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1. Introduction

Hilbert spoke of Cantor’s universe of sets as a paradise for mathematicians: “No
one shall drive us out of the paradise that Cantor has created for us”1 – a para-
dise that seemed to have room for all the entities that a mathematician would
ever need. However, this paradise was – as we all know – threatened by para-
doxes. Similarly, what one might call Frege’s paradise – Frege’s intensional
ontology – seems large enough to accommodate many, if not all, of the abstract
entities that a logical-semanticist may use when interpreting our language and
thought: propositions (Gedanken), senses (Sinne), functions, relations, classes,
and the two truth-values, the True and the False.

Frege’s paradise, however, is also threatened by paradoxes. First, of course,
there is Russell’s paradox, that proved Frege’s theory of extensions (or classes)
to be inconsistent. There are also the semantic paradoxes that threaten his inten-
sional ontology and his theory of sense (Sinn) and denotation (Bedeutung).2

The purpose of this paper is logical rather than historical. The main objective
is to investigate how the semantical paradoxes threaten theories of propositions
and their constituents that are in a broad sense Fregean in character, rather than
to discuss whether, or to what extent, these theories were actually held by Frege.
I will, of course, also discuss ways of modifying the Fregean framework in order
to avoid the paradoxes.

Fregean theories about propositions and senses have recently received re-
newed significance, in connection with deflationary approaches to the concept
of truth that take abstract propositions as the primary truth bearers. The most
influential theory of this kind is Paul Horwich’s minimalist theory of truth (or
minimalism as it is also called).3 Horwich’s minimalism has three ingredients:

                                           
1 Hilbert (1967).
2 I follow Church (1951), Kaplan (1964), and Anderson (1980, 1987) in translating Frege’s
term ’Bedeutung’ by ’denotation’ rather than ’reference’. My reason is that I want to empha-
size the technical character of Frege’s notion of ’Bedeutung’.

3 Cf. Horwich (1998). See also Lindström (2001) for a discussion of the logical aspects of
Horwich’s minimalism about truth.
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(i) An account of the concept of truth: Horwich claims that the word ‘true’
picks out an indefinable property of propositions the content of which is ex-
hausted by (or is “implicitly defined by”) a certain theory which he calls the
minimal theory of truth, or MT for short. Roughly speaking, the axioms of MT
are all the propositions that are expressed by (non-paradoxical) instances of the
schema:

(E) The proposition that p is true iff p.

(ii) An account of the utility of the truth predicate: If the truth predicate only
occurred in what we may call primary contexts:

(a) The proposition that snow is white is true (or its sentential counter-
parts: ‘Snow is white’ is true),

then, it could be eliminated by means of the schema (E) and would thus be re-
dundant (at least in extensional contexts). However, we also want to use the
truth predicate to say things like:

(b) The continuum hypothesis is true.
(c) There are true propositions that are not supported by the available

evidence.
(d) Every sentence is such that either it or its negation is true.
(e) Most statements that Clinton made in his deposition were true.

In the latter sentences, however, the truth predicate cannot be eliminated by
means of the (E) schema. According to Horwich, the sole purpose of having a
truth predicate at all is to be able to express claims of this latter kind.

(iii) An account of the nature of truth: The property truth does not have any
underlying nature and the explanatory basic facts about truth are instances of the
(E) schema.

Horwich’s minimal theory of truth is noncommittal with respect to the nature
of propositions:

As far as the minimal theory of truth is concerned, propositions could be com-
posed of abstract Fregean senses, or of concrete objects and properties; they could
be identical to a class of sentences in some specific language, or to the meanings
of sentences, or to some new and irreducible type of entity that is correlated with
the meanings of certain sentences.4

Recently, however, Christopher Hill (2002) has developed a kind of mini-
malism along broadly Fregean lines. Hill’s discussion of truth does not take as
its starting point the truth and falsity of linguistic items. Instead, he is concerned

                                           
4 Horwich (1998), p. 17.
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with the semantic properties of thoughts, i.e., the (alleged) propositional objects
of such psychological states as beliefs, desires and intentions. Hill’s goal is to
explain what it means to say that a thought is true. Secondarily, he wants to ex-
plain what it means to say of the constituents of thoughts that they refer to or are
satisfied by things. The constituents of thoughts he refers to as concepts.

