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Link prediction, which aims to forecast potential or missing links in a complex network based on currently observed information,
has drawn growing attention from researchers. To date, a host of similarity-based methods have been put forward. Usually, one
method harbors the idea that one similarity measure is applicable to various networks, and thus has performance fluctuation on
different networks. In this paper, we propose a novel method to solve this issue by regarding link prediction as a multiple-
attribute decision-making (MADM) problem. In the proposed method, we consider RA, LP, and CAR indices as the
multiattribute for node pairs. The technique for order performance by similarity to ideal solution (TOPSIS) is adopted to
aggregate the multiattribute and rank node pairs. The proposed method is not limited to only one similarity measure, but takes
separate measures into account, since different networks may have different topological structures. Experimental results on 10
real-world networks manifest that the proposed method is superior in comparison to state-of-the-art methods.

1. Introduction

In recent years, the research of link prediction in complex
networks has captured much attention of researchers from
various disciplines [1] not only because many available
real-world networks are incomplete [2, 3] but also because
link prediction is closely related to many other problems [4,
5]. It offers one possible way to understand the evolution of
networks [6–8] and gives help to find potential interactions
between proteins in biological networks [9, 10]. Link predic-
tion has also been applied to friendship suggestions in social
networks [11, 12], products recommendation in e-commerce
systems [13, 14], collaboration prediction in coauthorship
networks [15, 16] and so on.

As a fundamental research hotspot in complex network
analysis, link prediction can uncover missing or latent exis-
tent links and point out spurious links in a network based
on the observed information [9, 17, 18]. In this paper, we
center on finding missing links. Generally speaking, two
unconnected nodes with a high similarity score are deemed
to be likely to have a missing link [5, 17]. That is the basic

hypothesis of the so-called similarity-based approaches. In
a similarity-based approach, similarity scores of nonexisting
links are estimated first, and then links at the top of the
sorted score list with descending order are predicted as
missing ones [17]. To date, great efforts have been devoted
to link prediction based on observed network structure
information [1, 4, 17], such as common neighbors [19–21],
local paths [22, 23], and triangle structures [24, 25]. Along
this line, a plethora of similarity-based indices and methods
have been proposed. These approaches usually focus on
only one similarity measure and assume that it is applicable
to all networks. However, different networks always have
separate inner structural features [26, 27]. Thus, the predic-
tion performances of these approaches are not stable on dif-
ferent networks.

On the other hand, likelihood-based algorithms aim at
identifying the most likely generative model for a network
and then estimate the connection likelihood of any two nodes
according to the considered model [28, 29]. These algorithms
usually assume that a network has a known structure and
build a model, such as hierarchical structure model [29]
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and stochastic block model [9], to fit the structure and evalu-
ate model parameters using statistical methods [4]. However,
the structure of a network is not always known, and a model
cannot be suitable for all networks.

In this paper, we regard link prediction as a multiple-
attribute decision-making (MADM) (also called multicriteria
decision-making (MCDM)) problem.MADM is an approach
that has been designed to select a preferred alternative, clas-
sify alternatives in a small number of categories, and/or rank
alternatives in a subjective preference order [30, 31]. It is a
widely used tool in various fields [32, 33]. Among numerous
MADM methods put forward to solve real-world decision
problems, the technique for order preference by similarity
to ideal solution (TOPSIS) continues to work satisfactorily
across diverse application areas [31, 34]. TOPSIS was origi-
nally proposed to give help to determine the best alternative
with a finite number of criteria [35]. TOPSIS makes full use
of attribute information, affords a cardinal ranking of alter-
natives, and does not require attribute preferences to be inde-
pendent [36]. As a well-known classical MADM method,
TOPSIS has received considerable interest from researchers
and practitioners [31]. In a complex network analysis, TOP-
SIS was used to identify influential nodes [34, 37, 38]. In this
paper, we apply TOPSIS to reveal missing links. The similar-
ity scores based on different similarity indices are considered
as multiattribute to make the decision for ranking nonexist-
ing links.

The work in [39] also adopted TOPSIS in link prediction;
however, it is totally different from our work. In [39], TOPSIS
is only used to evaluate the local centralities of common
neighbors. The similarity score between two nodes is com-
puted based on the local centralities of their common neigh-
bors. In our method, TOPSIS is employed to evaluate the
degrees of similarity of node pairs and determine the missing
links. Three famous similarity indices, that is, RA [21], LP
[21, 23], and CAR [24] are chosen as the multiattribute of
TOPSIS. The reason for selecting these indices is that they
are designed based on different but prominent structural fea-
tures. Since each attribute is associated with a weight in TOP-
SIS, we present a new algorithm based on the known
information about micro nodes to determine the weights.
To verify the performance of the proposed method, we con-
duct experiments on 10 real-world networks from various
fields. The experimental results demonstrate the stability
and robustness of our method.

The rest of the paper is structured as follows. In Section 2,
we give the description of the link prediction problem and
the metrics for evaluating the accuracy of link prediction
algorithms. Section 3 lists the baselines, and Section 4 intro-
duces the proposed method. In Section 5, the experimental
results and performance analysis of the proposed method
are presented. Finally, Section 6 concludes this work.

2. Problem Description and Metric

Consider an undirected and unweighted network G V , E ,
in which V and E are the node set and link set, respec-
tively. Multilinks and self-loops are not allowed in this study.
For a network containing N nodes, the set that contains

N N − 1 /2 possible links is denoted by U , and then the
set of unconnected node pairs is U − E. Each node pair in
U − E is assigned a similarity score according to a given sim-
ilarity method. All unconnected node pairs are sorted in
descending order according to their scores, and the node
pairs at the top are most likely to have missing links [17].

