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Abstract
This paper presents a uniform semantic treatment of
nonmonotonic inference operations that allow for inferences
from infinite sets of premisses. The semantics is formulated in
terms of selection functions and is a generalisation of the pref-
erential semantics of Shoham, Kraus et al., and Makinson.
A selection function picks out from a given set of possible
states (worlds, situations, models) a subset consisting of those
states that are, in some sense, the most preferred ones. A
proposition α is a nonmonotonic consequence of a set of
propositions Γ iff α holds in all the most preferred Γ-states.
In the literature on revealed preference theory, there are a
number of well-known theorems concerning the represen-
tability of selection functions, satisfying certain properties,
in terms of underlying preference relations. Such theorems
are utilised here to give corresponding representation theo-
rems for nonmonotonic inference operations. At the end
of the paper, the connection between nonmonotonic infer-
ence and belief revision, in the sense of Alchourr�on,
Gärdenfors, and Makinson, is explored. In this connec-
tion, infinitary belief revision operations, that allow for the
revision of a theory with a possibly infinite set of proposi-
tions, are introduced and characterised axiomatically.
Several semantic representation theorems are proved for
operations of this kind.
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1 | INTRODUCTION

In standard deductive logic, a proposition α is a logical consequence of a set of propositions Γ
(in symbols, Γ‘ α) just in case α holds (or is true) in every possible state (situation, world) in
which all the propositions in Γ hold. In other words, we have the following semantic characteri-
sation of logical consequence:

Γ‘ α iff ⟦Γ⟧⊆ ⟦α⟧,

where ⟦α⟧ and ⟦Γ⟧ are the sets of all possible states in which, respectively, α and the set of all
propositions in Γ hold. If Γ⊆Δ, then, of course, ⟦Δ⟧⊆ ⟦Γ⟧. It follows, that standard deductive
logic is monotonic, that is:

if Γ‘ α and Γ⊆Δ, then Δ‘ α. (Monotonicity)

Notions of plausible inference or default reasoning do not in general satisfy monotonicity.
From the information that x is a Quaker, we may plausibly infer that x is a pacifist. However,
from the information that x is a Quaker and a Republican, it is not a plausible inference to con-
clude that x is a pacifist. Of course, the phenomenon of nonmonotonicity is familiar also from
probabilistic contexts: from α being highly probable given β, we may not conclude in general
that α is highly probable given β^ γ.

A common idea in the literature on nonmonotonic reasoning is the following: α is a
nonmonotonic consequence of Γ (in symbols, Γ j� α) just in case α holds in all those Γ-states
that are maximally plausible (from the viewpoint of some agent). Or more abstractly, Γ j� α
obtains if α holds in all the best preferred Γ-states, namely in those Γ-states to which no other
Γ-state is strictly preferred (or better).

Formally we represent this idea by introducing a selection function S which, given a set X of
possible states, picks out the set S(X) of all the “best” elements in X . The relation j� of
nonmonotonic consequence (or plausible inference) is then defined in terms of S in the
following way:

Γ j� α iff S(⟦Γ⟧) ⊆ ⟦α⟧.

This definition will in general lead to j� being nonmonotonic, since there is no guarantee that
S(⟦Γ⟧) ⊆ ⟦α⟧ will imply that S(⟦Γ[Δ⟧) ⊆ ⟦α⟧ (see Figure 1). Clearly, one of the best preferred
Γ[Δ-states may fail to be a best preferred member of the more inclusive class of Γ-states.
Therefore, it need not be the case that Sð⟦Γ[Δ⟧Þ⊆Sð⟦Γ⟧Þ. Neither does it follow
that Sð⟦Γ[Δ⟧Þ⊆ ⟦α⟧.

Different choices of underlying language, different conceptions of possible states, and dif-
ferent formal requirements on the selection function will give rise to different nonmonotonic
logics. In this paper we shall explore some of the possibilities that ensue. In particular, we
are going to study correspondences between various conditions on the selection function
S—many of which are well-known from the literature on preference and choice—and condi-
tions on the inference relation j�. In this connection it is often more natural to look at
nonmonotonic inference as a Tarski-style inference operation C on sets of propositions
rather than as an inference relation j�. The two notions are simply related by the equa-
tion: CðΓÞ¼ fα :Γ j� αg.

The essential idea behind our semantic modelling of nonmonotonic inference goes back to
McCarthy’s classical paper (McCarthy, 1980) on circumscription. McCarthy presents circum-
scription as a formalised rule of nonmonotonic inference (he calls it a rule of conjecture)
which is used in conjunction with the rules of standard logic. There are many versions of
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circumscription, but the essential model-theoretic idea is the same: among all the models of a
formula α, some are singled out as being minimal. Minimality here can mean various things, for
instance: (i) Domain Circumscription: the minimal models of α are those that have no proper
submodels that are also models of α, (ii) Predicate Circumscription: the extensions of some des-
ignated predicates are minimised, while the domain together with the extensions of all other
predicates are kept fixed, (iii) Parameterised Predicate Circumscription: this case is like (ii),
except that the extensions of some predicates (the parameters) are allowed to vary freely, and
(iv) Prioritised Circumscription: there is a priority ordering of the predicates to be minimised:
minimising a predicate with higher priority is always preferred to minimizing a predicate with
lower priority.

Given some notion of a minimal model, one can define a corresponding notion of minimal
entailment: α minimally entails β iff all minimal α-models are β-models.1 In order to single out
the minimal models of α, and thereby the sentences that are minimally entailed by α, a new sen-
tence, called the circumscription of α, is associated with α. This new sentence has as its models
just the minimal models of α. Thus, α minimally entails β just in case β is a logical consequence
of the circumscription of α. It should be noted, however, that the circumscription of α is in gen-
eral a sentence of second-order logic.

To make all this a little more concrete, let us look at a special case: predicate circumscrip-
tion (McCarthy, 1980). Let α(P) be a sentence involving the predicate P (for simplicity, we let
P be unary). The (Predicate) Circumscription of α with P is the second-order sentence
Circumðα,PÞ defined as:2

αðPÞ^ 8QðQ<P! ¬αðQÞÞ,

where Q<P is an abbreviation for the sentence 8xðQðxÞ!PðxÞÞ^ 9xðPðxÞ^ ¬QðxÞÞ. Next,
we introduce a strict partial ordering ⊏P on models of the language under consideration:
M⊏P N iff M and N have the same domain, all predicate symbols in the language besides

F I GURE 1 Selection functions lead to nonmonotonic consequences

1Cf. McCarthy (1980).
2In McCarthy (1980), the circumscription of a sentence is a first-order schema instead of a second-order sentence (cf. the difference
between the induction schema of first-order Peano arithmetic and the induction axiom of second-order Peano arithmetic). In later work
by John McCarthy and Vladimir Lifschitz (cf. Lifschitz, 1985, 1987; McCarthy, 1986), the circumscription of a sentence is defined as a
single second-order sentence. In general, a first-order schema is weaker than the corresponding second-order sentence and is not strong
enough to characterise the minimal models (example: the existence of non-standard models of first-order Peano arithmetic). In certain
cases, though, the second-order formulation may be equivalent to a first-order sentence or a set of first-order sentences.
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P have the same extension in M and N but the extension of P in M is a proper subset of its
extension in N. We say that a model M is a P-minimal model of α, if M ⊧ α (M is a model of α)
and there is no model N such that N ⊏PM and N ⊧ α. Now, the models of Circumðα,PÞ are
exactly the P-minimal models of α. Following McCarthy (1980), we say that α minimally entails
β with respect to P (in symbols, α j� P β) if all P-minimal models of α are models of β.
Thus, α j� P β holds just in case β is a logical consequence of Circumðα,PÞ. Since a P-minimal
model of α^β may not be a P-minimal model of α, minimal entailment with respect to P is
nonmonotonic.

Example 1. Let α be the conjunction of the sentences:3

(1) bird(tweety);
(2) 8xðbirdðxÞ^ ¬ab1ðxÞ! canflyðxÞÞ;
(3) 8xðpenguinðxÞ! birdðxÞÞ;
(4) 8xðpenguinðxÞ! ab1ðxÞÞ;
(5) 8xðpenguinðxÞ^ ¬ab2ðxÞ! ¬canflyðxÞÞ.

saying that (1) Tweety is a bird, (2) birds that are not abnormal1 can fly, (3) all penguins are
birds, (4) penguins are abnormal1, and (5) all penguins, except those that are abnormal2 cannot
fly. Applying predicate circumscription to the abnormality predicates ab1 and ab2 (that is,
minimising the extension of these two predicates while keeping the extensions of the other predi-
cates fixed) we infer from α that Tweety can fly. We cannot make this inference from
α^penguinðtweetyÞ. Since Tweety is a penguin, she is abnormal1. Hence, (2) cannot be used to
infer that she can fly. On the other hand, it follows by minimality that Tweety is not abnormal2.
Therefore, it follows by (5) that she cannot fly.

Example 2. Prioritised Circumscription. Let β be the conjunction of

(1) bird(tweety);
(2) 8xðbirdðxÞ^ ¬ab1ðxÞ! canflyðxÞÞ;
(3) 8xðpenguinðxÞ! birdðxÞÞ;
(5) 8xðpenguinðxÞ^ ¬ab2ðxÞ! ¬canflyðxÞÞ.

That is, β is like α, except for not containing the so-called cancellation of inheritance axiom (4).
Using ordinary predicate circumscription, we can only infer from β^penguinðtweetyÞ that one
of the following cases obtains:

(i) Tweety is an abnormal1 bird that cannot fly;
(ii) Tweety is an abnormal2 penguin that can fly.

Nothing follows concerning Tweety’s ability to fly. Intuitively, however, it seems reasonable
to conjecture from β^penguinðtweetyÞ that Tweety cannot fly. The cases (i) and (ii) are not
symmetrical: the information that Tweety is a penguin is more specific than the information that
she is a bird. It seems reasonable to give higher priority to minimising abnormality with respect
to the more specific predicate. In the choice between minimising abnormality1 and
abnormality2, we choose the latter. Hence, we conclude that Tweety is not abnormal2. Then, it
follows by (5) that she cannot fly.

Shoham (1987, 1988) generalised the concept of circumscription, or minimal entail-
ment, to a more abstract notion: preferential entailment. Shoham’s idea was to start from

3This is a shortened version of an example in McCarthy (1986).
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any ordinary model-theoretic semantics for a formal language L and add a new primitive notion
to it: a strict partial ordering ⊏ of all the models of L. Intuitively, M⊏N means that the model
M is preferred over the model N. Then, M is defined to be a preferred model of α iff (i) M ⊧ α,
and (ii) there is no model N such that N ⊧ α and N ⊏M. Finally, α is said to preferentially entail
β (in symbols, α j�⊏ β) just in case every preferred model of α is a model of β.

Shoham (1988) emphasises three ways in which his own approach generalises that of
McCarthy’s: (i) Preferential entailment can be defined relative to any logic having a model-
theoretic semantics, not just to standard first-order logic—starting, for instance, with a modal
logic and a preference relation over its Kripke-models, one can define the corresponding
nonmonotonic modal logic; (ii) a notion of preferential entailment can be defined in terms of
any partial ordering of models—that is, one is not limited to those orderings that correspond to
circumscription axioms; and (iii) there is a shift of emphasis from syntax—circumscription
axioms—to semantics—partial orderings of models.

In the work of Kraus et al. (1990), Shoham’s approach is generalised further: a new primi-
tive is introduced into the semantics—the notion of a state. Each state is labelled by a set of
models of the underlying nonmonotonic logic and the states, not the models, are ordered by a
binary relation ⊏ . In general, it is not assumed that ⊏ satisfies any of the usual properties like
irreflexivity or transitivity. A formula α holds in a state u (u is an α-state) iff α is true at every
model that is labelled by the state. A state u is a preferred α-state iff (i) u is an α-state and there
is no α-state v such that v⊏u. α preferentially entails β, in symbols, α j� β, if all preferred
α-states are β-states. The main objective of Kraus et al. (1990) is to study nonmonotonic infer-
ence relations j� both in terms of abstract proof-theoretic properties and semantically in terms
of preferential models. Several important classes of inference relations are characterised seman-
tically by means of representation theorems.

The study of abstract non-monotonic inference relations was initiated by Gabbay (1985)
who took j� to be a relation between a finite set Γ of premises and a single conclusion α.
Gabbay (1985) defined a nonmonotonic logic as a relation of the described sort satisfying the fol-
lowing conditions:

if α�Γ, then Γ j� α; (Reflexivity)
if Γ j� α and Γ, α j� β, then Γ j� β; (Finitary Cut)
if Γ j� α and Γ j� β, then Γ, α j� β. (Finitary Cautious Monotony)

He argued that these requirements should be satisfied by any reasonable inference relation.
As we have seen, Shoham (1987, 1988) and Kraus et al. (1990) define j� as a relation taking
only single propositions as premises. In the presence of conjunction in the object language, this
is essentially equivalent to allowing finite sets of propositions as premises. A more general treat-
ment is proposed in Makinson (1989), where j� is allowed to take infinite sets of premises. This
generalisation makes it possible for Makinson to redefine nonmonotonic consequence as a
Tarski-style operation C on arbitrary sets of sentences. Generalising Gabbay’s conditions to the
infinitary case and and expressing them in terms of C rather than j�, Makinson (1989) obtains
the following conditions:

Γ⊆CðΓÞ; (Inclusion)
Γ⊆Δ⊆CðΓÞ implies CðΔÞ⊆CðΓÞ; (Infinitary Cut)
Γ⊆Δ⊆CðΓÞ implies CðΓÞ⊆CðΔÞ. (Cautious Monotony)

An operation on sets of sentences satisfying these conditions is called by Makinson a cumulative
inference operation. Makinson (1994) is a comprehensive survey—from an abstract logical point
of view—of systems of nonmonotonic logic: its focuses on properties of the inference relations
(or operations) that are associated with the various systems.
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In the present paper, we follow Makinson—and differ from Kraus et al.—in viewing non-
monotonic consequence as an operation C on arbitrary sets of sentences (or equivalently, as a
relation Γ j� α, where Γ is allowed to be infinite). In addition, we modify the preferential
semantics of Shoham and Kraus et al. by defining C, in the way previously described, in terms
of a selection function S on sets of states rather than in terms of a preference relation on states.
This treatment is more general, since a given selection function may not be definable in terms of
any preference relation.