Hill makes the following fundamental assumptions about thoughts:

(i) Thoughts have logical structures.
(ii) Thoughts have concepts as their constituents.
(iii) Thoughts are individuated by their logical structures and their con-

stituent structures.

Thoughts are themselves a particular kind of concepts. Hence, thoughts can have
other thoughts as constituents.

I take these assumptions to imply the following principles:

(C) The principle of compositionality for thoughts. Thoughts that are
built up in the same way from the same concepts are identical (as-
sumptions (i) together with (ii))

(MD) The principle of maximum distinction for thoughts: Two thoughts
are identical only if they are built up in the same way from the same
concepts. (Assumption (iii)).

I am not going to discuss Hill’s original and interesting account of truth and
reference here, except to say that I regard it as a version of what I would like to
call Fregean minimalism, a deflationary approach that takes Fregean proposi-
tions (‘thoughts’) and their constituents (‘senses’) as the primary bearers of truth
and reference. Fregean minimalism is an attractive approach to truth. It is threat-
ened, however, by the kind of logical difficulties (“paradoxes”) that I am going
to discuss in this paper. Unless we can come to terms with these difficulties,
there is little hope of developing a satisfactory theory of truth and reference
along Fregean lines.

2. The Fregean ontology and the theory of sense and denotation

Let us briefly recapitulate Frege’s theory of sense and denotation and its accom-
panying ontology.

2.1. The distinction between objects and functions. Frege makes a fundamental
ontological distinction between objects and functions. We may think of objects
and functions as constituting two separate mutually exclusive domains. The ba-
sic notion when distinguishing functions from objects is functional application.



4

A function f is the kind of entity that can be applied to one or several entities
a1,..., an (within its domain or range of definition) to yield an object f(a1,..., an),
called the value of f for the arguments a1,..., an. An object, on the other hand,
cannot be applied to anything. Frege indicates this distinction by saying that
functions are incomplete (or, unsaturated), while objects are complete (or, satu-
rated). Functions are divided into levels, roughly, as follows. First-level func-
tions only take objects as arguments. Second-level functions take first-level
functions as arguments, and so on.5 The result of applying a function to some-
thing is for Frege always an object. Hence, there is in Frege’s ontology no room
for functions that yield functions as values.

In addition to functions, we may expect Frege’s ontology also to contain
properties and relations. Intuitively, we speak of items as having properties and
standing in relations to each other. Frege, however, identifies properties and re-
lations with functions of a special kind that he calls concepts. Among the ob-
jects, there are the two truth-values the True (t) and the False (f). These are ab-
stract logical objects. A Fregean concept F is a function, which for any argu-
ment (or sequence of arguments) within its domain, yields one of the truth-val-
ues, t or f, as value. So, instead of saying that an item a has the property F, Frege
says that F(a) = t. And instead of saying that, a1,..., an (in that order) stand in the
relation F to each other, Frege says that F(a1,..., an) = t. Intuitively, F(a1,..., an) =
f means that F is defined for the arguments a1,..., an, although a1,..., an do not
stand in the relation F to each other.

In the following, we shall use the term ‘attribute’ with the same meaning as
Frege’s ‘concept’.6 Thus, an n-ary attribute is an n-ary function taking a se-
quence of n items as arguments and yielding one of the truth-values t or f as val-
ues. Usually, we are only going to considering first-level attributes, i.e., attrib-
utes taking objects as arguments and yielding truth-values as values. A property
is a unary attribute and, for n ≥ 2, an n-ary relation is an n-ary attribute. If f is an
n-ary (first-level) attribute, and a1..., an are objects, then f(a1,..., an) is either t (the
True) or f (the False).