Actually, we do not have the ground truth, that is, the
missing links are not known. Therefore, to test the accuracy
of a link prediction method, the link set E is randomly
divided into two parts: training set Etr and testing set Ets, such
that E = Etr ∪ Ets and Etr ∩ Ets =∅. Two standard metrics are
employed to quantify the accuracy of link prediction algo-
rithms: AUC [17] and Precision [40]. In this situation, the
AUC value can be interpreted as the probability that a ran-
domly selected missing link (i.e., a link in Ets) is assigned a
higher similarity score than a randomly selected nonexistent
link (i.e., a link in U − E). In implementation, we perform n
times of independent comparisons. If there are n1 times that
the missing link has a higher score and n2 times that they
have the same score, the AUC value is computed as

AUC =
n1 + 0 5n2

n
1

Precision characterizes the ratio of correctly predicted
links within a given prediction list. If we take the top-L as
the prediction list, among which m links are correctly pre-
dicted, then Precision is

Precision =
m
L

2

3. Baseline Prediction Methods

Up to date,many link predictionmethods have been proposed
[1, 4, 17]. Here, we list some state-of-the-art approaches used
in this paper.

(1) Resource allocation (RA) index [21]. This index
models the resource allocation between two nodes
through their shared neighbors. The amount of
resource that one node received from another
through their common neighbors is defined as their
similarity, which is

RA x, y = 〠
z∈Γ x ∩Γ y

1
kz
, 3

where Γ x denotes the neighbor set of node x,
and kz is the degree of node z.

(2) Adaptive degree penalization (ADP) index [27].
This method is proposed to automatically adapt to
the network structure. It tries to estimate the best-
performing degree penalization by the network clus-
tering coefficient. The formal definition is

ADP x, y = 〠
z∈Γ x ∩Γ y

k−βCz , 4
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where β is a constant, C is the average clustering
coefficient of the network. β is set to 2.5 in this
paper according to the authors’ suggestion.

(3) CAR index [24]. This index stems from both node-
based and link-based perspectives, which suggests
that two nodes are more likely to link together if their
common neighbors are members of a local commu-
nity. The similarity function defined by this index
can be computed as

CAR x, y = CN x, y · 〠
z∈Γ x ∩Γ y

Γ x ∩ Γ y ∩ Γ z
2

,

5

where CN x, y is the number of common neigh-
bors between x and y, which is

CN x, y = Γ x ∩ Γ y 6

(4) Clustering coefficient for link prediction (CCLP)
index [25]. This index is inspired by the idea that
triangle information is very useful in estimating sim-
ilarities of nodes. It computes the similarity between
two nodes by employing the clustering coefficient of
shared neighbors:

CCLP x, y = 〠
z∈Γ x ∩Γ y

CCz , 7

where CCz denotes the clustering coefficient of
node z, which is

CCz =
2tz

kz kz − 1
, 8

in which tz is the number of triangles passing
through node z.

(5) Local path (LP) index [21, 23]. This metric extends
the horizon of common neighbors to three hops
paths, which estimates the similarity of two nodes as

LP x, y = 〠
2

i=1
λi−1 Pi x, y , 9

where Pi x, y is the number of paths between x
and y with length i; λ is an adjustable parameter.
Generally, λ is a very small number, and we set
λ = 0 001 in this paper.

(6) Mutual information (MI) index [41]. This method
defines nodes’ similarities from the perspective of
information theory by computing the conditional
self-information of the existence of a link between
two unconnected nodes given their common

neighbors. The similarity between two nodes is esti-
mated as

MI x, y = −I L1xy ∣ Γ x ∩ Γ y

= 〠
z∈Γ x ∩Γ y

I L1xy ; z − I L1xy ,
10

where I L1xy is the self-information of x and y

being connected, and I L1xy ; z is the mutual
information of the existence of a link between
x and y and the shared neighbor z. I L1xy and

I L1xy ; z are, respectively, calculated as

I L1xy = −log2 1 −
ky

i=1

E − kx − i + 1
E − i + 1

,

I L1xy ; z =
1

kz kz − 1
〠

u,v∈Γ z ,
u≠v

I L1uv

− I L1xy ∣ z

=
1

kz kz − 1
〠

u,v∈Γ z ,
u≠v

I L1uv

+ log2 CCz

11

(7) Adaptive fusion model base on logistic regression
(LR index) [26]. The method was proposed based
on the observation that: (i) the roles of different
structural features in a network are utterly different,
and (ii) the role of a structural feature in different
modules is also different [26]. LR index defines the
connection probability of node pair x, y as

P x, y =max PM1
x, y ,… , PMk

x, y ,
12

where PMk
x, y is the connection probability of

x, y in module Mk, which is

PMk
x, y =

1

1 + exp − β0 +∑L
l=1βlS

Fl
Mk

x, y
,

13

where SFl
Mk

x, y denotes the similarity score
induced by feature Fl for x, y in module Mk.
Three scenarios of modules were considered in
[26]; correspondingly, the index based on these
scenarios was denoted as LR1, LR2, and LRm.
LRm is a tradeoff between LR1 and LR2; hence,
we use LRm in our experiments. As in [26],
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three features, that is, CN (see (6)), PA (see
(14)), and DD (see (15)), are incorporated for
LRm in this paper.