Utilising various well-known results from preference theory on the rationalisability of a
selection function by an underlying preference ordering (cf., Moulin, 1985), we are able to prove
a series of representation theorems for nonmonotonic inference. The general strategy in proving
these results is the following: First, it is shown that any inference operation C that satisfies some
set X of conditions may be defined in terms of a selection function S on sets of states satisfying
a corresponding set of conditions X*. Next, it is shown that if S satisfies the conditions X*, then
S is based on a preference relation P between states (read: xPy as state x is preferred over state y)
satisfying some suitable conditions like asymmetry, transitivity, etc. Finally, the two steps
are combined to yield a representation theorem for the inference operation C in terms of the
preference relation P. The connection between C and P is given by:

α�CðΓÞ iff 8x ðx� ⟦Γ⟧^ 8yðy� ⟦Γ⟧! ¬yPxÞÞ! x� ⟦α⟧½ �,

that is, α is a nonmonotonic consequence of Γ iff every P-maximal member of ⟦Γ⟧ is also a
member of ⟦α⟧.

At the end of the paper, we shall also briefly consider dyadic inference operations C, where
CΔðΓÞ is the set of all nonmonotonic consequences of the set of premisses Γ relative to the back-
ground assumptions Δ. Dyadic inference operations may be defined from dyadic selection func-
tions on sets of states:4

α�CΔðΓÞ iff Sð⟦Δ⟧,⟦Γ⟧Þ⊆ ⟦α⟧.

The notion of a dyadic nonmonotonic inference operation is, of course, closely related to Gär-
denfors’ concept of theory revision. If K ∗

α is the revision of a theory K with the proposition α,
then we have the following natural connection:

β�K ∗
α iff β�CKðfαgÞ.

or more briefly:

K ∗
α ¼CKðfαgÞ.

That is, the revision of K with α is identified with the theory consisting of all the nonmonotonic
consequences of α relative to the background theory K .5 Conversely, a dyadic nonmonotonic
inference relation may be viewed as a generalisation of ordinary theory revision: CΔðΓÞ may be
thought of as the result of revising Δ with the set Γ.

4Binary selection functions were studied by Kanger (2001). However Kanger’s interpretation of SðV ,XÞ, where X , V are subsets of
some grand domain U , differs from the one employed here. Kanger took SðV ,X Þ to be “the set of those alternatives of V \X which,
compared with alternatives of V , are regarded as not being worse than any alternative of V \X” (Kanger, 2001, p. 216). Here, on the
other hand, SðV ,X Þ is interpreted as the set of all those alternatives of X which are not farther removed from the set V than any
alternatives in X . Thus, we think of the elements of V as the “ideal” alternatives; and the elements of SðV ,XÞ are the elements of X that
are as close to being ideal as possible.
5This method of translating back and forth between theories of belief revision and nonmonotonic inference (with single propositions as
premises) was suggested by Makinson and Gärdenfors (1991).
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2 | DEDUCTIVE LOGICS

This section consists essentially of a review of selected, but well-known, material about conse-
quence relations and consequence operations, some of it going back to the work of Tarski in
the 1920s and 1930s. The concepts introduced here are basic to the development of
nonmonotonic logic in the rest of the paper.

We assume that a fixed object language L is given. The details of L are left open, except that
we assume L to contain the standard connectives: ⊥ (falsity), ! (the material conditional), ^
(conjunction) and _ (disjunction). Hence, the set Φ of sentences of L is closed under the rules:
(i) ⊥ �Φ, and (ii) if α, β�Φ, then (α! β), (α^β), (α_β) �Φ. ¬α is taken as a metalinguistic
abbreviation of (α! ⊥ ).

If Γ is a set of sentences in L and α is a sentence in L, then we write Γ ‘0 α just in case α is a
tautological consequence of Γ (that is, if α follows from Γ in classical propositional logic). We
also write Cn0ðΓÞ¼ fα :Γ‘0 αg, that is, Cn0ðΓÞ is the closure of Γ under tautological
consequence.

By a consequence relation we shall understand a binary relation ‘ which takes sets of sen-
tences (in L) as its first argument and single sentences (in L) as its second and which satisfies the
following conditions:

(‘1) if α�Γ, then Γ‘ α; (Reflexivity)
(‘2) if Γ‘ α and Γ⊆Δ, then Δ‘ α; (Monotonicity)
(‘3) if Γ[Δ‘ β and for each α�Δ, Γ‘ α, then Γ‘ β. (Cut)

Here, Γ and Δ are any sets of sentences and α, β are any sentences.
By a deductive logic L we shall understand a finitary consequence relation, that is, a conse-

quence relation ‘L that satisfies:

(‘4) if Γ‘L α, then for some finite Δ⊆Γ, Δ‘L α. (Finiteness)

We say that a deductive logic L is f^ , _g-normal if it satisfies the standard natural deduction
rules for conjunction and disjunction, that is,

(^I) Γ, α, β‘L α^β;
(^E) Γ, α^β‘L α; and Γ, α^β‘L β;
(_I) Γ,α‘L α_β; and Γ,β‘L α_β;
(_E) if Γ, α‘L γ and Γ, β‘L γ, then Γ,α_β‘L γ.

By a classical logic we understand a deductive logic that satisfies the following two
conditions:

(‘5) if Γ‘0 α, then Γ‘L α; (Supraclassicality)
(‘6) if Γ, α‘L β, then Γ‘L α! β. (Deduction Theorem)

That is, a classical logic is a deductive logic which extends the classical propositional calculus
and satisfies the deduction theorem. Every classical logic is, of course, f^ , _g-normal.

A deductive logic L can equivalently be presented as a finitary consequence operation CnL,
that is, an operation that takes sets of sentences in L into sets of sentences in L and satisfies the
following conditions:

(Cn1) Γ⊆CnLðΓÞ; (Inclusion)
(Cn2) if Γ⊆Δ, then CnLðΓÞ⊆CnLðΔÞ; (Monotonicity)
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(Cn3) CnLðCnLðΓÞÞ⊆CnLðΓÞ; (Iteration)
(Cn4) CnLðΓÞ⊆ [fCnLðΔÞ :Δ⊆Γ and Δ is finite g. (Finiteness)

In the presence of (Cn1) and (Cn2), (Cn3) is equivalent to the cut rule:

(Cn30) If Δ⊆CnLðΓÞ, then CnLðΓ[ΔÞ⊆CnLðΓÞ. (Cut)

Lemma 2.1. If Cn is a consequence operation, that is, satisfies (Cn1) – (Cn3), then
it also satisfies:

(i) Γ⊆CnðΔÞ iff CnðΓÞ⊆CnðΔÞ;
(ii) CnðΓ[ΔÞ¼CnðΓ[CnðΔÞÞ¼CnðCnðΓÞ[CnðΔÞÞ.

This lemma, like several of the theorems and lemmas below, is proved in the Appendix.
Of course, L is a classical logic if, in addition to (Cn1) – (Cn4), it satisfies the following two

conditions:

(Cn5) Cn0ðΓÞ⊆CnLðΓÞ; (Supraclassicality)
(Cn6) If β�CnLðΓ[fαgÞ, then α! β�CnLðΓÞ. (Deduction Theorem)

The two presentations of a deductive logic L are related by the following conditions:

CnLðΓÞ¼ fα :Γ ‘L αg;

and

Γ ‘L α iff α�CnLðΓÞ.

If α�CnLðΓÞ, we say that α is an L-consequence of Γ. We say that α is an L-theorem,
if α�CnLð;Þ.

Lemma 2.2. If L is a classical logic, then it satisfies the following conditions:

(‘7) for all α, ⊥‘L α; (Falsity)
(‘8) if Γ ‘L α! β and Γ ‘L α, then Γ ‘L β; (Modus Ponens)
(‘9) if Γ, α! ⊥‘L ⊥ , then Γ ‘L α. (Reductio Ad Absurdum)

We omit the straightforward proof of Lemma 2.2.
Let L be a deductive logic. L is (absolutely) inconsistent if ;‘L ⊥ and consistent, otherwise.

A set Γ of sentences is said to be L-inconsistent if Γ‘L ⊥ . Γ is L-consistent if it is not L-inconsis-
tent. A sentence α is said to be L-consistent if fαg is L-consistent. Γ is an L-
theory iff Γ¼CnLðΓÞ. A set Γ is L-maximal iff Γ is L-consistent and for every Δ, if Γ⊆Δ and Δ
is L-consistent, then Γ¼Δ.

In view of the next lemma, we may speak of L-maximal sets as L-maximal theories. Observe
the use of Iteration (i.e., Cut) in the proof of the lemma.

Lemma 2.3. Let L be a deductive logic. Then every L-maximal set is an L-theory.

The proof of the following lemma uses Inclusion, Cut, Monotonicity, Finiteness and the
Axiom of Choice in the form of Zorn’s Lemma.
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Lemma 2.4. (Lindenbaum’s Lemma) Let L be a deductive logic.

(a) Every L-consistent set is included in an L-maximal theory.
(b) If α =2CnLðΓÞ, then there exists an L-maximal theory m such that

CnLðΓÞ⊆m and α =2m.

If L is a deductive logic, then we write ML, T L for the set of all L-maximal theories and the
set of all L-theories, respectively. m, m0, m00, … are variables ranging over L-maximal
theories and G, H, K , T , T 0, … range over L-theories. We also introduce the following
notation:

for any Γ⊆Φ, jΓjL ¼fm�ML :Γ⊆mg;
for α�Φ, jαjL ¼ jfαgjL ¼fm�ML : α�mg.

In what follows, we shall often suppress the subscript L in contexts where the logic is assumed
to be fixed.

Lemma 2.5. Let L be a deductive logic. Then, CnLðΓÞ¼
T
ðjΓjLÞ. That is, α is an

L-consequence of Γ iff α belongs to every L-maximal extension of Γ.

Proof. ()) Suppose that α�CnLðΓÞ and that m is an L-maximal set such that
Γ⊆m. It follows by Monotonicity that α�CnLðmÞ. Since m¼CnLðmÞ (Lemma
2.1), α�m.

(() Suppose that α =2CnLðΓÞ. By Lemma 2.4, there exists an L-maximal theory
m such that CnLðΓÞ⊆m and α =2m. □

Lemma 2.6. Let L be a f^ , _g-normal deductive logic. Then, every L-maximal set
m satisfies the conditions:

(i) α^β�m iff α�m and β�m;
(ii) α_β�m iff α�m or β�m.

Lemma 2.7. Let L be a classical logic. Then,

(a) Γ is an L-theory iff
(i) CnLð;Þ⊆Γ (i.e., all L-theorems are in Γ);
(ii) if α�Γ and α! β�Γ, then β�Γ (i.e., Γ is closed under modus ponens).

(b) Γ is an L-maximal set iff it satisfies the conditions:
(i) CnL(;) ⊆Γ;
(ii) ⊥ =2Γ;
(iii) α! β =2Γ iff α�Γ and β =2Γ.

3 | NONMONOTONIC INFERENCE

We assume that a fixed consistent deductive logic L is given. We are next going to introduce the
notion of an inference relation based on the underlying deductive logic L. We shall assume that
all relations of nonmonotonic inference that we are going to study are inference relations in the
sense defined below. In addition, we introduce the notion of an inference operation which is just
a notational variant of that of an inference relation.
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Definition 3.1. (a) By an inference relation based on L we understand a relation j�
⊆℘ðΦÞ�Φ satisfying the following conditions for all sets Γ and Δ of sentences
and sentences α, β:6

(j� 1) if α�Γ, then Γ j� α; (Reflexivity)
(j� 2) if Γ j� α, for all α�Δ, and Δ ‘L β, then Γ j� β; (Closure)
(j� 3) if for all α, Γ ‘L α iff Δ‘Lα, then Γ j� β iff Δ j� β. (Congruence)

According to (j� 1), an element of Γ is a nonmonotonic consequence of Γ. ( j� 2) says that if β is
an L-consequence of a set of nonmonotonic consequences of Γ, then β is itself a nonmonotonic
consequence of Γ. In other words, the set of nonmonotonic consequences of Γ is closed under
L-consequence. According to (j� 3), L-equivalent sets of sentences have the same nonmonotonic
consequences.

(b) An inference operation based on L is an operation C :℘ðΦÞ!℘ðΦÞ satisfying the
following conditions:

(C1) Γ⊆CðΓÞ; (Inclusion)
(C2) CnLðCðΓÞÞ⊆CðΓÞ; (Closure)
(C3) if CnLðΓÞ¼CnLðΔÞ, then CðΓÞ¼CðΔÞ. (Congruence)

Of course, there is a one-to-one correspondence between inference relations based on L and
inference operations based on L. That is, we define the inference operation corresponding to
j� by:

CðΓÞ¼ fα :Γ j� αg.

