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Anovel approach is presentedwhich is able to predict the availablemaximal data transfer rate of SHDSL connections frommeasured
frequency dependent electrical parameters of wire pairs. Predictions aremade by a fuzzy inference system.The basis of the operable
and tested method will be introduced, then an improved version is shown, in which the problems derived from sampling of
continuous functions of electrical parameters are eliminated by wavelet transformation. Also possibilities for simplification of the
problem and away of reducing the dimensions of the applied rule bases are presented. As the set of themeasured data leads to sparse
rule bases, handling of sparseness is unavoidable. Two different ways—fuzzy interpolation and variousmembership functions—will
be introduced. The presented methods were tested by measurements in real telecommunications access networks.

1. Introduction

In telecommunications the emphasis moved from voice con-
nections to data communications in the past decades. Despite
the modern and efficient types of networks for data transmis-
sion, for example, fiber optics, huge amount of copper wire
pair based networks developed for voice communications is
still in use. These copper networks, especially in rural or less
densely populated areas, will be in use at least in the next
couple of decades.

Further use of copper networks is promoted by the devel-
opment of such new methods, which aim to serve modern
telecommunications services of acceptable quality on these
networks. The various xDSL technologies were and are being
developed to establish high speed digital connections; for
example, VDSL2 technology can provide up to 200Mbit/s
data transfer rate (bit rate) on a single twisted pair [1]. Reach-
ing this bit rate is achieved by suchmethods, which influences
the physical circumstances of the links, like self-FEXT can-
celation [2].Thus, copper wire based access networks remain
economical and applicable for providing telecommunications
services for a long time.

Irrespectively of the material of transmission medium,
access networks have numerous endpoints, and the perfor-
mance of the access links is different in the case of each
endpoint. Optimal operation, cost efficient renewal, mainte-
nance, and forming correct business proposals andmarketing
strategies require information about the performance of
network segments, moreover, in certain cases about the
individual links. However, performance is unknown until the
installation of the equipment of the given transmission tech-
nology, that is, until the formation of the real connections.
Preliminary—and approximate—information about the per-
formance can be gained by performance prediction tech-
niques.

Performance prediction (sometimes also mentioned as
performance evaluation) techniques are used in various
fields of telecommunications. Lots of works deal with the
examination of whole networks. Such methods can be found,
for example, in [3–6]. Other works deal with simulation and
soft computing based performance prediction, for example,
[7, 8]. Besides the performance prediction of whole networks,
prediction of the performance of individual links or channels
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has a great importance; for example, Stupia et al. [9] or Bru-
eninghaus et al. [10] deal with such solutions. Wireless per-
formance prediction is made by Zhang and Ma [11] and per-
formance predictions in symmetrical (copper) networks are
mentioned by Magesacher et al. in [12]. Performance can be
defined in different ways in the case of telecommunications
networks. Some methods aim the prediction of the bit error
ratio (BER) evolved in defined circumstances, for example,
[13, 14]. Others, for example, Bosco et al. [15], predict the
transmission power.

In this paper we present a novelmethod for predicting the
available data transmission rate of the SHDSL connections to
be installed over copper wire pairs of access networks, which
makes the estimations from measured electrical parameters
of the transmission medium by a fuzzy inference method,
without the necessity of the installation of the technologi-
cal equipment. This method—with small modifications—is
suitable for making performance prognosis also for other
transmission media and for other transmission technologies.

In the next section, those technical and physical parame-
ters of the access networks that can be used for performance
prediction are given together with ourmeasurement setup. In
Sections 3, 5.1, and 6.2 we summarize the theoretical back-
ground used in this contribution, namely, the fuzzy infer-
ences, the wavelet analysis, and the KH fuzzy rule interpola-
tion technique. In Section 4 we overview our previous results
in performance prediction for wired telecommunications
connections. In Section 6 using wavelet analyses and fuzzy
interpolation technique we give a series of performance pre-
diction algorithms based on solely the insertion loss values
of the links of the access networks. At the end of the paper
the results of the tests for SHDSL systems are shown, and
we present a suggestion for a method efficiently applicable in
industrial circumstances.

2. Physical Basics of Performance Prediction
for Wired Links of Access Networks

As it can be read in Section 1, in this work the notation “per-
formance” is used for the availablemaximal data transmission
rate by SHDSL transmission. This value—as also other
properties of the transmission—is influenced by the physical
parameters of the transmission medium.

Studies were carried out for selecting those physical
properties which really influence the bit rate. (The aim of
the study was not the identification of lines out of order, but
the performance evaluation of operable ones; thus the mea-
surements were made on operable lines.) Performance prim-
itives are given by the ITU-T recommendation referring to
SHDSL technology [17]. Only two of them, loop attenuation
defect and SNR (Signal to Noise Ratio) margin defect, are in
connection with the layer 1 parameters of the line.

Loop attenuation defect occurs if the value of the loop
attenuation is higher than a previously configured threshold.
SHDSL loop attenuation is defined in page 43 of the recom-
mendation as follows:

“LA = 2𝑓sym {∫𝑓sym/2
0

10 log10 [ 1∑
𝑛=0

𝑆 (𝑓 − 𝑛𝑓sym)] 𝑑𝑓
− ∫𝑓sym/2
0

10 log10 [ 1∑
𝑛=0

𝑆 (𝑓 − 𝑛𝑓sym) 󵄨󵄨󵄨󵄨󵄨󵄨𝐻 (𝑓 − 𝑛𝑓sym)2󵄨󵄨󵄨󵄨󵄨󵄨] 𝑑𝑓} ,
(1)

where 𝑓sym is the symbol rate, 1/𝐻(𝑓) is the insertion loss of
the loop, and 𝑆(𝑓) is the nominal transmit PSD” [17].

