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The brain is a complex high-order system. Body movements or mental activities are both dependent on the transmission of
information among billions of neurons. However, potential patterns are hardly discoverable due to the high dimensionality in
neural signals. Previous studies have identified rotary trajectories in rhythm and nonrhythmmovements when projecting the neural
electrical signals into a two-dimensional space. However, it is unclear how well this analogy holds at the resting state. Given the
low-frequency fluctuations noted during spontaneous neural activities using functional magnetic resonance imaging (fMRI), it
is natural to hypothesize that the neural response at resting state also shows a periodic trajectory. In this study, we explored the
potential patterns in resting state fMRI data at four frequency bands (slow 2–slow 5) on two cohorts, one of which consisted of
young and elderly adults and the other of patients with Alzheimer’s disease and normal controls (NC). The jPCA algorithm was
applied to reduce the high-dimensional BOLD signal into a two-dimensional space for visualization of the trajectory. The results
indicated that the “resting state” is a basic state showing an inherent dynamic pattern with a low frequency and long period during
normal aging, with changes appearing in the rotary period at the slow 4 frequency band (0.027–0.073Hz) during the pathological
process of Alzheimer’s disease (AD).These findings expand the original understanding that neural signals can rotate themselves and
that motor executive signals consist of neural signals. Meanwhile, the rotary period at band slow 4may be a physiological marker
for AD, and studies of this frequency band may be useful for understanding the potential pathophysiology of AD and ultimately
facilitate characterization and auxiliary diagnosis of AD.

1. Introduction

The brain is a complex high-order system. Body movements
or mental activities are all dependent on the transmission
of information among billions of neurons [1]. Studies have
generally suggested that neural activities characterize the
response to a particular movement or task [2–5]. Therefore,
scientists have been trying to decode the neural information
to identify potential patterns, hoping to infer bodymovement
or consciousness from neural signals [6–8].

Since 1995, functional magnetic resonance imaging
(fMRI) has become an important technique to explore brain
function because of its noninvasive and mature method of
data acquisition [9]. In one approach, blood oxygenation
level-dependent (BOLD) fMRI signals are recorded during
imaging to measure the fluctuations of metabolism in differ-
ent brain regions [10]. Early studies based on this approach
generally focused on task-based assessments to identify the
relationship between neural signals and task paradigms [11].
Recently, however, an increasing number of studies have
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started to investigate BOLD fluctuations at resting state to
capture the intrinsic activities that could not be measured
by task-based fMRI studies [11–13]. Previous studies have
demonstrated the existence of low-frequency (<0.1Hz) fluc-
tuations in spontaneous neural activities [14, 15], which may
be related to the basal metabolism and human physiological
motions (such as respiration and cardiac pulsation) [16–
18]. Meanwhile, the default mode network (DMN), one of
the resting state networks, was reported to be activated
periodically as a result of periodic introspection [19]. These
intrinsic activities or potential patterns are, naturally, buried
in BOLD signals.

However, there are several challenges to extract the
potential patterns from neural data. First, a lot of noise is
mixed in the intrinsic fluctuations, complicating the process
of decoding. Second, it is difficult to assess neural signals
with high dimensionality. This lack of visualization impedes
statistical analysis and observation. Potential patterns for
the neuron populations are therefore overshadowed by tidal
fluctuations of the complicated data. Finally, the analyses
model may be complicated by the high dimensionality
of neural signals, resulting in poor generalization perfor-
mance.

Recently, several studies have successfully reduced the
high-dimension neural data into a low-dimension space
(two-dimensional or three-dimensional space) for visualiza-
tion and found potential patterns. Kristan and Calabrese
investigated the swimming of leeches and found that sin-
gle neurons display firing rate oscillations at ∼1.5Hz [20].
Churchland et al. projected the neural population responses
to a two-dimensional space with the jPCA algorithm, and
the responses showed rotation trajectories in this rhythm
movement [21]. They also recorded electrical signals in
monkeys during reaching and found rotary trajectories, even
though reaching is not a rhythmmovement [21]. Meanwhile,
Hao et al. obtained similar resultswith the Laplace Eigenmaps
algorithm [22]. Hence, it is practicable and reasonable to
explore whether there is a periodic trajectory for normal and
aging subjects at the resting state, and whether these periodic
trajectory phenomena are altered with damage to the brain,
such as in the pathophysiological processes of Alzheimer’s
disease (AD).