Conversely, given C, we define j� by:

Γ j� α iff α�CðΓÞ.

Lemma 3.2. If C is an inference operation based on L, then for all Γ:

CðCnLðΓÞÞ¼CnLðCðΓÞÞ¼CðΓÞ.

Proof. Since, CnLðΓÞ¼CnLðCnLðΓÞÞ, we have by (C3), CðΓÞ¼CðCnLðΓÞÞ. But,
CðΓÞ¼CnLðCðΓÞÞ, by (Cn1) and (C2). □

Lemma 3.3. If C is an inference operation based on L, then C satisfies the condition:

CnLðΓÞ⊆CðΓÞ.

In other words,
if Γ‘L α, then Γ j� α.

Proof. Γ⊆CðΓÞ, by (C1). Hence, CnLðΓÞ⊆CnLðCðΓÞÞ, by (Cn2). But
CnLðCðΓÞÞ¼CðΓÞ. It follows that CnLðΓÞ⊆CðΓÞ.

6For any set A, we let ℘ðAÞ be the power set of A.
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Lemma 3.4. Suppose that L is a classical logic. Then, j� is an inference relation based
on L iff it satisfies the following conditions:

(j� 1) if α�Γ, then Γ j� α;
(j� 3) if CnLðΓÞ¼CnLðΔÞ, then Γ j� α iff Δ j� α;
(j� 4) if CnL({α}) = CnL({β}), then Γ j� α iff Γ j� β;
(j� 5) if Γ j� α^β, then Γ j� α and Γ j� β;
(j� 6) if Γ j� α and Γ j� β, then Γ j� α^β;
(j� 7) Γ j� > .

It is easy to verify that conditions (j� 4) and ( j� 5) may be replaced in Lemma 3.4 by the
single condition:7

(j� 8) If Γ j� α and α ‘L β, then Γ j� β. (Right Weakening)

In the next definition, we introduce the notion of an L-maximal theory being
Γ-optimal with respect to an inference relation j�. The L-maximal theories may be thought of
as (descriptions of) those possible worlds that are allowed by the underlying logic L. We may
think of Γ j� α as expressing a (conditional) disposition on the part of an agent to expect α to
be true, if she were to be given Γ as her total new information. The set CðΓÞ¼ fα :Γ j� αg, then,
consists of all the agents Γ-expectations.8 A possible world is Γ-optimal if all the Γ-expectations
of the agent are true in it. In other words, after having received the total information Γ, the
agent would not be surprised at all if any of the Γ-optimal worlds turned out to be the
actual one.

Definition 3.5. Let L be a deductive logic and j� an inference relation based on L.
Let Γ be any set of sentences and m any L-maximal theory. We say that m is
Γ-optimal (with respect to j�) if for all α, if Γ j� α, then α�m. In other words, m is
Γ-optimal iff CðΓÞ⊆m.

Lemma 3.6. Let L be a deductive logic and j� an inference relation based on L. Then,
Γ j� α iff for every Γ-optimal m, α�m.

Proof. ()) This direction follows immediately from the definition of Γ-optimality.
(() Suppose that α =2CðΓÞ. By Lemma 3.2, CðΓÞ¼CnLðCðΓÞÞ. Hence,

α =2CnLðCðΓÞÞ. Then, by Lemma 2.4, there exists an L-maximal theory m such that
CnLðCðΓÞÞ⊆m and α =2m. Hence, CðΓÞ⊆m and α =2m. □

4 | SEMANTICS: MODELS USING SET-VALUED SELECTION
FUNCTIONS

In the following we let L be a deductive logic which we assume to be f^ , _g-normal. The
notion of a model based on L will be introduced in two steps. First, we define the notion of
structure based on L. After having defined the requisite concepts, a model will be defined as a a
structure of a special kind.

7Cf. Gärdenfors and Makinson (1994).
8This way of talking about an agent’s expectations is inspired by Gärdenfors and Makinson (1994).
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Definition 4.1. A structure based on L is a 4-tuple M¼ ⟨U ,V , l,S⟩, where

(i) U is a non-empty set, the elements of which are called states (these might be
thought of as representing the possible belief states of an agent). We use the
lower case letters x, y, z, u as variables ranging over U . The letters X , Y , Z
will be variables ranging over ℘ðUÞ

(ii) V is a non-empty family of subsets of U .
(iii) l (the labeling function) is a function that assigns to every state u�U a non-empty

set lðuÞ of L-maximal theories. We may think of the members of lðuÞ as rep-
resenting those possible worlds that are compatible with the agent’s beliefs in
state u (the agent’s doxastically possible worlds in state u).

(iv) S is a function from V to V such that for every X �V , SðXÞ⊆X . Such a function
we call a selection function on V .

Let M¼ ⟨U ,V , l,S⟩ be a structure based on L. We say that a sentence α holds
(or is accepted) in the state u�U (relative to M) and write M⊩ u α iff for every m� lðuÞ,
α�m. That is, M⊩ u α obtains just in case lðuÞ⊆ jαjL. Intuitively, a sentence α is accepted in a
state u just in case α is true in all possible worlds that are compatible with the agent’s beliefs in
the state u.

The set of all states in which α holds will be written ⟦α⟧M (or just ⟦α⟧). Thus,

⟦α⟧¼fu�U :M⊩ u αg.

For a set of sentences Γ, we write:

⟦Γ⟧ =
T
{⟦α⟧: α�Γ},

that is, ⟦Γ⟧ is the set of all states in which all sentences in Γ are accepted.
Given any set X of states in M, we may also define the set tðXÞ of sentences that are

accepted in all the states in X , that is,

tðXÞ¼ fα :X ⊆ ⟦α⟧g.

Notice, that the pair of mappings ⟦…⟧ and t together form a Galois connection between
℘ðΦÞ and ℘ðUÞ, that is, they satisfy:9

(i) if Γ⊆Δ, then ⟦Δ⟧⊆ ⟦Γ⟧;
(ii) if X ⊆Y , then tðYÞ⊆ tðXÞ;
(iii) Γ⊆ tð⟦Γ⟧Þ;
(iv) X ⊆ ⟦tðXÞ⟧.

It follows from (i)–(iv) that these mappings also satisfy:

(v) ⟦Γ⟧¼ ⟦tð⟦Γ⟧Þ⟧;
(vi) tðXÞ¼ tð⟦tðXÞ⟧Þ.

For every set X ⊆U , we define the closure of X , ClðXÞ, as the set

(∗) ⟦tðX Þ⟧¼
T
f⟦α⟧ :X ⊆ ⟦α⟧g.

9The notion of a Galois connection and its use in model theory is discussed, for example, in Cohn (1965).
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A set X of states in M is said to be closed if X ¼ClðXÞ. The closure of X is the intersection of
all closed subsets of U that include X .10

Lemma 4.2. Let M¼ ⟨U ,V , l,S⟩ be a structure based on L. Then, the operator
Cl :℘ðUÞ!℘ðUÞ, defined by the equation (∗) above, satisfies the following condi-
tions. For all X ,Y ⊆U,

(Cl 1) If X ⊆ Y, then ClðXÞ⊆ClðYÞ;
(Cl 2) X ⊆ClðXÞ;
(Cl 3) ClðClðXÞÞ¼ClðXÞ;
(Cl 4) Clð;Þ¼ ;.

We are now ready to define the notion of a model based on L.

Definition 4.3. Let M¼ ⟨U ,V , l,S⟩ be a structure based on L. We say that M is a
model (based on L) if the family V satisfies the following conditions:

(i) for every X ⊆U , ClðXÞ�V ;
(ii) if X ,Y �V , then X [Y �V ;
(iii) for any non-empty family F of members of V ,

T
X � FX �V .

That is, a model is a structure in which the domain V of the selection function contains all
closed subsets of U and is closed under finite unions and arbitrary intersections.

For any model M¼ ⟨U ,V , l,S⟩ based on L, we define two corresponding relations ⊧M and
j�M between sets of sentences and single sentences:

Γ ⊧Mα iff ⟦Γ⟧⊆ ⟦α⟧; and
Γ j� M α iff Sð⟦Γ⟧Þ⊆ ⟦α⟧.

That is, Γ ⊧Mα obtains just in case α is accepted in all the Γ-states (i.e., in all the states in which
all sentences in Γ are accepted). And, Γ j� M α obtains just in case α is accepted in all the most
preferred Γ-states.

Lemma 4.4. If M¼ ⟨U ,V , l,S⟩ is a model based on L, then ⊧M is a consequence
relation which extends L, that is, such that:

‘L ⊆ ⊧M

and j�M is an inference relation based on L.

Proof. The easy verification that ⊧M is a consequence relation extending L is
omitted. We prove that j�M is an inference relation based on L.

Reflexivity: Suppose α�Γ. Then clearly, ⟦Γ⟧⊆ ⟦α⟧. However, Sð⟦Γ⟧Þ⊆ ⟦Γ⟧.
Hence, Sð⟦Γ⟧Þ⊆ ⟦α⟧. That is, Γ j�M α.

Closure: Suppose Γ j�M α, for all α�Δ, and Δ‘L β. Then,
Sð⟦Γ⟧Þ⊆

T
f⟦α⟧ : α�Δg, that is, Sð⟦Γ⟧Þ⊆ ⟦Δ⟧. Furthermore, since Δ‘L β,

⟦Δ⟧⊆ ⟦β⟧. It follows that Sð⟦Γ⟧Þ⊆ ⟦β⟧, that is, Γ j�M β.

10In order to be fully explicit, we should write ClLðXÞ rather than ClðX Þ and speak of it as the L-closure of X . Similarly, we should say
that X is L-closed, if X ¼ClLðX Þ. In most cases, however, the reference to L can be left implicit.
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Congruence: Suppose that for all α, Γ‘L α iff Δ‘L α. Then, jΓjL ¼ jΔjL. It follows
that also ⟦Γ⟧¼ ⟦Δ⟧. Hence, Sð⟦Γ⟧Þ¼Sð⟦Δ⟧Þ. Finally, we have
that Γ j�M β iff Δ j�M β. □

We speak of ⊧M and j�M as the consequence relation and the inference relation, respec-
tively, determined by M.

We say that a model M¼ ⟨U ,V , l,S⟩ is a world model if lðuÞ is a unit set for each u�U . In
a world model, the set of sentences accepted in a state is always L-maximal. Since L is assumed
to be f^ , _g-normal, we have for any model M and all sentences α and β:

(i) ⟦α^β⟧M ¼ ⟦α⟧M\⟦β⟧M;
(ii) ⟦α⟧M[⟦β⟧M ⊆ ⟦α_β⟧M;
(iii) if M is a world model, ⟦α_β⟧M ⊆ ⟦α⟧M[⟦β⟧M;
(iv) if L is classical, ⟦α⟧M\⟦¬α⟧M ¼;;
(v) if L is classical and M is a world model, ⟦α⟧M[⟦¬α⟧M ¼U .

A model M¼ ⟨U ,V , l,S⟩ is said to be full if V = ℘(U).

Theorem 4.5. Let L be a f^ , _g-normal deductive logic and let j� be an inference
relation based on L. Then, there exists a world model M¼ ⟨U ,V , l,S⟩ (based on L)
such that:

‘L ¼ ⊧M and j� ¼ j�M,
that is, ‘L and j� are, respectively, the consequence relation and inference relation deter-
mined by M.

Proof. We define a structure M¼ ⟨U ,V , l,S⟩, which we shall call the canonical
model for ‘L and j�, as follows:

(i) U ¼ML, that is, U is the set of all L-maximal theories;
(ii) V ¼fjΓjL :Γ is a set of sentences in Lg. That is, V consists of all closed subsets

of U ;
(iii) for each u�U , lðuÞ¼ fug.
(iv) We define S as follows: For any set X �V , consider the theory tðXÞ determined by

X , namely:
tðXÞ¼ fα : 8m�X ,α�mg¼

T
X .

Now, define:
SðXÞ¼ jCðtðXÞÞjL ¼fm�U : for all α, if tðXÞ j� α, then α�mg.

That is, SðXÞ is the set of tðXÞ-optimal L-maximal theories.
Let X �V . Then, X ¼ jtðXÞjL. Since tðXÞ⊆CðtðXÞÞ, we get

that jCðtðXÞÞjL ⊆ jtðXÞjL. That is, SðXÞ⊆X . Thus, the canonical model for ‘L and
j� is a structure based on L. In this structure, we have ⟦Γ⟧¼ jΓjL, for all Γ.
Hence, ‘L ¼ ⊧M.

We now claim that:

(∗) Γ j� α iff SðjΓjÞ⊆ jαj.

Proof of (∗ ): SðjΓjÞ is the set of all
T
ðjΓjÞ-optimal L-maximal sets. ButT

ðjΓjÞ ¼CnLðΓÞ, so SðjΓjÞ is the set of all L-maximal sets that are CnLðΓÞ-optimal.
However, m is CnLðΓÞ-optimal iff m is Γ-optimal (since CðCnðΓÞÞ¼CðΓÞ).
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Hence, SðjΓjÞ is the set of all L-maximal theories that are Γ-optimal. It follows by
lemma 3.6 that Γ j� α iff for all m�SðjΓjÞ, α�m. Q.E.D.

