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Abstract

The regression discontinuity (RD) design is considered to be the closest to a randomized
trial that can be applied in non-experimental settings. The design relies on a cut-off point
on a continuous baseline variable to assign individuals to treatment. The individuals just to
the right and left of the cut-off are assumed to be exchangeable – as in a randomized trial.
Any observed discontinuity in the relationship between the assignment variable and
outcome is therefore considered evidence of a treatment effect. In this paper, we describe
key advances in the RD design over the past decade and illustrate their implementation
using data from a health management intervention. We then introduce the propensity
score-based weighting technique as a complement to the RD design to correct for imbal-
ances in baseline characteristics between treated and non-treated groups that may bias RD
results. We find that the weighting strategy outperforms standard regression covariate
adjustment in the present data. One clear advantage of the weighting technique over
regression covariate adjustment is that we can directly inspect the degree to which balance
was achieved. Because of its relative simplicity and tremendous utility, the RD design
(either alone or combined with propensity score weighting adjustment) should be consid-
ered as an alternative approach to evaluate health management program effectiveness when
using observational data.

1. Introduction
Regression discontinuity (RD) represents one of the strongest
quasi-experimental designs available in observational studies
because it relies on a cut-off point on a continuous baseline vari-
able to assign individuals to treatment. The individuals just to the
right and left of the cut-off are assumed to be exchangeable – as in
a randomized trial. However, use of the RD design has been
somewhat limited, due in part to challenges to the key assumption
that the treatment assignment variable alone ensures balance (com-
parability) of other baseline covariates. One solution is to apply
propensity scoring techniques [1] to adjust for observed differ-
ences on baseline characteristics. There has been some debate
about whether propensity scores can serve this role in the RD
design. In this paper, we suggest that the propensity score
approach is in fact compatible with the RD design and provide a
detailed example using data from a health management interven-
tion. By doing so, we hope to facilitate broader use of the RD
design as a robust technique that can be used to evaluate an array
of interventions when randomization is not feasible.

The paper is organized as follows. In Section 2, we describe the
RD design in more detail and then argue for the role of the
propensity score when covariate imbalance on baseline character-
istics is encountered. In Section 3, we step back and discuss recent
developments in the RD design to enable us, in Section 4, to
describe how one particular propensity score technique – inverse
probability of treatment weighting (IPTW) – can complement the
RD design. In Section 5, we illustrate the implementation of the
combined techniques using data from a recent study estimating the
impact of a health management intervention on reducing health
care costs in a chronically ill group of individuals. We close by
discussing limitations and offering some concluding thoughts.

2. The RD design and a proposed role
for propensity score-based weighting
Observational study designs typically strive to closely replicate a
randomized controlled trial (RCT) by creating a control group that
is essentially equivalent to the treatment group on observed base-
line characteristics. This bolsters confidence in causal inferences
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about the effect of the treatment. The RD design, first described by
Thistlethwaite & Campbell [2], is perhaps the closest to a random-
ized trial found in non-experimental settings. The concept relies on
a cut-off point on a continuous baseline variable to assign indi-
viduals to treatment. The individuals just to the right and left of the
cut-off are assumed to be exchangeable – as in a randomized trial.
Thus, any observed discontinuity in the relationship between the
assignment variable and outcome is considered evidence of a treat-
ment effect.

The theoretical case made for the RD design’s strong internal
validity is based on the premise that if individuals do not have
precise control over their assignment variable score, they cannot
self-select into treatment. The inability to self-select implies that
individuals close to either side of the cut-off should be comparable
on all baseline characteristics (or stated differently, observed and
unobserved characteristics should be continuous across the cut-off
on the assignment variable). It therefore follows that in an RD
design the evaluation of the outcome variable in the neighbour-
hood of the cut-off is ‘as good as randomized’ and should provide
an unbiased estimate of the treatment effect [3].

The validity of the RD design rests on the assumption that the
treatment assignment variable alone ensures balance (comparabil-
ity) of other baseline covariates. However, there are likely to be
situations in which this assumption fails, even in the presence of
strict adherence to the cut-off (i.e. individuals do not manipulate
their treatment assignment). It is therefore important for the evalu-
ator to consider ex ante all other characteristics, other than the
treatment, that may differ systematically between those individu-
als above and below the cut-off.

To illustrate, biomarkers are routinely used to diagnose chronic
diseases with established thresholds serving as prompts to initiate
or modify treatment. However, most chronic conditions also have
complications – other diagnoses physiologically related to the
primary condition [4]. These complications generally impact mor-
bidity and mortality independent of the primary condition; there-
fore, it is not valid to assume that these complications are
monotonically associated with the assignment variable (as we
would expect in the context of the RD design). For example, assume
that an RD design was employed to evaluate the effectiveness of a
diabetes management program in reducing hospital days, where
glycosylated haemoglobin [HbA1c] was the assignment variable
and patients with values >9.0% assigned to treatment (9.0% is the
threshold used in the 2011 Physician Quality Reporting System to
indicate poor diabetes control) [5]. If there was a higher prevalence
of cardiovascular disease (a primary complication of diabetes) in
one of the groups, the estimated treatment effect would likely be
biased against that group (as cardiovascular disease accounts for
24% of total hospital days attributable to diabetes) [6].