                                           
5 To be more exact, there is a type hierarchy of items of different types. First, there is the type
i of all objects; Then, for any n ≥ 1 and types α1,..., αn, there is a type [α1,..., αn] of all func-
tions f taking n arguments a1,..., an from respective types α1,..., αn and yielding an object as
value. We can assign levels to types as follows. The type i has level 0. If the maximal level
among the types α1,..., αn is n, then the type [α1,..., αn] has level n+1. Items of a type of level
n are called items of level n. Hence, objects are entities of level 0. Functions from objects to
objects, are first-level functions, etc.

6 By adopting this terminology, I can follow Alonzo Church in using the term ’concept’ for
those items that can serve as appropriate senses of linguistic expressions.
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2.2. Sense and denotation. Any well-formed expression E of a logically proper
language has a denotation (Bedeutung), den(‘E’), and a sense (Sinn), sense(‘E’).
The sense of a well-formed expression E is said to be the mode of presentation
of its denotation. We shall say that an expression denotes its denotation and ex-
presses its sense. den(‘E’) is the object designated by (or presented by)
sense(‘E’).

Singular terms (“names”) and general terms (“predicates”) have, respectively,
objects and attributes (i.e., Frege’s “concepts”) as their denotations. A sentence
has as its denotation one of the truth-values, t or f. With the possible exception
of so-called oblique contexts, the denotation of a complex expression is func-
tionally determined by the denotations of its parts. For instance, if Pt1...tn is a
sentence, where P is an n-ary predicate, and t1,..., tn are singular terms, then

(i) den(‘P’) is an n-ary relation, den(‘t1’),..., den(‘tn’) are objects, and
(ii) den(‘Pt1...tn’) = den(‘P’)(den(‘t1’),..., den(‘tn’)); which is either t or

f.

We shall assume that the principle of compositionality also applies to senses,
i.e., that the sense of a complex expression is a function of the senses of its con-
stituents and the way in which it is built up from these constituents. 7

Following Church (1951), and deviating from Frege, we speak of the entities
that can serve as appropriate senses of expressions as concepts. Thus, a concept
is anything that is capable of being the Fregean sense of a linguistic expression.
For any concept x, x is a concept of y iff x is capable of serving as the sense of
an expression denoting y. We also say that x designates y if x is a concept of y.

We follow Church in using the symbol ∆ for the concept relation, which
holds between a concept and the entity that it is a concept of. Every concept is a
concept of at most one entity, i.e.,

If ∆(x, y) and ∆(x, z), then y = z.

The denotation of an expression A is uniquely determined by its sense and by
the concept relation in the following way:

                                           
7 Although clearly part of a Fregean perspective on language, the principle of compositional-
ity was never explicitly formulated by Frege. It appears that the first attribution of the princi-
ple to Frege is in Carnap (1947, p. 121), where Carnap formulates versions of the principle of
compositionality for denotations as well as for senses. See also Church (1956), pp. 8, 9 and
Kaplan (1964) for discussions of compositionality within the context of Fregean semantics.
Whether, or in what form, Frege himself was committed to the principle is a difficult and
much debated historical question (cf. Pelletier (2001), Janssen (2001)).
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x = den(A) iff for some y, y = sense(A) and ∆(y, x).

In other words, the denotation relation is the relative product of the relation be-
tween an expression and its sense and the concept relation. A meaningful ex-
pression A will lack a denotation, if sense(A) is an empty concept, i.e., if there is
no y such that ∆(sense(A), y).

There are various kinds of concepts corresponding to the different categories
of entities in the Fregean ontology and to the different kinds of meaningful ex-
pressions in a logically well-constructed language. A singular concept is a con-
cept that can serve as an appropriate sense of a singular term in some (actual or
merely possible) language, i.e., a singular concept is a concept of an object.
Function concepts, property concepts, and relation concepts are appropriate
senses of function terms, concept terms, and relation terms, respectively. A
(Fregean) proposition is the appropriate sense of a (non-indexical) declarative
sentence, i.e., it is a concept of a truth-value. A proposition P is true if it is a
concept of the truth-value t; and it is false if it is a concept of the truth-value f.
We also sometimes speak of Fregean propositions as thoughts (Gedanken).
Thoughts, or propositions, are abstract objects that are true or false and can
serve as the contents of propositional attitudes, like belief, desires, and inten-
tions.