In fact, dimensionality reduction provides us with an
approach to observe the potential patterns of high-dimension
neural signals. To date, there are few studies on visualization
of fMRI data. In this study, we tried to explore the intrinsic
dynamics of brain systems by studying potential patterns
in rs-fMRI data between the young and the elderly. The
jPCA algorithm was applied to reduce the high-dimension
BOLD signal into a two-dimensional space for visualization
of its dynamic trajectory. Subsequently, we quantitatively
analyzed the trajectory to investigate its dynamic patterns
and the working mechanism of the brain system. Finally,
the same experiments were applied to the rs-fMRI data
of AD and the normal controls (NC) to further investi-
gate changes in the patterns in the brain in a disordered
state.

2. Materials and Methods

2.1. Subjects

2.1.1. Cohort I. Twenty young adults (8 males; mean age:
22.6 years; range: 19–30 years) and twenty elderly adults
(10 males; mean age: 64.1 years; range: 56–79 years) were
recruited from the International Consortium for Brain Map-
ping (ICBM) dataset (http://fcon 1000.projects.nitrc.org/
fcpClassic/FcpTable.html). We performed the experiments
on these two groups consecutively.

2.1.2. Cohort II. Thirty-three AD patients (17 males; mean
age: 67.3 years; range: 55–89 years) and thirty-three normal
controls (18 males; mean age: 65.2 years; range: 55–85 years)
were recruited from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset (http://adni.loni.usc.edu/).

2.2. Data Preprocessing. The rs-fMRI images of cohort I were
obtained on a 3T scanner with the following parameters:
slice number = 133 and TR = 2 s. The first five images were
discarded to ensure magnetization equilibrium. The images
of cohort II were obtained on a 3T scanner with slice number
= 140 and TR = 2 s. The first 10 images were discarded.

The images of both cohorts were preprocessed with
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) and DPARSF
[23]. First, we corrected all the images in the time domain
by slice timing. Second, realignment was applied to remove
the artifacts in the BOLD signals. Subjects whose head
translation was more than 2mm or whose head rotation
exceeded 2∘ were excluded (subjects in our study had already
been screened). Third, all the datasets were normalized
to the Montreal Neurological Institute (MNI) template.
The images were smoothed with a standard 4mm full-
width-at-half-maximum Gaussian kernel to decrease the
effects of spatial noise. Fourth, the datasets were drifted and
filtered to four frequency bands, that is, slow 2–slow 5. These
frequency bands cover 0.198–0.25 (slow 2), 0.073–0.198
(slow 3), 0.027–0.073 (slow 4), and 0.01–0.027Hz (slow 5),
respectively. These bands are widely used in resting state
fMRI studies [24, 25]. Next, the covariates, including six
head motion parameters, global mean signal, white matter
signal, and cerebrospinal fluid signal, were removed. Finally,
we divided the whole brain into 90 regions according to the
AAL template [26–28] and averaged the BOLD signals of
each voxel belonging to the same region to represent the
BOLD fluctuation of this region. Thus, the state of the brain
at one sampling point can be described by a vector with the
length of 90.

2.3. Data Postprocessing. Given the effects of hysteresis of
hemodynamics and the relationship between the current and
previous signals [29, 30], we added the previous𝑁 (𝑁 = 20 in
this study) frames of signals to the current feature vector. As
a result, the original feature space dimension was expanded
from 90 (brain regions) to (1 + 𝑁) × 90.
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2.4. jPCA Algorithm. The jPCA algorithm was proposed by
Churchland et al., and they applied it to analyze the firing
rate data in monkeys during reaching [21]. Not only can this
algorithm retain the most variance of data while reducing
dimensionality, like principal component analysis does, but
it can also capture the most strongly rotary tendency of the
data. Since our datawere obtained at the resting state, which is
not a rhythmmovement similar to reaching, we also used this
algorithm to reduce the high dimensionality of our data. The
specific mathematical underpinnings regarding jPCA can be
seen in [21]. They are briefly described as follows.

First, traditional principal component analysis (PCA)was
applied to the original feature space to obtain dimensions rel-
evant to the dynamical structure. We followed the approach
in [21] and retained the top six principals (PCs) to capture
both expansion and rotary structures. Then, we used jPCA
to capture the most strongly rotary tendency. Specifically, the
application of jPCA yielded six coordinate bases (jPCs) that
span exactly the same space as the six principals from PCA.
That is, if a pattern cannot be described by the top six PCs, it
cannot be described by the six jPCs either and vice versa.The
top two jPCs capture the most strongly rotary tendency in
data; therefore, we further embedded the data into the space
spanned by the two jPCs. As a result, the reduced data, on
the one hand, retained the most variance (i.e., expansion and
rotary structures); on the other hand, this data captured the
most strongly rotary tendency.