By definition, we have:

(∗∗) Γ j�M α iff Sð⟦Γ⟧Þ⊆ jαj.

From (∗ ) and (∗ ∗ ) and the fact that ⟦Γ⟧¼ jΓjL, we get that Γ j� α iff Γ j�M α.
It only remains to show that the canonical model M¼ ⟨U ,V , l,S⟩

for ‘L and j� is indeed a model, that is, satisfies conditions (i)–(iii) of
Definition 4.3:

Condition (i) is immediate from the definition of V .
Condition (ii): We first prove that the closure operation of the canonical model

satisfies:

(∗) ClðX [YÞ¼ClðXÞ[ClðYÞ.

First of all, X ⊆X [Y . Hence, tðX [YÞ⊆ tðXÞ, and, therefore,
⟦tðXÞ⟧⊆ ⟦tðX [YÞ⟧. That is, ClðXÞ⊆ClðX [YÞ. In the same way, we get
ClðYÞ⊆ClðX [YÞ. Thus, ClðXÞ[ClðYÞ⊆ClðX [YÞ.

In order to prove the other direction, assume that m�ClðX [YÞ, that is,
m� ⟦tðX [YÞ⟧. Then, we have: tðX [YÞ⊆m. But, tðX [YÞ¼ tðXÞ\ tðYÞ. Hence,
tðXÞ\ tðYÞ⊆m. Suppose now, that m =2ClðXÞ[ClðYÞ. Then, m =2ClðXÞ and
m =2ClðYÞ. Hence, there must exist sentences α, β such that α� tðXÞ, α =2m; β� tðYÞ
and β =2m. Consider now the sentence α_β. Since, α =2m and β =2m, it follows
by the f^ , _g-normality of L that α_β =2m. But, on the other hand,
α_β� tðXÞ\ tðYÞ. By contradiction, we conclude that m�ClðXÞ[ClðYÞ.
Thus, ClðX [YÞ⊆ClðXÞ[ClðYÞ.

Suppose now that X ,Y �V . By the definition of V , X ¼ClðXÞ and Y ¼ClðY Þ.
Hence, X [Y ¼ClðXÞ[ClðYÞ¼ ðbyð�ÞÞ ClðX [YÞ. But, by the definition of V ,
ClðX [YÞ�V . Thus, X [Y �V .

Condition (iii). Let F be a non-empty family of elements in V . By (Cl 2) of
Lemma 4.2,

T
F ⊆Clð

T
FÞ. On the other hand,

T
F ⊆X , for each X �F . Hence, by

(Cl 1), Clð
T
FÞ⊆ClðXÞ¼X , for each X �F . Thus, Clð

T
FÞ⊆

T
F . We have shown

that
T
F ¼Clð

T
FÞ. So by the definition of V ,

T
F �V . □

Remark 4.6. Let j� be an inference relation based on L. Let M¼ ⟨U ,V , l,S⟩ be the
corresponding canonical model. Then, we have for all Γ⊆Φ and X �V :

(i) CnLðΓÞ¼ tð⟦Γ⟧Þ;
(ii) X ≠ ; iff tðXÞ is L-consistent;
(iii) CðΓÞ¼ tðSð⟦Γ⟧ÞÞ; and
(iv) SðXÞ¼ ⟦CðtðXÞÞ⟧.

It follows that for all sets of sentences Γ and all X �V ,

(v) CðtðXÞÞ¼ tðSðXÞÞ; and
(vi) Sð⟦Γ⟧Þ¼ ⟦CðΓÞ⟧,

that is, the two diagrams in Figure 2 commute.
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By a canonical model for L we understand a model M¼ ⟨U ,V , l,S⟩ such that:

(i) U is the set of all maximal L-theories;
(ii) V is the set of all closed subsets of U , that is,

V ¼f⟦tðXÞ⟧ :X ⊆Ug¼fClðXÞ :X ⊆Ug;

(iii) for each u�U , lðuÞ¼ fug.

It is easy to see that a canonical model for L is the canonical model for L and the inference
operation CM defined by: CMðΓÞ¼ tðSð⟦Γ⟧ÞÞ. That is, we also have: SðXÞ¼ ⟦CMðtðXÞÞ⟧.

The next lemma states that the set V of a canonical model has certain important closure
properties: V is closed under finite unions and arbitrary intersections and contains all singleton
sets. It follows that V contains all finite subsets of U .

Lemma 4.7. Let M¼ ⟨U ,V , l,S⟩ be a canonical model for L. Then, for all X ,Y �V,
and m�U,

(i) ClðX [YÞ¼ClðXÞ[ClðYÞ;11
(ii) ClðfmgÞ¼fmg, that is, all singleton sets are closed;
(iii) all finite subsets of U are members of V.

Proof. We have already proved

(i) in the course of proving Theorem 4.5. Observe that in the proof of (i), we used the
fact that L is closed under the standard natural deduction rules for _ (see the
Appendix).

(ii) ClðfmgÞ¼ ⟦tðmÞ⟧¼ ⟦m⟧, since tðmÞ¼m. But ⟦m⟧¼fn�U :m⊆ ng¼fmg, since
U is the set of all L-maximal theories. Hence, ClðfmgÞ¼fmg.

(iii) follows immediately from (i) and (ii). □

We shall now consider some natural conditions that we might want to impose on the selec-
tion function in a model. Most of these are taken from the literature on choice functions and

F I GURE 2 Two commuting diagrams

11Together with (Cl 1)–(Cl 4), this condition implies that the closure operation of a canonical model is a topological closure operation in
the sense of Kuratowski (see, for instance, Kelley (1955), p. 43).
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preference relations.12 Some, however, borrow their names from the corresponding conditions
on inference operations: for any X ,Y �V ,

(cp) If X ≠ ;, then SðXÞ≠ ;; (Consistency Preservation)
(it) SðSðXÞÞ¼SðXÞ; (Iteration)
(c) if SðXÞ⊆Y ⊆X , then SðXÞ⊆SðYÞ; (Cut)
(d) SðX [YÞ⊆SðXÞ[SðYÞ; (Distributivity)
(ch) SðXÞ\Y ⊆SðX \YÞ; (Chernoff)
(aiz) if SðXÞ⊆Y ⊆X , then SðYÞ⊆SðXÞ; (Aizerman)
(pi) SðSðXÞ[SðYÞÞ¼SðX [YÞ; (Path Independence)
(g) Let ;≠F ⊆V such that

S
X�FX �V .Then,T

X�FSðXÞ⊆Sð
S

X�FXÞ; (Gamma)
(s) if SðXÞ\SðYÞ≠ ;, then SðX \YÞ⊆SðXÞ\SðYÞ; (Sen)

(iia) if SðXÞ\Y ≠ ;, then SðX \YÞ¼SðXÞ\Y . (Arrow)

The condition (ch)—originally introduced by Chernoff (1954)—is identical to Sen’s (1971)
Property α.13 The following formulation is easily seen to be equivalent to the one above:

(α) If Y ⊆X , then SðXÞ\Y ⊆SðYÞ.

Intuitively, if x is a best choice in the set X , then x is still a best choice in any subset of X to
which x belongs.

The conditions Aizerman and Cut together say that:

if SðXÞ⊆Y ⊆X , then SðXÞ¼SðYÞ.

That is, deleting from a set only such members that are not among its best members does not
affect which members are best in the set.

The condition (g) is called Property γ by Sen (1971). It says that if x is a best choice in every
set X in a family of sets, then x is also a best choice in their union. It has the following finitary
consequence:

SðXÞ\SðYÞ⊆SðX [YÞ.

The condition Sen may also be formulated as:

if X ⊆Y and SðXÞ\SðYÞ≠ ;, then SðXÞ⊆SðYÞ.

It is called Property β by Sen (1971).
Arrow’s condition (iia) of Independence of Irrelevant Alternatives can be rewritten as:

If Y ⊆X and SðXÞ\Y ≠ ;, then SðXÞ\Y ¼SðYÞ.

That is, if Y is a subset of X that contains some of the best members of X , then the best
members of Y are precisely the best member of X that belong to Y .

The results of the next lemma are either well known (see Moulin (1985)) or obvious. Their
proofs are included in the Appendix for the sake of completeness and easy reference.

12Cf. for example Moulin (1985).
13See Moulin (1985) for additional references and details about the origin of some of the conditions.
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Lemma 4.8.
(i) (c) implies (it);
(ii) (ch) implies (c);
(iii) (ch) implies (d);
(iv) (c), (aiz) and (d) together imply (pi). If the model is full, that is, if V ¼℘ðUÞ, then

(pi) is equivalent to (ch) and (aiz);14

(v) (cp) and (iia) together imply (ch), (aiz) and (g);
(vi) (iia) is equivalent to (ch) and (s).

Next we turn to conditions on the inference operation C:

(CP) if ⊥ =2CnðΓÞ, then ⊥ =2CðΓÞ; (Consistency Preservation)
(It) CðCðΓÞÞ¼CðΓÞ; (Iteration)
(C) if Γ⊆Δ⊆CðΓÞ, then CðΔÞ⊆CðΓÞ; (Cut)
(D) CðΓÞ\CðΔÞ⊆CðCnðΓÞ\CnðΔÞÞ; (Distributivity)
(Ch) CðΓ[ΔÞ⊆CnðCðΓÞ[ΔÞ; (Chernoff)
(Aiz) if Γ⊆Δ⊆CðΓÞ, then CðΓÞ⊆CðΔÞ; (Aizerman)
(PI) CðCðΓÞ\CðΔÞÞ¼CðCnðΓÞ\CnðΔÞÞ; (Path Independence)
(G) Cð

T
Γ � F CnðΓÞÞ⊆Cnð

S
Γ � F CðΓÞÞ, where F is any

non-empty family of sets of sentences; (Gamma)
(S) If CðΓÞ[CðΔÞ is L-consistent, then CðΓÞ[CðΔÞ⊆CðΓ[ΔÞ; (Sen)

(IIA) if CðΓÞ[Δ is L-consistent, then CðΓ[ΔÞ¼CnðCðΓÞ[ΔÞ. (Arrow)

Notice that Aizerman is the condition that Makinson (1989) calls Cautious Monotony. It is
also worth mentioning that Arrow implies the following generalisation of the so-called condi-
tion of Rational Monotony:15

If CðΓÞ[Δ is L-consistent, then CðΓÞ⊆CðΓ[ΔÞ.

In the presence of (CP), this principle implies Sen, but is not implied by Sen. Rational
monotony is the special case of the principle for which Δ is a unit set.

Theorem 4.9. Let L be a f^ , _g-normal deductive logic and M¼ ⟨U ,V , l,S⟩ a
canonical model based on L. Let C¼CM be the inference operation that is determined
by M. If (x) is any of the conditions (cp)–(iia), then S satisfies (x) iff the inference
operation C satisfies the corresponding condition (X) among (CP)–(IIA).

In view of Lemma 4.8 and Theorem 4.9, we have the following result connecting the various
conditions on C.

Lemma 4.10.

(i) (C) implies (It);
(ii) (Ch) implies (C);
(iii) (Ch) implies (D);
(iv) (C), (Aiz) and (D) together imply (PI);
(v) (CP) and (IIA) together imply (Ch), (Aiz) and (G);
(vi) (IIA) is equivalent to (Ch) and (S).

14David Makinson (personal communication) has proved that (pi) does not in general imply (ch).
15Cf. Makinson (1989) and Kraus et al. (1990).

A SEMANTIC APPROACH TO NONMONOTONIC REASONING: INFERENCE OPERATIONS AND CHOICE 511



We conclude this section by discussing some consequences of the conditions above in the
context of L being classical. First of all, L being classical implies that a finite set of premises
may be treated as a conjunction, that is,

α^β j� γ iff fα,βg j� γ.

Hence, the infinitary conditions (C) and (Aiz) above have—in the classical case—the following
finitary consequences:

if α j� β and α^β j� γ, then α j� γ; (Cut)
if α j� β and α j� γ, then α^β j� γ. (Cautious Monotony)

The next Lemma is due to Makinson (1994).

Lemma 4.11. (Makinson) Suppose that C is an inference operation based on a classi-
cal logic L. If C satisfies Distribution, then the following conditions are also satisfied:

(i) if Γ, α j� γ and Γ, β j� γ, then Γ, α_β j� γ; (Disjunction in the Antecedent)
(ii) if Γ, α j� γ and Γ, ¬α j� γ, then Γ j� γ; (Proof by Cases)
(iii) if Γ, α j� β, then Γ j� α! β. (Conditionalisation)
(iv) if Γ j� α and Γ, β j� ¬α, then Γ j� ¬β.

Since Chernoff implies Distribution, the assumption of Chernoff yields, in the context of
classical logic, Conditions (i)–(iv).

Condition (iv) would license inferences of the kind:

(1) If Squeaky is a mammal, then it is expected that Squeaky cannot fly.
(2) If Squeaky is a mammal and a bat, then it is expected that Squeaky can fly.
(3) Hence: if Squeaky is a mammal, then it is expected that Squeaky is not a bat.

If L is classical and C satisfies Arrow, then we also have:

If Γ j� γ and Γ j≁ ¬β, then Γ, β j� γ. (Rational Monotony)

This principle yields inferences of the kind:

(1) If Squeaky is a mammal, then it is expected that Squeaky cannot fly.
(2) If Squeaky is a mammal, then it is not expected that Squeaky is not a dog.
(3) Hence: if Squeaky is a mammal and a dog, then it is expected that Squeaky cannot fly.

