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Multicast can improve network performance by eliminating unnecessary duplicated flows in the data center networks (DCNs).
Thus it can significantly save network bandwidth. However, the network multicast blocking may cause the retransmission of a
large number of data packets and seriously influence the traffic efficiency in data center networks, especially in the fat-tree DCNs
with multirooted tree structure. In this paper, we build a multicast blocking model and apply it to solve the problem of network
blocking in the fat-tree DCNs. Furthermore, we propose a novel multicast scheduling strategy. In the scheduling strategy, we select
the uplink connecting to available core switch whose remaining bandwidth is close to and greater than the three times of bandwidth
multicast requests so as to reduce the operation time of the proposed algorithm. Then the blocking probability of downlink in the
next time-slot is calculated in multicast subnetwork by using Markov chains theory. With the obtained probability, we select the
optimal downlink based on the available core switch. In addition, theoretical analysis shows that themulticast scheduling algorithm
has close to zero network blocking probability as well as lower time complexity. Simulation results verify the effectiveness of our
proposed multicast scheduling algorithm.

1. Introduction

Recently, data center networks (DCNs) have been widely
studied in both academia and industry due to the fact that
their infrastructure can support various cloud computing
services.The fat-tree DCN, as a special instance and variation
of theClos networks, has beenwidely adopted as the topology
for DCNs since it can build large-scale traffic networks by
only using fewer switches [1].

Multicast transmission is needed for efficient and simul-
taneous transmission of the same information copy to a large
number of nodes, which is driven by many applications that
benefit from execution parallelism and cooperation, such as
the MapReduce type of application for processing data [2].
In fact, multicast is the parallel transmission of the data
packets in complex network. For example, Google File System
(GFS) is a distributed file system for massive data-intensive
application in a multicast transmission manner [3].

There have been some studies on multicast transmission
in fat-tree DCNs. The stochastic load-balanced multipath

routing (SLMR) algorithm selects optimal path by obtaining
and comparing the oversubscription probabilities of the
candidate links, and it can balance traffic among multiple
links by minimizing the probability of each link to face
network blocking [4]. But the SLMR algorithm only studies
unicast traffic.The bounded congestion multicast scheduling
(BCMS) algorithm, an online multicast scheduling algo-
rithm, is able to achieve bounded congestion as well as
efficient bandwidth utilization even under worst-case traffic
conditions in a fat-tree DCN [5]. Moreover, the scheduling
algorithm fault rate (SAFR) reflects the efficiency level of
scheduling algorithm. The larger the SAFR is, the lower
efficiency the scheduling algorithm has. The SAFR in fat-
tree DCNs increases faster with network blocking rate (NBR)
compared with that in other DCNs as shown in Figure 1. In
fact, the NBR reflects the degree of network blocking [6].

The scheduling processes in the existing scheduling algo-
rithms [4–6] are based on the network state at current time-
slot. They do not consider that network state may change
when data flows begin to transfer after the current scheduling

Hindawi
Complexity
Volume 2018, Article ID 7563170, 12 pages
https://doi.org/10.1155/2018/7563170

http://orcid.org/0000-0001-6741-4871
https://doi.org/10.1155/2018/7563170


2 Complexity

0 4 8 12 16 20
0

10

20

30

40

NLR (%)

SA
FR

 (%
)

Fat-tree
DCell
BCube

Figure 1: The relationship between network blocking rate (NBR)
and scheduling algorithm fault rate (SAFR) in different DCNs.

process is finished. This may lead to the network load
imbalance because the bandwidth of multicast connection
has not been allocated dynamically [7].Therefore, we develop
an efficient multicast scheduling algorithm to achieve the
scheduling of network flows at the network state of next time-
slot in fat-tree DCNs.

However, since the network state at next time-slot is
probabilistic and not deterministic, it is difficult to predict
the network state of next time-slot from the present state
with certainty and find a deterministic strategy. The Markov
chains can be employed to predict network state, even though
state transition is probabilistic [8]. Thus the next network
states can be assessed by the set of probabilities in a Markov
process [9]. The evolution of the set of probability essentially
describes the underlying dynamical nature of a network [10].
In [11], the authors proposed a scheme by using Markov
approximation, which aims at minimizing themaximum link
utilization (i.e., the link utilization of the most blocked link)
in data center networks. Moreover, the scheme provides two
strategies that construct Markov chains with different con-
nection relationships. The first strategy just applies Markov
approximation to data center traffic engineering. The second
strategy is a local search algorithm that modifies Markov
approximation.

In this paper, we adopt Markov chains to deduce the link
blocking probability at next time-slot and take them as link
weight in the multicast blocking model in fat-tree DCNs.
Therefore, available links are selected based on the network
state at next time-slot and the optimal downlink are selected
by the link weight. In the downlink selection, we compare
the blocking probability and choose the downlinks with
lowest blocking probability at next time-slot, which avoids
MSaMC failure due to delay error. In particular, we find
that the remaining bandwidth of the selected uplinks is close
to and greater than the three times of multicast bandwidth
requests, which can reduce the algorithm execution time and

save bandwidth consumption.Theoretical analysis shows the
correctness of the strategy while simulation results show that
MSaMC can achieve higher network throughput and lower
average delay.

The contributions of the paper can be summarized as
follows:

(i) We analyzewhymulticast blocking occurs in practical
application. Afterwards, we present a novel way of
multicast transmission forecasting and the multicast
blocking model in fat-tree DCNs.

(ii) We put forward a multicast scheduling algorithm
(MSaMC) to select the optimal uplinks and down-
links. MSaMC not only ensures lower network block-
ing but also maximizes the utility of network band-
width resources.

(iii) Theoretical analysis shows that the link blocking
probability is less than 1/3 by our proposed MSaMC
algorithm, and the multicast network can be non-
blocking if the link blocking probability is less than
0.1.

The rest of the paper is organized as follows: Section 2
describes the detrimental effects of multicast blocking in
fat-tree DCNs. Section 3 establishes the multicast blocking
probability model in fat-tree DCNs and deduces the link
blocking probability at next time-slot based Markov chains.
In Section 4, we propose multicast scheduling algorithm
with Markov chains (MSaMC) and analyze the complexity
of MSaMC algorithm in Section 5. In Section 6, we evaluate
the performance of MSaMC by simulation results. Finally,
Section 7 concludes this paper.