If we allow for meaningful sentences that lack truth-values, then the senses of
such sentences must be propositions (thoughts) that are neither true nor false.
Such propositions, that we might call empty propositions, would so to speak as-
pire to a truth-value without actually having one. Admitting empty propositions
and empty concepts could, of course, be useful in the treatment of the Liar para-
dox and other semantic paradoxes.

The question whether a Fregean theory of sense and denotation can allow for
propositions and other senses being empty, is a controversial one. However, at
least on some interpretations of the sense-denotation distinction, it makes good
sense to speak of senses that do not determine any denotation. For instance,
Carnapian intensions, i.e., functions from possible worlds to appropriate exten-
sions, may very well be partial functions that are undefined at certain worlds. A
Carnapian proposition, in particular, i.e., a proposition from possible worlds to
truth-values, may be undefined at the actual world, and thereby lack a truth-
value at the actual world. Such a Carnapian proposition would be neither true
nor false. So, if we were to identify senses with Carnapian intensions, then it
would also make sense to assume the existence of senses that do not determine
denotations and Fregean propositions that lack truth-values. Even if we inter-
preted Fregean senses as structured entities that are built up from Carnapian in-
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tensions, it would still make sense to let such senses not to determine denota-
tions at some worlds. Frege, of course, did not allow for the senses of the ex-
pressions of a well-constructed formal language to be empty.

The distinction between objects and functions also applies to concepts
(senses). Thus, singular concepts and propositions are themselves objects, while
function concepts, property concepts, and relation concepts are functional (“un-
saturated”) in character.

We say that an object a satisfies a property concept F if and only if a has the
property F determined by F, i.e., if and only if F(a) = t. In general, a sequence
<a1,.., an> of objects satisfies an n-ary relation concept R if and only R(a1,..., an)
= t. Finally, a proposition P is true iff P designates the truth-value t. P is false iff
P designates f.

It is important, on the Fregean view, to distinguish between propositions
(thoughts) and judgments. A proposition is an abstract object that is either true
or false. A judgment, on the other hand, is a type of mental act: the judgment
that ϕ is the mental act of affirming the truth of the proposition that ϕ. This
mental act has the proposition that ϕ as its propositional content. We can say
that the judgment is (objectively) correct just in case its propositional content is
true (designates the true). According to Frege, we perform the same act when we
judge that ϕ and when we judge that it is true that ϕ.  Thus, the judgment that
ϕ and the judgment that it is true that ϕ have the same propositional content. It
follows, that the proposition that ϕ is the very same proposition as the proposi-
tion that it is true that ϕ. That is, according to Frege, we have:

sense(‘it is true that ϕ’) = sense(‘ϕ’).

Finally, we should note that it is also important to distinguish between thinking
that ϕ in the sense of judging that ϕ, and thinking that ϕ in the sense of enter-
taining (considering, grasping) the thought that ϕ.

3. A Fregean intensional language

We consider a formal language L (or, rather a group of languages), constructed
with the purpose of representing various theories of sense and denotation.8 L is a
second-order predicate language equipped with special terms denoting proposi-
tions and concepts (Sinne); and with a symbol ∆ (Church’s concept relation) for
the relation of a concept being a concept of an object, a function, or an attribute.

                                           
8 The language L is an extension – with special sense terms and the concept relation ∆ – of the
modernized version of Frege’s Begriffschrift described in Zalta (2003).
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The well-formed expressions of L are divided into the following categories:
(a) singular terms, denoting objects; (b) n-ary predicate terms (for n ≥ 1), de-
noting n-ary attributes; (c) n-ary function terms (for n ≥ 1), denoting n-ary func-
tions from objects to objects; and (d) formulas, denoting truth-values.

For every closed well-formed expression X, L contains another well-formed
expression <X> that functions as a name of the sense of X. Syntactically, but not
semantically, X is a part of <X>. This means that the ordinary substitution rules
for co-denoting expressions do not apply inside contexts of the form <...>. We
say that <X> is the sense-name corresponding to X, and we speak of the sym-
bols ‘<’ and ‘>’ as sense-quotes.