ITU-T also defines the SNR (in dB):
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𝑀∑
𝑘=1
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(2)

where 𝑆(𝑓) shall be the nominal far-end transmit signal
power spectral density, |𝐻(𝑓)|2 shall be the magnitude
squared of the ideal loop insertion gain function, 𝑁(𝑓) shall
be the injected crosstalk noise power spectral density, and𝑓sym shall be the transmit symbol rate” [17].

Although formulae (1) and (2) contain more variables,
only two of them, insertion loss and noise, are real physical
parameters of the line; thus, according to the recommenda-
tion, these two parameters of the line have influence on the
available bit rate. This statement was verified by measure-
ments on wire pairs from real telecommunication access net-
works in operation.

Measurements were performed as follows. Using oper-
able, but actually unused wire pairs of copper cable based
access networks, lines (similar to the subscriber loops) were
temporarily created. Several electrical properties of the lines
were studied by double-ended measurements. These proper-
ties were the noise, the far and near end crosstalk, insertion
loss, return loss, line impedance, SNR, and the attenuation to
crosstalk ratio. After measuring these electrical parameters,
the central end of the line was connected to an SHDSL node
and an SHDSL modem was installed to the other end of the
line, and the availablemaximal bit ratewasmeasured, granted
a bit error ratio better than 10−7. The results of the electrical
property measurements were sorted into five clusters accord-
ing to the measured bit rate ranges (range 1 to range 5, where
the lowest bit rates belong to range 1 and the highest bit rates
belong to range 5).

Statements of the recommendation, that is, only the inser-
tion loss and the signal to noise ratio have influence on the
performance, were verified by the measurements. Lots of the
measured parameters, like, the return loss, do not have direct
influence on the bit rate. Figure 1 depicts themeasured return
loss (RL) values. RL functions are coloured by the ranges of bit
rates measured on related lines. It can be seen that although
the colours seem to be grouped, there are no exclusive areas
belonging to different bit rate ranges.
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The role of the frequency dependent insertion loss in
forming the data transmission speed is unequivocally verified
by the results of the measurements. It can be seen in Figure 2
that curves of insertion loss cover areas belonging to indivi-
dual bit rate ranges. The individual groups of colours are well
separated; however, in some positions the bands of neigh-
bouring ranges partially overlap.

Independently of the measured bit rates, the measured
values of noise were similar to one another within each
studied geographical area. Two examples for the results of
noise measurements in two different areas (A and B) are
shown in Figures 3 and 4. (Even though finding the reasons
of similarity is not an aim of this study, according to the pre-
cursory examinations, it is caused probably by the fact that

telecommunications services are similar to one another in
the same areas; that is, in domestic areas analog voice and
ADSL transmissions are typical; thus the noise generated by
them is similar in every wire pair.) Based on the results of
the measurements it can be stated that even though the noise
influences the available data transmission rate, this influence
is the same in the case of each line in the same area. This
behaviormakes possible to set up hierarchical rules which are
able to evaluate the performance of the wire pairs belonging
to defined areas considering only the insertion loss.

Measured data were grouped according to the available
bit rates. Based on the data in these groups a system of verbal
rules was formulated; their general form is as follows:

𝑅0-1: IF the form of the NOISE is similar to pattern 𝐴
THEN the performance should be evaluated by rule base 𝐴𝑅0–2: IF the form of the NOISE is similar to pattern 𝐵
THEN the performance should be evaluated by rule base 𝐵...𝑅0–𝑘: IF the form of the NOISE is similar to pattern 𝐾
THEN the performance should be evaluated by rule base 𝐾𝑅𝐴−1: IF the INSERTION LOSS is huge𝑅𝐴−2: IF the INSERTION LOSS is large
THEN the AVAILABLE BIT RATE belongs to range 2...𝑅𝐴−5: IF the INSERTION LOSS is low
THEN the AVAILABLE BIT RATE belongs to range 5...𝑅𝐾−1: . . ....

(3)

Subrule base (𝑅𝐴 − 𝑅𝐾), used in factual performance evalua-
tion, is selected in the metalevel (𝑅0) of the hierarchical rule
system described in (3).

Variables of the rule system (see (3)) are not numerical,
but rather denote ranges. Moreover, these ranges are not
clearly distinct; in many instances they partially cover each
other. Evaluation of such rule systems by traditional mathe-
matical tools is extremely difficult. Usage of exceedinglymany
equations may be needed for the exact mathematical presen-
tation. Fuzzy logic introduced in the 1960s was developed for
solving exactly such problems.

3. On Fuzzy Inferences

3.1. Basics of Fuzzy Set Theory. The usage of an exceptionally
novel version ofmultivalued logics was suggested by Zadeh in

1965 [18].The logic system introduced in [18] not only permits
truth values of a statement differing from “YES” and “NO,”
but extends this possibility to the infinity. The fundamental
idea of Zadeh’s theoretical system is that if the phenomena of
the universe can be classified into groups (sets), this classifi-
cation can be numerically described and logical connections
can be foundbetween the particular phenomena, then correct
and effectively handleable mathematical models of these
phenomena can be produced.The operability of the system is
ensured by the classifiability of the particular phenomena into
special sets. The membership of the phenomena in these sets
can be any value from 0 (phenomenon does not belong to the
set) to 1 (phenomenon belongs absolutely to the set). Zadeh’s
logical system is called “fuzzy logic” or “fuzzy set theory.”
His paper published in 1965 lays the basics of this theory,
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Figure 1: Measured return loss functions belonging to the different
ranges of the bit rate.
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Figure 2: Measured insertion functions belonging to the different
ranges of the bit rate.

notions of fuzzy membership value, and fuzzy membership
function (𝐹𝐴(𝑥)—later usually denoted by 𝜇𝐴(𝑥)) is defined.
As an example, Figure 5 shows a possible fuzzy set of warm
temperatures.