In the jPCA computation, the data were fit with a time-
invariant dynamic system:

𝑥̇ (𝑡) = 𝑀skew𝑥 (𝑡) , (1)

where 𝑥(𝑡) represents the signal features at time 𝑡, 𝑥̇(𝑡) is the
derivative of 𝑥(𝑡), and 𝑀skew is a transfer matrix. Since the
jPCAcaptures the rotary tendency,𝑀skew is an antisymmetric
matrix. Thus, the aim of jPCA is to solve the optimal𝑀skew:

𝑀
∗
= arg min
𝑀

󵄩󵄩󵄩󵄩󵄩
𝑋̇ − 𝑋𝑀

󵄩󵄩󵄩󵄩󵄩
. (2)

3. Results

3.1. The Fast Fourier Transform (FFT) for the BOLD Signals of
the Cohort I. We performed FFT (the window width was the
length of the signal) for the BOLD signals of each ROI and
each subject in cohort I. For convenience, we only displayed
the hippocampus (AAL ID = 37), as it is one of the regions
known to be related to aging and AD, of the first subject in
the young group (Figure 1), and the results of other ROIs
and subjects are quite similar. The peak frequencies in four
bands were below 0.1Hz, which was consistent with most
resting state fMRI studies, which concluded that the intrinsic
frequency of resting state fMRI was below 0.1Hz.

We further identified that there were no significant
differences (𝑡-test, 𝛼 = 0.05) in peak frequency among all
the brain regions in any frequency band neither within a
group nor between groups. The overall mean frequencies of
all brain regions and all subjects were 0.0112, 0.0843, 0.0422,
and 0.0196Hz in the four bands, corresponding to periods of
89.29, 11.86, 23.70, and 51.02 s, respectively. This verified our

hypothesis that the BOLD signal, as the basis of functional
connectivity, shows a steady periodicity.

3.2. Dimensionality Reduction with the jPCA. After dimen-
sionality reduction for the feature matrix of each subject with
jPCA, as shown in Figure 2 (cubic spline interpolation was
performed for all trajectories), the trajectories of all subjects,
especially at band slow 4, showed a clockwise cycle. These
results are consistent with those for rhythmic motion in [21],
indicating that the “resting” state is not a completely static
state but a basic state that consists of a low frequency and long
duration, which could contribute to periodic introspection
and low-frequency basal metabolism.

It is interesting that the rotary trend looks more obvious
at band slow 4 and degrades as the frequency increases or
decreases. We will demonstrate this observation quantifica-
tionally later. The BOLD projections in the elderly subjects
can be seen in Figure 3, and very similar resultswere obtained.
Specifically, the trajectories show clockwise cycles and appear
more rotary at band slow 4.
𝑇-test, at a significance level of 0.05, demonstrated that

there were no significant differences in the centroids of the
trajectories between groups. We further utilized the “direct
ellipse fit” to fit each trajectory as an ellipse [31]. The results
showed that, in both the young and the elderly groups, the
long axes and short axes of each ellipse are quite similar
and the cross-term was approximately zero, indicating that
the fitted trajectories are approximate circles. The fitted
trajectories at band slow 4 are shown in Figure 4.

We subsequently transformed the coordinates of jPC1
and jPC2 to the polar coordinates for all the trajectories in
both groups. After FFT, the overall mean peak frequencies
of phase angles in the four bands were 0.0113, 0.0839, 0.0418,
and 0.0198Hz in the young participants and 0.0130, 0.0815,
0.0398, and 0.0188 Hz in the elderly participants, respectively,
which are consistent with those of the BOLD signals. More-
over, no significant difference in peak frequency was found
in any band between the young and the elderly participants.
As this variable directly reflects the rotary frequency of the
trajectory, we therefore regarded its reciprocal as the rotary
period of the trajectory. Thus, the rotary period between
the young and the elderly participants shows no significant
difference.

Combining the analyses of the time and frequency
domains, we could infer that the trajectory of resting state
BOLD signals after dimensionality reduction is approxi-
mately circular in different frequency bands.