2. Cause of Multicast Blocking

A fat-tree DCN as shown in Figure 2 is represented as a
triple 𝑓(𝑚, 𝑛, 𝑟), where 𝑚 and 𝑟 denote the number of core
switches and edge switches, respectively, and 𝑛 indicates the
number of servers connecting to an edge switch. In fat-tree
DCNs, all links are bidirectional and have the same capacity.
We define the uplink as the link from edge switch to core
switch and the downlink as the link from core switch to
edge switch. A multicast flow request 𝜔 can be abstracted as
a triple (𝑖, 𝐷, 𝜔), where 𝑖 ∈ {1, 2, . . . , 𝑟} is the source edge
switch and 𝐷 denotes the set of destination edge switches
by the multicast flow request 𝜔. The number of destination
edge switches with multicast flow request 𝜔 is represented as|𝐷|, |𝐷| ≤ 𝑟 − 1, which is denoted as fanout 𝑓. Note that
the servers connecting to the same edge switch can freely
communicate with each other, and the intraedge switch traffic
can be ignored. Hence, both aggregation and edge layer can
be seen as edge layer.

To illustrate the disadvantages of multicast blocking in
fat-treeDCNs, a simple traffic pattern in a small fat-treeDCN
is depicted in Figure 3. Suppose that there are two multicast
flow requests, 𝜔1 and 𝜔2, and every flow request looks for
available links by identical scheduling algorithm. Both flow𝜔1 and flow 𝜔2 have a source server and two destination
servers located at different edge switches, and the sum of both
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Figure 2: The topology of fat-tree DCNs.
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Figure 3: The cause of multicast blocking.

is greater than the available link bandwidth. In particular,
flow 𝜔1 and flow 𝜔2 forward through core switch 1 at the
same time and are routed from core switch 1 to edge switch
2 through the same link by the scheduling algorithm, which
will cause heavy blocking at the links connected to core
switch 1. Therefore, the available bandwidth to each flow will
suffer further reduction if the scheduler cannot identify heavy
multicast blocking in the fat-tree DCNs.

Figure 3 also explains the main reason of multicast
blocking. We can see that multicast blocking has occurred
at the link between core switch 1 and edge switch 2. Clearly,
before the blocking at the link is alleviated, other links cannot
release the occupied bandwidth. This means that the links
from edge switch 1 to core switch 1, from edge switch 1 to core
switch 2, from core switch 2 to edge switch 3, and from
edge switch 3 to core switch 1 are released until the multicast
blocking is alleviated. However, the fat-tree DCNs cannot
accept the long time to address the blocking due to the
requirement for low latency.

In the fat-tree DCNs, different source servers may exe-
cute scheduling algorithm in the same time so that they

may occupy the same link and the multicast blocking will
inevitably occur. Hence, the multicast blocking is a common
phenomenon in the applications of DCN so that network
performance will be reduced. In addition, there are alsomany
servers as hotspots of user access, which may cause data flow
transfer by many to one. In fact, the key reason of multicast
blocking is that the network link state at next time-slot is not
considered. Several works have been proposed to solve the
network blocking in the transmission of multicast packets
in DCNs [12, 13]. As data centers usually adopt commercial
switches that cannot guarantee network nonblocking, an effi-
cient packet repairing schemewas proposed [12], which relies
on unicast to retransmit dropped multicast packets caused
by switch buffer overload or switching failure. Furthermore,
the bloom filter [13] was proposed to compress the multicast
forwarding table in switches, which avoids the multicast
blocking in the data center network.

To the best of our knowledge, the exiting multicast
scheduling algorithms only considered the network state at
the current time-slot in DCNs; thus the delay error between
the algorithm execution time and the beginning transferring
time of data flow will make the scheduling algorithm invalid.
Based on the consideration, we focus on the study of the
multicast scheduling in the network state at next time-slot
based on Markov chains.

3. Model and Probability of Multicast Blocking

In the section, we first establish the multicast blocking
model based on the topology of fat-tree DCNs by using a
similar approach. Then we deduce the blocking probability
of available downlinks at next time-slot.

3.1. Multicast Subnetwork. A multicast bandwidth request
corresponds to a multicast subnetwork in fat-tree DCNs,
which consists of available core switches and edge switches for
the multicast bandwidth request. The multicast subnetwork
in Figure 4 has 𝑓 destination edge switches, 𝑥 available
core switches, and 𝑛 × 𝑓 servers, where 1 ≤ 𝑥 ≤ 𝑚.
In the process of multicast connection, the link weight of
multicast subnetwork is denoted as the blocking probability
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Figure 4: The multicast subnetwork.

at next time-slot. Thus our goal is to obtain the link blocking
probability for any type of multicast bandwidth request at
next time-slot.

It is known that the fat-tree DCN is a typical large-scale
network, where there are many available links that can meet
the multicast connection request. When a link is available for
a multicast bandwidth request 𝜔, the blocking probability of
the link at the current time-slot is given by 𝑝 = 𝜔/𝜇, where 𝜇
is the remaining bandwidth.

A multicast connection can be represented by the desti-
nation edge switches. Given a multicast bandwidth request𝜔 with fanout 𝑓 (1 ≤ 𝑓 < 𝑟), 𝑃(𝑓) indicates the blocking
probability for this multicast connection. We denote the
blocking of available uplink 𝑖 as the events 𝑢1, 𝑢2, . . . , 𝑢𝑥, and
the blocking of available downlinks between available core
switches and the 𝑘th (1 ≤ 𝑘 ≤ 𝑓) destination edge switches
as the events 𝑑𝑘1, 𝑑𝑘2, . . . , 𝑑𝑘𝑥. All available links form a
multicast tree rooted at the core switches that can satisfy
the multicast connection in the multicast network. Other
notations used in the paper are summarized in Notations.

3.2. Multicast Blocking Model. In the multicast subnetwork,
we employ 𝜖 to express the event that the request of mul-
ticast connection with fanout 𝑓 cannot be satisfied in the
network shown in Figure 4. We do not consider the links
whose remaining bandwidth is less thanmulticast bandwidth
request 𝜔, since the link is not available when the multicast
data flow 𝜔 goes through the link. We let 𝑃(𝜖 | 𝜙) be
the conditional blocking probability of state 𝜙 and 𝑃(𝜙) be
the probability of state 𝜙. Then the blocking probability of
subnetwork for a multicast connection is given by

𝑃 (𝑓) = 𝑃 (𝜖) = ∑
𝜙

𝑃 (𝜙) 𝑃 (𝜖 | 𝜙) . (1)

For the event 𝜙, the data traffic of the uplinks does not
interfere with each other; that is, the uplinks are independent.
Therefore, we have 𝑃(𝜙) = 𝑞𝑘𝑝𝑚−𝑘.

From the multicast blocking subnetwork in Figure 4, we
can obtain the blocking property of the fat-tree DCNs; that is,

the multicast bandwidth request 𝜔 from a source edge switch
to distinct destination edge switches cannot be achieved if
and only if there is no any available downlink connecting all
destination edge switches.