PA x, y = kx · ky, 14

DD x, y = kx − ky 15

(8) Local nave Bayes (LNB) method [42]. This method
calculates the connection likelihood between two
nodes based on the LNB model. The likelihood score
of node pair x, y is defined as

r x, y = s−1

z∈Γ x ∩Γ y

sRz , 16

where s = U / Etr − 1, which is a constant for a
network, and Rz = NΔz + 1 / N∧z + 1 , in which
NΔz and N∧z are, respectively, the number of
connected and unconnected node pairs whose
common neighbors include z.

In [42], an exponent function f kz , which is a func-
tion of the degree of node z, is added to the item sRz
in (16). Using a logarithmic function on both sides
and neglecting the constant s−1, a linear formula of
connection likelihood is obtained, which is

r′ x, y = 〠
z∈Γ x ∩Γ y

f kz log sRz 17

In this paper, we use f kz = 1; the corresponding
method is named LNB CN [42], which is

LNB CN x, y = 〠
z∈Γ x ∩Γ y

log s + log Rz

18

(9) Maximization entropy (MaxE) method [28]. This
method is a likelihood-based algorithm based on a
series of results concerning constrained entropy max-
imization [43]. MaxE uses the observed portion of a
network as constraints of a maximization procedure
defined within the exponential random graph
(ERG) framework [43]. In the case of undirected
and unweighted networks, the ERG framework max-
imizes the likelihood function L = ln P Ao , where
Ao is the adjacency matrix of the observed portion,
that is, training set, and P Ao is defined as

P Ao =
i<j

p
aij
ij 1 − pij

1−aij , 19

where aij ∈ Ao and pij = xixj/ 1 + xixj . By solving
the system of equations in (20), the maximization
of likelihood can be obtained.

ki A
o = 〠

j ≠i
pij = 〠

j ≠i

xixj
1 + xixj

∀i 20

4. Methodology

Amultitude of similarity indices has been carried out for link
prediction in complex networks. In general, one similarity
index only employs one or two structural features and
assumes that they are suitable for all networks. However, dif-
ferent networks usually have different structural features;
separate similarity indices need to be taken into account.
To address this issue, a novel method is proposed in this
paper to forecast missing links by considering link prediction
as a multiple-attribute decision-making (MADM) problem.
MADM is an approach to rank alternatives in a subjective
preference order [30, 31]. In this paper, each potential miss-
ing link is viewed as an alternative, and each similarity index
is considered as an attribute. In implementation, we adopt
TOPSIS [35], a well-known classical MADM method, to
uncover the missing links in this paper. Meanwhile, three
classical similarity indices, that is, RA, LP, and CAR, are cho-
sen as the multiattribute in our method. For convenience, our
method is named LPTOPSIS.

In the following of this part, we first introduce the TOP-
SIS method in Section 4.1. Then, the proposed method is pre-
sented in Section 4.2. Finally, a simple example is given to
explain how the proposed method performs in Section 4.3.

4.1. TOPSIS Method. Technique for order preference by sim-
ilarity to ideal solution (TOPSIS) is a simple but effective rank-
ing method in conception and application [35]. The standard
TOPSIS method attempts to determine the best alternative
that simultaneously has the shortest distance from the positive
ideal solution and the farthest distance from the negative
ideal solution. The ranking of the alternatives is calculated
according to the relative closeness to the ideal solution.

Given a decision matrix X = xij m×n of m alternatives
and n criteria (decision attributes) in

X =

x11 x12 ⋯ x1n

x21 x22 ⋯ x2n

⋮ ⋮ ⋱ ⋮

xm1 xm2 ⋯ xmn

, 21

where xij denotes the value of the ith alternative under jth
criteria in matrix X. The procedures of the TOPSIS method
are depicted as follows:

Step 1. Normalize the decision matrix X by using the vector-
normalization technique.

yij =
xij

∑m
i=1x

2
ij

, 22

where yij i = 1, 2,… ,m ; j = 1, 2,… , n is the normalized
value of ith alternative under the jth criteria.
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Step 2. Calculate the weighted-normalized decision matrix
V = vij m×n by using the associated weights.

vij =wj · yij, 23

where wj j = 1, 2,… , n is the weight of the jth criterion.

Step 3. Determine the positive ideal solution S+ and negative
ideal (anti-ideal) solution S−, respectively.

S+ = s+1 , s
+
2 ,… , s+n , 24

S− = s−1 , s
−
2 ,… , s−n 25

For the benefit criteria Kb:

s+j = max
i

vij ∣ j ∈ Kb ,

s−j = min
i
vij ∣ j ∈ Kb ;

26

and for the cost criteria Kc:

s+j = min
i
vij ∣ j ∈ Kc ,

s−j = max
i

vij ∣ j ∈ Kc

27

Step 4. Obtain the Euclidean distance of each alternative from
the positive ideal and the negative ideal solutions, respectively.

d+i = 〠
n

j=1
vij − s+j

2
, 28

d−i = 〠
n

j=1
vij − s−j

2
, 29

where d+i i = 1, 2,… ,m and d−i i = 1, 2,… ,m are the
Euclidean distances of ith alternative from the positive ideal
and the negative ideal solutions, respectively.

Step 5. Compute the relative closeness of each alternative to
the ideal solution.

Ci =
d−i

d−i + d+i
, 30

where Ci ∈ 0, 1 for i = 1, 2,… ,m. An alternative with a
higher Ci is supposed to be a better solution and vice versa.