5 | REPRESENTATION THEOREMS

In the last section, we proved a series of results connecting properties of the inference operation
C with properties of the selection function S in the canonical model corresponding to C. In this
section we wish to explore under what conditions a given selection function can be defined in
terms of an underlying preference relation P on the set U of all states. In order to make this
question precise, we introduce the notion of a choice structure:16

16The term “choice structure” is borrowed from Hansson (1968), although his notion of a choice structure is not exactly the one defined
here: Hansson’s choice structures satisfy weaker structural conditions on the set V , but stronger conditions on the selection function S.
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Definition 5.1. A choice structure is an ordered triple S ¼ ⟨U ,V ,S⟩, where U is a
non-empty set, V is a non-empty family of subsets of U , S is a function from V to V ,
such that:

(i) for each x�U , fxg�V ;
(ii) ;�V ;
(iii) if X ,Y �V , then X [Y �V ;
(iv) for any non-empty family F of members of V ,

T
X�FX �V ;

(v) for each X �V , SðXÞ⊆X .

U is the domain of S and the elements of U are here called states (or points). Axioms (ii)–
(iv) say that the elements of V form the closed sets of a topological space over U . Hence, it is
appropriate to refer to the elements of V as the closed sets of S. For any X ⊆U , we write ClðXÞ
for the closure of X , that is, the intersection of all closed sets that include X . Cl, of course, sat-
isfies the axioms (Cl 1)–(Cl 4) of a topological closure operation. A topological space satisfying
condition (i), that all singleton sets are closed, is called a T1-space. It follows from (i) and
(iii) that all finite sets are members of V . S is the selection function (or the choice function) of
the structure S. According to (v), S selects a subset of elements from any closed subset X of U .
Since S is an operation on V , SðXÞ is always a closed set.

The principal case we are interested in is the following: A f^ , _g-normal deductive logic L
and an inference operation C based on L are given. S ¼ ⟨U ,V ,S⟩ is defined in terms of L and C
as follows: (i) U is the set of all L-maximal theories; (ii) V ¼fX ⊆U :X ¼ ⟦tðXÞ⟧g; (iii) for each
X �V , SðXÞ¼ ⟦CðtðXÞÞ⟧. In this case, S ¼ ⟨U ,V ,S⟩ is essentially identical to the canonical
model for L and C.

In this section, we shall think of the set U of states as being provided with a preference rela-
tion P⊆U�U (we read xPy as: x is better than y). In terms of such a relation, we can define
the selection function S :V !V as follows: for all X �V :

(∗ ) SðXÞ¼ fx : x�X & ð8yÞðy�X ! ¬ðyPxÞÞg.

That is, SðXÞ is the set of all P-maximal elements of X . We say that S is based on the rela-
tion P—and that P rationalises S—if S is defined from P by means of the equation (∗ ). S is said
to be rationalisable if there is a relation that rationalises it.

We use the following terminology for preference relations: We use xRy as an abbreviation
for ¬ðyPxÞ. P is said to be:

(i) a strict partial ordering iff P is asymmetric and transitive;
(ii) a strict weak ordering iff P is asymmetric and 8xyzðxRy^yPz! xPzÞ;
(iii) a strict linear order iff P is a strict partial ordering and 8xyðxRy^x≠ y! xPyÞ;
(iv) neat iff every non-empty element X of V contains a P-maximal element, that is, an x

such that 8yðy�X ! ¬ðyPxÞÞ.17

Lemma 5.2. Let S: V !V be a selection function and P a relation that rationalises
S. Then,

(a) P is irreflexive iff S satisfies the condition:
(ir) SðfxgÞ≠ ;, for each x�U. (Irreflexivity)

17Our terminology here, differs from Kanger (2001) who uses “neat” to refer to the stronger property of P�1 (the converse of P) being
well-founded. Thus, P is neat in Kanger’s sense, just in case every non-empty subset of U has a P-maximal element, that is, iff there are
no infinitely ascending P-chains in U . Neatness in our sense only requires every non-empty closed subset of U to contain a P-maximal
element. Neatness is analogous to the limit assumption of Lewis (1973).
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(b) P is neat iff S satisfies Consistency Preservation.
(c) If P is irreflexive, then P is unique and for all x,y�U,

xPy iff y =2Sðfx,ygÞ.

Proof. (a) and (b) are trivial. We prove (c). By (∗ ), we have:

y�Sðfx,ygÞ iff ¬yPy and ¬xPy.

The irreflexivity of P then yields:

xPy iff y =2Sðfx,ygÞ. □

Lemma 5.3. A selection function S is rationalisable iff it satisfies the condition:

for all X �V, SðXÞ¼ fx�X : ð8yÞðy�X ! x�Sðfx,ygÞg.

Proof. Suppose that P rationalises S. Then, we have for all Z �V and all z�Z,

(1) z�SðZÞ$ ð8yÞðy�Z! ¬ðyPzÞÞ.

Let X �V and x�X . We want to show that:

(2) x�SðXÞ$ ð8yÞðy�X ! x�Sðfx,ygÞ.

Suppose that x�SðXÞ and that y�X . By (1), we then have: ¬ðyPxÞ and
¬ðxPxÞ. Hence, by (1) again, we get: x�Sðfx,ygÞ. To prove the other direction of
(2), assume that ð8yÞðy�X ! x�Sðfx,ygÞ. Suppose also that x =2SðXÞ. Then, by
(1), there is a y�X such that yPx. Applying (1) again, we get x =2Sðfx,ygÞ, that is, a
contradiction.

To prove the other direction of the lemma, suppose that for all X �V ,

(3) SðXÞ¼ fx�X : ð8yÞðy�X ! x�Sðfx,ygÞg.

Define P⊆U�U by the condition:

(4) xPy iff y =2Sðfx,ygÞ.

(3) and (4) then yield:

SðXÞ¼ fx�X : ð8yÞðy�X ! ¬ðyPxÞÞg.

that is, P rationalises S. □

In the theory of preference and choice, there are many well-known theorems relating condi-
tions on the selection function S, like Chernoff, Aizerman, Gamma, etc., to the existence of an
underlying preference relation P.18 The following theorem is a slight strengthening of a result
by Sen (1971).19

18Cf. Hansson (1968), Sen (1971), Moulin (1985), Kanger (2001).
19Sen proved that a selection function that satisfies Consistency Preservation is rationalisable iff it satisfies Chernoff and Gamma.
Theorem 2 of Moulin (1985) is Sen’s theorem for the case when U is finite.
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Theorem 5.4. A selection function S is rationalisable iff it satisfies Chernoff and
Gamma (i.e., Sen’s Properties α and γ):

(ch) SðXÞ\Y ⊆SðX \YÞ;
(g) Let ;≠F ⊆V be such that

S
X�FX �V. Then,

T
X�FSðXÞ⊆Sð

S
X�FXÞ.

Proof. We omit the straightforward verification that every rationalisable selection
function satisfies Chernoff and Gamma.

For the other direction, suppose that S satisfies Chernoff and Gamma. By
Lemma 5.3, it is sufficient to prove that for all X �V and x�X ,
x�SðXÞ iff ð8yÞðy�X ! x�Sðfx,ygÞÞ.

Assume first that x�SðXÞ. Consider any y�X . Chernoff then yields that
SðXÞ\fx,yg⊆Sðfx,ygÞ, which implies that x�Sðfx,ygÞ.

Next, we assume that x is such that ð8yÞðy�X ! x�Sðfx,ygÞg. This
means that: x�

T
y � XSðfx,ygÞ. But X ¼

S
y � Xfx,yg. Gamma then yieldsT

y � XSðfx,ygÞ⊆Sð
S

y � Xfx,ygÞ¼SðXÞ. Hence, x�SðXÞ. □

Lemma 5.5.20 Suppose that S is based on P.

(a) If S is neat and satisfies Aizerman:
(aiz) if SðXÞ⊆Y ⊆X, then SðYÞ⊆SðXÞ,

then P is transitive.
(b) If P is transitive and P�1 is well-founded (that is, there are no infinitely ascending

P-chains in U), then S satisfies Aizerman.

Lemma 5.6. Suppose that S is based on a neat and transitive relation P. Then, S
satisfies Sen:

(s) if SðXÞ\SðYÞ≠ ;, then SðX \YÞ⊆SðXÞ\SðYÞ.

iff P satisfies the condition:
8xyzðxRy^yPz! xPzÞ,

(that is, iff P is a neat strict weak ordering).

Proof. Cf. Kanger (2001), Theorem 8.1.

Theorem 5.7.
(a) S is based on a neat relation P iff S satisfies (cp), Chernoff and Gamma.
(b) If S satisfies (cp), Chernoff, Gamma and Aizerman, then S is based on a neat
and transitive relation (that is, a neat strict partial ordering).
(c) If any of the following equivalent conditions is satisfied:

(i) S satisfies (cp), Chernoff, Gamma, Aizerman and Sen;
(ii) S satisfies (cp), Chernoff and Sen;
(iii) S satisfies (cp) and (iia),

then S is based on a neat strict weak ordering.

20Moulin (1985) proves a finitary version of this lemma which may be formulated as follows: Suppose that S is based on P and that the
set U of all alternatives is finite. Then, S satisfies Aizerman iff P is transitive. This is, of course, a consequence of Lemma 5.5.
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Proof. By Lemma 4.8, Lemma 5.2 (b), Theorem 5.4, Lemma 5.5 and Lemma 5.6. □

Theorems 4.9, 5.4 and 5.7 together give us:

Theorem 5.8. (Representation Theorem I) Let C be an inference relation based on
the deductive logic L. Let M¼ ⟨U ,V , l,S⟩ be the canonical model for L and C. Then,
L¼LM and C¼CM and:

(i) C satisfies Chernoff and Gamma iff S is based on a relation P⊆U�U.
(ii) If C satisfies (CP), Chernoff, Gamma and Aizerman, then S is based on a neat strict

partial ordering P⊆U�U.
(iii) If C satisfies (CP) and Arrow, then S is based on a neat strict weak order-

ing P⊆U�U.

6 | DYADIC INFERENCE OPERATIONS AND INFINITARY BELIEF
REVISION

In this section we shall explore the connection between nonmonotonic inference and belief
revision in the sense of Alchourr�on et al.21 In doing so, we generalise the notion of belief
revision to allow for the revision of a set of beliefs with a, possibly infinite, set of proposi-
tions representing the new information.22 A representation theorem is proved for the gener-
alised notion of belief revision in terms of systems of spheres of the kind introduced by
Grove (1988).

In Makinson and Gärdenfors (1991) a method is described for translating postulates for
belief revision into postulates for nonmonotonic inference, and vice versa.23 The basic idea here
is to interpret β�K ∗

α as a claim that β is a nonmonotonic consequence of α, relative to the
background (or default) theory K . That is, β�K ∗

α is translated as α j� K β, where j� K is a
nonmonotonic inference relation associated with the theory K . Expressing this equivalence, in
terms of an inference operation CK instead, we get, for a fixed K , the identity:

K ∗
α ¼CKðfαgÞ.

This idea can be generalised: thinking of C as a binary operation and allowing K to be replaced
by an arbitrary set of sentences Δ, we get:

Δ ∗
α ¼CðΔ,fαgÞ.

In other words, for any Δ and α, the revision of Δ with α is identified with the set of
nonmonotonic consequences of α, relative to the default assumptions Δ. Now, in order to get
complete interdefinability between the notions of belief revision and nonmonotonic inference,
we need just another step: we must allow for the possibility of a set Δ being revised with a possi-
bly infinite set of propositions Γ. Then, for all Γ and Δ, we obtain:

Δ ∗
Γ ¼CðΔ,ΓÞ.

21Cf. Alchourr�on et al. (1985) and Gärdenfors (1988).
22Infinitary belief revision has been studied before in the literature. Fuhrmann (1988) considers both infinitary belief contraction
operations and infinitary belief revision operations. He refers to these kinds of operations as multiple contraction and multiple revision,
respectively. Via a generalisation of the so-called Levi identity, Fuhrmann defines infinitary belief revision in terms of infinitary belief
contraction. He also formulates a set of postulates for infinitary belief revision which is equivalent to (BC1)–(BC4) together with (BC9).
(Fuhrmann, 1988, p. 159). S. O. Hansson (1989) contains a theory of infinitary belief contraction.
23See also the discussion in Gärdenfors (1990).
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Conversely, given a notion of belief revision Δ ∗
Γ , we may, of course, define the corresponding

notion of nonmonotonic inference via the same equality.
In our formal treatment, however, we shall not make a complete identification between the

notions of belief revision and nonmonotonic inference. Instead, we take the former as a special
case of the latter—in the sense of being characterised by stronger axioms. The axioms for belief
revision presented here are straightforward generalisations to the infinitary case of
Gärdenfors’ (1988) basic axioms (K*1) – (K*6) for finitary belief revision.24

Definition 6.1. Let L be a consistent deductive logic.
(a) A dyadic inference operation based on L is an operation C :℘ðΦÞ�℘ðΦÞ!

℘ðΦÞ satisfying the following conditions. For easy readability, we shall write CΔðΓÞ
instead of CðΔ,ΓÞ. We also write ΓþΔ as an abbreviation of CnLðΓ[ΔÞ. We speak
of ΓþΔ as the expansion of Γ with Δ.