We deviate from Frege’s original approach by not counting the truth-values
true and false among the domain of ordinary objects. Thus, L is interpreted in-
formally relative to the following domains of entities: (i) the domain U of ob-
jects; (ii) the domain {t, f} of the truth-values true and false; (iii) for each n ≥ 1,
the domain Un → U of all n-ary functions from objects to objects; and, finally,
(iv) for each n ≥ 1, the domain Un →  {t, f} of all n-ary attributes, i.e., n-ary
functions from objects to truth-values. Since concepts (senses) of objects, so-
called singular concepts, are themselves objects, they belong to U. Likewise,
concepts of truth-values, i.e., propositions, also belong to U. Predicate concepts
and function concepts are identified with appropriate functions that map singular
concepts to propositions and singular concepts, respectively. Hence, they are
(identified with) appropriate n-ary functions.

If σ is a sentence or a singular term, then the sense of σ is an object and <σ>
is a singular term denoting the sense of σ. If X is an n-ary predicate term, then
we let <X> denote a function from objects to objects representing the sense of
X. We define this function in such a way that for all closed singular terms τ1,...,
τn, <Xτ1...τn> denotes the result of applying the function denoted by <X> to the
singular concepts denoted by <τ1>,..., <τn>.

To be more precise: If X is a closed n-ary predicate term with sense F and de-
notation F, then <X> is an n-ary function term that denotes an n-ary first-level
function GF satisfying the following condition: if c1,..., cn are singular concepts
of the objects a1,..., an, respectively, then GF(c 1,..., cn) = the proposition [F, c1,...,
cn], i.e., the Fregean proposition which is the result of applying the predicate
concept F to the singular concepts c1,..., cn. Intuitively speaking, GF is a function
from singular concepts to propositions that represents the predicate concept F.
We call GF the concept function representing the predicate concept F.9 Hence,

                                           
9 Strictly speaking, GF is not uniquely defined since we have not indicated how the function is
defined for arguments that are not concepts. This can easily be remedied by assigning the
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for every closed n-ary predicate term X, <X> denotes the concept function rep-
resenting the sense of X. In the following, however, we will always identify the
concept F with the concept function GF. Thus, for any singular terms τ1,..., τn,

(1) sense(‘Xτ1...,τn’) = den(‘<X>’)(sense(‘τ1’),..., sense(‘τn’)) .

Thus, we also have,

(2) den(‘<Xτ1...τn>’) = den(‘<X>’)( den(‘<τ1>’),..., den(‘<τn>’) =
den(‘<X>(<τ1>,..., <τn>)’).

Informally, we may think of <X> as a name of the sense of X.
If X is an n-ary function term, then <X> is an n-ary function term that denotes

the sense of X. We define the denotation of <X>, in analogy with the case for
predicate terms, as the concept function representing the sense of X. Thus, (1)
and (2) above also hold for sense-names <X> corresponding to function terms
X.

The language L contains the following symbols:

(i) There are object variables x, y, z,... ranging over the domain of all
objects.

(ii) For each n ≥ 1, there are predicate variables Fn, Gn,... for first level
n-ary attributes; i.e., n-ary functions from objects to truth-values.

(iii) For each n ≥ 1, there are function variables fn, gn,... for first level n-
ary functions; i.e., n-ary functions from objects to objects;

(iv) L may contain constants of the various categories of terms. Thus,
there may be object constants, predicate constants, and function
constants.

(v) L contains the logical symbols ⊥ , →, ∀ , =, with their standard clas-
sical interpretations. We define: ¬ϕ  =df (ϕ → ⊥ ), Τ =df. ¬⊥ , etc.

(vi) L contains the symbol ∆ (the concept relation symbol) as well as
sense-quotes and parentheses.

The well-formed expressions of L are built up from the symbols of L in ac-
cordance with the following formation rules:

(R1) Object variables, n-ary attribute variables, and n-ary function vari-
ables are, respectively, singular terms, n-ary predicate terms, and n-
ary function terms.