4.2. The Proposed Method. Figure 1 presents the flow chart of
the proposed method. The detailed description of the pro-
posed method is outlined as follows.

Step 1. Determine the weights of different similarity indices.
In TOPSIS, each attribute is associated with a weight. In this
work, we employ similarity indices as the multiattribute in

TOPSIS application for link prediction. Thence, we need to
determine the weight of each index. To this end, we adjust
the AUC for micro nodes to propose AUCvi

for node vi
[44]. For the node vi, let Evi

denote the set of existing links
between vi and other nodes and Evi

represent the set of non-
existing links between vi and other nodes. Suppose I be a sim-
ilarity index, the similarity scores of all links in Evi

and Evi
are

computed based on I, respectively. Then, the value of AUCvi
is defined as

AUCvi
=
nvi′ + 0 5nvi″

nvi
, 31

where nvi is the total independent comparison time; nvi′
denotes the comparison time that the link from Evi

has a

higher similarity score, and nvi″ denotes the comparison time
that has the same score.

To define the weight of similarity index I, we randomly
select p% nodes from the network, and compute the value
of AUCvi

for each selected node. Let ρ be the group of
selected nodes, we define

AUCρ =
∑vi∈ρAUCvi

ρ
, ρ > 0

0 5, ρ = 0
32

The weight of similarity index I is denoted aswI , which is
determined by the ratio of AUCρ and 0.5 (see (33)) [44]. 0.5
represents the result of random prediction.

wI =
AUCρ

0 5
33

Algorithm 1 lists the procedure for determining the
weight of a similarity index. In implementation, we randomly
select 10% nodes from the networks.

Step 2. Calculate the similarity score for each potential miss-
ing link by different similarity indices.
As aforementioned, the indices of RA, LP, and CAR are used
in LPTOPSIS. The reason that we adopt these indices is that
they are designed based on different but prominent structural
features. Suppose that m unconnected node pairs are
assigned similarity scores, and the decision matrix is repre-
sented as follows:

X =

RA1 LP1 CAR1

RA2 LP2 CAR2

⋮ ⋮ ⋮

RAm LPm CARm

34

Step 3.Compute the normalized andweighted decisionmatrix.
Since the values of different similarity indices are in different
scales, we normalize matrix X based on (22). Then, we
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compute the weighted normalized matrix using (23). The
associated weights are obtained in Step 1.

Step 4. Determine the positive ideal and negative ideal
solutions.
According to the weighted normalized matrix obtained in
Step 2, the positive ideal solution S+ and negative ideal solu-
tion S− are determined using (24) and (25), respectively.

Step 5. Calculate the separation measures of potential missing
links from the positive ideal and the negative ideal solutions.
The separation measures between potential missing links and
the positive ideal solution are calculated using (28), and the
separation measures between potential missing links and
the negative ideal solution are calculated using (29).

Step 6.Obtain the relative closeness of each potential missing
link to the ideal solution.
The relative closeness is obtained by (30). Sort potential
missing links in descending order according to their

closeness scores, and the links at the top are most likely to
be missing ones.

4.3. Example Explanation. This section uses an example to
explain how the proposed method works. Figure 2 shows
the example network. In this example, we simply assume that
each similarity index has the same weight. Thus, we have no
need to weight the normalized matrix.

First, calculate the values of RA, LP, and CAR for uncon-
nected node pairs of the network. Thirteen, twenty, and three
unconnected node pairs are assigned values by RA, LP, and
CAR, respectively. The results are listed in Figure 3(a).
Because LP index considers both 2-hop and 3-hop paths, it
gives values for the most unconnected node pairs. CAR index
demands that there are links between the common neigh-
bors. Since the example network is very simple, the require-
ment of CAR index cannot always be granted. Therefore, it
assigns the score of zero to most node pairs.

Second, thedecisionmatrixX and thenormalizeddecision
matrix Y are obtained according to Figure 3(a) and (22),
which are presented in Figures 3(b) and 3(c), respectively.

Next, determine the positive ideal solution S+ and the
negative ideal solution S−, which are

S+ = 0 66699, 0 52204, 0 72761 ,

S− = 0, 0 00017, 0
35

Then, compute d+i and d
−
i for each potential missing link,

respectively. The results are outlined in Table 1.
At last, calculate the relative closeness of all potential

missing links and rank them based on their relative closeness.
The results are shown in Table 1. As mentioned above, rank
the potential missing links according to the relative closeness
to the ideal solution and assume that the links at top ranks
are the real missing ones.

Compute the
weights

Use Algorithm 1 for RA,
LP, and CAR

Step 1

Step 2

Step 3

Step 6

Step 4 Step 5

Calculate similarity
scores for node pairs
by RA, LP, and CAR

Normalize and
weight matrix X

Determine
S+ and S−

RA1

X =

W = [wRA, wLP, wCAR]

LP1 CAR1
RA2 LP2 CAR2

RAm LPm CARm

Calculate
d+i and d−

i

Rank links in
descending order

Compute the relative
closeness

Calculate the
similarity

score

Apply TOPSIS

Rank links

... ... ...

Figure 1: The flow chart of the proposed method.