There are several techniques available to address the issue of
balancing covariates in an RD design when the treatment assign-
ment variable alone cannot ensure comparability of other baseline
covariates. One approach is to apply inclusion/exclusion criteria as
part of the data-processing step to ensure that the pool of study
participants is relatively homogeneous on important characteris-
tics prior to the statistical analysis. Using the diabetes example
from above, the researcher could require that all individuals with
an HbA1c in the neighbourhood of the cut-off (i.e. between 8.0
and 10.0%) have cardiovascular disease (or conversely, require
that nobody does).

Alternatively, the researcher can leave the study population
unaltered and apply covariate adjustment techniques as part of the
evaluation process. The most commonly used adjustment method
is to simply include baseline covariates in the outcome regression
model. However, some have argued that the inclusion of baseline
covariates in the regression model does nothing more than reduce
the sampling variability [3,7], and in a broader sense, standard
regression adjustment may elicit biased results, most notably when
extrapolating between groups with completely non-overlapping
data or in the presence of time-dependent confounders [8,9].
Another key limitation of covariate adjustment within a regression
framework is that there is no way to validate whether the covari-
ates have adequately adjusted for imbalances between groups.

Adjustment techniques based on the propensity score offer an
attractive alternative to ensure covariate balance within the RD
design framework. The propensity score, defined as the probability
of assignment to the treatment group conditional on observed
covariates [1], controls for baseline differences between treated
and non-treated groups. Propensity scores are generally derived
from a logistic regression equation that reduces each participant’s
set of covariates to a single score, ranging from 0 to 1.0. Referring
back to the diabetes management example, the propensity score
would be the probability of having an HbA1c value >9.0%, con-
ditional on diabetes complications and all other observed charac-
teristics. Conceptually, on average, any two individuals with the
same propensity score will be balanced on all observed covariates,
thereby reducing bias that could confound the estimated treatment
effects. In contrast to regression-based adjustment, this method
allows for covariate balance to be tested directly.

Imbens and Lemieux [7] contend that the propensity score
approach may be at odds with the RD design because of the basic
requirement that there be an overlap in all baseline covariates for
which individuals are considered comparable. In the RD design,
they argue, there is naturally no overlap in the assignment variable
because of the strict cut-off, and therefore for all values of the
assignment variable the probability of assignment is either 0 or 1,
rather than in a range between 0 and 1.0 as required by the
propensity score approach [7]. We, however, offer a somewhat
different interpretation, and suggest that the propensity score
approach is mutually compatible with the RD design. In keeping
within the ‘as good as randomized’ framework of the RD design,
we can consider the assignment variable in the neighbourhood of
the cut-off as unassociated with the model (i.e. within the narrow
range of the assignment variable we consider treatment assign-
ment as equivalent to a coin toss). Thus, in estimating the propen-
sity score model the researcher would exclude the assignment
variable from the model (all other baseline covariates would be
included as usual). If indeed individuals in the neighbourhood of
the cut-off are exchangeable, then the resulting propensity score
should provide the necessary overlap in covariates for ensuring
that balance is achieved between groups.

In Section 4, we describe one particular propensity score tech-
nique, IPTW, and its mechanism for achieving balance between
treated and non-treated groups on observed baseline characteris-
tics. We then explain how the IPTW can complement the RD
design for estimating the treatment effects of an intervention when
there are differences between treatment and control groups on
observed baseline covariates. In Section 5, we illustrate the imple-
mentation of the combined techniques using data from a recent

Weighted regression discontinuity design A. Linden and J.L. Adams

© 2012 Blackwell Publishing Ltd318



health management intervention. Both of these sections require a
deeper understanding of the techniques used when implementing
the RD design. Therefore, in the next section we describe many of
the key advances made in the RD design over the past decade.

3. Implementing the RD design: recent
developments
The RD design historically involved estimation via standard para-
metric regression with the main treatment effect identified by a
statistically significant P-value for the coefficient of the treatment
variable [10–14]. A major drawback to this approach is that model
specification is based on the entire range of the assignment vari-
able and thus treatment effect estimates can be highly sensitive to
observations far away from the cut-off. As a result, the researcher
must devote substantial effort to ensuring that the functional form
of the model is correctly specified along the entire continuum of
observations (including fitting and testing higher level terms, inter-
actions, etc.). One of the most significant advances made in the RD
design over the past decade is in limiting the analysis to a range of
scores in the neighbourhood around the cut-off. This increases the
validity of the design as individuals within the neighbourhood
should be most comparable. It also reduces the likelihood that
researchers will incorrectly specify the functional form of the
model. However, it increases the importance of determining the
optimal size of the neighbourhood.