(BC1) CΔðΓÞ is an L-theory; (Closure)
(BC2) Γ⊆CΔðΓÞ; (Success)
(BC3) if CnLðΓÞ¼CnLðΔÞ and CnLðΣÞ¼CnLðΠÞ, then CΣðΓÞ¼CΠðΔÞ. (Congruence)

(b) An (infinitary) belief revision operation based on L is a dyadic
inference operation C satisfying—in addition to (BC1)–(BC3)—the following
conditions:

(BC4) if ⊥ =2ΔþΓ, then CΔðΓÞ¼ΔþΓ; (Expansion)
(BC5) if ⊥ =2CnLðΓÞ, then ⊥ =2CΔðΓÞ. (Consistency Preservation)

Here, the preferred reading of CΔðΓÞ is: ‘the result of revising the set Δ with the new informa-
tion Γ’.

Notice that (BC1)–(BC3) say no more than that, for any fixed Δ, CΔð… Þ is an inference
operation in the sense of Definition 3.1 (b). The axioms (BC1)–(BC5) should be compared with
the corresponding axioms in Gärdenfors (1988), namely:

(K*1) K ∗
α is an L-theory; (Closure)

(K*2) α�K ∗
α ; (Success)

(K*6) if CnL({α}) = CnL({β}), then K ∗
α ¼K ∗

β . (Congruence)

The following two axioms correspond to Expansion:

(K*3) K ∗
α ⊆Kþfαg;

(K*4) if ¬α =2K , then Kþfαg⊆K ∗
α .

Finally, there is:

(K*5) if α is L-consistent, then K ∗
α is L-consistent. (Consistency Preservation)

To the basic axioms (BC1)–(BC5) for belief revision, we might want to add some of the
following supplementary axioms:

24The reader should perhaps also be reminded that we make weaker assumptions concerning the underlying logic than Gärdenfors does.
We assume only that it is a deductive logic, that is, a finitary Tarski-style consequence relation. He assumes, in addition, that it is
classical, that is, is closed under the axioms and rules (including the deduction theorem) of classical propositional logic.
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(BC6) CΠðΓ[ΔÞ⊆CΠðΓÞþΔ; (Chernoff)
(BC7) CΠð

T
Γ � F CnðΓÞÞ⊆Cnð

S
Γ � F CΠðΓÞÞ, where F is any

non-empty family of sets of sentences; (Gamma)
(BC8) if Γ⊆Δ⊆CΠðΓÞ, then CΠðΓÞ⊆CΠðΔÞ; (Aizerman)
(BC9) if ⊥ =2CΠðΓÞþΔ, then CΠðΓ[ΔÞ¼CΠðΓÞþΔ. (Arrow)

Provided that CnLðfα^βgÞ¼CnLðfα,βgÞ, (BC6) yields the following supplementary axiom of
Gärdenfors:

(K*7) K ∗
α^ β ⊆K ∗

α þβ.

Under the same provision, (BC9) yields Revision by Conjunction:

if K ∗
α þβ is L-consistent, then K ∗

α^ β ¼K ∗
α þβ,

which is equivalent to (K*7) together with the other of Gärdenfors’ supplementary axiom:

(K*8) if ¬β =2K ∗
α , then K ∗

α þβ⊆K ∗
α^ β.

It is straightforward to modify the notion of a model M¼ ⟨U ,V , l,S⟩ based on L, that
was introduced in Section 4, in such a way as to get a semantics for dyadic inference
operations. The only difference occurs in clause (iii) of Definition 4.1, which has to be changed to:

(iii0) S is a function from V � V to V such that for all X ,Y �V , SðX ,YÞ⊆Y . Such a function
we call a dyadic selection function on V .

Each model M¼ ⟨U ,V , l,S⟩, of the new kind, determines two operations:

CnMðΓÞ¼ tð⟦Γ⟧Þ and CM
Δ ðΓÞ¼ tðSð⟦Δ⟧,⟦Γ⟧ÞÞ,

where the first operation is a consequence operation that extends L and the second is a dyadic
inference operation based on L (cf. Lemma 4.4). Now, for any f^ , _g-normal deductive logic
L and any dyadic inference operation C, we may define the corresponding canonical model
M¼ ⟨U ,V , l,S⟩, where:

(i) U ¼ML, that is, U is the set of all L-maximal theories;
(ii) V is the set of all closed subsets of U ;
(iii) for each u�U , lðuÞ¼ fug;
(iv) for any sets X ,Y �V ,

SðX ,YÞ¼ jCðtðXÞÞ, tðYÞÞjL ¼fm�U :CðtðXÞ, tðYÞÞ⊆mg.

The proof of Theorem 4.5 carries over unchanged, so we have that CnL ¼CnM and for all Γ, Δ,
CΔðΓÞ¼CM

Δ ðΓÞ. That is, CnL and C are, respectively, the consequence operation and the
dyadic inference operation that are determined by the canonical model M.

In addition to letting the selection functions take an extra argument, we apply the
same procedure to the preference relations. That is, we write xPXy and read it as: x is preferred
over (or better than) y, relative to X . Intuitively, xPXy means that x is closer to the optimal
alternatives in X than y. We shall refer to ternary relations P⊆U�℘ðUÞ�U as (relativised)
preference relations. Properties of relations like reflexivity, transitivity, being a weak ordering,
etc., carry over to relativised preference relations as follows: a given property is said to
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apply to P iff for each X , PX has the property in question. A dyadic selection function S :
V �V !V is said to be based on a given preference relation if for all X ,Y �V ,

SðX ,YÞ¼ fx : x�Y & ð8yÞðy�Y ! ¬ðyPXxÞg.

We have now introduced the concepts that are required in order to state the following repre-
sentation theorem.

Theorem 6.2. (Representation Theorem II) Let C be a belief revision operation based
on the deductive logic L. Let M¼ ⟨U ,V , l,S⟩ be the canonical model for L and C.
Then, CnL ¼CnM, for all Γ, Δ, CΔðΓÞ¼CM

Δ ðΓÞ and for all X ,Y �V:

(i) if Y ≠ ;, then SðX ,YÞ≠ ;; (Consistency Preservation)
(ii) if X \Y ≠ ;, then SðX ,YÞ¼X \Y. (Expansion)

Moreover,

(a) If C, in addition to the basic axioms (BC1)–(BC5), also satisfies axioms (BC6)
(Chernoff) and (BC7) (Gamma), then there exists a (relativised) preference
relation P⊆U�℘ðUÞ�U such that P is neat and S is based on P.

(b) If C satisfies the conditions (BC1)–(BC8), then there exists a relation P⊆U�
℘ðUÞ�U such that P is neat and transitive and S is based on P.

(c) If C satisfies (BC1)–(BC5) together with (BC9) (Arrow), then there exists a rela-
tion P⊆U�℘ðUÞ�U such that P is neat strict weak ordering and S is based
on P.

Proof. (to be written)

We are next going to prove that any (infinitary) belief revision operation C that satisfies
(BC1)–(BC5) together with (BC9) can be defined in terms of “systems of spheres” of the kind
defined in Grove (1988). Theorems 6.4 and 6.5 below for infinitary belief revision operations
should be compared with Grove’s (1988) Theorems 1 and 2 for finitary belief revision opera-
tions. In the following, we let L be a fixed deductive logic and U the set ML of all L-maximal
theories. V is the set of all closed subsets of U .

Definition 6.3.
(a) A family of spheres centred on X �V is a collection $X of elements in V satisfy-
ing the conditions:25

($1) $X is totally ordered by ⊆ , that is, if Y ,Z � $X , then Y ⊆Z or Z⊆Y ;
($2) X is the ⊆ -minimum of $X , that is X � $X and for all Y � $X , X ⊆Y ;
($3) U � $X ;
($4) if Y �V , then there exists an element Z of $X , such that Y \Z≠ ; and for all

Z0 � $X , if Y \Z0 ≠ ;, then Z⊆Z0. In other words, for every closed set
Y �V , there exists a smallest sphere in $X intersecting Y .

(b) A system of spheres is a function $ that associates a family of spheres with any
set X �V .

25($4) is a strengthening of Grove’s (1988) limit assumption. For a discussion of the limit assumption in the context of possible worlds
semantics for counterfactuals, see Lewis (1973).
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Let P⊆U � U be a neat strict weak ordering of U . As usual xRy is defined as ¬yPx. We
say that X is a P-sphere iff X �V and ð8x,yÞðx�X and xRy! y�XÞ. The set $ of all
P-spheres is then a family of spheres centred around

T
$.

With any system of spheres $X , we may associate a dyadic selection function S :V �V !V
in the following way: for all X ,Y �V , (i) if Y ≠ ;, we let SðX ,YÞ¼Z0\Y , where Z0 is the
smallest sphere in $X that intersects Y ; and (ii) SðX ,;Þ¼;.

Theorem 6.4. Let $ be any system of spheres and let S be the associated dyadic selec-
tion function. For all Γ and Δ, let CΔðΓÞ¼ tðSð⟦Δ⟧,⟦Γ⟧ÞÞ. Then C is a belief revision
operation, satisfying axioms (BC1)–(BC5), (BC9).

Theorem 6.5. (Representation Theorem III) Let C be any belief revision operation
satisfying axioms (BC1)–(BC5) and (BC9). Then, there exists a system of spheres $
such that for all Γ, Δ,

CΔðΓÞ¼ tðSð⟦Δ⟧,⟦Γ⟧ÞÞ,

where S is the dyadic selection function associated with $.

(Proofs will be added)
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APPENDIX: PROOFS OF LEMMAS AND THEOREMS

Proof of Lemma 2.1. We omit the easy verification of (i) and proceed to prove (ii). By (Cn1),
Γ[Δ⊆Γ[CnðΔÞ. (Cn2) then yields:

CnðΓ[ΔÞ⊆CnðΓ[CnðΔÞÞ.
We also have, by (Cn1) and (Cn2), that:

CnðΓ[CnðΔÞÞ⊆CnðCnðΓÞ[CnðΔÞÞ.
It remains to prove that CnðCnðΓÞ[CnðΔÞÞ⊆CnðΓ[ΔÞ. By Monotonicity we get:

Γ⊆CnðΓ[ΔÞ and Δ⊆CnðΓ[ΔÞ.
(i) then yields:

CnðΓÞ⊆CnðΓ[ΔÞ and CnðΔÞ⊆CnðΓ[ΔÞ.
Hence,

CnðΓÞ[CnðΔÞ⊆CnðΓ[ΔÞ.
Monotonicity then yields:

CnðCnðΓÞ[CnðΔÞÞ⊆CnðCnðΓ[ΔÞÞ.
Finally, using (Cn3), we get:

CnðCnðΓÞ[CnðΔÞÞ⊆CnðΓ[ΔÞ. □

Proof of Lemma 2.3. Suppose Γ is L-maximal. We prove that CnLðΓÞ⊆Γ. By (Cn1),
Γ⊆CnLðΓÞ. Suppose that CnLðΓÞ is not L-consistent. Then, CnLðΓÞ ‘L ⊥ , that is,
⊥ �CnLðCnLðΓÞÞ. By (Cn3), ⊥ �CnLðΓÞ, which is impossible. Hence, CnLðΓÞ is an
L-consistent superset of Γ. It follows by the L-maximality of Γ that Γ¼CnLðΓÞ. □
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Proof of Lemma 2.4. First we notice that (a) follows from (b). Substituting ⊥ for α in
(a) we get: If Γ is L-consistent, then CnLðΓÞ is included in an L-maximal theory. (a) then fol-
lows, by Inclusion.

Next, we prove (b). Suppose α =2CnLðΓÞ. Let
X ¼fΔ :Δ is L-consistent, CnLðΓÞ⊆Δ and α =2Δg.

X is non-empty, since CnLðΓÞ�X (the claim that CnLðΓÞ is L-consistent presupposes Iteration
(i.e., Cut)). Let Y be any non-empty chain in X . Consider Σ¼

S
Y . Clearly CnLðΓÞ⊆Σ. We

claim that Σ is L-consistent. Indirect proof: Suppose not. Then Σ ‘L ⊥ . By Finiteness, there is a
finite Σ0 ⊆Σ such that Σ0‘L ⊥ . But then, since Σ is simply ordered by inclusion and Σ0 is finite,
there must exist some Δ�Y such that Σ0 ⊆Δ. It follows, by Monotonicity, that Δ is L-inconsis-
tent. Contradiction. It remains to prove that α =2Σ. But this is clear, since otherwise α�Δ, for
some Δ�Y , which is impossible. Thus, Σ satisfies the necessary conditions for being a member
of X . It follows by Zorn’s Lemma that X has a maximal element. □

Proof of Lemma 3.4. ()) Suppose that L is a classical logic and that j� is an inference rela-
tion based on L. We verify that j� satisfies conditions (j� 4)–(j� 7).

(j� 4) Suppose that CnLðfαgÞ¼CnLðfβgÞ. Then, α ‘Lβ and β ‘Lα. Γ j� α and α‘Lβ yield
via (j� 2) that Γ j� β. Similarly, from Γ j� β and β‘Lα, one obtains Γ j� α. Thus,
Γ j� α iff Γ j� β.

(j� 5) Suppose that Γ j� α^β. Since L is classical, α^β‘Lα and α^β‘Lβ. Hence, by (j� 2),
Γ j� α and Γ j� β.

(j� 6) Suppose that Γ j� α and Γ j� β. L being classical yields α,β‘Lα^β. Hence, by (j� 2),
Γ j� α^β.

(j� 7) Letting Δ¼; and β¼ > in (j� 2), we get:
if Γ j� α, for all α� ;, and ;‘L > , then Γ j� > .