Input: Etr : training graph; I: similarity index;
p%: percentage of nodes

Output: weight of I
1: ρ←randomly selected p% nodes from Etr ;
2: for vi ∈ ρ do
3: Calculate similarity scores for existing links

between vi and other nodes based on I;
4: Calculate similarity scores for non-existing links

between vi and other nodes based on I;
5: Calculate AUCvi using Eq. (31)
6: end for
7: Calculate wI using Eq. (33);
8: return wI ;

Algorithm 1: Determine weight.
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5. Experimental Analysis

5.1. Datasets. To evaluate the performance of the proposed
method, we use 10 real-world networks collected from
various fields in this work (all data are downloaded from
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm,
http://www-personal.umich.edu/~mejn/netdata/, http://vlado.
fmf.uni-lj.si/pub/networks/data/, http://noesis.ikor.org/
datasets/link-prediction). The brief descriptions of these
networks are given as follows:

(1) C. elegans (CE): the neural network of a Caenorhab-
ditis elegans worm [45].

(2) Email: a network of email interchanges between
members of a university [46].

(3) Facebook (FBK): a social network collected from
https://www.facebook.com/ [47].

(4) Football (FTB): the network of American football
games between Division IA colleges during regular
season Fall 2000 [48].

(5) HEP: the coauthorships network of scientists who
posted preprints on the high-energy theory archive
from 1995 to 1999 [49].

(6) Infectious (INF): a network of people’s face-to-face
contacts in the exhibition “Infectious: Stay Away”
in 2009 at the Science Gallery in Dublin [50].

(7) Jazz: a network of Jazz musicians [51].

(8) NetScience (NS): a network of coauthorships
between scientists working on network theory and
experiment [52].

(9) Political blogs (PB): a network of blogs about US
politics [53].

(10) USAir: a network of the US air transportation
system [17].

In this work, all networks are treated as undirected and
unweighted networks, and only the giant component of each
network is used. Table 2 lists the basic statistics of the giant
components of these networks.

5.2. Friedman Test. To further analyze the statistical signifi-
cance of the proposed method, the Friedman test [56] is
introduced in our experiments. This test is a nonparametric

statistical hypothesis test used to compare multiple methods
on a group of datasets [57]. It ranks the methods for each
dataset separately according to their accuracy; the best per-
forming method getting rank 1, the second best rank 2, and
so on. In case of ties, average ranks are assigned.

Given k methods and N datasets, ri,j denotes the rank of
the ith method on the jth dataset, and Ri is the average rank
of the ith method, Ri = 1/N∑jri,j. The null-hypothesis in
Friedman test is that all the methods are equivalent and then
their ranks Ri should be equal. The Friedman statistic is

χ2
F =

12N
k k + 1

〠
i

R2
i −

k k + 1 2

4
, 36

which is distributed according to χ2
F with k − 1 degrees of

freedom. Later, Iman and Davenport found that Friedman
statistic is undesirably conservative and presented a better
statistic [58], which is

FF =
N − 1 χ2

F

N k − 1 − χ2
F

37

This statistic is distributed according to the F-distribution
with k − 1 and k − 1 N − 1 degrees of freedom. If FF is
greater than the critical value of F k − 1, k − 1 N − 1 ,
the null-hypothesis is rejected [57]. Consequently, there are
significant differences between these approaches.

If the null-hypothesis is rejected, a post-hoc test is further
proceeded to analyze the significant differences. The critical
difference is defined as

CD = qα
k k + 1
6N

, 38

where qα is a critical value for post-hoc test [57]. If their aver-
age ranks differ by at least the critical difference, the perfor-
mance of two approaches is significantly different.

5.3. Results and Analysis. Table 3 lists the predicted results of
different methods under the AUCmetric on the 10 networks.
The numbers in the round brackets are the ranks. In case of
ties, average ranks are assigned. These results are the average
of 50 independent realizations for each network. In each real-
ization, we randomly split a network into a training set and a
testing set, which contain 90% and 10% links, respectively.
The best value for each network is highlighted in boldface.
It is evident from Table 3 that LPTOPSIS achieves the best
accuracy in terms of AUC on Email, FBK, FTB, INF, and
NS and obtains the second best on CE and PB. These results
are fairly decent. On HEP, LP outperforms others because
this network possesses high average shortest distance, small
average degree, and network efficiency. In other words, the
network of HEP is very sparse (see Table 2), so the local
methods, such as RA,CAR, andCCLP, obtain lower accuracy
than LP. As stated in [23], in the relatively sparse network,
common neighbor-based methods are less distinguishable.
Whereas, the additional information provided by the 3-hop
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6
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8

7

Figure 2: An example network with 8 nodes and 13 links.
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paths introduced by LP can make the similarities much more
distinguishable and thus enhances the accuracy. Although L
PTOPSIS integrates the advantage of LP index, the CAR index,
which is not suitable for very sparse networks, weakens its
performance. On Jazz and USAir, the proposed method gets
rank 4 and 3, respectively. That is resulted from the poor
accuracy of LP index on both networks. In this paper, we uni-
formly set the parameter of LP index as 0.001; however, the
optimal value of the parameter is varying on different
networks [21, 23], and detecting the optimal value is very

time-consuming. In addition, LRm manifests fairly good pre-
dicted results, which obtains three best and three second.
Generally speaking, LPTOPSIS performs the best and LRm does
the second. The reason is that both methods aggregate several
structural features. However, other baselines do not obtain
satisfactory results. Take LP index as an example, it is ranked
first on HEP but ranked seventh on USAir and eighth on
Jazz. In a nutshell, the proposed method is more stable on
different networks than baselines. For the MaxE method,
which uncovers the missing links by reconstructing the net-
work at hand based on the exponential random graph frame-
work, it performs relative poorly on the networks with well-
defined community, such as FBK, FTB, and Email. The rea-
son is the configuration model used in MaxE to reconstruct
the network may not be the optimal generative model for
those networks. Actually, determining the optimal generative
model is very difficult. Nevertheless, on the network with
core-periphery structure, for example, PB and USAir, MaxE
achieves good accuracy under the metric of AUC. The corre-
sponding values are 0.9009 and 0.8887. These values are
acceptable. The configuration model of MaxE takes as input
just the nodes degrees; networks with core-periphery struc-
ture seem to be largely explained by the degree sequences
[28]. Thus, for networks with a core-periphery structure,
the MaxE is suitable.