Estimation using non-parametric local linear
regression

Recently, an alternative and more flexible estimation approach for
RD has been suggested [15], which entails fitting two local linear
regressions (LLRs), one on either side of the cut-off, and then
predicting the value at the cut-off point. In general, LLR involves
fitting a model linearly around a given point on the X variable (the
assignment variable in the RD context) within a narrow range of
the data surrounding that point (called a ‘bandwidth’ or what we
call the neighbourhood) and applying a weighting scheme (called
‘kernel weights’) to down-weight the contributions of data points
further away from the given X value. This process is performed
across a series of X values in a grid, and then joined to obtain a
smoothed curve [16].

When using LLR, the researcher is responsible for choosing
both the kernel weight and bandwidth. There are several kernel
weights to choose from; however, the triangular kernel is uniquely
suited for RD because it is optimal for estimating LLRs at the
boundary (which is the cut-off in RD) [16,17]. Selecting an
optimal bandwidth is not as straightforward as choosing a kernel.
Researchers can choose between ‘rule-of-thumb’ estimators [16],
cross-validation procedures [7] or data-driven techniques [18]. In
general, when the data are relatively linear, different bandwidths
will likely elicit similar treatment estimates, and thus the choice of
bandwidth selector is less important. However, when the data
appear curvilinear, it is likely that treatment estimates will be very
sensitive to the choice of bandwidth, increasing the importance of
this choice. Lee and Lemieux [3] suggest exploring the sensitivity
of the results to a range of bandwidths using various selectors,
while McCrary [19] approaches the problem by estimating the
treatment effect using bandwidths of half and twice the size of the

basic bandwidth. Universally, commentators on the RD design
advocate visual inspection of the prediction lines superimposed on
a scatter plot of the actual data to informally assess the model fit at
the various bandwidths.

Once the kernel weight and bandwidth have been chosen, the
modelling process and derivation of treatment effects are straight-
forward. First, the LLR models are estimated separately to the left
and right of the cut-off. The actual model entails regressing the
outcome variable on the assignment variable, limited only to
values on that respective side of the cut-off. Second, the predicted
values for each model at the cut-off are stored. Third, the treatment
effect estimate is obtained by subtracting the predicted value of the
‘control’ side of the cut-off from the predicted value of the ‘treat-
ment’ side of the cut-off. Finally, this estimate is bootstrapped to
derive non-parametric standard errors and confidence intervals
(CIs).

Estimation using single model regression

While the LLR is a flexible alternative to a parametric modelling
approach, the estimates derived from both procedures should be
similar if the same bandwidth and kernel weights are applied. In
the parametric model, this entails regressing the outcome (y) on
the treatment variable (z), the assignment variable (x) and an
interaction term between treatment and assignment (z * x). Once a
bandwidth is chosen (via one of the approaches described above),
a kernel weight is manually constructed and used in the regression
model as a probability weight. For a triangle kernel, the weight
equals the bandwidth minus the individual’s assignment score.
Thus, an assignment score closer to the cut-off gets weighted more
heavily than assignment scores further away from the cut-off (with
assignment scores beyond the bandwidth receiving a zero weight).
The coefficient of the treatment parameter is the estimate of a
treatment effect.

One consideration in choosing between a parametric versus
non-parametric based approach is how standard errors are derived.
In a parametric approach, the researcher can choose between
robust analytic standard errors [20] to control for heteroscedastic-
ity or by bootstrapping [21] the beta coefficient of the treatment
parameter. In the non-parametric LLR approach, the researcher is
limited to bootstrapping. One would not expect to find substantial
differences in the standard errors derived from the two methods,
but it would be beneficial to report both if they are dissimilar.

Robustness tests

Covariate balance

One of the first steps in any evaluation, whether randomized or
observational, is to test whether treatment and control groups are
comparable on baseline characteristics. Imbalances in covariates
between groups can lead to systematic biases that may limit the
validity of study findings. In the RCT, we assume that balance is
naturally achieved in both observed and unobserved covariates.
Because of selection bias, we cannot make this assumption in
observational studies and must assess covariate balance based on
observed characteristics. For RCTs and matching-type studies,
there are several methods available to assess covariate balance
including standardized differences [22], Kolmogorov–Smirnov
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equality of distributions test [23] or diagnostic plots such as
quantile–quantile plots or box plots [24].

