P7(Gv|¬Sv) = 0 ,

(cf. Section 4.2, (7)). All other assignments are as above.

Since tuples
¨
(Tk, ) Sk,Gk

∂
remain independent, we calculate their joint prob-

abilities via the mechanism, above. The prior and posterior probability of the
conjunction are

P7(Tn, Sn, Ss, Sv,Gn,Gs,Gv) = σ σ
��
τ
�
, (34)

and

P∗
7 =

Ç
π σ

π σ + ρ σ̄

åÇ
π
��
σ
��

π�� σ�� + ρ�� σ̄��

åÇ
π
�
τ
�

π� τ � + ρ� τ̄ �

å
. (35)

It is easy to see that, granted the above requirements, the conjunction’s prior and
posterior probabilities under P7 are exactly the probabilities of (25) and (26).

We summarize the results of our investigation of the separate-, the two-, and
the single-type case in the following theorem, where TYm and TYn are different
basic-type sets such that TYm ⊆ TYn:

Theorem 13. If TYm enables the construction of all linguistically relevant
types, then, granted the conditions from Theorem 10,

�
m �Sm,Gm� has a higher

prior and posterior probability and is better confirmed under the difference mea-
sure than

�
n�Sn,Gn�.

Given the derivability of all syntactic or semantic propositions, the minimal
number of basic types yields the highest probabilities and effects a maximal flow
of confirmation between the two theories.

6. Extended Models of Integrative Reduction

The past two sections have identified a new kind of intertheoretic relation in-
spired by Montague’s theory of syntax and semantics. Its model differs from ex-
isting models of reduction with respect to the relation between elements from dif-
ferent theories, and the dependency of elements from the same theory: Nagelian
bridge laws are replaced by a designated map between propositions of the re-
duced and the reducing theory; connections between same-theory objects are
captured through mediating types. In contrast to the Nagelian model of reduc-
tion – and like Schaffner’s revised model –, our model of Integrative Reduction
accommodates cases of multiple realizability. Thus, a single object (or type of
object) in the reduced theory may be related (via bridge laws or the map h) to
different (types of) objects in the reducing theory. While our model locates the
origin of this (dis-)ambiguity directly in the propositions of the reducing theory,
Schaffner’s revised model ascribes its origin to auxiliary assumptions, whose con-
sideration motivates the introduction of ‘corrected’ versions of propositions from
both theories, cf. (Schaffner, 1974; Nagel, 1977). The present section formulates
a Schaffner-style variant of our previously developed model. For convenience,
we first review Schaffner’s revised Nagelian model, as presented in (Dijzadji-
Bahmani et al., 2010b).
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Like Nagel’s model and our integrative model of intertheoretic reduction,
Schaffner’s revised model assumes two theories, T1 (i.e. the reducing theory)
and T2 (i.e. the reducing theory). With each of the two theories is associated a
set of empirical propositions, {T 1

1 , . . . , T
n
1 } resp. {T 1

2 , . . . , T
n
2 } (with n ∈ N), that

constitute the laws of T1, respectively T2. The theory T2 is then reduced to the
theory T1 by first deriving a corrected version, T ∗

1 , of every proposition, T1, in T1
(step 1), obtaining its reduced theory counterpart, T ∗

2 , via bridge laws (step 2),
and showing a strong analogy between T

∗
2 and the corresponding proposition, T2,

in T2 (step 3). Figure 12 illustrates Schaffner’s revised model of reduction for
theories T1 and T2.
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Sv

Tv

Gv

Ss

Ts

Gs
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g
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Gn

Sv

Gv
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2
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3
1 T

3∗
1
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3∗T

3
2

strong analogy
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bridge

Figure 12. The integrative model (left, middle) and Schaffner’s
revised model of reduction for three proposition-pairs (right).

For comparison, Schaffner’s model is printed next to a diagram of our model of
Integrative Reduction with mediating types (left) and without types (middle).

To transform our model of Integrative Reduction into a variant of Schaffner’s
revised model, we only need to introduce a corrected version, S∗k and G∗

k, of
every proposition, Sk and Gk, in S and G (i.e. add steps 1, 3). The latter,
which themselves take the form of (dis-)ambiguating propositions, remove the
ambiguity from every semantic rule, Sk, in S. For illustration, we state the
corrected version, S∗s , of the sentence-formation rule Ss:

S∗s . If �R�� ∈ D�
v and �j�� ∈ D�

n, then �R��(�j��) ∈ Ds, and
if �R��� ∈ D��

v and �j��� ∈ D��
n, then �R���(�j���) ∈ Ds.