Next, we applied the Friedman test [57] on the above
results to analyze the significant differences between base-
lines and LPTOPSIS. Depending on Table 3, we get χ2

F =
72 115 and FF = 36 288. In this paper, there are 10 methods
and 10 networks. FF is distributed according to the F-dis-
tribution with 10 − 1 = 9 and 10 − 1 × 10 − 1 = 81 degrees
of freedom. The critical value of F 9, 81 for α = 0 05 is 1.998.
Due to FF = 36 288 > 1 998, we reject the null-hypothesis,
which states that all the methods are equivalent.

Since the null-hypothesis is rejected, we proceed with a
post-hoc test. In our experiments, the Bonferroni-Dunn
test [59], in which all methods are compared only to a

Node pair RA LP CAR
(0, 1) 1.083 3.003 3
(0, 5) 0 0.003 0
(0, 7) 0 0.003 0
(1, 6) 0.25 1.004 0
(1, 8) 0.667 2.002 2
(2, 4) 0.45 2.003 0
(2, 5) 0.2 1.002 0
(2, 7) 0.2 1.002 0
(2, 8) 0 0.002 0
(3, 4) 0.45 2.002 0
(3, 5) 0.2 1.002 0
(3, 6) 0.5 2.003 2
(3, 7) 0.2 1.002 0
(3, 8) 0 0.002 0
(4, 5) 0.2 1.001 0
(4, 6) 0.25 1.002 0
(4, 7) 0.2 1.001 0
(4, 8) 0 0.002 0
(5, 6) 0 0.001 0
(6, 7) 0 0.001 0

(a) Similarity scores

X =

1.083 3.003 3
0 0.003 0
0 0.003 0

0.25 1.004 0
0.667 2.002 2
0.45 2.003 0
0.2 1.002 0
0.2 1.002 0
0 0.002 0

0.45 2.002 0
0.2 1.002 0
0.5 2.003 2
0.2 1.002 0
0 0.002 0

0.2 1.001 0
0.25 1.002 0
0.2 1.001 0
0 0.002 0
0 0.001 0
0 0.001 0

(b) Decision matrix

Y =

0.66699 0.52204 0.72761
0 0.00052 0
0 0.00052 0

0.15392 0.17454 0
0.41046 0.34803 0.48507
0.27706 0.34820 0
0.12314 0.17419 0
0.12314 0.17419 0

0 0.00035 0
0.27706 0.34803 0
0.12314 0.17419 0
0.30784 0.34820 0.48507
0.12314 0.17419 0

0 0.00035 0
0.12314 0.17401 0
0.15392 0.17419 0
0.12314 0.17401 0

0 0.00035 0
0 0.00017 0
0 0.00017 0

(c) Normalized decision matrix

Figure 3: The values of RA, LP, and CAR for unconnected node pairs in the example network.

Table 1: Relative closeness and rank of each node pair.

Node pair d+i d−i Ci Rank

(0, 1) 0 1.11653 1 1

(1, 8) 0.39359 0.72441 0.64795 2

(3, 6) 0.46694 0.67170 0.58992 3

(2, 4) 0.84361 0.44484 0.34525 4

(3, 4) 0.84365 0.44471 0.34517 5

(1, 6) 0.95573 0.23258 0.19572 6

(4, 6) 0.95585 0.23232 0.19553 7

(2, 5) 0.97272 0.21318 0.17976 8

(2, 7) 0.97272 0.21318 0.17976 9

(3, 5) 0.97272 0.21318 0.17976 10

(3, 7) 0.97272 0.21318 0.17976 11

(4, 5) 0.97279 0.21303 0.17965 12

(4, 7) 0.97279 0.21303 0.17965 13

(0, 5) 1.11637 0.00035 0.00031 14

(0, 7) 1.11637 0.00035 0.00031 15

(2, 8) 1.11645 0.00017 0.00016 16

(3, 8) 1.11645 0.00017 0.00016 17

(4, 8) 1.11645 0.00017 0.00016 18

(5, 6) 1.11653 0 0 19

(6, 7) 1.11653 0 0 20
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Table 2: The basic statistics of the giant components of the 10 networks. V and E are the total numbers of nodes and edges, respectively. k
and d present the average degree and the average shortest distance, respectively. C and r indicate the clustering coefficient [45] and
assortative coefficient [54], respectively. H is the degree heterogeneity [17], and e is the network efficiency [55].