In an RD design, testing for covariate balance is conducted in a
similar fashion to the method used for estimating treatment effects
[3]. In the LLR technique, each baseline covariate is regressed on
the assignment variable, limited only to values on that respective
side of the cut-off, and the predicted values for each model at the
cut-off are compared. Covariates are considered balanced when
the value obtained by subtracting the predicted value of the
‘control’ side of the cut-off from the predicted value of the ‘treat-
ment’ side of the cut-off is not statistically different from zero. As
much balance as possible is desirable even if no statistically sig-
nificant differences are found.

In using a parametric modelling approach, we regress the given
baseline covariate on the treatment variable (z), the assignment
variable (x) and an interaction term between treatment and assign-
ment (z * x). The same bandwidth and kernel weights used in the
outcome model are applied here. However, in contrast to the
outcome model, the coefficient of the treatment parameter repre-
sents the estimate of covariate balance and is indicated by a non-
statistically significant coefficient (and/or CIs that cross zero).

Manipulation of treatment assignment

In contrast to an RCT where treatment assignment is unknown to
both administrators and participants prior to enrolment, in a study
using an RD design there is the possibility that individuals could
manipulate their treatment assignment. To do so, individuals
would first have to know where the cut-off score is set, and then
would need the ability to manipulate their own assignment score.
To determine the likelihood that such manipulation occurred,
McCrary [19] suggests testing the continuity in the density of the
assignment variable at the cut-off. Returning to our diabetes man-
agement program example, assume that individuals with diabetes
knew that the cut-off value for HbA1c was 9.0% and they could
manipulate their blood glucose levels to get above that level. When
reviewing the density of HbA1c scores, we would expect to see
relatively few individuals with values just under 9.0% and rela-
tively many individuals with values just over 9.0%. While a dis-
continuity in the density at the cut-off does not necessarily imply
that such manipulation occurred, it does draw attention to the
possibility and would warrant further investigation.

Testing for discontinuities away from

the true cut-off

While a discontinuity at the cut-off may represent a true treat-
ment effect, one would feel less sanguine about this result if
discontinuities were also found elsewhere along the continuum of
assignment values, especially at points where no effect is antici-
pated. Different approaches have been proposed to test for dis-
continuities away from the cut-off. Imbens and Lemieux [7]
suggest dividing each subsample (to the left and right of the
cut-off) at their respective median and testing for a discontinuity
at the median. The median is a good choice of cut-off to maxi-
mize power to detect a significant jump (as the subsample will be
evenly split on both sides). Nichols [25] suggests randomly
choosing 100 placebo cut-off points from the range of the assign-
ment variable and testing for a discontinuity. Using this approach,

the underlying assumptions of the RD design may be considered
violated if substantially more than 5% of these cases show a
statistically significant discontinuity.

4. Propensity score-based weighting
and RD
In this section, we return to our discussion of the propensity score
as an approach to address covariate imbalance in the RD design.
There are a variety of ways in which the propensity score can be
used as the basis for deriving estimated treatment effects in obser-
vational studies. One method is to match treated and non-treated
individuals on the propensity score and then conduct statistical
analyses in the usual manner on the matched pairs alone. Another
method is to construct a weight based on the conditional probabil-
ity of an individual receiving his/her own treatment (referred to as
the ‘inverse probability of treatment weight’ or IPTW) [9,26,27].
More specifically, participants receive a weight equal to the inverse
of the estimated propensity score (1/propensity score), and non-
participants receive a weight equal to the inverse of 1 minus the
estimated propensity score (1/1–propensity score). This IPTW
estimator sets the distribution of covariates to be equal to that of
the population and thus estimates the average treatment effect
(ATE). Other weighting schemes can be used to estimate different
treatment effects, such as average treatment effect on the treated or
average treatment effect on controls [28].

As a result of removing any existing association between base-
line covariates and treatment, the IPTW creates a study population
in which all individuals are considered conditionally exchange-
able. Thus, the IPTW has a two-pronged effect: (1) it ensures that
balance is achieved between the treated and non-treated groups on
baseline characteristics [29]; and (2) it offers greater confidence
that treatment effect estimates derived from observational data are
unbiased (presuming that all sources of bias were accounted for in
the estimated propensity score) [9]. In essence, the IPTW weights
the analysis so it looks as much as possible like a RCT.

The IPTW approach is a natural complement to the RD design.
First, the IPTW is intended to provide an estimate of the ATE in the
population for which treatment is appropriate [30]. This is per-
fectly aligned with the objective of the RD design which specifi-
cally estimates the ATE in the neighbourhood of the cut-off.
Second, the weights can be easily added to any of the existing RD
modelling strategies with little or no modification. For the single
parametric modelling approach, this simply involves multiplying
the IPTW weight by the kernel weight and using this new weight
in the regression. In LLR models that generate and apply the
kernel weights automatically, the IPTW weight is used without
modification directly in the modelling process. The degree to
which covariate balance is realized can then be tested using the
method described in covariate balance.