In that way, we take 𝜖󸀠 to denote the event that the
multicast bandwidth request 𝜔 with fanout 𝑓 cannot be
achieved in the available uplinks. Thus we can get

𝑃 (𝜖󸀠) = 𝑃 (𝜖 | 𝑢1, 𝑢2, . . . , 𝑢𝑥) . (2)

An available downlink 𝑑𝑖𝑗, where 1 ≤ 𝑖 < 𝑓 and 1 ≤ 𝑗 ≤ 𝑥,
represents a link from a core switch to the 𝑖th destination edge
switch.The event 𝜖󸀠 can be expressed by events𝑑𝑖𝑗’s as follows:

𝜖󸀠 = (𝑑11 ∩ 𝑑12 ∩ ⋅ ⋅ ⋅ ∩ 𝑑1𝑥) ∪ ⋅ ⋅ ⋅
∪ (𝑑𝑓1 ∩ 𝑑𝑓2 ∩ ⋅ ⋅ ⋅ ∩ 𝑑𝑓𝑥) . (3)

Afterwards, we define that the blocking of downlinks
connecting to each destination edge switch is event 𝐴 ={𝐴1, 𝐴1, . . . , 𝐴𝑓}; moreover, we have 𝐴1 = (𝑑11 ∩ 𝑑12 ∩ ⋅ ⋅ ⋅ ∩𝑑1𝑥). Thus we get

𝜖󸀠 = 𝑓⋃
𝑖=1

𝐴 𝑖. (4)

Based on the theory of combinatorics, the inclusion-
exclusion principle (also known as the sieve principle) is an
equation related to the size of two sets and their intersection.
For the general case of principle, in [14], let {𝐴1, 𝐴2, . . . , 𝐴𝑓}
be finite set. Then we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓⋃
𝑖=1

𝐴𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑓∑
𝑖=1

󵄨󵄨󵄨󵄨𝐴 𝑖󵄨󵄨󵄨󵄨 − ∑
1≤𝑖<𝑗≤𝑓

󵄨󵄨󵄨󵄨󵄨𝐴 𝑖 ∩ 𝐴𝑗󵄨󵄨󵄨󵄨󵄨
+ ∑
1≤𝑖<𝑗<ℎ≤𝑓

󵄨󵄨󵄨󵄨󵄨𝐴 𝑖 ∩ 𝐴𝑗 ∩ 𝐴ℎ󵄨󵄨󵄨󵄨󵄨 − ⋅ ⋅ ⋅
+ (−1)𝑓−1 󵄨󵄨󵄨󵄨󵄨𝐴1 ∩ 𝐴2 ∩ ⋅ ⋅ ⋅ ∩ 𝐴𝑓󵄨󵄨󵄨󵄨󵄨 .

(5)
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For the events 𝐴1, 𝐴1, . . . , 𝐴𝑓 in a probability space(Ω, 𝐹, 𝑃), we can obtain the probability of the event 𝜖󸀠
𝑃 (𝜖󸀠) = 𝑓∑

𝑖=1

𝑃 (𝐴 𝑖) − ∑
1≤𝑖<𝑗≤𝑓

𝑃 (𝐴 𝑖 ∩ 𝐴𝑗)
+ ∑
1≤𝑖<𝑗<ℎ≤𝑓

𝑃 (𝐴 𝑖 ∩ 𝐴𝑗 ∩ 𝐴ℎ) − ⋅ ⋅ ⋅
+ (−1)𝑓−1 𝑃 (𝐴1 ∩ 𝐴2 ∩ ⋅ ⋅ ⋅ ∩ 𝐴𝑓) ,

(6)

where 𝑃(𝐴 𝑖) denotes the probability of the event 𝐴 𝑖.
Combining (1) and (2) with (6), the multicast blocking

model for a multicast connection with fanout 𝑓 is given by

𝑃 (𝑓) = 𝑚∑
𝑘=1

(𝑚
𝑘 ) 𝑝𝑘𝑞𝑚−𝑘( 𝑓∑

𝑖=1

𝑃 (𝐴 𝑖)
− ∑
1≤𝑖<𝑗≤𝑓

𝑃 (𝐴 𝑖 ∩ 𝐴𝑗) + ∑
1≤𝑖<𝑗<ℎ≤𝑓

𝑃 (𝐴 𝑖 ∩ 𝐴𝑗 ∩ 𝐴ℎ)

− ⋅ ⋅ ⋅ + (−1)𝑓−1 𝑃 (𝐴1 ∩ 𝐴2 ∩ ⋅ ⋅ ⋅ ∩ 𝐴𝑓)) .
(7)

From (6), ∑1≤𝑖<𝑗≤𝑓 𝑃(𝐴 𝑖 ∩ 𝐴𝑗) ≥ ∑1≤𝑖<𝑗<ℎ≤𝑓 𝑃(𝐴 𝑖 ∩ 𝐴𝑗 ∩𝐴ℎ), the following inequality can be derived:

∑
1≤𝑖<𝑗≤𝑓

𝑃 (𝐴 𝑖 ∩ 𝐴𝑗) − ∑
1≤𝑖<𝑗<ℎ≤𝑓

𝑃 (𝐴 𝑖 ∩ 𝐴𝑗 ∩ 𝐴ℎ) + ⋅ ⋅ ⋅
+ (−1)𝑓−1 𝑃 (𝐴1 ∩ 𝐴2 ∩ ⋅ ⋅ ⋅ ∩ 𝐴𝑓) ≥ 0.

(8)

Therefore, theminimumblocking probability of the event𝜖󸀠 is
𝑃min (𝜖󸀠) = 𝑓∑

𝑖=1

𝑃 (𝐴 𝑖) , (9)

where 𝑃(𝐴1) = ∏𝑥𝑘=1𝑝1𝑘.
Afterwards, we define 𝑃min(𝑓) as the minimum blocking

probability of multicast subnetwork, and the number of
available core switches is 𝑥. Thus we get

𝑃min (𝑓) = 𝑥∑
𝑘=1

(𝑥
𝑘) 𝑝𝑘𝑞𝑥−𝑘( 𝑓∑

𝑖=1

𝑃 (𝐴 𝑖))

= 𝑥∑
𝑘=1

(𝑥
𝑘) 𝑝𝑘𝑞𝑥−𝑘( 𝑓∑

𝑖=1

𝑥∏
𝑗=1

𝑝𝑖𝑗) ,
(10)

where 𝑥 ≤ 𝑚.
It is not difficult to find from (10) that the minimum

blocking probability 𝑃min(𝑓) is an increasing sequence with
fanout 𝑓. In other words, it is more difficult to realize a mul-
ticast bandwidth request with larger fanout since the number
of core switches is less. Therefore, the minimum blocking
probability with fanout 𝑓 reflects the state of available link
at next time-slot.