Networks V E k d C r H e

CE 297 2148 14.465 2.455 0.292 −0.163 1.801 0.445

Email 1133 5451 9.622 3.606 0.220 0.078 1.942 0.300

FBK 4015 87,882 43.777 3.985 0.595 0.071 2.427 0.294

FTB 115 613 10.661 2.508 0.403 0.162 1.007 0.450

HEP 5835 13,815 4.735 7.026 0.506 0.185 1.926 0.155

INF 410 2765 13.488 3.631 0.456 0.226 1.388 0.323

Jazz 198 2742 27.697 2.235 0.617 0.020 1.395 0.513

NS 379 914 4.823 6.042 0.741 −0.082 1.663 0.203

PB 1222 16,714 27.355 2.738 0.320 −0.221 2.971 0.398

USAir 332 2126 12.807 2.738 0.625 −0.208 3.464 0.406

Table 3: AUC values of different methods on 10 networks. The results are the average of 50 independent implementations with Ets / E = 0 1.
The best performance for each network is emphasized by boldface. The numbers in the round brackets are the ranks. In case of ties, average
ranks are assigned.

RA ADP CAR CCLP LP MI MaxE LRm LNB CN LPTOPSIS

CE
0.8680
(3)

0.8676
(4)

0.7650
(9)

0.8651
(5)

0.8628
(6)

0.8321
(8)

0.7531
(10)

0.8828
(1)

0.8612
(7)

0.8784
(2)

Email
0.8461
(6)

0.8465
(5)

0.6968
(10)

0.8421
(8)

0.9005
(2)

0.8514
(4)

0.7814
(9)

0.8957
(3)

0.8458
(7)

0.9078
(1)

FBK
0.9944
(2)

0.9943
(3)

0.9842
(9)

0.9921
(7)

0.9923
(5)

0.9891
(8)

0.8312
(10)

0.9935
(4)

0.9923
(6)

0.9954
(1)

FTB
0.8464
(4.5)

0.8464
(4.5)

0.8146
(8)

0.8420
(7)

0.8613
(2)

0.7967
(9)

0.2318
(10)

0.8531
(3)

0.8425
(6)

0.8636
(1)

HEP
0.8995
(4.5)

0.8995
(4.5)

0.7068
(9)

0.8628
(7)

0.9160
(1)

0.8043
(8)

0.6647
(10)

0.9121
(2)

0.8993
(6)

0.9108
(3)

INF
0.9444
(4.5)

0.9444
(4.5)

0.8622
(9)

0.9379
(7)

0.9575
(3)

0.9159
(8)

0.7105
(10)

0.9604
(2)

0.9402
(6)

0.9621
(1)

Jazz
0.9699
(3)

0.9711
(2)

0.9528
(7)

0.9579
(6)

0.9499
(8)

0.9455
(9)

0.7688
(10)

0.9723
(1)

0.9584
(5)

0.9667
(4)

NS
0.9588
(3)

0.9587
(4)

0.8154
(9)

0.9287
(7)

0.9576
(5)

0.8509
(8)

0.6345
(10)

0.9597
(2)

0.9571
(6)

0.9625
(1)

PB
0.9230
(6)

0.9232
(5)

0.8921
(10)

0.9209
(8)

0.9289
(3)

0.9238
(4)

0.9009
(9)

0.9383
(1)

0.9213
(7)

0.9321
(2)

USAir
0.9516
(2)

0.9517
(1)

0.9127
(8)

0.9381
(6)

0.9268
(7)

0.9122
(9)

0.8887
(10)

0.9454
(4)

0.9404
(5)

0.9475
(3)

CD = 3.75

1

LPTOPSIS

LRm

ADP
RA
LP

2 3 4 5 6 7 8 9 10

MaxE

CAR
MI
CCLP
LNB_CN

Figure 4: Comparison of LPTOPSIS against the others with the Bonferroni-Dunn test. This comparison is based on the results in Table 3. All
methods with ranks outside the marked interval are significantly different from LPTOPSIS.
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(k) Average ranks of different methods on 10 networks

Figure 5: AUC results on 10 networks with different proportions of training set Etr. The results are the average of 50 independent
implementations.
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control method and not between themselves [57], is
employed to estimate the significant differences between L
PTOPSIS and baselines. The critical difference is CD = 2 773
× 10 × 10 + 1 / 6 × 10 = 3 75 for α = 0 05. The results
are graphically presented in Figure 4. In the axis, the best
rank is on the left side. Figure 4 shows that LPTOPSIS is signif-
icantly better than LNB CN, CCLP, MI, CAR, and MaxE.
Although there are no significant differences of LRm, ADP,
RA, and LP with LPTOPSIS, the average rank of LPTOPSIS is
better than them.

Furthermore, Figure 5 describes the changes of AUC of
all prediction methods for varying proportions of training
set Etr in E (from 0.7 to 0.9). Clearly, AUC scores show an
upward trend when the proportion increase from 0.7 to 0.9
in Figure 5. The reason is event; the more proportion of train-
ing set Etr is, the more information is provided for training.
On the contrary, low proportions of Etr will enhance the dif-
ficulty of link prediction. Therefore, we do not conduct
experiment with lower proportions of Etr, for example, 0.6
and 0.5. According to Figure 5, the AUC values of the pro-
posed method, with varying sizes of training set, are either
the best or close to the best. Figure 5(k) exhibits the average
ranks of different methods for varying proportions of Etr. It
can be observed that the proposed method always gets the
best. The significant analysis for Etr / E = 0 9 (that is, Ets /
E = 0 1) is already presented above. Now we give the
analysis for Etr / E = 0 8 and 0.7, respectively. The corre-
sponding values of FF are 25.415 and 31.898, respectively.
Both values are greater than 1.998 (the critical value of F 9,
81 ). That means the null-hypothesis, which states that all
these methods are equivalent, is rejected. The results of
Bonferroni-Dunn test [59] are depicted in Figure 6. From
Figure 6, LPTOPSIS ranks first and is significantly better than

LNB CN, CCLP,MI, CAR, and MaxE. These results are sim-
ilar with that in Figure 4.