5. Example: a health management
program
In this section, we illustrate how the propensity score-based
weighting technique can be combined with the RD design in the
context of a health management program evaluation.
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Setting

Our data come from a primary care-based medical home pilot
program that invited patients to enrol if they had a chronic illness
or were predicted to have high costs in the following year. The goal
of the pilot was to lower health care costs for program participants
by providing intensified primary care that was intended to reduce
unnecessary emergency department visits and hospitalizations.

Risk score

A baseline ‘risk score’ was calculated for all potential program
participants, which indicated the expected relative cost risk of an
individual compared with the population average. The risk score
values ranged from 2 to 798 in the overall study population
(n = 2002). To demonstrate the RD design, in the present study the
risk score is used as the assignment variable. We chose the median
risk score of the treatment group (198.5) as the cut-off, dropping
all program participants with a score below the cut-off and all
non-participants with scores above this cut-off. This produced a
total sample size of 1664 individuals (184 treated and 1480 non-
treated).

Propensity score estimation and IPTW weights

A propensity score was estimated using logistic regression to
predict program participation status conditional on baseline demo-
graphic characteristics (age and gender); utilization of health ser-
vices (primary care visits, other outpatient visits, laboratory tests,
radiology tests, prescriptions filled, hospitalizations, emergency
department visits); and total medical costs (the amount paid for all
the health services). Each individual then received an IPTW based
on their actual treatment status and estimated propensity score.
Participants received a weight equal to the inverse of the estimated
propensity score (1/propensity score), and non-participants
received a weight equal to the inverse of 1 minus the estimated
propensity score (1/1–propensity score).

Outcome measure

The outcome of interest was the change in total medical costs from
the 12 months prior to the program (baseline period) to the 12
months after program initiation (program period) in treatment
versus control groups. This approach to measuring the outcome is
referred to as a differences-in-differences (DID) estimator. A posi-
tive value for the DID estimate indicates that the program partici-
pant group had an increase in costs greater than the non-participant

group, and a negative value indicates that the program participant
group had a decrease in costs greater than non-participants. The
DID strategy ensures that any variables that remain constant over
time (but are unobserved) will not bias the estimated effect [31].

Results

Outcomes

Table 1 presents the results of the unadjusted and weighted RD
regression analysis for the outcome variable – the change in total
costs. Data were analysed using the single model parametric
approach described earlier. Additionally, to test the sensitivity to
the choice of bandwidth, we followed the approach suggested by
McCrary [19] by estimating the treatment effect using bandwidths
of half and twice the size of the chosen bandwidth. An optimal
bandwidth of 100.09 was determined using the data-driven tech-
nique proposed by Imbens and Kalyanaraman [18] with a triangle
kernel weight.

As shown, the unadjusted marginal difference in pre-to-post
costs for the treatment group was $3872 higher than the non-
treated group. In other words, the treated group’s costs increased
relative to the non-treated group. However, this estimate is not
statistically significant as indicated by the 95% CIs crossing zero.

The weighted estimate and CIs (at the optimal bandwidth level)
were very similar to the unadjusted model results. For comparison,
we also estimated the difference in costs using a regression model
employing all the covariates originally used to estimate the pro-
pensity score (in lieu of using the propensity score-based weight).
This approach provided a point estimate of $4405.02 which was
$785 higher than the weighted model. Additionally, the CI (95%
CI: -2655.69 to 11 465.73) was somewhat wider than that of the
weighted model. Taken together, these findings increase our con-
fidence that the weighting technique is a reasonable approach to
adjusting for baseline characteristics without substantially altering
the magnitude of the outcome.

Also of note is that the weighted estimates at the various band-
widths were more consistent than those for the unadjusted models.
This suggests that the weighted adjustment may be less sensitive to
bandwidth selection, though future study using simulations of
various sample size and bandwidths is warranted.

Figure 1 provides a visual display of the data and unadjusted
estimates. The prediction lines for left and right sides of the cut-off
were produced using LLR with the optimal bandwidth of 100.09
and a triangle kernel weight. These are superimposed on the x-y
scatter of the actual data points. One would be hard pressed to
discern any clear discontinuity within the local neighbourhood of

Table 1 The change in costs (program period – baseline) using an optimal bandwidth (100.09), 50% bandwidth and 200% bandwidth (N treated = 79,
non-treated = 270)

Variable

Unadjusted Weighted

Estimate Low 95% High 95% Estimate Low 95% High 95%

Difference in cost (optimal) 3872.52 -3971.20 11 716.23 3619.19 -3957.21 11 195.60
Difference in cost (50%) 1986.38 -7627.24 11 600.00 3895.28 -7282.58 15 073.14
Difference in cost (200%) 1031.64 -5466.45 7 529.73 2917.06 -4061.27 9 895.38

Outcome estimate using regression with covariates = 4405.02 (95% confidence interval = -2655.69, 11 465.73).
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the cut-off. This illustration lends support to the unadjusted esti-
mates reported in Table 1. The weighted data appeared nearly
identical to the unadjusted data displayed in Fig. 1 (not shown).