(R2) If Φ is an n-ary predicate term [n-ary function term] and τ1,..., τn are
singular terms, then Φτ1...τn is a formula [singular term].

                                                                                                                                       
function a fixed and arbitrary value for such arguments.
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(R3) ⊥  is a formula, denoting the truth-value false.
(R4) If σ and τ are singular terms, then σ = τ is a formula.
(R5) If ϕ and ψ are formulas, then (ϕ → ψ) is a formula.
(R6) If ϕ is a formula and v is an object variable, predicate variable, or

function variable, then ∀ vϕ is a formula.
(R7) If ϕ is a formula, then [λx1...xnϕ] is an n-ary predicate term which

denotes the n-ary attribute of being objects x1,..., xn such that
ϕ(x1,..., xn).

(R8) If τ  is a singular term, then [λx1...xnτ] is an n-ary function term
which denotes the n-ary function which for any objects x1,..., xn

yields the value denoted by τ(x1,..., xn).
(R9) If X is a closed singular term or a sentence (closed formula), then

<X> is a singular term denoting the sense of X. Thus, if X is a sen-
tence, then <X> denotes the proposition expressed by X.

(R10) If Φ is a closed n-ary function term or n-ary predicate term, then
<Φ> is an n-ary function term, denoting the sense function repre-
senting the sense of Φ.

(R11) If σ is a singular term and X is either a singular term or a sentence,
then ∆(σ, X) is a formula that, intuitively, says that the object de-
noted by σ is a concept of (or designates) the object denoted by X.
Hence, ∆(σ, X) is true iff the object denoted by σ is a concept of (or
designates) the object denoted by X.

(R12) If φ is an n-ary function term and Φ is an n-ary predicate or func-
tion term, then ∆(φ, Φ) is a formula that, intuitively, says that the
function denoted by φ is a concept of the function or attribute de-
noted by Φ.

Frege regarded coextensional functions as being identical. Hence, we can de-
fine:

(i) If Φ, Γ are n-ary predicate terms, then
(Φ = Γ) =df. ∀ x1...∀ xn(Φx1...xn ↔ Γ x1...xn).

(ii) If φ, γ are n-ary function terms, then
(φ = γ) =df. ∀ x1...∀ xn(φx1...xn = γx1...xn).
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4. Basic Fregean intensional logic

We now describe, in brief outline, a deductive system BFIL, (Basic Fregean
Intensional Logic) for Frege’s intensional logic.10

4.1 The extensional part. The extensional part of BFIL is an ordinary second-
order predicate logic calculus, with standard axioms and rules governing the
sentential connectives, the first- and second-order quantifiers, and the λ-terms.
Hence, the ordinary introduction and elimination rules for the existential and
universal quantifiers apply both to the first- and to the second-order quantifiers.
For the identity sign, we have the axiom:

(Id) ∀ x∀ y(x = y ↔ ∀ F(Fx ↔ Gx)).

Since, for every formula ϕ and variables x1,..., xn, the language contains a λ-
term [λx1,...,xnϕ] that denotes the n-ary attribute defined by the condition
ϕ(x1,..., xn), it is assumed that every formula with free variables designates an
attribute. Thus, the basic logic contains the following theorem schemata:

λ-conversion for λ−predicate terms:
∀ y1...∀ yn([λx1...xnϕ] ↔ ϕ(y1/x1,..., yn/xn))

Comprehension schema for attributes:
∃ F∀ x1...∀ xn(Fx1...xn ↔ ϕ),

the attribute F that the comprehension schema says exist is, of course, the same
attribute that is denoted by the term [λx1...xnϕ].

We have the following rule of proof:

Rule of substitution
The λ-term [λx1...xnϕ] may be uniformly substituted for the occur-
rence of an n-ary predicate variable Fn in any theorem of the basic
logic containing Fn free.

We also have corresponding principles for functions and λ−function terms,
which we do not state here.