On the other hand, the metric of Precision focuses on the
top-L predicted links. Figure 7 shows the prediction results
under the metric of Precision on the 10 networks with differ-
ent sizes of L. These results demonstrate that LPTOPSIS is
invariably in the top place over most networks. However,
baselines have wild fluctuations on different networks. For
instance, RA index achieves the best on NS, but falls to the
second last on PB. In addition, in most methods, Precision
shows slightly downward trend when the size of L increases.
The reason is that the increase of L, the probability to
uncover relevant items will decrease, and then the value of
Precision will lower. Figure 7(k) presents the average rank
of each method over the 10 networks with respect to different
sizes of L. Clearly, LPTOPSIS outperforms others except when
L = 10 and 20. MI index ranks first when L = 10 and 20 but
falls behind LPTOPSIS for other values of L. MI index is supe-
rior to other baselines under Precision; however, its AUC
values are not satisfactory enough. On the whole, LRm per-
forms mediocre in terms of Precision, in spite of its quite
good performance under the metric of AUC.

At last, we depict the changes of Precision of all predic-
tion methods for varying proportions of training set Etr in
E (from 0.7 to 0.9) in Figure 8. In this experiment, we set
L = Ets for all networks. It can be seen from Figure 8 that
Precision exhibits the opposite changing trend in compari-
son with AUC, that is, Precision scores show a downward
trend when the proportion increase from 0.7 to 0.9. This
phenomenon has also been observed in [5]. The main reason
is that the decrease of training set Etr will lead to weak n1
and strong n2 in the definition of AUC (see (1)) and then
lower the value of AUC [5]. Oppositely, the increase of

1 2 3 4 5 6 7 8 9 10
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LRm

LP
ADP
RA

MaxE

CAR
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CCLP
LNB_CN

CD = 3.75

(a) Etr / E = 0 8

1 2 3 4 5 6 7 8 9 10

LPTOPSIS

LR
LP
ADP
RA

MaxE

CAR
MI
CCLP
LNB_CN

CD = 3.75

(b) Etr / E = 0 7

Figure 6: The Bonferroni-Dunn test for Etr / E = 0 8 and 0.7. All methods with ranks outside the marked interval are significantly different
from LPTOPSIS.
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Figure 7: Precision results on 10 networks with different values of L. The results are the average of 50 independent implementations with
Ets / E = 0 1. The size of Ets for FTB is 61, so the max L selected is 60. Similarly, the max L selected for NS is 90.
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Figure 8: Precision results on 10 networks with different proportions of training set. The results are the average of 50 independent
implementations. In this figure, L = ∣Ets∣ for all networks.
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testing set Ets, the probability to obtain the relevant items
will increase, which makes it easier for uncovering the miss-
ing links [5]. Therefore, combining both metrics in the eval-
uation of the accuracy of a prediction method is necessary in
practical application. Figure 8(k) shows the average ranks of
different methods for Etr / E = 0 7, 0.8, and 0.9 in terms of
Precision. In general, the proposed method is in the second
place when Etr / E = 0 7 and ranks first when Etr / E =
0 8 and 0.9. This indicates the stable performance of the pro-
posed method under the metric of Precision.

From the aforementioned results, we can conclude that
the proposed method outperforms the compared indices
and is applicable to more networks. The striking characteris-
tic of the proposed method is that it aggregates several struc-
tural features of a network by means of combining RA, LP,
and CAR indices using TOPSIS. Thus, the proposed method
can automatically adapt to diverse networks and then per-
forms stability on various networks. Although theADP index
is claimed to be able to automatically adapt to the structure of
a network by adaptively penalizing the degrees of common
neighbors, it still focuses, in effect, on one structure in a net-
work. Therefore, there are gaps between the accuracy of ADP
and LPTOPSIS. Similar with LPTOPSIS, LRm aggregates three
structural features with logistic regression. This method
achieves the second best under AUC, whereas its accuracy
under Precision is very general.

6. Conclusion

Link prediction aims at finding the missing links and predict-
ing future links in a network. As an important research topic
in complex network analysis, it has drawn increasing atten-
tion from disparate scientific communities. Among various
categories of approaches, similarity-based methods have
become the mainstream due to their low complexity and high
interpretability. In general, one similarity-based method
assumes that its similarity measure is applicable to diverse
networks. However, different networks always have different
inner topological structures, which results in the unstable
performance of similarity-based methods. Inspired by the
applications of multiple-attribute decision-making (MADM)
problem, we proposed in this paper a novel link prediction
method. The proposed method employs three classical simi-
larity indices, that is, RA, LP, and CAR, as the attributes and
aggregates their scores by means of TOPSIS, a well-known
MADMmethod, to make a decision for ranking unconnected
node pairs.

The accuracy of the proposed method is experimentally
evaluated over 10 real-world networks with the metrics of
AUC and Precision. The experimental results indicate that
the proposed method is not only more effective but also sta-
ble than the competing methods. The robustness compari-
sons of the proposed method with baselines for varying
sizes of training sets suggest the robust of the proposed
method. The results in our experiments demonstrate that
MADM method is an effective way to solve the link predic-
tion problem. In the future work, we can further study the
application of MADM method in link prediction.
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