According to [18],𝐴󸀠, that is, the complement of fuzzy set𝐴, is defined as

𝑓𝐴󸀠 = 1 − 𝑓𝐴, (4)

where 𝑓𝐴 is the membership function of fuzzy set 𝐴.

N
oi

se
 (d

Bm
)

−100

−50

Frequency (kHz)
500 1,000 1,500

range 2
range 3
range 4

Figure 3: Noise of lines from area A.
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Figure 4: Noise of lines from area B.

The union (𝑠-norm) of fuzzy sets 𝐴 and 𝐵 is as follows:

𝑓𝐴 ∪ 𝑓𝐵 = max [𝑓𝐴, 𝑓𝐵] . (5)

The intersection (𝑡-norm) of fuzzy sets 𝐴 and 𝐵 is as follows:

𝑓𝐴 ∩ 𝑓𝐵 = min [𝑓𝐴, 𝑓𝐵] . (6)

Fuzzy norms can be implemented by numerous mathe-
matical formulae; however, these formulae have to meet the
conditions of the axiomatic systems of the different norms
[19].

3.2. Zadeh’s Fuzzy Reasoning. The basics of Zadeh’s fuzzy
set theory provide a good possibility for numerically solving
such problems, which can be logically formulated. In his
first publication in this topic, Zadeh denotes the methods
appropriate for such solutions fuzzy algorithms [20]. Fuzzy
algorithms are based on statements or commands in human
language. Zadeh’s examples are

“Set 𝑦 is approximately equal to 10 if

𝑥 is approximately equal to 5”
(7)

“If 𝑥 is large, increase 𝑦 by several units!” (8)

Approximately equal to 10, approximately equal to 5, large, and
several are fuzzy sets, similar to the set of Figure 5. Also “𝑥”
and “𝑦” are fuzzy sets; however, in most practical cases “𝑥”
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Figure 5: Membership values of a possible fuzzy set of hot tempera-
tures (in ∘C).

is a crisp value. Using statements similar to (7) or (8), useful
decision algorithms can be created, like

“If 𝑥 is small, increase 𝑦 by several units!
If 𝑥 is large, decrease 𝑦 by several units!

Otherwise keep 𝑦 unchanged!”
(9)

[20].
At the first time, fuzzy algorithms were used for creating

fuzzy inference systems in 1973 [21]. Here, fuzzy algorithms
were supplemented with logic operations, arising fuzzy
IF . . .THEN rules, moreover, fuzzy rule bases, like in

𝑅1: IF 𝑥1 is 𝐴1,1 AND 𝑥2 is 𝐴2,1 THEN 𝑦1 is 𝐵1𝑅2: IF 𝑥1 is 𝐴1,2 AND 𝑥2 is 𝐴2,2 THEN 𝑦2 is 𝐵2...𝑅𝑟: IF 𝑥1 is 𝐴1,𝑟 AND 𝑥2 is 𝐴2,𝑟 THEN 𝑦𝑟 is 𝐵𝑟.
(10)

Here, (𝑥1, 𝑥2, . . . , 𝑥𝑟) is an observation vector which can
consist of fuzzy values, too, 𝐴𝑑,𝑟 is a fuzzy set, where 𝑑 is the
number of the dimensions, 𝑟 is the number of the rules, 𝑦𝑟 is
the result of the 𝑟th rule (generally also it is a fuzzy value),
and 𝐵𝑟 is the fuzzy set belonging to the output of the 𝑟th
rule.The antecedent dimensions of the rules are connected to
each other by AND, and the rules 𝑅1 and 𝑅2 by OR operator.
The rule base is defined as a fuzzy relation, and the final
conclusion is gained as a fuzzy composition.

“IF–THEN” fuzzy rules are used in recent control prob-
lems, too [22–24].

3.3. Mamdani’s Fuzzy InferenceMethod. Mamdani and Assil-
ian suggested a more simple and practicable fuzzy reasoning
method in 1975 [25]. Due to its simple implementation we
also useMamdani-like approach in this work, so its operating
principles are detailed here.

Similar to Zadeh’s approach, the reasoning is based on
two essential components.The first one is a rule base, and the
other one is a quantified observation, which has to be evalu-
ated by the rule base. The rule base contains the preliminary
knowledge about the studied problem. It can be constructed
from previous measurements of the system, or from experts’
knowledge. The possible values of the input variables are
considered as fuzzy values and thus are represented by fuzzy

sets.The outputs of the rules are also fuzzy sets (outputs of the
real systems are fuzzified). It has to be mentioned here that
also other approaches exist; for example, Takagi and Sugeno
published a fuzzy inference system in 1985, where the rules
had function type outputs [26]. The other essential compo-
nent is the observation itself.The observation vector contains
the values of the measurements of the examined system.
Theoretically, its values are considered as fuzzy values; how-
ever, in practice, most commonly they are crisp numbers.