4.2 The intensional part.
BFIL contains the following axioms for the concept relation and for the sense
terms.

                                           
10 The present system is simpler than Church’s (1951) logic of sense and denotation. For one
thing, it is based on standard second-order predicate logic rather than on the simple theory of
types. Moreover, the method of referring to senses by means of sense-quotes (se below) is
simpler than Church’s so-called method of direct discourse.
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First, there are axioms for the concept relation:

(A1) ∀ x∀ y∀ z(∆(x, y) ∧  ∆(x, z) → y = z),

i.e., every (singular) concept designates at most one object.

(A2) ∀ x∃ y∆(y, x),

i.e., for every object, there is a concept of that object.
The next two axioms say that for any n-ary property or function, there is an n-

ary function that is a concept of it.

(A3) ∀ Fn∃ fn∆(fn, Fn).
(A4) ∀ fn∃ gn∆(gn, fn).

Next, we have:

(A5) ∀ Fn∀ fn∀ x1...∀ xn∀ y1...∀ yn(∆(x1, y1) ∧ ...∧  ∆(xn, yn) ∧  ∆(fn, Fn) →
∆(fnx1...,xn, F

ny1...yn)),

i.e., if fn is a concept of Fn and x1,..., xn are concepts of y1,..., yn, respectively,
then fnx1...xn is a proposition which is true iff Fny1...yn; and

(A6) ∀ fn∀ gn∀ x1...∀ xn∀ y1...∀ yn(∆(x1, y1) ∧ ...∧  ∆(xn, yn) ∧ ∆( gn, fn) →
∆(gnx1...xn, f

ny1...yn),

i.e., if gn is a concept of fn and x1,..., xn are concepts of y1,..., yn, respectively,
then gnx1,...xn is a concept of the object fny1...yn.

Next, comes the axiom-schemata for the sense-terms:

(A7) For any closed singular term τ,
∆(<τ>, τ),

i.e., <τ> is a concept of τ.

(A8) For any sentence ϕ,
∆(<ϕ>, ψ) ↔ (ψ ↔ ϕ).

i.e., the proposition expressed by ϕ is a concept of (the truth-value of) ϕ.

(A9) ∀ Fn[∆(<[λx1...xnϕ]>, Fn) ↔ Fn = [λx1...xnϕ]].

(A10) ∀ fn[∆(<[λx1...xnτ]>, fn) ↔ fn = [λx1...xnτ]].

We also have the following compositionality principles for concept terms:

(A11) For any closed n-ary predicate term Φ, and closed singular terms
τ1,..., τn,

<Φτ1...τn> = <Φ><τn>...<τn>.

(A12) For any closed n-ary function term φ, and closed singular terms
τ1,..., τn,
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<φτ1...τn> = <φ><τn>...<τn>.

It is well known that the extensional part of BFIL is consistent. To see that the
full BFIL is consistent, assume that for any sentence or closed term X, <X> and
X have the same denotation and that ∆ is interpreted as the identity relation. In-
tuitively, this means that we interpret two expressions as having the same sense
if and only if they are coextensional. All of the axioms (A1)-(A12) are true un-
der this trivialization of the sense-denotation distinction. Thus, given that the
extensional part of the system is consistent, the full system BFIL is also consis-
tent.

5. Fregean truth

The notions of truth and falsity can be applied to assertions, propositions, as
well as to sentences. For Frege, these notions apply primarily to propositions
(Gedanken). The basic notions are here the two truth-values t (the True) and f
(the False). These are presumably introduced by abstraction from the notion of a
proposition (Gedanke). The general procedure that Frege followed when intro-
ducing a kind of abstract entity was by means of a principle of abstraction. Ex-
amples of such principles are:

The direction of l1 = the direction of l2 iff l1 and l2 are parallel to
each other.

The number of F’s = number of G’s iff there is a one-to-one corre-
spondence between the F’s and the G’s.

{x: F(x)} = {x: G(x)} ↔ ∀ x(Fx ↔ Gx).