3.3. Link Blocking Probability at Next Time-Slot. In this
subsection, we calculate the blocking probability of available
link at next time-slot based on Markov chains theory. We
randomly select a link denoted by the 𝑖th link to analyze.

In the multicast blocking model, we denote the current
time-slot as 𝑡, and the next time-slot as 𝑡 + 1. 𝑏𝑖 is the 𝑖th link
occupied bandwidth at time-slot 𝑡; that is, 𝑦𝑖(𝑡) = 𝑏𝑖. 𝑎(𝑡) is
the sum of occupied bandwidth of all available downlinks at
time-slot 𝑡; namely, 𝑎(𝑡) = ∑𝑥𝑗=1 𝑦𝑗(𝑡), and 𝑦𝑖(𝑡 + 1) refers to
predicted occupied bandwidth of the 𝑖th link at time-slot 𝑡+1.
In [15], the preference or uniform selectionmechanism based
onMarkov chains is adopted for calculating the link blocking
probability at next time-slot. Based on the mechanism, the
probability 𝑃𝑖 of the link incoming new flow at time-slot 𝑡 + 1
can be given by

𝑃𝑖 = 𝑃min (𝑓) ⋅ 𝑏𝑖𝑎 (𝑡) + (1 − 𝑃min (𝑓)) ⋅ 1𝑓 , (11)

where 1 ≤ 𝑓 ≤ 𝑟.
In addition, we do not consider the case that the band-

width of available link is decreasing; namely, the bandwidth
of available link is enough for multicast bandwidth request. If
a multicast bandwidth request selects the 𝑖th link at time-slot𝑡 + 1, it means 𝑦𝑖(𝑡 + 1) will add 𝜋𝑖, where 1 ≤ 𝜋𝑖 ≤ 𝑀𝑖,𝑀𝑖 is defined as increasing the maximum number of data
flows. Then we let 𝑃𝑏𝑖 denote the probability of the 𝑖th link
flow remaining unchanged or increasing at time-slot 𝑡 + 1;
thus we can get

𝑃𝑏𝑖 =
𝑀𝑖∑
𝜋𝑖=0

[𝑃min (𝑓) ⋅ 𝑏𝑖𝑎 (𝑡) + (1 − 𝑃min (𝑓)) ⋅ 1𝑓]𝜋𝑖

= 𝑀𝑖∑
𝜋𝑖=0

𝑃𝜋𝑖𝑖 = 1 − 𝑃𝑀𝑖+1𝑖1 − 𝑃𝑖 ,
(12)

where 𝑖 = 1, 2, . . . , 𝑥 and 𝜋𝑖 = 0, 1, . . . , 𝑀𝑖.
According to (12), we will calculate one-step transition

probability of amulticast flow denoted as𝑃(𝑦𝑖(𝑡+1) = 𝑏𝑖+𝜋𝑖 |𝑦𝑖(𝑡) = 𝑏𝑖), which is a Markov process.

𝑃 (𝑦𝑖 (𝑡 + 1) = 𝑏𝑖 + 𝜋𝑖 | 𝑦𝑖 (𝑡) = 𝑏𝑖)
= 1𝑃𝑏𝑖 ⋅ (𝑃min (𝑓) ⋅ 𝑏𝑖𝑎 (𝑡) + (1 − 𝑃min (𝑓)) ⋅ 1𝑓)𝜋𝑖

= (1 − 𝑃𝑖) ⋅ 𝑃𝜋𝑖𝑖1 − 𝑃𝑀𝑖+1𝑖 ,
(13)

where 𝑖 = 1, 2, . . . , 𝑥.
In fact, 𝑃(𝑦𝑖(𝑡 + 1) = 𝑏𝑖 + 𝜋𝑖 | 𝑦𝑖(𝑡) = 𝑏𝑖)

indicates the link blocking probability at time-slot 𝑡 +1, which is determined by 𝑃𝑖 and 𝜋𝑖. The link blocking
probability will be small when 𝜋𝑖 is small at time-slot𝑡 + 1; otherwise, the link may be blocked at time-slot𝑡 + 1. Therefore, the range of 𝜋𝑖 is very important to our
proposed multicast scheduling algorithm. In this paper, we
assume that the multicast bandwidth request 𝜔 is one data
flow unit, and 𝜋𝑖 is an integral multiple of multicast band-
width request 𝜔.
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Input: Incoming flow (𝑖, 𝐷, 𝜔), link remaining bandwidth 𝜇, the number of destination edge switches |𝐷|, 𝜋𝑖 = 3𝜔.
Output: Multicast links with the minimum blocking probability.(1) // Step 1: identify available core switches(2) for 𝑖 = 1 to 𝑚 do(3) Select an uplink 𝑢𝑖;(4) if 𝑢𝜇𝑖 ≥ 3𝜔 and |𝑇| ≤ |𝐷| then(5) Select the core switch 𝑖 and add it into the set 𝑇;(6) end if(7) end for(8) // Step 2: select appropriate core switches(9) Calculate the blocking probability of available downlinks at time-slot 𝑡 + 1, 𝑃𝑖(𝑡 + 1), by equation (13);(10) for 𝑗 = 1 to |𝐷| do(11) Find the core switch(es) in 𝑇 that are connected to a destination edge switch in 𝐷;(12) if There are multiple core switches to be found then(13) Select the core switch with the minimum blocking probability and deliver it to the appropriate set of core switches 𝑇󸀠;(14) else(15) Deliver the core switch to the set 𝑇󸀠;(16) end if(17) Remove destination edge switches that the selected core switch from 𝐷 can reach;(18) Update the set of remaining core switches in 𝑇;(19) end for(20) // Step 3: establish the optimal pathes(21) Connect the links between source edge switch and destination edge switches through appropriate core switches in the set 𝑇󸀠;(22) Send configuration signals to corresponding devices in multicast subnetwork;

Algorithm 1: Multicast scheduling algorithm with Markov chains (MSaMC).

4. Multicast Scheduling Algorithm with
Markov Chains

In the section, we will propose a multicast scheduling
algorithm with Markov chains (MSaMC) in fat-tree DCNs,
which aims to minimize the blocking probability of available
links and improve the traffic efficiency of data flows in the
multicast network. Then we give a simple example to explain
the implementation process of MSaMC.