Basic elements of the calculations are the membership
values 𝜇𝑑,𝑟 of the singular values of the observation vector 󳨀→𝑥
in the fuzzy sets𝐴𝑑,𝑟 of each rule’s relevant dimension.These
values are in AND logic connection with each other in the
same rules, where AND corresponds to the intersection set
operation. InMamdani’s approach Zadeh’s fuzzy intersection,
namely, the “minimum”, is selected to represent the logic
AND.The weights 𝑤𝑟 of the rules are calculated by

𝑤𝑟 = min (𝜇1,𝑟, 𝜇2,𝑟, . . . , 𝜇𝑑,𝑟) , (11)

and the result of the 𝑟th rule is

𝐵∗𝑟 = min (𝑤𝑟, 𝐵𝑟) . (12)

The logic OR between the rules are represented by Zadeh’s𝑠-norm; thus the final conclusion is

𝐵∗ = max (𝐵∗1 , 𝐵∗2 , . . . , 𝐵∗𝑟 ) ; (13)

that is, the max–min composition of the observation vector󳨀→𝑥 and the rule base 𝐴∗.
Mamdani’s reasoning system is illustrated in Figure 6.
In most of the cases the result of a fuzzy reasoning sys-

tem is also fuzzy (Takagi-Sugeno method is an exception).
Although the fuzzy result can be used by another fuzzy sys-
tem, for a direct application it has to be converted to a crisp
value. Several methods deal with this so-called defuzzifica-
tion. Two well-known ones are Center of Gravity (14) and
Center of Maxima (15).

𝑦COG = ∑𝑟𝑖=1 (𝑦∗𝑖 ⋅ 𝑤∗𝑖 )∑𝑟𝑖=1 𝑤∗𝑖 (14)

𝑦COM = inf 𝑀 + sup𝑀2 . (15)

A graphical example of the differences between the results
of these two techniques can be seen in Figure 7.

4. Performance Prediction for Wired Links of
Access Networks

According to the hierarchical verbal rule system described
by (3) and the measured values, fuzzy rule bases were
constructed. The main problem in using insertion loss as
antecedent is that insertion loss is a continuous function
in the frequency, which does not have a closed formula.
Thiswouldmean infinite possibilities for selecting antecedent
dimensions, from using insertion loss values at one or more
frequency points through averages to fitting a function with
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Figure 7: COG and COM defuzzification of a fuzzy set (𝑦COG =4.016, 𝑦COM = 5).
some parameters to the measured values and using the fitting
parameters as input vectors for the inference system.

In order to minimize the calculation, in the rule bases the
characteristic points of the insertion loss were used. Based
on the results of our previous research, these characteristic
points in the measured 1.5MHz wide frequency band can
be at frequency points 100 kHz, 500 kHz, 750 kHz, 1000 kHz,
1250 kHz, and 1500 kHz [27]. Examinations verified that
usage of more frequency points is redundant, while in case
of less frequency points the effect of extreme deviations at
selected frequencies can be disadvantageously dominant [28].

For the construction of the rule bases, two methods were
used. In both cases the measured telecommunication access
lines were separated into two parts.The training set consisted

of about half the measured lines belonging to each of the
performance groups. The data of the remaining lines were
used for testing.

In case of the first method, such rule bases were created
in which each individual rule belonged uniquely to one of
the output states. The rules had six antecedent dimensions,
accordingly to themeasured values of the insertion loss at the
six characteristic frequencies. Fuzzy sets of these rule bases
were triangular with the mean value from the training set
being the 𝛼-cut belonging to 𝛼 = 1 and the minimum and
maximum values of the training set determining the mini-
mum and maximum of the support of the membership func-
tion (i.e., the 𝛼 = 0 𝛼-cut). Its graphical example can be seen
in Figure 8. Later, this rule base is referred to as RB1.

Other rule bases were created by an evolutionary algo-
rithm [29]. The rule bases were 6 dimensional also in this
case; however, the number of the rules was 10 instead of 5, and
the shape of the fuzzy sets was trapezoidal. A graphical exam-
ple can be seen in Figure 9.

During the evaluation Mamdani’s reasoning method was
used, and the fuzzy results were converted into crisp values by
Center of Gravity defuzzification described by (14) [30]. The
rule bases were tested using the previously selected lines from
operating telecommunications access networks. In case of the
lines that could be evaluated the success rate of the evaluation
by each rule base was better than 94%.

During the tests, two imperfections of the evaluation sys-
tem had been discovered.
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from measured data. Dimensions are denoted by 𝐷1–𝐷6.
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Figure 9: Rules 1–10 of a rule base made by evolutionary algorithm.
Antecedents and consequents are trapezoidal normal (i.e., their
maximum value is 1) fuzzy sets. Dimensions are denoted by𝐷1–𝐷6.

One of them is originated from the sparseness of the rule
bases. This problem will be referred to as vertical sparseness.
As the number of the lines used in rule base construction was
limited, the antecedent fuzzy sets did not cover the whole
input state space; thus during the construction sparse rule
bases arose. Due to the sparseness of the rule bases only those

Table 1: An incorrect performance prediction [16].

Rule 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 Weight𝑅2 0.081 0.022 0.479 0.832 0.432 0.526 0.0222𝑅3 0 0.848 0.854 0.852 0.223 0.791 0

lines could be successfully evaluated where the measured
parameters belonged to areas covered by antecedent sets. It
is important that the rule base made by evolutionary algo-
rithm— thanks to the wider supports of fuzzy sets—was able
to evaluate a higher number of lines.

Theother problemwill be called horizontal sparseness. As
the system is based on insertion loss values at very few char-
acteristic frequencies, extreme deviations at some of these
frequencies might influence the prediction of performance
but not influence the bit rates, causing this horizontal type
of imperfection.