Following the suggested approach of Imbens and Lemieux [7],
we also tested for discontinuities away from the actual cut-off by
dividing each subsample (to the left and right of the cut-off) at
their respective median values of the risk score (39 for the non-
participant group and 313.5 for the program participant group). No
statistically significant discontinuities were found at either point
(data not shown).

Covariate balance

As described in covariate balance, the general approach to testing
for covariate balance in the RD design involves regressing a
given baseline covariate on the assignment variable. Covariates
are considered balanced when the estimate is not statistically
different from zero (or in the case of CIs, the values cross
zero).

Table 2 provides unadjusted and weighted estimates for each of
the baseline covariates, estimated using the single regression
model with an optimal bandwidth of 100.09 and triangle kernel. As
shown, in the unadjusted approach there were several baseline
covariates with statistically significant imbalances (age, female,
primary care visits, laboratory tests and prescription refills).
However, once the weighting approach was applied, balance was
achieved across all covariates. These estimates are similar to those
found in the original evaluation data when using a matching
approach [32].

Testing for manipulation of treatment assignment

Figure 2 illustrates the density of the assignment variable (risk
score) in the neighbourhood of the cut-off together with prediction

lines and 95% CIs, using the approach suggested by McCrary [19].
As shown, there is no discontinuity at the cut-off. This is not
surprising as we set the cut-off at a rather arbitrary point in the data
specifically to demonstrate the RD design. Thus, there is no reason
to assume that individuals would (or could) manipulate their risk
score to get into the treatment group (or vice versa).

6. Discussion
In this paper, we have described and implemented recent advances
in the RD design as well as demonstrated how the propensity
score-based weighting technique complements the design. As an
additional enhancement to the overall evaluation strategy, a DID
estimator was used to control for time-constant unobserved char-
acteristics which may be correlated with the covariates in the
model. In these data, the weighting mechanism balanced the
observed baseline covariates, while in the unadjusted (conven-
tional) model the covariates remained imbalanced. Moreover, the
weighting mechanism outperformed the standard regression cova-
riate adjustment approach, which was evidenced by less variability
and a treatment effect estimate closer to the unadjusted (conven-
tional) RD treatment effect estimates. The results found here were
similar to the outcomes reported in Linden [32] that used the same
dataset with a propensity score matching approach.

Generalizability of results

Given that the present data were intended solely for illustrating the
proposed weighting approach, it is important to verify whether
these results can be replicated in other data. As a simple additional
experiment, we generated an artificial data set with 1000 observa-
tions, an outcome variable with a large treatment effect and a
covariate with a large imbalance. The results of the simulation
supported those of the example described in this paper. The mean
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treatment effect of the weighted model differed by only 1.0% from
the conventional RD model while achieving balance on the cova-
riate and exhibiting nearly identical CIs. On the other hand, the RD
model estimated with the covariate was 4.0% different than the
conventional RD model result and the CIs were slightly wider
(data available from the first author). While these results are prom-
ising, future work should examine the robustness of the approach
under many different scenarios (i.e. varying sample size, effect
size, variability, magnitude of the covariate bias, etc.).

Limitations

Many of the problems arising in the RD design have been
addressed earlier in the paper, such as model misspecification,
sensitivity to the choice of bandwidth, potential manipulation of
the assignment variable, etc.

Another potential limitation of the design may occur in set-
tings using a temporal assignment variable (such as age or cal-
endar date) with a cut-off after which everyone receives the
treatment. While in such situations individuals cannot directly
manipulate their assignment variable (unless of course they lie
about their age to receive the treatment ahead of schedule), they
can behave differently prior to crossing the cut-off in anticipation
of receiving the treatment. The biases inherent in this set-up are
similar to those in any simple pre-post study [33]. For example,
Card et al. [34] found that individuals with little or no insurance
coverage prior to age 65 tended to increase their number of
routine doctor visits after enrolling in Medicare (reflective of
moral hazard), while individuals with comprehensive insurance
prior to Medicare did not exhibit a discontinuity in the number of
routine doctor visits across the age 65 cut-off. However, by com-
paring outcomes across various socio-economic groups, Card

Table 2 Raw and weighted baseline (12
months prior to program participation)
covariates (optimal bandwidth = 100.09) (N
treated = 79, non-treated = 270) Variable