Γ j� α, for all α� ; holds vacuously and ;‘L > holds because L is classical. Hence, Γ j� > .
(() Suppose that L is a classical logic and that j� satisfies (j� 1), (j� 3)–( j� 7). We must

prove that j� then also satisfies (j� 2).
Suppose that Γ j� α, for all α�Δ, and Δ‘Lβ. We wish to prove that Γ‘Lβ.
We first consider the case when Δ≠ ;. Then there are β1,…,βn �Δ (n ≥ 0) such that Γ j�

β1,…,Γ j� βn and fβ1,…,βng‘Lβ. Using (j� 4) and (j� 6), we get that Γ j� β1^�� �^βn. Further-
more, β1^�� �^βn‘Lβ. This implies that ;‘Lððβ1^�� �^βnÞ^βÞ$ β1^�� �^βn. Using (j� 4), we
get Γ‘Lðβ1^�� �^βnÞ^β. This yields by (j� 5) that Γ j� β.

We now consider the case when Δ¼;. We need to prove that if ;‘Lβ, then Γ j� β. But if
;‘Lβ, then ;‘Lðβ$ >Þ. We have Γ j� > , by (j� 7). Hence, Γ j� β, by (j� 4). □

Proof of Lemma 4.8.
(i) Suppose that S satisfies condition (c). By the definition of a model SðSðXÞÞ⊆SðXÞ⊆X .

Hence, by condition (c), SðXÞ⊆SðSðXÞÞ. Thus, SðSðXÞÞ¼SðXÞ.
(ii) Assume that SðXÞ⊆Y ⊆X . By Chernoff:
SðXÞ\Y ⊆SðX \YÞ.

By the assumption: SðXÞ\Y ¼SðXÞ and X \Y ¼Y . Hence, SðXÞ⊆SðYÞ.
(iii) We assume that Chernoff holds. It follows that:
SðX [YÞ\X ⊆SððX [YÞ\XÞ; and
SðX [YÞ\Y ⊆SððX [YÞ\YÞ.
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However, ðX [YÞ\X ¼X and ðX [YÞ\Y ¼Y . So,
SðX [YÞ\X ⊆SðXÞ; and
SðX [YÞ\Y ⊆SðYÞ.

Since SðX [YÞ⊆X [Y , we get:
SðX [YÞ⊆SðXÞ[SðYÞ.

(iv) Suppose that S satisfies Cut, Aizerman and Distributivity. By Distribution and the defi-
nition of a selection function:

SðX [YÞ⊆SðXÞ[SðYÞ⊆X [Y .
From this we get, using Cut and Aizerman:

SðSðXÞ[SðYÞÞ¼SðX [YÞ
which is Path Independence.

We next prove that for full models, Path Independence is equivalent to Chernoff and
Aizerman. Since Chernoff implies Cut and Distribution, we have in general that Chernoff and
Aizerman imply Path Independence.

In order to prove the other direction, suppose that S is the selection function of a full model
which satisfies Path Independence. First, we prove Chernoff in the formulation:

(α) if Y ⊆X , then SðXÞ\Y ⊆SðYÞ.
Suppose Y ⊆X . Applying Path Independence to the sets Y and X �Y , we get:

(1) SðXÞ¼SðY [ðX �YÞÞ¼SðSðYÞ[SðX �YÞÞ.

Here, we need the assumption of fullness in order to be sure that X �Y �V . But,

(2) SðSðYÞ[SðX �YÞÞ⊆SðYÞ[SðX �YÞ⊆SðYÞ[ðX �YÞ.

(1) and (2) yield:
SðXÞ⊆SðYÞ[ðX �YÞ.

Hence,
SðXÞ\Y ⊆ ðSðYÞ[ðX �YÞÞ\Y .

That is,
SðXÞ\Y ⊆SðYÞ.

To prove that Path Independence, in the presence of fullness, implies Aizerman, suppose that
SðXÞ⊆Y ⊆X . Cut (which follows from Chernoff) then yields SðXÞ⊆SðYÞ. Path Independence
yields:

SðXÞ¼SðX [YÞ¼SðSðXÞ[SðYÞÞ¼SðSðYÞÞ.
Since Chernoff yields Iteration, we also have SðSðYÞÞ¼SðYÞ. Thus, SðXÞ¼SðYÞ. We have
shown:

(aiz) if SðXÞ⊆Y ⊆X , then SðYÞ⊆SðXÞ.

(v) Suppose that S satisfies Consistency Preservation and Arrow. Suppose Y ⊆X . If
SðXÞ\Y ¼;, then clearly SðXÞ\Y ⊆SðYÞ. However, if SðXÞ\Y ≠ ;, we have
SðXÞ\Y ⊆SðYÞ, by Arrow. Hence, we have derived (α) which is equivalent to Chernoff.
(Notice, that we did not use (cp) in this derivation.)

In order to prove Aizerman, assume that SðXÞ⊆Y ⊆X . If SðXÞ\Y ¼;, then SðXÞ¼ ;.
Consistency Preservation then yields X ¼; and Y ¼;. Hence, ;¼SðYÞ⊆SðXÞ, in this case.
Hence, we may assume that SðXÞ\Y ≠ ;. Arrow then yields:

SðXÞ\Y ¼SðYÞ.
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But since SðXÞ⊆Y , we get SðXÞ¼SðYÞ.
Finally, we prove Gamma. Let ;≠F ⊆V such that

S
X � FX �V . If X ¼;, for all X �F ,

then Gamma holds trivially. We therefore suppose that for some X �F , X ≠ ;. Then,S
X � FX ≠ ;. By Consistency Preservation Sð

S
X � FXÞ≠ ;. Hence, for some Y �F ,

Sð
S

X � FXÞ\Y ≠ ;. Arrow then yields:
If Y ⊆

S
X � FX and Sð

S
X � FXÞ\Y ≠ ;, then Sð

S
X � FXÞ\Y ¼SðYÞ.

Thus, Sð
S

X � FXÞ\Y ¼SðYÞ. It follows that SðYÞ⊆Sð
S

X � FXÞ. Since
T

X � FSðXÞ⊆SðYÞ,
we obtain:T

X � FSðXÞ⊆Sð
S

X � FXÞ.
(vi) We first assume that S satisfies Arrow. As we have already shown in (v) above, S then

satisfies Chernoff. To prove Sen, assume that X ⊆Y and SðXÞ\SðYÞ≠ ;. By Arrow, we
than get:

SðY \SðXÞÞ¼SðYÞ\SðXÞ.
But, SðXÞ⊆X ⊆Y . Hence, Y \SðXÞ¼SðXÞ. We get:

SðSðXÞÞ¼SðYÞ\SðXÞ.
But Arrow implies Chernoff which in turn implies iteration: SðSðXÞÞ¼SðXÞ. Hence,

SðXÞ¼SðYÞ\SðXÞ,
that is, SðXÞ⊆SðYÞ.

For the other direction, assume that S satisfies Chernoff and Sen. We prove Arrow in the
form: If Y ⊆X and SðXÞ\Y ≠ ;, then SðXÞ\Y ¼SðYÞ. Thus, assume that Y ⊆X and
SðXÞ\Y ≠ ;. By Chernoff, we have: SðXÞ\Y ⊆SðX \YÞ¼SðYÞ. It follows that
SðXÞ\Y ⊆SðXÞ\SðYÞ and that SðXÞ\SðYÞ≠ ;. Sen then yields SðYÞ⊆SðXÞ. Hence,
SðYÞ⊆SðXÞ\Y . But we already have SðXÞ\Y ⊆SðYÞ. Thus, SðXÞ\Y ¼SðYÞ. □

Proof of Theorem 4.9. Let M¼ ⟨U ,V , l,S⟩ be a canonical model based on the f^ , _g nor-
mal deductive logic L and let C¼CM. Then, we have: CðΓÞ¼ tðSð⟦Γ⟧ÞÞ and
SðXÞ¼ ⟦CðtðXÞÞ⟧.

Consistency Preservation: We assume (cp) and prove (CP). Suppose that ⊥ =2CnðΓÞ. Then
⟦Γ⟧≠ ;, so by (cp), Sð⟦Γ⟧Þ≠ ;. But Sð⟦Γ⟧Þ¼ ⟦tðS⟦Γ⟧ÞÞ⟧¼ ⟦CðΓÞ⟧. Thus, ⟦CðΓÞ⟧≠ ;. It fol-
lows that CðΓÞ is L-consistent.

For the other direction, assume that C satisfies (CP). Also assume that X ≠ ;. Then, tðXÞ is
L-consistent, so it follows by (CP) that CðtðXÞÞ is L-consistent. Hence, ⟦CðtðXÞÞ⟧≠ ;, that is,
S(X) ≠ ;.

Iteration: We assume (it) and prove (It). CðΓÞ¼ tðSð⟦Γ⟧ÞÞ¼ by
(it) tðSðSð⟦Γ⟧ÞÞÞ¼ tðSð⟦tðSð⟦Γ⟧ÞÞ⟧ÞÞ¼CðtðSð⟦Γ⟧ÞÞÞ¼CðCðΓÞÞ.

Next, we assume (It). Then, SðXÞ¼ ⟦CðtðXÞÞ⟧¼ ⟦CðCðtðXÞÞÞ⟧¼ ⟦CðCnðCðtðXÞÞÞÞ⟧¼
⟦Cðtð⟦CðtðXÞÞ⟧ÞÞ⟧¼Sð⟦CðtðXÞÞ⟧Þ¼SðSðXÞÞ.

Cut: First, we assume (c) and prove (C). Suppose Γ⊆Δ⊆CðΓÞ. It follows that:
⟦CðΓÞ⟧⊆ ⟦Δ⟧⊆ ⟦Γ⟧. Hence, ⟦tðSð⟦Γ⟧ÞÞ⟧⊆ ⟦Δ⟧⊆ ⟦Γ⟧. But Sð⟦Γ⟧Þ¼ ⟦tðS⟦Γ⟧ÞÞ⟧, so
Sð⟦Γ⟧Þ⊆ ⟦Δ⟧⊆ ⟦Γ⟧. Condition (c) now yields: Sð⟦Γ⟧Þ⊆Sð⟦Δ⟧Þ. Hence, tðSð⟦Δ⟧ÞÞ⊆ tðSð⟦Γ⟧ÞÞ.
Finally, we get CðΔÞ⊆CðΓÞ.

In order to prove the converse, assume (C) and that SðXÞ⊆Y ⊆X . Then we get:
tðXÞ⊆ tðYÞ⊆ tðSðXÞÞ. But, SðXÞ¼Sð⟦tðXÞ⟧Þ, so it follows that tðXÞ⊆ tðYÞ⊆ tðSð⟦tðXÞ⟧ÞÞ.
tðSð⟦tðXÞ⟧ÞÞ¼CðtðXÞÞ. Hence, tðXÞ⊆ tðYÞ⊆CðtðXÞÞ. Condition (C) now yields,
CðtðYÞÞ⊆CðtðXÞÞ. Thus, ⟦CðtðXÞÞ⟧⊆ ⟦CðtðYÞÞ⟧. Finally, we obtain SðXÞ⊆SðYÞ.

Distributivity: First, we prove (D) from (d). By (d), we get:
Sð⟦Γ⟧[⟦Δ⟧Þ⊆Sð⟦Γ⟧Þ[Sð⟦Δ⟧Þ.

524 LINDSTRÖM



However, tð⟦Γ⟧[⟦Δ⟧Þ¼CnðΓÞ\CnðΔÞ. Hence,
⟦tð⟦Γ⟧[⟦Δ⟧Þ⟧¼ ⟦CnðΓÞ\CnðΔÞ⟧.

It follows that:
Sð⟦Γ⟧[⟦Δ⟧Þ¼Sð⟦tð⟦Γ⟧[⟦Δ⟧Þ⟧Þ¼Sð⟦CnðΓÞ\CnðΔÞ⟧Þ.

Hence, we have:
Sð⟦CnðΓÞ\CnðΔÞ⟧Þ⊆Sð⟦Γ⟧Þ[Sð⟦Δ⟧Þ.

However, this in turn implies:
⟦Cðtð⟦CnðΓÞ\CnðΔÞ⟧ÞÞ⟧⊆ ⟦Cðtð⟦Γ⟧ÞÞ⟧[⟦Cðtð⟦Δ⟧ÞÞ⟧.

That is,
⟦CðCnðΓÞ\CnðΔÞÞ⟧⊆ ⟦CðΓÞ⟧[⟦CðΔÞ⟧.

But, ⟦CðΓÞ⟧[⟦CðΔÞ⟧⊆ ⟦CðΓÞ\CðΔÞ⟧, so
⟦CðCnðΓÞ\CnðΔÞÞ⟧⊆ ⟦CðΓÞ\CðΔÞ⟧.

It follows that:
tð⟦CðΓÞ\CðΔÞ⟧Þ⊆ tð⟦CðCnðΓÞ\CnðΔÞÞ⟧Þ.

That is:
CðΓÞ\CðΔÞ⊆CðCnðΓÞ\CnðΔÞÞ.

In order to prove the converse, assume (D). Then, we have:
CðtðXÞÞ\CðtðYÞÞ⊆Cðtð⟦ðtðXÞÞ⟧Þ\ tð⟦ðtðYÞÞ⟧ÞÞ.

That is,
CðtðXÞÞ\CðtðYÞÞ⊆CðtðXÞ\ tðYÞÞ.