3.3. Validation. Two criteria must be satisfied if a two-
dimensional (e.g., 𝑋 and 𝑌) signal is a circle. First, the phase
difference between 𝑋 and 𝑌 should be stable. Second, the
frequencies in 𝑋 and 𝑌 should be stable. We validated the
reduced signals in our study; the phase difference between
jPC1 and jPC2 is approximately 𝜋/2 (take the first subject of
the young at band slow 4, e.g., in Figure 5). We performed
FFT for the two jPCs as well, and the peak frequencies were
0.0407Hz in jPC1 and 0.0413Hz in jPC2. The BOLD signal
therefore satisfied the two criteria. On the other hand, the
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Figure 1: FFT for BOLD signals (for convenience, only the hippocampus of the first subject in each group is shown; the results of other ROIs
and subjects are quite similar).

peak frequency in the reduced signals is consistent with that
in the raw BOLD signals, indicating that the reduced signals
well captured the frequency features in raw signals.

In the jPCA algorithm, the data were fitted with

𝑥̇ (𝑡) = 𝑀skew𝑥 (𝑡) , (3)

where 𝑥(𝑡) is the neural state for time 𝑡 and𝑀skew is a skew-
symmetric matrix when capturing rotational dynamics. The
unconstrained𝑀 therefore provides the best fit of all possible
matrices. We evaluated the fits under the two conditions
and found that 𝑀skew was nearly as good as the fit by 𝑀 at
band slow 4 (𝑀: 𝑅2 = 0.97;𝑀skew: 𝑅

2 = 0.83 for the young;
𝑅2 = 0.81 for the old). This result is consistent with that
in [21] and much higher than that obtained with velocity-
tuned and complex-kinematic models (which can be seen as

motor executive signals), indicating that the trajectory can be
described with cycle rotation.

The coefficients of determination in the four bands were
0.41, 0.71, 0.83, and 0.70 in the young group and 0.45, 0.72,
0.81, and 0.65 in the old group, respectively.That is, the rotary
performance is best at slow 4 and degrades with an increase
or decrease in the frequency.

We calculated the angle between 𝑥 and its derivative.This
angle reflects the rotation strength of the trajectory, and the
rotation is strong when the angle is close to 𝜋/2. As shown
in Figure 6, the peak angle is around 𝜋/2 at slow 4 and much
higher than other motor executive signals [21].

The results mentioned above indicate that (1) the trajec-
tory rotates and (2) the neural signals are homologous. That
is, the BOLD and neural firing rate signals are both derived
from the neural system. Their dynamics are quite similar
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Figure 2: BOLD trajectories after projection with jPCA (one color represents one person of the young group; all trajectories were obtained
with cubic spline interpolation).

and different from those of the motor executive signals.
Churchland et al. found that electromyograms (EMGs) did
not show consistent rotations themselves, but EMGs can be
generated by low-frequency components of two rotations,
indicating that the upper signals (secondary signals) do not
rotate themselves but consist of lower neural signals with
rotary dynamics [21]. However, in our study, the BOLD
signals are secondary signals but exhibit rotary dynamics
as well. Thus, we considered that the original conclusion
could be adjusted as follows: the neural signals contain rotary
patterns, and the motor executive signals consist of neural
signals.

Meanwhile, through statistical tests, we found no differ-
ences in any result between the young and elderly partici-
pants. Specifically speaking, the trajectories in both groups
rotate with frequencies that are consistent with the peak
frequencies in the BOLD signals. The biggest coefficient of
determination was noted at slow 4. We therefore inferred that
the rotary pattern may be relative to the basal metabolism
and may be present throughout an individual’s life regardless
of age. This rotary pattern does not change with normal
aging from the global perspective. In the next section, we
investigated the rotary pattern in Alzheimer’s disease to find
whether it changes in a disordered brain.
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Figure 3: BOLD trajectories after projection with jPCA (one color represents one person of the elderly group; all trajectories were obtained
with cubic spline interpolation).
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3.4. Experimental Results for the AD and NC Groups. The
rotary performance in the AD and NC groups was similar
to that in the young and the elderly groups. We have
briefly summarized the results of the AD and NC groups.
The trajectories of both groups rotate at a long period at
different bands (e.g., slow 4 in Figure 7), and the period (or
frequency) is consistent with that of the BOLD signals. No
significant intergroup difference was noted in the centroid
of the trajectory. For both the AD and NC groups, the
biggest coefficient of determination for skew-symmetric-
matrix fitting is at band slow 4 (𝑅2 = 0.83 for the AD, and
0.82 for theNC), and the coefficient degrades as the frequency
increases or decreases.