4.1. Description of the MSaMC. The core of MSaMC is to
select the downlinks with minimum blocking probability at
time-slot 𝑡+1. Accordingly, the first step of the algorithm is to
find the available core switches, denoted as the set𝑇, |𝑇| ≤ 𝑓.
We take the remaining bandwidth of the 𝑖th uplink as 𝑢𝜇𝑖 .
Based on our theoretical analysis in Section 5, the multicast
subnetwork may be blocked if it is less than 3𝜔; that is, 𝑢𝜇𝑖 ≥3𝜔.

The second step is to choose the appropriate core switch
which is connected to the downlink with minimum blocking
probability at time-slot 𝑡 + 1 in each iteration. At the end
of the iteration, we can transfer the core switches from the
set 𝑇 to the set 𝑇󸀠. The iteration will terminate when the set
of destination edge switches 𝐷 is empty. Obviously, the core
switches in the set 𝑇󸀠 are connected to the downlinks with
minimum blocking probability. And the set 𝑇󸀠 can satisfy
arbitrary multicast flow request in fat-tree DCNs [5].

Based on the above steps, we will obtain a set of appro-
priate core switches 𝑇󸀠. Moreover, each destination edge
switch in 𝐷 can find one downlink from the set 𝑇󸀠 to
be connected with the minimal blocking probability at

Table 1: Link remaining bandwidth (M).

C1 C2 C3 C4
E1 90 300 600 800
E2 600 700 800 200
E3 750 400 350 700
E4 500 200 150 500

time-slot 𝑡 + 1. The third step is to establish the optimal
path from source edge switch to destination edge switches
through the appropriate core switches. The state of multicast
subnetwork will be updated after the source server sends the
configuration signals to corresponding forwarding devices.
The main process of the MSaMC is described in Algorithm 1.

4.2. An Example of the MSaMC. For the purpose of illus-
tration, in the following, we give a scheduling example in a
simple fat-tree DCN as shown in Figure 5. Assume that we
have obtained the network state at time-slot 𝑡 and made a
multicast flow request (1, (2, 3, 4), 50𝑀). The link remaining
bandwidth 𝜇 and link blocking probability 𝑃 at next time-
slot are shown in Tables 1 and 2, respectively. The symbol√ denotes available uplink and × indicates unavailable link.
For clarity, we select only two layers of the network and give
relevant links in each step.

As described in Section 4.1, the MSaMC is implemented
by three steps. Firstly, we take the remaining bandwidth of
the uplink as 𝑢𝜇 (𝑢𝜇𝑖 ≥ 3 × 50𝑀) and find the set of available
core switches; that is, 𝑇 = {2, 3, 4}. Secondly, we evaluate the
blocking probability of relevant downlinks at time-slot 𝑡+1. In
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Table 2: The link blocking probability at next time-slot (%).

C1 C2 C3 C4
E1 × 9 5 4
E2 × 4 3 7
E3 × 6 7 4
E4 × 9 10 5

Core 1 Core 2 Core 3 Core 4

Edge 1 Edge 2 Edge 3 Edge 4

(a) The links with satisfying the multicast flow request (1, (2, 3, 4), 𝜔)

Core 1 Core 2 Core 3 Core 4

Edge 1 Edge 2 Edge 3 Edge 4

(b) The selected optimal paths by the MSaMC

Figure 5: An example of the MSaMC.

effect, the blocking probability of downlink at time-slot 𝑡 + 1
from core switch 2 to destination switch 2 is higher than that
from core switch 3 to destination switch 2; therefore, we select
the latter downlink as the optimal path. Subsequently, the
core switch 3 is put into the set 𝑇󸀠. Similarly, we get the core
switch 4 for the set𝑇󸀠. Finally, the optimal path is constructed
and the routing information is sent to the source edge switch
1 and core switches (3, 4).

In Figure 5(a), the link remaining bandwidth from edge
switch 1 to core switch 1 is no less than 150𝑀. By the above
way, we find that the optimal path for a pair of source edge
switch and destination edge switch is source edge switch 1 →
core switch 3→ destination edge switch 2, source edge switch
1 → core switch 4 → destination edge switch 3, and source
edge switch 1 → core switch 4 → destination edge switch 4,
as shown in Figure 5(b).

5. Theoretical Analysis

In the section, we analyze the performance of MSaMC. By
(9), we derived the blocking probability bound of multicast
subnetwork, as shown in Lemma 1.

Lemma 1. In a multicast subnetwork, the maximum subnet-
work blocking probability is less than 1/3.

Proof. We take the remaining bandwidth of uplink to be no
less than 3𝜔 by the first step of Algorithm 1, and thus the
maximum value of link blocking probability 𝑝 is 1/3; in other
words, the available link remaining bandwidth just satisfies
the above condition; that is, 𝑢𝜇 = 3𝜔.

From (9) and De Morgan’s laws [16], we can obtain the
probability of event 𝜖󸀠

𝑃min (𝜖󸀠) = 1 − 𝑓∏
𝑖=1

𝑃 (𝑑𝑖1 ∩ 𝑑𝑖2 ∩ ⋅ ⋅ ⋅ ∩ 𝑑𝑖𝑥)

= 1 − 𝑓∏
𝑖=1

(1 − 𝑃 (𝑑𝑖1 ∩ 𝑑𝑖2 ∩ ⋅ ⋅ ⋅ ∩ 𝑑𝑖𝑥))

= 1 − 𝑓∏
𝑖=1

(1 − 𝑥∏
𝑘=1

𝑝𝑑𝑖𝑘) = 1 − (1 − 𝑝𝑥)𝑓 .

(14)

Therefore, based on (10), the subnetwork blocking prob-
ability is maximumwhen the number of uplinks is 1.Thus we
can obtain

max𝑃min (𝑓) = 𝑝 ⋅ (1 − (1 − 𝑝𝑥min)𝑓)
= 13 (1 − (1 − 13)𝑓) . (15)

Then we have max𝑃min(𝑓) = 1/3 as 𝑓 → ∞. This completes
the proof.

The result of Lemma 1 is not related to the number of
ports of switches.This is because the deduction of Lemma 1 is
based on the link blocking probability 𝑝, 𝑝 = 𝜔/𝜇. However,
themulticast bandwidth𝜔 and the link remaining bandwidth𝜇 will not be affected by the number of ports of switches.
Therefore, Lemma 1 still holds when the edge switches have
more ports. Moreover, the size of switch radix has no effect
on the performance of MSaMC.

At time-slot 𝑡 + 1, the data flow of available link will
increase under the preference or uniform selection mecha-
nism. In addition, the blocking probability of available link
should have upper bound (maximum value) for guaranteeing
the efficient transmission of multicast flow. Based on (7) and
Lemma 1, we can get max𝑃𝑖 = 1/3 when the number of
uplinks and downlinks are equal to 2, respectively. Clearly,
this condition is a simplest multicast transmission model.
In real multicast network, satisfying 𝑃𝑖 ≪ 1/3 is a general
condition.