The following sections of the paper discuss the solutions
for these two problems and introduce an improved approach.

5. Predictions from Insertion Loss Data of
the Complete Measured Frequency Domain

As a first step let us consider the problemof horizontal sparse-
ness.

In this case the deficiency of the method was that the per-
formancewas predicted using only somediscrete values of the
continuous insertion loss function, even though the whole
function influences the available bit rate. Clearly the method
leaves out of consideration the remaining values of the inser-
tion loss at the other frequencies; moreover it is very sensitive
to point-like deviations in the measurements. Although,
thanks to the properly selected frequency points, incorrect
predictions occurred in minimal number during the tests;
the correct results are not guaranteed. Such an incorrect
prediction can be seen in Table 1.

In case of the wire pair of Table 1, the insertion loss
values at the 1st dimension and its narrow surroundings is
higher than in case of the lines used in rule base construction.
Moreover, even though the discrepancy is actually not high,
the measured value reaches the 2nd range of the rule base.
This prediction is failed, as the line, according to the bit rate
measurements belongs to 3rd range; that is, the deviation of
the insertion loss values at dimension 1 is so small and belongs
to so narrow frequency band that the line in reality can fulfill
the demands of range 3 (as it can be seen in case of the other
dimensions). As we have mentioned previously, the contin-
uous function of the insertion loss offers infinite possibilities
for selecting antecedent dimensions.

Our first approach that needed technical knowledge for
selecting the characteristic frequencies, but no computation
from the measurement values was not successful in all the
cases due to measurement uncertainty and fluctuations at the
characteristic frequencies. Clearly a computationally more
demanding method should be used in order to get rid of the
fluctuations and take into account the insertion loss in the
whole frequency domain.
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5.1. Wavelet Transformations. Wavelet theory is mainly used
for analyzing data, for mapping the finer and rougher struc-
ture of spatial or temporal patterns. In our case both the
insertion loss and the noise are in the frequency domain;
however, they have finer and rougher structure, thus naturally
arising the question whether the fine structure of the data
influences the performance, or it can be really neglected.
It is also important to study whether an average behavior
represents the insertion loss and noise better than the previ-
ously selected characteristic points.Thebest tool for perform-
ing both of the above tasks is to use wavelet analysis on the
measured data. In order to clarify the notations, we summa-
rize the wavelet theory in the following paragraphs. For more
detailed descriptions, see, for example, [31].

Discrete wavelet analysis or multiresolution analysis
(MRA) represents the functions of a Hilbert space at resolu-
tion levels. These resolution levels constitute subspaces 𝑉𝑗 of
the whole Hilbert space; each rougher subspace is embedded
into the finer ones; that is, ⋅ ⋅ ⋅ ⊂ 𝑉𝑗−1 ⊂ 𝑉𝑗 ⊂ 𝑉𝑗+1 ⊂ ⋅ ⋅ ⋅ . Each
of the subspaces 𝑉𝑗 is expanded by a set of basis functions,
the so-called scaling functions𝜙𝑗𝑘 with 𝑘 being the shift index
and 𝑗 the resolution index. All the elements of all these scaling
function basis sets are generated from one mother scaling
function 𝜙 by shrinking/extending and shifting on a regular
grid as

𝜙𝑗𝑘 (𝑥) = 2𝑗/2𝜙 (2𝑗𝑥 − 𝑘) . (16)

Note that the grid is different at each resolution level; that is,
for finer resolution the grid has smaller grid distance.

At a given resolution level a function 𝐹(𝑥) can be
approximated as a linear combination of the scaling functions
of that resolution level,

𝐹 (𝑥) ≈ 𝐹𝑗 (𝑥) = ∞∑
−∞

𝑓𝑗𝑘𝜙𝑗𝑘 (𝑥) (17)

with the expansion coefficients

𝑓𝑗𝑘 = ∫∞
−∞

𝐹 (𝑥) 𝜙𝑗𝑘 (𝑥) 𝑑𝑥. (18)

As the subspaces𝑉𝑗 are embedded into one another, each
function 𝐹 ∈ 𝑉𝑗 is also element of all the finer resolution
level subspaces𝑉𝑗+𝑖.This statement is valid also for the scaling
functions, thus resulting in a refinement equation

𝜙 (𝑥) = 21/2 𝑁𝑠∑
𝑖=0

ℎ𝑖𝜙 (2𝑥 − 𝑖) . (19)

The constants ℎ𝑖 are characteristic for the various basis
function systems; the number 𝑁𝑠 gives the support of the
scaling functions. For the simplest scaling function type, i.e.,
for the Haar scaling functions, the number of the coefficients𝑁𝑐 is 2, and these coefficients are ℎ0 = ℎ1 = 1. In the case of
a more complex, 𝑁𝑐 = 4 scaling function, the Daubechies-4
function is a good example, its coefficients are ℎ0 = 1/√2 ⋅(1 + √3), ℎ1 = 1/√2 ⋅ (3 + √3), ℎ2 = 1/√2 ⋅ (3 − √3), andℎ3 = 1/√2 ⋅ (1 − √3).