The rule S∗s makes Ss’s ambiguity between the rules S�s and S��s explicit. Conse-
quently, the resulting model of Schaffner-style Integrative Reduction will exhibit
all properties of Schaffner’s revised model of Nagelian reduction (including the
‘origin’ of multiple realizability). In contrast to Schaffner’s model (cf. Fig. 12,
right), however, our Schaffner-style variant of Integrative Reduction accommo-
dates intratheoretical propositional dependencies. The latter is represented by
either of the diagrams in Figure 13 (next page).

In Figure 13, relations between same-theory propositions are represented by
dashed arrows. The diagram on the right identifies entity-connecting types with
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Figure 13. Integrative GNS-Reduction with types (right) and
without types (left) for three proposition-pairs.

primitive objects in the reducing theory; the diagram on the left preserves their
separate status. In the former case, the role of types will be taken over by entities
that are neutral between objects of both theories.

Significantly, the extended model of Integrative Reduction (above) be-
haves towards our original model of Integrative Reduction (cf. Sect. 5) just like
Schaffner’s revised model of reduction behaves towards Nagel’s original model.
This is no surprise: Like Schaffner’s revised model, our extended model of Inte-
grative Reduction aims to accommodate cases of multiple realizability, while
leaving the remaining features of the model unchanged. In contrast to the
Nagelian model of reduction, however, our model of Integrative Reduction al-
ready assumes the relation’s directedness. While Schaffner’s extension of the
Nagelian model thus serves principally to introduce ambiguating relations into
the model, the Schaffner-style extension of our model only moves the locus of
ambiguation from the level of propositions (i.e. syntactic and semantic rules) to
their corrected versions. We leave the detailed study of the extended model of In-
tegrative Reduction, and its relation to other models of intertheoretic reduction
for another occasion.

7. Conclusion

In this paper, we have identified a new type of intertheoretic relation, Integrative
Reduction, that is instantiated in linguistic syntax and semantics. We have
shown its commonalities with Nagelian reduction, and established their salient
differences. To assess the epistemic value of Integrative Reduction, we have
given its analysis in the framework of Bayesian confirmation theory. We have
shown that the Integrative Reduction of syntax to semantics is epistemically
advantageous over its Nagelian reduction in three respects: It raises the prior and
posterior probabilities and (given certain conditions) the degree of confirmation
of the conjunction of syntactic and semantic propositions under the difference
measure. This is achieved through the establishment of dependency relations
between same-theory objects and propositions, and attendant confirmation of
some syntactic (or semantic) propositions by the supporting evidence of other
(syntactic or semantic) propositions.
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Appendix

We have calculated the pre-reductive probabilities of the conjunction of S,G in
Section 4.1. The joint distribution, P2(S,G,E), of the (post-reductive) graph in
Figure 6 is given by the expression

P2(S)P2(G)P2(E|G).

Using the methodology employed in (Bovens and Hartmann, 2003), the prior
probability of the conjunction of S and G is obtained as follows:

P2(S,G) =
�

E

P2(S,G, E) = π σ + π̄ σ = σ . (36)

We yield the posterior probability, P∗
2 := P2(S,G|E), thus:

P∗
2 =

P2(S,G,E)

P2(E)
=

π σ

π σ + ρ σ̄
. (37)

To obtain the difference ∆0, we calculate

P2(S,G)−P1(S,G) = σ − σ
2 = σ σ̄ .

This proves Theorem 3. The difference ∆1 is obtained as follows:

P∗
2 −P∗

1 =
π σ − π σ

2

π σ + ρ σ̄
=

π σ σ̄

π σ + ρ σ̄
. (38)

From the difference measure

d2 := P2(S,G|E)−P2(S,G) =
σ σ̄ (π − ρ)

π σ + ρ σ̄
, (39)

we calculate ∆2 as follows:

d2 − d1 =
σ σ̄ (π − ρ)− σ

2
σ̄ (π − ρ)

π σ + ρ σ̄
=

σ σ̄
2 (π − ρ)

π σ + ρ σ̄
. (40)

Let us consider the confirmation of the conjunction for the separate-type
case (1). The joint distribution P3(Ts, Ss, Gs, Es) is given by the expression

P3(Ts)P3(Ss|Ts)P3(Gs|Ts)P3(Es|Gs).