In addition, 𝑃𝑖 is proportional to 𝑃(𝑦𝑖(𝑡 + 1) = 𝑏𝑖 + 𝜋𝑖 |𝑦𝑖(𝑡) = 𝑏𝑖); namely, the link blocking probability will increase
as the multicast flow gets larger. Therefore, 𝑃(𝑦𝑖(𝑡 + 1) = 𝑏𝑖 +𝜋𝑖 | 𝑦𝑖(𝑡) = 𝑏𝑖) is monotonously increasing for 𝑝𝑖.
Theorem 2. As the remaining bandwidth of available link 𝜇
is no less than 3𝜔, the multicast flow can be transferred to 𝑓
destination edge switches.

Proof. For each incoming flow, by adopting the preferred
selection mechanism in selecting the 𝑖th link, when 𝜋𝑖 ≥ 1,
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we compute the first-order derivative of (13) about 𝑝𝑖, where𝑖 = 1, 2, . . . , 𝑥.
𝜕𝜕𝑝𝑖𝑃 (𝑦𝑖 (𝑡 + 1) = 𝑏𝑖 + 𝜋𝑖 | 𝑦𝑖 (𝑡) = 𝑏𝑖)

= − 𝑃𝜋𝑖𝑖1 − 𝑃𝑀𝑖+1𝑖 + 𝜋𝑖 ⋅ (1 − 𝑃𝑖) ⋅ 𝑃𝜋𝑖𝑖𝑝𝑖 ⋅ (1 − 𝑃𝑀𝑖+1𝑖 )
+ (𝑀𝑖 + 1) ⋅ (1 − 𝑃𝑖) ⋅ 𝑃𝜋𝑖𝑖 ⋅ 𝑃𝑀𝑖+1𝑖𝑝𝑖 ⋅ (1 − 𝑃𝑀𝑖+1𝑖 )2 .

(16)

In (16), the third term is more than zero, and the second
term is greater than the absolute value of the first term when𝜋𝑖 ≥ 3; hence, we can obtain𝑃(𝑦𝑖(𝑡+1) = 𝑏𝑖+𝜋𝑖 | 𝑦𝑖(𝑡) = 𝑏𝑖) >0.Therefore,𝑃(𝑦𝑖(𝑡+1) = 𝑏𝑖+𝜋𝑖 | 𝑦𝑖(𝑡) = 𝑏𝑖) is monotonously
increasing function for 𝑝𝑖 when 𝜋𝑖 ≥ 3. The multicast flow
request 𝜔 is defined as one data unit; evidently, 𝜋𝑖 ≥ 3𝜔. In
other words, the remaining bandwidth of available link can
satisfy the multicast bandwidth request 𝜔 at time-slot 𝑡 + 1 if𝜇 ≥ 3𝜔. This completes the proof.

On the basis of Theorem 2, the first step of Algorithm 1 is
reasonable and efficient. The condition with 𝜇 ≥ 3𝜔 not only
ensures the sufficient remaining bandwidth for satisfying the
multicast flow request but also avoids the complex calculation
of uplink blocking probability. However, the downlink has
data flow coming from other uplinks at any time-slot, which
results in the uncertainty of downlink state at time-slot 𝑡 + 1.
Therefore, we take theminimumblocking probability at time-
slot 𝑡 + 1 as the selection target of optimal downlinks.

Due to the randomness and uncertainty of the downlink
state, it is difficult to estimate the network blocking state at
time-slot 𝑡 + 1. Afterwards, we deduce the expectation that
the 𝑖th downlink connects to the 𝑗th destination edge switch
at time-slot 𝑡 + 1, denoted by 𝑒𝑖(𝑡, 𝑏𝑖), 𝑗 = 1, 2, . . . , 𝑓. Given
that the data flow in the 𝑖th downlink is 𝑏𝑖, we can obtain

𝑒𝑖 (𝑡, 𝑏𝑖)
= 𝑀𝑖∑
𝜋𝑖=0

((𝑏𝑖 + 𝜋𝑖) ⋅ 𝑃 (𝑦𝑖 (𝑡 + 1) = 𝑏𝑖 + 𝜋𝑖 | 𝑦𝑖 (𝑡) = 𝑏𝑖))

= 𝑏𝑖 + 1𝑃𝑏𝑖
𝑀𝑖∑
𝜋𝑖=1

𝜋𝑖 ⋅ 𝑃𝜋𝑖𝑖 ,
(17)

where 𝑃𝑏𝑖 = (1 − 𝑃𝑀𝑖+1𝑖 )/(1 − 𝑃𝑖), 𝑖 = 1, 2, . . . , 𝑥.
By (17), we conclude the following theorem which

explains the average increase rate of data flow at each
downlink.

Theorem 3. In a fat-tree DCN, the increased bandwidth of
downlink is no more than two units on the average at time-slot𝑡 + 1.
Proof. We consider ∑𝑀𝑖𝜋𝑖=0 𝑃(𝑦𝑖(𝑡 + 1) = 𝑏𝑖 + 𝜋𝑖 | 𝑦𝑖(𝑡) = 𝑏𝑖) =1, which means the flow increment of each link must be one
element in set {0, 1, . . . , 𝑀𝑖}.

Setting 𝐴 = ∑𝑀𝑖𝜋𝑖=1 𝜋𝑖 ⋅ 𝑃𝜋𝑖𝑖 = 𝑃𝑖 + ∑𝑀𝑖𝜋𝑖=2 𝜋𝑖 ⋅ 𝑃𝜋𝑖𝑖 , we can get𝑃𝑖 ⋅ 𝐴 = ∑𝑀𝑖𝜋𝑖=1 𝜋𝑖 ⋅ 𝑃𝜋𝑖+1𝑖 = ∑𝑀𝑖𝜋𝑖=2(𝜋𝑖 − 1) ⋅ 𝑃𝜋𝑖𝑖 + 𝑀𝑖 ⋅ 𝑃𝑀𝑖+1𝑖 .
Through the subtraction of the above two equations, we

can obtain (1 − 𝑃𝑖) ⋅ 𝐴 = 𝑃𝑖 + ∑𝑀𝑖𝑛𝑖=2 𝑃𝜋𝑖𝑖 − 𝑀𝑖 ⋅ 𝑃𝑀𝑖+1𝑖 . Then we
have𝐴 = (𝑃𝑖−𝑀𝑖 ⋅𝑃𝑀𝑖+1𝑖 )/(1−𝑃𝑖)+(𝑃2𝑖 −𝑀𝑖 ⋅𝑃𝑀𝑖+1𝑖 )/(1−𝑃𝑖)2.
Substituting it into (17), we can obtain