The subspaces complementing𝑉𝑗 in𝑉𝑗+1 are the so-called
wavelet subspaces or detail spaces, and their basis functions
are the wavelets. Wavelets, similarly to the scaling functions,
are generated from one mother wavelet 𝜓 as

𝜓𝑗𝑘 (𝑥) = 2𝑗/2𝜓 (2𝑗𝑥 − 𝑘) ; (20)

moreover, they are related to the scaling functions by a for-
mula similar to the refinement equation (19)

𝜓 (𝑥) = 21/2 1∑
𝑖=−𝑁𝑠+1

(−1)𝑖 ℎ−𝑖+1𝜙 (2𝑥 − 𝑖) . (21)

Using scaling functions as a basic resolution level approxima-
tion to a function and adding refinements to it can result in a
fine resolution level approximation

𝐹𝑗 (𝑥) = ∞∑
−∞

𝑓0𝑘𝜙0𝑘 (𝑥) + 𝑗−1∑
𝑖=0

∞∑
−∞

𝑔𝑖𝑘𝜙𝑖𝑘 (𝑥) , (22)

where the wavelet expansion coefficients are

𝑔𝑖𝑘 = ∫∞
−∞

𝐹 (𝑥) 𝜓𝑗𝑘 (𝑥) 𝑑𝑥. (23)

Of course, as the fine subspace 𝑉𝑗 is constituted from the
rougher scaling function and wavelet subspaces 𝑉𝑗−1 and𝑊𝑗−1 as

𝑉𝑗 = 𝑉𝑗−1 ⊕ 𝑊𝑗−1, (24)

there exists a transformation, similar to the refinement equa-
tion (21) and formula (21), from the rougher level wavelets
and scaling functions to the finer resolution scaling functions.

In digital data analysis we practically start from a fine res-
olution representation of a continuous signal (𝑓𝑗𝑘 with a large𝑗); this is the starting data vector (or matrix if the dimension
is higher). Using the refinement equation (19) the rougher
level expansion coefficients can be easily calculated from the
finer resolution ones by a simple convolutional filter with
filter coefficients ℎ𝑖 and a so-called downsampling: omitting
every second element from the resulting data vector. Similar
transformation produces the wavelet coefficients, with the
filter constants being (−1)𝑖ℎ−𝑖+1. Practically the transforma-
tion to the scaling function coefficients is a low-pass filtering
(at about half the frequency of the highest frequency present
at the starting vector), and the transformation to the wavelet
coefficients is a high-pass filtering. The scaling function or
low-pass coefficients describe the average behavior of the data
vector, whereas the wavelet coefficients give the fine details of
it.

5.2. ImprovedMethod forHorizontal Sparseness. Theproblem
of horizontal sparseness was solved by wavelet analysis
introduced in Section 5.1. As a first step, the 1.5MHz wide
frequency range of the studied SHDSL transmission was
divided into six ranges, keeping the former structure of the
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Figure 10: Results of the wavelet transformation of insertion loss functions shown in Figure 2.

rule bases. New rule bases were constructed using the wavelet
transformed values of these six ranges. The ranges were
formed as follows. The whole range was wavelet transformed
into 10, than 5 values, resulting in a finer and rougher res-
olution representation. Due to the fact that the transmission
power density is the highest in the low frequency domain, the
two lowest values of the finer resolution datawere used for the
two lowest dimensions and the upper 4 values of the rougher
resolution data for the upper four dimensions, resulting in a
mixed resolution representation. Later, this type of rule bases
is referred to as RBW. Figure 10 shows the wavelet trans-
formed points. The results of the wavelet transformations are
discrete values; however, for better visibility points corre-
sponding to the same telecommunication line are connected.

According to our results, high frequency components of
the wavelet transformations are not characteristic of this
problem, as the available bit rate is influenced by the average
heights of the insertion loss function and not by its fluctu-
ations; thus they were not used in rule base construction.
The measured insertion loss function of the line to be
evaluated has to be wavelet transformed for the performance
prediction. Even though this prediction seems to be made
also by six discrete values, these six discrete values contain
the information of the whole insertion loss function.

After doing the tests again two issues were experienced.
Firstly, to achieve this result, examination of the noise was not
necessary, so the hierarchical rule bases can be replaced by
such a general rule base, which is constructed using wavelet
transformed values of the insertion loss functions solely.
Secondly, the prediction was correct in case of all wire pairs
with insertion loss values belonging to the domains of the
antecedent sets of the rule base. However, the problem of
sparse rule bases, that is, the vertical sparseness, still existed.

6. Improvements for Handling
the Sparse Rule Bases

The problem of the vertical sparseness needs other methods
to overcome.

A significant degree of unsuccessful prediction is caused
by the sparseness of the rule bases in case of both prediction
methods introduced in Sections 4 and 5. We found two
possibly efficient ways to handle this problem. One of them
is the usage of fuzzy sets given by more complex member-
ship functions, where the supports are extended to include
the uncovered parts of the frequency domains in the rule
antecedents.The other one is the usage of fuzzy interpolation.
Both techniques were tested with the wavelet transformed
functions as formerly rule bases based on wavelet transfor-
mation resulted in better predictions. The methods and the
test results are described in the following.

6.1. Composite Membership Functions in Rule Antecedents.
In our first method, the sparseness of the rule base in
Figure 8was canceled by using fuzzy sets described by various
composite functions that had wider supports.

The first type of the composite functions consisted of
four linear segments (later referred to as skirted), the second
one was complete symmetric Gaussian functions (later:
Gaussian), and the third one consisted of two half-Gaussian
(later: semi-Gaussian) functions instead of simple triangular
membership functions. The shape of these functions was
formed to be similar to the shape of the original triangular
antecedent sets; however, the 𝛼-cuts belonging to very small𝛼s were much wider than the ones of the original triangular
sets. All the composite rules were created from their corre-
spondingmeasured and transformedminimal, maximal, and
average values: 𝐼𝐿min, 𝐼𝐿max, and 𝐼𝐿avg.
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Figure 11: Compound membership functions of a rule. The original sparse rule can be seen in the diagram (c). Sparseness is canceled by
the expanded supports of the composite membership functions of the two upper diagrams: (a) shows the half-Gaussians and (b) shows the
skirted triangles.