Unadjusted Weighted

Estimate
Low
95%

High
95% Estimate

Low
95%

High
95%

Demographic characteristics

Age 6.96 2.10 11.82 3.01 -4.11 10.14
Female 0.29 0.03 0.55 -0.04 -0.42 0.34

Utilization and cost

Primary care visits 3.32 0.41 6.23 -1.71 -7.27 3.85
Other outpatient visits 0.17 -0.58 0.91 -0.72 -3.02 1.58
Laboratory tests 2.54 0.42 4.65 -0.11 -2.55 2.33
Radiology tests 0.80 -0.95 2.55 -0.43 -3.34 2.47
Prescriptions filled 18.97 2.84 35.10 -8.44 -35.29 18.40
Hospitalizations 0.10 -0.09 0.29 0.06 -0.12 0.25
Emergency department visits 0.03 -0.46 0.51 -0.23 -0.95 0.49
Total costs 3356.03 -808.81 7520.88 -193.93 -3771.35 3383.48
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Figure 2 Density of the risk score (assign-
ment variable). Values to the left of zero are
for the non-participants and values to the
right are for program participants.
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[34] avoided many of the threats to validity common in single
group pre-post studies.

A limitation related to the weighting adjustment is that it can
perform poorly when the weights for a few subjects are very large.
In this situation, the standard errors of the treatment effect variable
may underestimate the true difference between the weighted esti-
mator and the population parameter it estimates [27].

The ‘fuzzy’ design

In this paper, we described the RD design in the context of situa-
tions where there is strict adherence to the cut-off (generally
referred to as the ‘sharp’ RD design). That is, all individuals on one
side of the cut-off receive no treatment and all those on the other
side of the cut-off receive the treatment (from a statistical stand-
point this means that the probability of receiving treatment
changes sharply from 0 to 1 at the cut-off). While beyond the scope
of this paper, there are situations where some individuals on either
side of the cut-off may receive the alternate treatment assignment.
Referring back to our diabetes management example from earlier
in the paper, some of those individuals meeting the enrolment
criteria (HbA1c >9.0%) will refuse to participate. On the other
hand, some individuals may be allowed to enrol in the program
even though their HbA1c levels are lower than the cut-off criteria
(perhaps because they were referred by their health care provider
as exceptional cases). Trochim [10] labelled this condition the
‘fuzzy’ RD design. For a comprehensive discussion on the fuzzy
design, the reader should refer to References [3], [7] and [15].

7. Conclusion
In this paper, we have described many of the key advances made in
the RD design over the past decade and illustrated their implemen-
tation using data from a health management intervention. Addi-
tionally, we have presented the propensity score-based weighting
technique as a complement to the RD design to correct for imbal-
ances in baseline characteristics between treated and non-treated
groups. Our results suggest that the weighting strategy outper-
forms standard regression covariate adjustment; however, this
should be confirmed using other datasets and simulations. One
clear advantage of the weighting technique over simply including
these baseline covariates in the outcome regression model is that
we can directly inspect the degree to which balance was achieved.
Because of its relative simplicity and tremendous utility, the
regression discontinuity design (either alone or combined with
propensity score weighting adjustment) should be considered as an
alternative procedure for use with observational data to evaluate
health management program effectiveness.

8. References
1. Rosenbaum, P. R. & Rubin, D. B. (1983) The central role of propensity

score in observational studies for causal effects. Biometrika, 70,
41–55.

2. Thistlethwaite, D. & Campbell, D. (1960) Regression-discontinuity
analysis: an alternative to the ex post facto experiment. Journal of
Educational Psychology, 51, 309–317.

3. Lee, D. S. & Lemieux, T. (2010) Regression discontinuity designs in
econometrics. Journal of Economic Literature, 48, 281–355.

4. Linden, A., Biuso, T. J., Gopal, A., Barker, A. F., Cigarroa, J.,
Haranath, S. P., Rinkevich, D. & Stajduhar, K. (2007) Consensus
development and application of ICD-9 codes for defining chronic
illnesses and their complications. Disease Management and Health
Outcomes, 15 (5), 315–322.

5. Centers for Medicare and Medicaid Services (2011) Physician Quality
Reporting System (Physician Quality Reporting): Measures Groups
Specifications Manual. Available at: https://www.cms.gov/pqrs/
downloads/2011_PhysQualRptg_MeasuresGroups_
SpecificationsManual_033111.pdf?agree=yes&next=Accept (last
accessed 29 June 2011).

6. American Diabetes Association (2003) Economic costs of diabetes in
the US in 2002. Diabetes Care, 26 (3), 917–932.

7. Imbens, G. W. & Lemieux, T. (2008) Regression discontinuity
designs: a guide to practice. Journal of Econometrics, 142 (2), 615–
635.

8. Freedman, D. (1999) From association to causation: some remarks on
the history of statistics. Statistics in Science, 14, 243–258.

9. Robins, J. M., Hernán, M. A. & Brumback, B. (2000) Marginal struc-
tural models and causal inference in epidemiology. Epidemiology, 11,
550–560.

10. Trochim, W. M. K. (1984) Research Design for Program Evaluation:
The Regression-Discontinuity Approach. Beverly Hills, CA: Sage
Publications.