To obtain the prior probability of the conjunction of Ts, Ss, and Gs, we calculate

P3(Ts, Ss,Gs) =
�

E

P3(Ts, Ss,Gs, Es) = τ . (41)

The posterior probability, P∗
3 := P3(Ts, Ss,Gs|Es), is obtained as follows:

P∗
3 =

P3(Ts, Ss,Gs,Es)

P3(Es)
=

π τ

π τ + ρ τ̄
. (42)

The difference, ∆3, between the degree of confirmation of the separately typed
and the untyped proposition witnesses confirmation stasis:

∆3 := d3 − d2 = 0 , (43)

where d2 is as above, and d3 = d2.

We next discuss the probabilities and degree of confirmation of the two-type
case (2). The joint distribution P4(Ts, Tn, Ss, Sn, Sv, Gs, Gn, Gv, Es, En, Ev) is
given by the expression

P4(Ts)P4(Tn)P4(Ss|Ts)P4(Sn|Tn)P4(Sv|Tn, Ts)P4(Gs|Ts) (44)

P4(Gn|Tn)P4(Gv|Tn, Ts)P4(Es|Gs)P4(En|Gn)P4(Ev|Gv) .
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The prior probability of the conjunction of positive instantations of the above
variables is as follows:

P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv) = τ τ
�
. (45)

Their posterior probability, P∗
4 := P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv|Es,En, Ev),

is obtained thus:

P∗
4 =

P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv,Es,En,Ev)

P4(Es,En,Ev)
(46)

=
π π

�
π
��
τ τ

�

π π� π�� τ τ � + ρ ρ� ρ�� τ̄ τ̄ �
.

Rather than calculating all 28 possibilities, we use the equalities in (17)–(18)
and (21) to isolate the significant, i.e. non-zero, cases. Since the non-uniform
(i.e. positive or negative) instantiation of Tk, Sk, and Gk renders the product
in (44) zero, we restrict our attention to the following two cases:

i. Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv;
ii. ¬Ts,¬Tn,¬Ss,¬Sn,¬Sv,¬Gs,¬Gn,¬Gv.

The degree of confirmation of the conjunction of propositions under the difference
measure is as follows:

d4 := P∗
4 −P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv) (47)

=
τ τ

�
τ̄ τ̄

� (π π
�
π
�� − ρ ρ

�
ρ
��)

π π� π�� τ τ � + ρ ρ� ρ�� τ̄ τ̄ �
.

To obtain the difference ∆4, we calculate

P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv)−P3(Ts,Tn,Tv, Ss, Sn, Sv,Gs,Gn,Gv)

= τ τ
� − τ τ

�
τ
�� = τ τ

�
τ̄
��
. (48)

The difference ∆5 is obtained as follows:

∆5 := P∗
4 − (P∗

3)
�
, (49)

with P∗
4 as above and

(P∗
3)

� =
Å

π τ

π τ + ρ τ̄

ãÇ
π
�
τ
�

π� τ � + ρ� τ̄ �

åÇ
π
��
τ
��

π�� τ �� + ρ�� τ̄ ��

å
. (50)

To show that ∆5 > 0, we first observe that the function

f(τ ��) :=
π
��
τ
��

π�� τ �� + ρ�� τ̄ ��
(51)

is strictly monotonically increasing in τ
��. Consequently,

f(τ ��) ≤ f(1) = 1 . (52)

By the assumption that π,π�
, ρ, ρ

�
, τ, τ

� ∈ (0, 1), it thus holds that

(P∗
3)

� ≤
Å

π τ

π τ + ρ τ̄

ãÇ
π
�
τ
�

π� τ � + ρ� τ̄ �

å
.

Then,

∆5 ≥ X ·
Ç

1

π π� π�� τ τ � + ρ ρ� ρ�� τ̄ τ̄ �
− 1

(π τ + ρ τ̄)(π� τ � + ρ� τ̄ �)π��

å
(53)

= X
� ·

�
(π τ + ρ τ̄)(π�

τ
� + ρ

�
τ̄
�)π�� −

�
π π

�
π
��
τ τ

� + ρ ρ
�
ρ
��
τ̄ τ̄

���

= X
� ·

�
π π

��
ρ
�
τ τ̄

� + π
�
π
��
ρ τ̄ τ

� + ρ ρ
�
τ̄ τ̄

� ·
�
π
�� − ρ

����
.
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with

X := π π
�
π
��
τ τ

�

X
� :=

π π
�
π
��
τ τ

�

(π τ + ρ τ̄)(π� τ � + ρ� τ̄ �)π�� · (π π� π�� τ τ � + ρ ρ� ρ�� τ̄ τ̄ �)
.