𝑒𝑖 (𝑡, 𝑏𝑖) = 𝑏𝑖 + 1𝑃𝑏𝑖
𝑀𝑖∑
𝜋𝑖=1

𝜋𝑖 ⋅ 𝑃𝜋𝑖𝑖 = 𝑏𝑖 + 𝐴𝑃𝑏𝑖
= 𝑏𝑖 + 𝑃𝑖 − 𝑀𝑖 ⋅ 𝑃𝑀𝑖+1𝑖1 − 𝑃𝑀𝑖+1𝑖

+ 𝑃2𝑖 − 𝑃𝑀𝑖+1𝑖(1 − 𝑃𝑖) (1 − 𝑃𝑀𝑖+1𝑖 ) ,
(18)

where𝑃𝑖 < 1/3. By relaxing the latter two terms of (18), 𝑒𝑖(𝑡, 𝑏𝑖)
can be rewritten as

𝑒𝑖 (𝑡, 𝑏𝑖) = 𝑏𝑖 + 𝑃𝑖 − 𝑀𝑖 ⋅ 𝑃𝑀𝑖+1𝑖1 − 𝑃𝑀𝑖+1𝑖
+ 𝑃2𝑖 − 𝑃𝑀𝑖+1𝑖(1 − 𝑃𝑖) (1 − 𝑃𝑀𝑖+1𝑖 ) < 𝑏𝑖 + 2,

(19)

where 𝑖 = 1, 2, . . . , 𝑥.
By merging (17) and (19), we have 𝑏𝑖 < 𝑒𝑖(𝑡, 𝑏𝑖) < 𝑏𝑖 + 2,

then 1 < 𝑒𝑖(𝑡, 𝑏𝑖) − 𝑏𝑖 + 1 < 3. Hence, the downlink bandwidth
will increase at least one unit data flow when the downlink is
blocked.

When 𝑀𝑖 < 𝑒𝑖(𝑡, 𝑏𝑖) − 𝑏𝑖 + 1, the number of increased
data flows is larger than 𝑀𝑖; however, it is not allowed by the
definition of 𝑀𝑖; thus we can obtain

𝑃 (𝑦𝑖 (𝑡 + 1) > 𝑒𝑖 (𝑡, 𝑏𝑖) | 𝑦𝑖 (𝑡) = 𝑏𝑖) = 0. (20)

When 𝑀𝑖 ≥ 𝑒𝑖(𝑡, 𝑏𝑖) − 𝑏𝑖 + 1, we can get

𝑃 (𝑦𝑖 (𝑡 + 1) > 𝑒𝑖 (𝑡, 𝑏𝑖) | 𝑦𝑖 (𝑡) = 𝑏𝑖)
= 𝑀𝑖∑
𝜋𝑖=𝑒𝑖(𝑡,𝑏𝑖)−𝑏𝑖+1

𝑃 (𝑦𝑖 (𝑡 + 1) = 𝑒𝑖 (𝑡, 𝑏𝑖) | 𝑦𝑖 (𝑡) = 𝑏𝑖)

= 𝑀𝑖∑
𝜋𝑖=𝑒𝑖(𝑡,𝑏𝑖)−𝑏𝑖+1

1𝑃𝑏𝑖 ⋅ 𝑃𝜋𝑖𝑖 = 𝑃𝑒𝑖(𝑡,𝑏𝑖)−𝑏𝑖+1𝑖 − 𝑃𝑀𝑖+1𝑖1 − 𝑃𝑀𝑖+1𝑖 .
(21)

Equation (21) represents the downlink traffic capability
at time-slot 𝑡 + 1. When the value of (21) is very large, the
blocking probability of downlink is higher, vice versa. To
clarify the fact that the downlink has lower blocking prob-
ability at next time-slot, we have the following theorem.

Theorem 4. In the multicast blocking model of fat-tree DCNs,
the downlink blocking probability at time-slot 𝑡 + 1 is less than
0.125.
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Figure 6: Downlink blocking probability comparison in different𝑀𝑖s.
Proof. Based on (21), we take the minimum value of 𝑀𝑖 as 2.
Thus we get

𝑃 (𝑦𝑖 (𝑡 + 1) > 𝑒𝑖 (𝑡, 𝑏𝑖) | 𝑦𝑖 (𝑡) = 𝑏𝑖)
= 𝑃𝑒𝑖(𝑡,𝑏𝑖)−𝑏𝑖+1𝑖 − 𝑃𝑀𝑖+1𝑖1 − 𝑃𝑀𝑖+1𝑖 < (1/3)3 − (1/3)(3+1)1 − (1/3)(3+1)
= 0.125.

(22)

This completes the proof.

In order to show that the MSaMC manifests the lower
blocking probability of downlink at time-slot 𝑡 + 1 under the
different values of 𝑀𝑖, we provide the following comparison
as shown in Figure 6.

In Figure 6, 𝑃(𝑦𝑖(𝑡 + 1) > 𝑒𝑖(𝑡, 𝑏𝑖) | 𝑦𝑖(𝑡) = 𝑏𝑖) indicates
the downlink blocking probability, and their values are not
more than 0.125 for different 𝑀𝑖 and 𝑃𝑖. At the zero point, the
blocking probability is close to zero unless 𝑃𝑖 > 0.1. In real
network, the condition of 𝑃𝑖 > 0.1 is rarely. Therefore, the
MSaMC has very lower blocking probability.

In the following, we analyze the time complexity of
MSaMC. The first step of MSaMC takes the time complexity
of𝑂(𝑚) to identify available core switches. In the second step,
the MSaMC needs to find the appropriate core switches. We
need 𝑂(𝑓 ⋅ 𝑓) time to calculate the blocking probability of
available downlinks at time-slot 𝑡 + 1 and select the appro-
priate core switches to the set 𝑇󸀠, where 𝑓 ≤ 𝑟 − 1. In the
end, we take 𝑂(𝑓 + 𝑓) time to construct the optimal paths
from source edge switch to destination edge switches. Thus
the computational complexity of MSaMC is given by

𝑂 (𝑚 + 𝑓 ⋅ 𝑓 + 𝑓 + 𝑓) ≤ 𝑂 (𝑚 + (𝑟 − 1)2 + 2 (𝑟 − 1))
= 𝑂 (𝑟2 + 𝑚 − 1) . (23)

Note that the complexity of the algorithm is polynomial
with the number of core switches 𝑚 and the number of edge

Table 3: Parameter setting.