11. Trochim, W. M. K. (1990) The regression discontinuity design. In
Research Methodology: Strengthening Causal Interpretations of Non-
experimental Data. AHCPR Conference Proceedings, PHS 90-3545
(eds L. B. Sechrest, E. Perrin & J. Bunker), pp. 119–139. Rockville,
MD: Agency for Health Care Policy and Research.

12. Trochim, W. M. K., Cappelleri, J. C. & Reichardt, C. S. (1991)
Random measurement error does not bias the treatment effect estimate
in the regression-discontinuity design: II. When an interaction effect is
present. Evaluation Review, 15, 571–604.

13. Shadish, S. R., Cook, T. D. & Campbell, D. T. (2002) Experimental
and Quasi-Experimental Designs for Generalized Causal Inference.
Boston, MA: Houghton Mifflin.

14. Linden, A., Adams, J. & Roberts, N. (2006) Evaluating disease man-
agement program effectiveness: an introduction to the regression-
discontinuity design. Journal of Evaluation in Clinical Practice, 12
(2), 124–131.

15. Hahn, J., Todd, P. & van der Klaauw, W. (2001) Identification and
estimation of treatment effects with a regression discontinuity design.
Econometrica, 69, 201–209.

16. Fan, J. & Gijbels, I. (1996) Local Polynomial Modelling and Its
Applications. London; New York and Melbourne: Chapman and Hall.

17. Cheng, M.-Y., Fan, J. & Marron, J. S. (1997) On automatic boundary
corrections. The Annals of Statistics, 25 (4), 1691–1708.

18. Imbens, G. W. & Kalyanaraman, K. (2009) Optimal Bandwidth
Choice for the Regression Discontinuity Estimator. National Bureau of
Economic Research Working Paper 14726.

19. McCrary, J. (2008) Manipulation of the running variable in the regres-
sion discontinuity design: a density test. Journal of Econometrics, 142
(2), 698–714.

20. White, H. A. (1980) A heteroscedasticity-consistent covariance matrix
estimator and a direct test of heteroscedasticity. Econometrica, 48,
817–838.

21. Linden, A., Adams, J. & Roberts, N. (2005) Evaluating disease
management program effectiveness: an introduction to the bootstrap
technique. Disease Management and Health Outcomes, 13 (3), 159–
167.

22. Flury, B. K. & Reidwyl, H. (1986) Standard distance in univariate and
multivariate analysis. The American Statistician, 40, 249–251.

23. Conover, W. J. (1999) Practical Nonparametric Statistics, 3rd edn.
New York: Wiley.

Weighted regression discontinuity design A. Linden and J.L. Adams

© 2012 Blackwell Publishing Ltd324



24. Chambers, J. M., Cleveland, W. S., Kleiner, B. & Tukey, P. A.
(1983) Graphical Methods for Data Analysis. Belmont, CA:
Wadsworth.

25. Nichols, A. (2007) Causal inference with observational data. Stata
Journal, 7 (4), 507–541.

26. Robins, J. M. (1998) Marginal structural models. 1997 Proceedings
of the Section on Bayesian Statistical Science, pp. 1–10. Alexandria,
VA: American Statistical Association.

27. Linden, A. & Adams, J. L. (2010) Using propensity score-
based weighting in the evaluation of health management programme
effectiveness. Journal of Evaluation in Clinical Practice, 16, 175–
179.

28. Nichols, A. (2008) Erratum and discussion of propensity-score
reweighting. Stata Journal, 8 (4), 532–539.

29. Rosenbaum, P. R. (1987) Model-based direct adjustment. Journal
American Statistical Association, 82, 387–394.

30. Imai, K., King, G. & Stuart, E. A. (2008) Misunderstandings between
experimentalists and observationalists about causal inference. Journal
of the Royal Statistical Society, 171 (Part 2), 481–502.

31. Buckley, J. & Shang, Y. (2003) Estimating policy and program effects
with observational data: the ‘differences-in-differences’ estimator.
Practical Assessment, Research & Evaluation, 8 (24). Available at:
http://PAREonline.net/getvn.asp?v=8&n=24 (last accessed 14 June
2011).

32. Linden, A. (2011) Identifying spin in health management evaluations.
Journal of Evaluation in Clinical Practice, 17 (6), 1223–1230.

33. Linden, A., Adams, J. & Roberts, N. (2003) An assessment of the total
population approach for evaluating disease management program
effectiveness. Disease Management, 6 (2), 93–102.

34. Card, D., Dobkin, C. & Maestas, N. (2008) The impact of nearly
universal insurance coverage on health care utilization: evidence from
Medicare. American Economic Review, 98 (5), 2242–2258.

A. Linden and J.L. Adams Weighted regression discontinuity design

© 2012 Blackwell Publishing Ltd 325