For creating skirted triangular rules the average value was
used as the core point, and the minimal and maximal values
were used as the top of the skirts at 𝛼 = 0.001, whereas the
upper and lower bounds of the support were set to 𝐼𝐿avg−10 ⋅(𝐼𝐿min − 𝐼𝐿avg) and 𝐼𝐿avg − 10 ⋅ (𝐼𝐿max − 𝐼𝐿avg).

In case of the Gaussian function formula

𝜇 (𝐼𝐿) = 𝑒−(𝐼𝐿−𝐼𝐿avg)2/3(𝐼𝐿max−𝐼𝐿min)
2 (25)

was used. As Gaussian functions are symmetrical but our
original measurement values based triangular rules were
mostly asymmetric, for a better fittingwe have introduced the
functions consisting of two half-Gaussians.Theywere created
similarly to the Gaussian one, with formula

𝜇 (𝐼𝐿) = {{{
𝑒−(𝐼𝐿−𝐼𝐿avg)2/3(𝐼𝐿avg−𝐼𝐿min)

2

if 𝐼𝐿 < 𝐼𝐿avg,
𝑒−(𝐼𝐿−𝐼𝐿avg)2/3(𝐼𝐿max−𝐼𝐿avg)

2

if 𝐼𝐿 > 𝐼𝐿avg. (26)

Figure 11 shows an example of a new rule constructed
by half-Gaussians and skirted triangles together with the
original triangular rules in Figure 11(c).

6.2. Fuzzy Interpolation. The second solution to the vertical
sparseness problem was suggested by Kóczy and Hirota (KH
interpolation) [33, 34]. This interpolation process creates
temporary rules for the uncovered domains utilizing the
nearest rule to the observation, valid only for the studied
cases. More sophisticated results are provided by the stabi-
lizedKH interpolation [35].Themethod creates the lower and
upper bounds of the characteristic 𝛼-cuts of the correspond-
ing fuzzy conclusion 𝐵∗ by the Euclidean distance between

the infimum and supremum of the characteristic 𝛼-cuts of
the antecedent sets and the conclusion. Stabilized KH inter-
polation is given as follows:

inf {𝐵∗𝛼} = ∑2𝑛𝑖=1 (1/𝑑𝛼𝐿 (𝐴∗, 𝐴 𝑖))𝑘 inf {𝐵𝑖𝛼}∑2𝑛𝑖=1 (1/𝑑𝛼𝐿 (𝐴∗, 𝐴 𝑖))𝑘 ,
sup {𝐵∗𝛼} = ∑2𝑛𝑖=1 (1/𝑑𝛼𝑈 (𝐴∗, 𝐴 𝑖))𝑘 inf {𝐵𝑖𝛼}∑2𝑛𝑖=1 (1/𝑑𝛼𝑈 (𝐴∗, 𝐴 𝑖))𝑘 ,

(27)

where 𝑖 denotes the number of the rules, 𝑘 denotes the num-
ber of the dimensions (variables), 𝐴∗ denotes the observa-
tion,𝐴 𝑖 denotes the antecedent sets in rule 𝑖, 𝑑𝛼𝐿(𝐴∗, 𝐴 𝑖) and𝑑𝛼𝑈(𝐴∗, 𝐴 𝑖) denote the lower and upper bounds of the dis-
tance between the 𝛼-cuts of observation and the antecedents,
and 𝐵∗ stands for the corresponding fuzzy conclusion [36].

6.3. Reduction of the Number of the Dimensions. Themethod
described in Section 4 was based on a rule base with 6 dimen-
sions. Its reasonwas that the continuous functions of physical
line parameters were represented by some of their discrete
values at previously selected frequencies. However, later, the
information of the whole insertion loss functions was taken
into consideration by the usage of the wavelet transformation
method described in Section 5. Based on the results of our
examinations, the reduction of the number of dimensions
seemed to be possible. In order to find the optimal num-
ber of the input variables (dimensions), the insertion loss
functions were wavelet transformed to different resolution
levels by Haar and Daubechies wavelets, and according to
these transformations, different rule bases were constructed.
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Table 2: Techniques combined for constructing new type rule bases.

Function shape/interpolation Number of points (Haar) Number of points (Daubechies)
Skirted 8 4
Semi-Gaussian 4 3
Gaussian 2 2
Triangular + stabilized KH interp. 1 1
The number of the resulting points after the wavelet transformations is different in order to cover approximately the same frequency domain in the two cases.

In the calculations of the next section we have applied
transformations to the starting sampled insertion loss func-
tions down to 1, 2, 4, or 8 low-pass coefficients for the Haar
basis set and to 1, 2, 3, or 4 low-pass coefficients in the case
of the Daubechies 4 functions. We also kept the last high-
pass coefficients (that characterize the largest scale behavior
of the original function).These rule bases have the shorthand
notation DB for Daubechies 4 and H for Haar wavelets and
L2, L4, and so on for the number of remaining points after
low-pass filtering or HL1 if the wavelet transform resulted in
one high-pass (wavelet) and one low-pass (scaling function)
coefficient.

6.4. Results of the Improved Predicting Method. To create
a sufficiently precise and efficient system, the methods de-
scribed in Sections 6.1–6.3 were combined. Symmetrical
Gaussian and asymmetrical skirted triangle and semi-Gaus-
sian rule bases were constructed from data arising from var-
ious resolution level wavelet transformations of the insertion
loss functions. Also the original triangular (sparse) rule base
was improved by stabilized KH interpolation described by
(27).