The expression in the final line of (53) is greater than 0 if π��
> ρ

��. Note that this
is a sufficient, not a necessary condition. This completes the proof that ∆5 > 0.

To assess the confirmatory status of the direct two-typed case, we first iden-
tify the measures d4, d5, with

d4 := P∗
4 −P4(Ts,Tn, Ss, Sn, Sv,Gs,Gn,Gv) (54)

=
τ τ

�
τ̄ τ̄

� (π π
�
π
�� − ρ ρ

�
ρ
��)

π π� π�� τ τ � + ρ ρ� ρ�� τ̄ τ̄ �

and

d5 := (P∗
3)

� −P3(Tn,Ts,Tv, Sn, Ss, Sv,Gn,Gs,Gv) (55)

=
Å

π τ

π τ + ρ τ̄

ãÇ
π
�
τ
�

π� τ � + ρ� τ̄ �

åÇ
π
��
τ
��

π�� τ �� + ρ�� τ̄ ��

å
− τ τ

�
τ
��
.

Their difference, ∆6 := d4 − d5, is easily obtained though the use of the fact
that di−dk = (P∗

i −Pi(. . . ))−(P∗
k−Pk(. . . )) = (P∗

i −P∗
k)−(Pi(. . . )−Pk(. . . ))

such that
∆6 = ∆5 − τ τ

�
τ̄
��
. (56)

We close by considering the confirmation of the conjunction in the single-
type case (3). The joint distribution P6(Tn, Ss, Sn, Sv, Gs, Gn, Gv, Es, En, Ev) is
given by the expression

P6(Tn)P6(Ss)P6(Sv)P6(Gs)P6(Gv) (57)

P6(Sn|Tn)P6(Gn|Tn)P6(En|Gn)P6(Es|Gs)P6(Ev|Gv) .

Our calculation of the conjunction’s prior and posterior probabilities exploit the
independence of pairs, �Sk, Gk�, together with the results from Sections 4.1, 4.2,
5.1 such that

P6(Tn, Sn, Ss, Sv,Gn,Gs,Gv) = P6(Tn, Sn,Gn)P6(Ss,Gs)P6(Sv,Gv)(58)

= γγ
��
σσ

��
τ
�
,

and

P∗
6 := P6(Tn, Sn, Ss, Sv,Gn,Gs,Gv|En,Es,Ev) (59)

=

Ç
π
�
τ
�

π� τ � + ρ� τ̄ �

åÇ
γ π σ

γ π + γ̄ ρ

åÇ
γ
��
π
��
σ
��

γ�� π�� + γ̄�� ρ��

å
.

We assess the conjunction’s evidential support via the measure d6 and observe
that, under the positivity conditions from d1 and d5, the difference d6 is also
positive:

d6 := P∗
6 −P6(Tn, Sn, Ss, Sv,Gn,Gs,Gv) (60)

=

Ç
π
�
τ
�

π� τ � + ρ� τ̄ �

åÇ
γ π σ

γ π + γ̄ ρ

åÇ
γ
��
π
��
σ
��

γ�� π�� + γ̄�� ρ��

å
− γ γ

��
σ σ

��
τ
�
.
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From the measures d5 and d6, above, we obtain ∆7 as follows:

∆7 =

Ç
π
�
τ
�

π� τ � + ρ� τ̄ �

åÇ
γ π σ

γ π + γ̄ ρ

åÇ
γ
��
π
��
σ
��

γ�� π�� + γ̄�� ρ��

å
− γ γ

��
σ σ

��
τ
� (61)

−
ÇÇ

π τ

π τ + ρ τ̄

åÇ
π
�
τ
�

π� τ � + ρ� τ̄ �

åÇ
π
��
τ
��

π�� τ �� + ρ�� τ̄ ��

å
− τ τ

�
τ
��
å

= − σ σ
��
τ
� (1− γγ

�� )

ÇÇ
π

π τ + ρ τ̄

åÇ
π
�

π� τ � + ρ� τ̄ �

åÇ
π
��

π�� τ �� + ρ�� τ̄ ��

å
− 1

å
.

Since expressions of the form π/(π τ + ρ τ̄) are greater than 1 for every π, ρ, τ of
the same type if π > ρ and τ ∈ (0, 1), the difference ∆7 is always negative. This
completes our calculations.
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