The exciting aspect about these findings is that the rotary
period between the AD and NC groups shows significant
difference (𝑡-test, 𝑃 value < 0.05) at band slow 4. The rotary

period in the AD group is 24.45 s (0.0409Hz) and that in
the NC group is 22.37 s (0.0447Hz). Thus, the rotary pattern
slows down in the AD, which is known as a brain disordered
state.

Combining these findings with the results in the young
and elderly groups, we could infer that the rotary pattern is
associated with normal aging regardless of age but changes
when the brain shows some kind of disorder.Thus, the rotary
period at band slow 4may be a physiological marker for AD,
and studies of this frequency band may be useful for under-
standing the potential pathophysiology of AD and ultimately
help in characterization and auxiliary diagnosis of AD.

4. Discussion

Researchers usually assume that neural signals reflect phys-
ical and mental movements [2–5]; therefore, periodic activ-
ities are expected to generate periodic fluctuations. Recent
studies support this assumption and have found periodic
neural patterns in many rhythm movements [20, 21]. Fur-
thermore, some studies found rotary patterns in monkeys
during reaching, which is not a rhythm movement [21,
22]. Churchland et al. indicated that the EMG signals were
generated by low-frequency components of two rotations;
that is, upper or secondary signals consist of basic neural
signals. This is the reason why the EMGs cannot rotate
themselves but the firing rate signals can [21].

In our study, we investigated the neural trajectories
in young and elderly adults as well as in AD patients at
four frequency bands (slow 2–slow 5) in the resting state
based on BOLD signals, expanding the findings of previ-
ous studies. First, the resting state is not a strict rhythm
movement. Although low-frequency basal metabolism and
periodic introspection constitute the main components of
“resting activities,” a mass of mind drifts and responses to
undetermined environments influence the neural activities.
Rotary trajectories were found in the resting state, supporting
the conclusion that neural activities showed periodic patterns
during nonrhythmic movements. Second, BOLD signals are
upper secondary signals (rather than basic neural signals) but
showed rotary trajectories as well. This can imply that signals
from neural system show rotary trajectories, and the neurons
in motor executive systems only receive part of the control
signals from the neural system. The trajectories of signals in
the motor executive systems (e.g., those based on velocity-
tuned and complex-kinematic models and EMG) therefore
cannot rotate themselves.

In comparisons between groups, one interesting result is
that there were no significant differences in the centroids of
trajectories between young and elderly adults but the rotary
pattern in the AD patients slowed down at band slow 4. One
possible explanation for these results is that alterations of
the rotary pattern in normal controls are still undetectable
due to limitations of the sample size. Another explanation
is the possibility that the rotary pattern occurs with normal
aging regardless of age, but changes may appear at the band
slow 4 when the brain is of some kind of disorder such
as in AD. A previous study reported that slow 4 bands
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Figure 7: Trajectories at band slow 4 of (a) the AD group and (b) theNC group (one color represents one person; all trajectories were obtained
with cubic spline interpolation).

mainly reflect gray matter signals in the brain and showed
the most robust findings in the basal ganglia in spontaneous
electrophysiological recordings [25]. Abnormalities in intrin-
sic brain activity in this frequency band, identified using
resting state functionalMRI, were also reported in other AD-
related spectrum disorders such as amnestic mild cognitive
impairment and ApoE 𝜀4 allele carriers, indicating the need
for meaningful further research on the characterization of
slow 4 bands [32–34]. Combinedwith our findings, the rotary
period at band slow 4 may be a useful physiological marker
for diseases with AD-related brain damage. In our study, we
recorded the BOLD signals from the whole brain rather than
specific electrodes in a few regions. Thus, the trajectories
can reflect the activities of the whole brain without bias,
indicating that the “resting state” is not an entirely static state
but a basic state with a low frequency and long period.

Reduction of the dimensionality of neural signals not only
allowed identification of potential patterns but also helped
remove the noise for statistical analyses. This is of profound
significance in coding and decoding neural signals.

5. Conclusions

We used the jPCA algorithm to reduce the dimensionality
of BOLD signals and found rotary trajectories during the
resting state. The results indicated that the “resting state”
is a basic state, showing an inherent dynamic pattern with
a low frequency and long period, and expand the original
conclusion to that neural signals can rotate themselves
and that motor executive signals consist of neural signals.
Moreover, alterations in the rotary trajectories at the slow
4 frequency band (0.027–0.073Hz) were found in patients
with Alzheimer’s disease (AD), which may be useful for
understanding the potential pathophysiology of AD and
ultimately facilitate characterization and auxiliary diagnosis
of AD.
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