Another modification of the original method is that
certain labels referring to the bit rate range are used in the
outputs of the rules instead of consequent fuzzy sets (it is
possible because each rule belongs to one and only one output
state), and the final conclusion is the value belonging the label
of the rule with the highest firing rate [30].

Combining the techniques from Table 2, 43 different rule
bases were created. These rule bases were used in testing
of 65 lines measured in five different telecommunications
access networks in different circumstances (different areas:
industrial, commercial, and residential at different times).
The results of the tests were sorted into 3 clusters. ClusterCor-
rect contained those predicted results which were equal to the
measured ones. Predicted results, which ranked the evaluated
line into the lower neighbour of the correct range of the bit
rate, formed the cluster Acceptable. Other incorrect results
belonged to the cluster Incorrect. The results classified in this
way can be seen in Table 3.

According to Table 3, the best predictions were made
by rule bases numbers 1 and 2. Both gave the same results
for all the tested lines. The main reason for this equivalence
is the very similar shapes of the fuzzy sets used in the
rule bases: both of them were constructed from data of
the 2-pointed wavelet transformation of the insertion loss
functions using Haar wavelets. Even though the same results
were gained by the first 2 rule bases, the usage of rule base
number 1 is more effective, due to its easier applicability. The

method with the most accurate theoretical background, the
interpolated sparse rule base constructed by Daubechies 4
wavelet transform, is still very effective. This is the rule base
with 6 antecedent dimensions described in Section 5. The
huge difference in the success rate betweenmethods numbers
10 and 28 is caused by an incorrect normalization. As the
whole input space is not known; thus the normalizing factor
can not be correctly defined.

An interesting result is that the symmetric membership
functions perform much worse than their asymmetric coun-
terparts, which fit the measured values of the training set not
the test set.

7. Conclusions

After a summary about the previously developed fuzzy in-
ference based access network link performance prediction
techniques we gave a series of improvements to the methods.
The first improvement is using large-scale (averaged) inser-
tion loss behavior, that is, wavelet transformed values instead
of single measured values at characteristic frequencies, which
makes the previous methods more robust to local insertion
loss fluctuations.

The second improvement of the sparse rule bases is apply-
ing either membership functions with extended (widened)
support (skirted triangles or a composite of two half-Gaus-
sians) or stabilized KH fuzzy interpolation technique. Both
types of methods make the previously not evaluable test lines
evaluable, with correct results for almost all the testing lines.
Interestingly very rough resolution level wavelet transforms
of the insertion loss function (transformation down to 2
points) give the best results with rules having extended
supports; however, the interpolation gives almost as good
results with 6 antecedent dimensions. The worst results, that
is, the highest number of not acceptable classifications, use
Haar wavelets, large number of antecedent dimensions, and
rules with extended support.

Recently the method is used for image classification pur-
poses in mechanical and medical pictures.
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Table 3: Results of the tests of the different rule bases.

Number Rule base Correct Acceptable Incorrect
1 Skirted – H – L2 57 8 0
2 Half-Gaussian – H – L2 57 8 0
3 RBW DB with interpolation 57 7 1
4 Skirted – H – HL1 57 6 2
5 Half-Gaussian – H – HL1 57 6 2
6 Skirted – H – L4 54 11 0
7 Half-Gaussian – H – L4 54 11 0
8 Skirted – H – L8 54 4 7
9 Half-Gaussian – H – L8 54 4 7
10 RB1 with interpolation 53 12 0
11 Skirted – DB – HL1 52 12 1
12 Skirted – DB – L2 52 12 1
13 Half-Gaussian – DB – HL1 52 12 1
14 Half-Gaussian – DB – L2 52 12 1
15 Skirted – DB – L3 51 13 1
16 Half-Gaussian – DB – L3 51 13 1
17 Interpolated – DB – L3 50 15 0
18 Skirted – DB – L1 50 14 1
19 Half-Gaussian – DB – L1 50 14 1
20 Gaussian – DB – L3 49 16 0
21 Interpolated – H – L8 49 16 0
22 Interpolated – DB – HL1 49 12 4
23 Gaussian – H – HL1 48 17 0
24 Gaussian – DB – L4 48 17 0
25 Skirted – DB – L4 48 16 1
26 Half-Gaussian – DB – L4 48 16 1
27 Interpolated – DB – L2 48 16 1
28 RB1 with normalized interpolation 46 19 0
29 RBWH with interpolation 46 19 0
30 Skirted – H – L1 45 20 0
31 Half-Gaussian – H – L1 45 20 0
32 Gaussian – DB – L2 45 20 0
33 Gaussian – H – L1 44 21 0
34 Gaussian – H – L2 44 21 0
35 Interpolated – H – L4 44 21 0
36 Gaussian – H – L4 43 19 3
37 Gaussian – H – L8 43 15 7
38 Interpolated – DB – HL1 42 19 4
39 Gaussian – DB – HL1 40 23 2
40 Gaussian – DB – L1 39 24 2
41 Interpolated – H – L2 37 28 0
42 Interpolated – H – HL1 36 29 0
43 Interpolated – H – HL1 24 41 0
In column Rule base the first capital (H or DB) stands for the wavelet transformation method (Haar or Daubechies), the second 1 or 2 capitals (L or HL) stand
for the used components of the results of the wavelet transformations (high or high and low), and the number at the last position refers to the points resulted
by the wavelet transformations.
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