But, tðXÞ\ tðYÞ¼ tðX [YÞ, so:
CðtðXÞÞ\CðtðYÞÞ⊆CðtðX [YÞÞ.

In other words,
tðSðXÞÞ\ tðSðYÞÞ⊆ tðSðX [YÞÞ.

Since tðSðXÞÞ\ tðSðYÞÞ¼ tðSðXÞ[SðYÞÞ,
tðSðXÞ[SðYÞÞ⊆ tðSðX [YÞÞ.

This in turn yields:
ClðSðX [YÞÞ⊆ClðSðXÞ[SðYÞÞ.

But according to Lemma 4.2, ClðSðXÞ[SðYÞÞ¼ClðSðXÞÞ[ClðSðYÞÞ¼ SðXÞ[ SðYÞ. Thus,
finally, we get:

SðX [YÞ⊆SðXÞ[SðYÞ.
Chernoff: First, we prove (Ch) from (ch). By (ch), we have:
Sð⟦Γ⟧Þ\⟦Δ⟧⊆Sð⟦Γ⟧\⟦Δ⟧Þ.

That is:
⟦Cðtð⟦Γ⟧ÞÞ⟧\⟦Δ⟧⊆ ⟦Cðtð⟦Γ⟧\⟦Δ⟧ÞÞ⟧.

Hence,
tð⟦Cðtð⟦Γ⟧\⟦Δ⟧ÞÞ⟧Þ⊆ tð⟦Cðtð⟦Γ⟧ÞÞ⟧\⟦Δ⟧Þ.

But, ⟦Cðtð⟦Γ⟧ÞÞ⟧\⟦Δ⟧¼ ⟦Cðtð⟦Γ⟧ÞÞ[Δ⟧, so:
tð⟦Cðtð⟦Γ⟧\⟦Δ⟧ÞÞ⟧Þ⊆ tð⟦Cðtð⟦Γ⟧ÞÞ[Δ⟧Þ.

That is,
Cðtð⟦Γ⟧\⟦Δ⟧ÞÞ⊆CnðCðΓÞ[ΔÞ.

tð⟦Γ⟧\⟦Δ⟧Þ¼CnðΓ[ΔÞ, and CðCnðΓ[ΔÞÞ¼CðΓ[ΔÞ, so
CðΓ[ΔÞ⊆CnðCðΓÞ[ΔÞ.

For the other direction, assume (Ch). Then, we have for any X ,Y �V :
CðtðXÞ[ tðYÞÞ⊆CnðCðtðXÞÞ[ tðYÞÞ.

Hence,
CðtðX \YÞ⊆CnðtðSðXÞÞ[ tðYÞÞ.
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That is,
tðSðX \YÞÞ⊆ tðSðXÞ\YÞ.

Hence,
⟦tðSðXÞ\YÞ⟧⊆ ⟦tðSðX \YÞÞ⟧.

But, SðXÞ\Y ⊆ ⟦tðSðXÞ\YÞ⟧ and ⟦tðSðX \YÞÞ⟧¼SðX \YÞ. Thus, it follows that:
SðXÞ\Y ⊆SðX \YÞ.

Aizerman: First, we assume (aiz) and prove (Aiz). Suppose that Γ⊆Δ⊆CðΓÞ. It follows that
⟦CðΓÞ⟧⊆ ⟦Δ⟧⊆ ⟦Γ⟧. Hence, Sð⟦Γ⟧Þ⊆ ⟦Δ⟧⊆ ⟦Γ⟧. Condition (aiz) then yields Sð⟦Δ⟧Þ⊆Sð⟦Γ⟧Þ.
This in turn implies: tðSð⟦Γ⟧ÞÞ⊆ tðSð⟦Δ⟧ÞÞ, that is, CðΓÞ⊆CðΔÞ.

In order to prove the converse, assume (Aiz) and SðXÞ⊆Y ⊆X . Then we get:
tðXÞ⊆ tðYÞ⊆ tðSðXÞÞ, that is, tðXÞ⊆ tðYÞ⊆CðtðXÞÞ. (Aiz) then yields: CðtðXÞÞ⊆CðtðYÞÞ.
This, in turn, implies: tðSðXÞÞ⊆ tðSðYÞÞ. Hence, ⟦tðSðYÞÞ⟧⊆ ⟦tðSðXÞÞ⟧, that is, SðYÞ⊆SðXÞ.

Gamma: First, we assume (g) and prove (G). Condition (g) yields:T
Γ � FSð⟦Γ⟧Þ⊆Sð

S
Γ � F⟦Γ⟧Þ,

where F is a non-empty family of sets of sentences. Now, for each Γ, Sð⟦Γ⟧Þ¼ ⟦CðΓÞ⟧. We also
have: Sð

S
Γ � F⟦Γ⟧Þ¼SðClð

S
Γ � F⟦Γ⟧ÞÞ. Thus,

(1)
T

Γ � F⟦CðΓÞ⟧⊆SðClð
S

Γ � F⟦Γ⟧ÞÞ.
However, tð

S
Γ � F⟦Γ⟧Þ¼

T
Γ � FCnðΓÞ, so Clð

S
Γ � F⟦Γ⟧Þ¼ ⟦

T
Γ � FCnðΓÞ⟧. (1) then yields:T

Γ � F⟦CðΓÞ⟧⊆Sð⟦
T

Γ � FCnðΓÞ⟧Þ.
This, in turn, yields:T

Γ � F⟦CðΓÞ⟧⊆ ⟦Cð
T

Γ � FCnðΓÞÞ⟧.
Hence,

tð⟦Cð
T

Γ � FCnðΓÞÞ⟧Þ⊆ tð
T

Γ � F⟦CðΓÞ⟧Þ.
But, tð⟦Cð

T
Γ � FCnðΓÞÞ⟧Þ¼Cð

T
Γ � FCnðΓÞÞ and tð

T
Γ � F⟦CðΓÞ⟧Þ¼Cn ð

S
Γ � FCðΓÞÞ. Hence,

we get:
Cð

T
Γ � FCnðΓÞÞ⊆Cnð

S
Γ � FCðΓÞÞ.

Next, we assume (G) and prove (g). By (G), we have:
Cð

T
X � FCnðtðXÞÞÞ⊆Cnð

S
X � FCðtðXÞÞÞ,

where F is any non-empty family of elements in V such that
S

X � FX �V . Simplifying and
using: CðtðXÞÞ¼ tðSðXÞÞ, we get:

Cð
T

X � F tðXÞÞ⊆Cnð
S

X � F tðSðXÞÞÞ.
But, Cð

T
X � F tðXÞÞ¼ tðSð⟦

T
X � F tðXÞ⟧ÞÞ, so:

tðSð⟦
T

X � F tðXÞ⟧ÞÞ⊆Cnð
S

X � F tðSðXÞÞÞ.
Hence,

⟦Cnð
S

X � F tðSðXÞÞÞ⟧⊆ ⟦tðSð⟦
T

X � F tðXÞ⟧ÞÞ⟧.
It follows that:

⟦
S

X � F tðSðXÞÞ⟧⊆Sð⟦
T

X � F tðXÞ⟧Þ.
But, ⟦

S
X � F tðSðXÞÞ⟧¼

T
X � F⟦tðSðXÞÞ⟧, so we get:T

X � F⟦tðSðXÞÞ⟧⊆Sð⟦
T

X � F tðXÞ⟧Þ.
However,

T
X � F tðXÞ¼ tð

S
X � FXÞ. Hence, ⟦

T
X � F tðXÞ⟧¼Clð

S
X � FXÞ. We get:T

X � F⟦tðSðXÞÞ⟧⊆SðClð
S

X � FXÞÞ.
But, ⟦tðSðXÞÞ⟧¼SðXÞ and SðClð

S
X � FXÞÞ¼Sð

S
X � FXÞ, so we finally get:T

X � FSðXÞ⊆Sð
S

X � FXÞ.
Sen: We first assume (s) and prove (S). Suppose that CðΓÞ[CðΔÞ¼ tðSð⟦Γ⟧ÞÞ[ tðSð⟦Δ⟧ÞÞ is

L-consistent. It follows that Sð⟦Γ⟧Þ
T
Sð⟦Δ⟧Þ≠ ;. Hence, by (s),

Sð⟦Γ⟧\⟦Δ⟧Þ⊆Sð⟦Γ⟧Þ\Sð⟦Δ⟧Þ.
It follows that,

tðSð⟦Γ⟧Þ\Sð⟦Δ⟧ÞÞ⊆ tðSð⟦Γ⟧\⟦Δ⟧ÞÞ.
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That is,
CnðtðSð⟦Γ⟧ÞÞ[ tðSð⟦Δ⟧ÞÞÞ⊆ tðSð⟦Γ[Δ⟧ÞÞ.

In other words:
CnðCðΓÞ[CðΔÞÞ⊆CðΓ[ΔÞ.

But CðΓÞ[CðΔÞ⊆CnðCðΓÞ[CðΔÞÞ, so we get:
CðΓÞ[CðΔÞ⊆CðΓ[ΔÞ.

In order to prove the other direction, we assume that SðXÞ\SðYÞ≠ ;.
Hence tðSðXÞ\SðYÞÞ is L-consistent. But, tðSðXÞ\SðYÞÞ¼ Cn
ðtðSðXÞÞ[ tðSðYÞÞÞ¼CnðCðtðXÞÞ[CðtðYÞÞÞ. Thus, CðtðXÞÞ[CðtðYÞÞ is L-consistent. It fol-
lows, by (S), that:

CðtðXÞÞ[CðtðYÞÞ⊆CðtðXÞ[ tðYÞÞ.
But, tðXÞ[ tðYÞ¼ tðX \YÞ. Hence,

CðtðXÞÞ[CðtðYÞÞ⊆CðtðX \YÞÞ.
This, however, means that:

tðSðXÞÞ[ tðSðYÞÞ⊆ tðSðX \YÞÞ.
But, tðSðXÞÞ[ tðSðYÞÞ¼ tðSðXÞ\SðYÞÞ, so:

tðSðXÞ\SðYÞÞ⊆ tðSðX \YÞÞ.
Hence,

ClðSðX \YÞÞ⊆ClðSðXÞ\SðYÞÞ:
But, ClðSðX \YÞÞ¼SðX \YÞ and the intersection of two closed sets is closed, so
ClðSðXÞ\SðYÞÞ¼SðXÞ\SðYÞ. Hence,

SðX \YÞ⊆SðXÞ\SðYÞ.
Arrow: We first assume (IIA) and prove (iia). Suppose that SðXÞ\Y ≠ ;. That is,

⟦CðtðXÞÞ⟧\Y ≠ ;, which means that CðtðXÞÞ[ tðYÞ is L-consistent. It follows by (IIA) that:
CðtðXÞ[ tðYÞÞ¼CnðCðtðXÞÞ[ tðYÞÞ.

This implies:
⟦CðtðXÞ[ tðYÞÞ⟧¼ ⟦CðtðXÞÞ[ tðYÞ⟧¼ ⟦CðtðXÞÞ⟧\⟦tðYÞ⟧.

But CðtðXÞ[ tðYÞÞ¼CðCnðtðXÞ[ tðYÞÞÞ¼CðtðX \YÞÞ. Hence,
⟦CðtðX \YÞÞ⟧¼ ⟦CðtðXÞÞ⟧\⟦tðYÞ⟧.

This means that:
SðX \YÞ¼SðXÞ\ClðYÞ.

But Y �V , so ClðYÞ¼Y . Hence,
SðX \YÞ¼SðXÞ\Y .

(Add proof of the other direction)

Proof of Lemma 5.5.
(a) Suppose that S is based on P and that P is neat. Then, we have that:

xPy iff Sðfx,ygÞ¼fxg.
Now, assume that S satisfies Aizerman and that xPy and yPz. We want to show that xPz.
Since, S is rationalisable, it satisfies Cut, so we have:

if SðXÞ⊆Y ⊆X ,then SðYÞ¼SðXÞ.
Now, let X ¼fx,y,zg and Y ¼fx,zg. Since xPy and yPz, we have that y =2SðXÞ and

z =2SðXÞ. Since P is neat, S satisfies (cp). Thus, SðXÞ≠ ;. It follows that SðXÞ¼ fxg. Thus, we
have SðXÞ⊆Y ⊆X . So by Aizerman (and Cut), SðYÞ¼SðXÞ, that is, Sðfx,zgÞ¼fxg. We con-
clude that xPz.

(b) Assume that P�1 is well-founded and that P is transitive. In order to prove Aizerman,
assume that SðXÞ⊆Y ⊆X . Let x0 �SðYÞ. In order to derive a contradiction, we assume that
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x0 =2SðXÞ. It follows that there exists some x1 �X such that x1Px0. If x1 =2SðXÞ, then there
exists some x2 �X such that x2Px1, and so on. For any n, if xn =2SðXÞ, we choose xnþ1 in such
a way that xnþ1Pxn and xnþ1 �X ; and if xn �SðXÞ, we terminate the process. Since P�1 is well-
founded, this process must terminate after a finite number of steps. Thus, we get a finite
sequence (with at least two terms) x0,x1,…,xn of elements in X such that x0 =2SðXÞ and
xn �SðXÞ and xnPxn�1P…x1Px0. By the transitivity of P, xnPx0. Since SðXÞ⊆Y , we get that
xn �Y . Thus, we have: x0 �SðYÞ (by assumption), xnPx0 and xn �Y , that is, a contradiction.
Hence, we have proved that SðYÞ⊆SðXÞ. □
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