Parameter Description
Platform NS2
Link bandwidth 1Gbps
RTT delay 0.1ms
Switch buffer size 64KB
TCP receiver buffer size 100 segments
Simulation time 10 s

switches 𝑟, which means that the computational complexity
is rather lower if the fanout 𝑓 is very small. Therefore, the
algorithm is time-efficient in multicast scheduling.

6. Simulation Results

In this section, we utilize network simulator NS2 to evaluate
the effectiveness of MSaMC in fat-tree DCNs in terms of
the average delay variance (ADV) of links with different
time-slots. Afterwards, we compare the performance between
MSaMC and SLMR algorithm with the unicast traffic [4]
and present the comparison between MSaMC and BCMS
algorithm with the multicast traffic [5].

6.1. Simulation Settings. The simulation network topology
adopts 1024 servers, 128 edge switches, 128 aggregation
switches, and 64 core switches. The related network param-
eters are set in Table 3. Each flow has a bandwidth demand
with the bandwidth of 10Mbps [4]. For the fat-tree topology,
we consider mixed traffic distribution of both unicast and
multicast traffic. For unicast traffic, the flow destinations of
a source server are uniformly distributed in all other servers.
The packet length is uniformly distributed between 800 and
1,400 bytes and the size of eachmulticast flow is equal [17, 18].

6.2. Comparison of Average Delay Variance. In this subsec-
tion, we first define the average delay variance (ADV) and
then compare the ADV of the uplink and downlink by the
different number of packets.

Definition 5 (average delay variance). Average delay variance
(ADV) 𝑉 is defined as the average of the sum of the
transmission delay differences of the two adjacent packets in
a multicast subnetwork; that is,

𝑉 = ∑𝑖∈𝑥 ∑𝑗∈𝑙 (𝑇 (𝑡)𝑖𝑗 − 𝑇 (𝑡 − 1)𝑖𝑗)𝑥 , (24)

where 𝑥 is the number of available links, 𝑙 is the number of
packets in an available link, and 𝑇(𝑡) indicates the transmis-
sion delay of packet at time-slot 𝑡.

WE take ADV as a metric for the network state of
multicast subnetwork. The smaller the ADV is, the more
stable the network state is, vice versa.

Figure 7 shows the average delay variance (ADV) of
links as the number of packets grows. As the link remaining
bandwidth 𝜇 is taken as 𝜔 or 2𝜔, the average delay variance
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has bigger jitter.This is because the link remaining bandwidth
cannot satisfy the multicast flow request 𝜔 at time-slot 𝑡 + 1.
The average delay variance is close to a straight line when the
link remaining bandwidth is 3𝜔, which implies that the
network state is very stable. Therefore, the simulation result
manifests that the optimal value of the link remaining
bandwidth 𝜇 is 3𝜔.

From Figure 8, we observe that the jitter of uplink ADV
is smaller than that of the downlink ADV.This is because the
fat-tree DCN is a bipartition network; that is, the bandwidth
of the uplink and downlink is equal. However, the downlink
load is higher than the uplink load in the multicast traffic;
therefore, the uplink state is more stable.

6.3. Total NetworkThroughput. In the subsection, we set the
length of time-slot 𝑡 as 𝜔/𝑆 and 2(𝜔/𝑆). We can observe from
the Figure 9(a) that MSaMC achieves better performance
than the SLMR algorithm when the length of time-slot 𝑡 is2(𝜔/𝑆). This is because MSaMC can quickly recover the
network blocking, and thus it can achieve higher network
throughput. In addition, the MSaMC cannot calculate the
optimal path in real time when the length of time-slot 𝑡
is 𝜔/𝑆; therefore, the SLMR algorithm provides the higher
throughput.

Figure 9(b) shows throughput comparison of MSaMC
and BCMS algorithm under mixed scheduling pattern. The
throughput of BCMS algorithm is lower as the simula-
tion time increases gradually. The multicast transmission of
BCMS algorithm needs longer time to address the problem
of network blocking; therefore, the throughout will decrease
sharply if the network blocking cannot be predicted. In
contrast, the MSaMC can predict the probability of network
blocking at next time-slot and address the delay problem of
dynamic bandwidth allocation. Therefore, the MSaMC can
obtain higher total network throughput.

6.4. Average Delay. In this subsection, we compare the
average end-to-end delay of our MSaMC, SLMR algorithm
with the unicast traffic, and BCMS algorithm with mixed
traffic over different traffic loads. Figure 10 shows the average
end-to-end delay for the unicast and mixed traffic patterns,
respectively.

We can observe from Figure 10 that, as the simulation
time increases gradually, the MSaMC with 𝑡 = 2(𝜔/𝑆) has
the lowest average delay than SLMR and BCMS algorithms
for the two kinds of traffic. This is because SLMR and BCMS
algorithms utilize more backtracks to eliminate the multicast
blocking; therefore, they takemore time to forward data flows
to destination edge switches. In addition, we can also find that
when the length of the time-slot is 2(𝜔/𝑆), our MSaMC has
theminimumaverage delay.This is because the time-slot with
length 2(𝜔/𝑆) can just ensure that data can be transmitted
accurately to destination switches. The shorter time-slot with
less than 2(𝜔/𝑆)will lead to the incomplete data transmission
while the longer time-slot with more than 2(𝜔/𝑆) will cause
the incorrect prediction for traffic blocking status.

7. Conclusions

In this paper, we propose a novel multicast scheduling
algorithmwithMarkov chains calledMSaMC in fat-tree data
center networks (DCNs), which can accurately predict the
link traffic state at next time-slot and achieve effective flow
scheduling to improve efficiently network performance. We
show that MSaMC can guarantee the lower link blocking at
next time-slot in a fat-tree DCN for satisfying an arbitrary
sequence of multicast flow requests under our traffic model.
In addition, the time complexity analysis also shows that the
performance of MSaMC is determined by the number of
core switches 𝑚 and the destination edge switches 𝑓. Finally,
we compare the performance of MSaMC with an existing
unicast scheduling algorithm called SLMR algorithm and a
well-known adaptive multicast scheduling algorithm called
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Figure 9: Network throughput comparison.
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Figure 10: Average delay comparison.

BCMS algorithm. Experimental results show that MSaMC
can achieve higher network throughput and lower average
delay.

Notations

𝜔: Multicast bandwidth request about data flow𝑏𝑖: The occupied bandwidth of 𝑖th link𝜇: The remaining bandwidth of link𝑎: The sum of occupied bandwidth

𝑦: The value of link weight𝑆: Link bandwidth𝑀: Increasing the maximum number of data
flows𝜋: Increasing the number of data flows𝑇: The set of available core switches.
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