A principle of abstraction provides a criterion of identity for a kind of entity.
In the days before the discovery of Russell’s paradox, Frege apparently thought
that providing an appropriate principle of abstraction for a kind of entity was
sufficient to assure the existence of the entities in question. The notion of a
truth-value comes with the following principle of abstraction:

For any two propositions p, q, the truth-value of p = the truth-value
of q iff p and q are materially equivalent, i.e., if ϕ and ψ are sen-
tences that express p and q, respectively, then (ϕ ↔ ψ).

One can then define:

The True = the truth-value of the proposition that ∀ x(x = x).
The False = the truth-value of the proposition that ∀ x(x ≠ x).
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Once the two abstract objects t (the True) and f (the False) are given, Frege
can define truth and falsity for propositions in the following way:

 (i) True(x) =df. ∆(x, Τ),

i.e., x is true iff x designates the truth-value t.

(ii) False(x) =df. ∆(x, ⊥ ),

 i.e., x is false iff x designates the truth-value f.
By axiom schema (A8) of BFIL, we get:

True(<ϕ>) ↔ ∆(<ϕ>, Τ) ↔ (Τ ↔ ϕ) ↔ ϕ.

Hence, the equivalence schema for propositional truth is a theorem of BFIL:

(E) True(<ϕ>) ↔ ϕ.

That is, as a matter of logic, the proposition that ϕ is true iff ϕ.
Frege also maintained that True(<ϕ>) and ϕ have the same sense, i.e., that the

redundancy thesis holds:

(RT) <True(<ϕ>)> = <ϕ>.11

In the article ‘Thoughts’, he writes:

...we cannot recognize a property of a thing without at the same time finding the
thought this thing has this property to be true. So with every property of a thing is
tied up a property of a thought, namely truth. It also worth noticing that the sen-
tence ‘ I smell the scent of violets’ has just the same content as the sentence ‘It is
true that I smell the scent of violets.’ So it seems, then, that nothing is added to the
thought by my ascribing to it the property of truth. And yet is it not a great result
when the scientist after much hesitation and laborious research can finally say
‘My conjecture is true’? The meaning of the word ‘true’ seems to be altogether sui
generis. May we not be dealing here with something which cannot be called a
property in the ordinary sense at all? In spite of this doubt I shall begin by ex-
pressing myself in accordance with ordinary usage, as if truth were a property,
until some more appropriate way of speaking is found.12

In spite of what Frege says here, the schema (RT) is not self-evident. Con-
sider the proposition expressed by the sentence ‘The Earth is round’. This
proposition, let us call it P, concerns the Earth and ascribes a property to it. Con-
sider, on the other hand, the proposition expressed by ‘The proposition that the
Earth is round is true’. The latter proposition is about the proposition P and de-
scribes it as being true. Since these two propositions have different subject mat-
ters, it is reasonable to conclude that they are distinct.

                                           
11 Frege’s arguments for the redundancy thesis are discussed in Pagin (2001).
12 Frege (1984), pp. 354-355.
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6. The theory of sense and denotation and the Russell-Myhill antinomy

As is well known, Frege’s logic in the Grundgesetze incorporated a theory of
extensions, or classes, that Russell proved to be inconsistent. The theory in
question was based on the following assumptions:

(F1) The comprehension schema for properties:

∃ F∀ x(Fx ↔ ϕ(x)),

i.e., every formula ϕ(x) of the language of Frege’s Grundgesetze
defines a property of objects.

(F2) For every property F of objects, there exists an object ext(F), called
the extension of F.

(F3) Frege’s Basic Law V:

∀ F∀ G(ext(F) = ext(G) ↔ ∀ x(Fx ↔ Gx)),

i.e., two properties have the same extension if and only if they are
extensionally equivalent.

Russell used the following Cantorian diagonal argument to show that these
assumptions are inconsistent.

By (F1), there is a property R, which is defined by the formula:

∃ F(x = ext(F) ∧  ¬F(x)),

i.e., R is the property of x being the extension of a property that does not apply
to x. Let us call this property the Russell property. By (F2), there is an object r
such that r = ext(R). We call r the Russell class. Using (F3), i.e., Frege’s Basic
Law V, it was easy for Russell to prove:

R(r) ↔ ¬R(r),

i.e., the Russell class has the Russell property if and only if it does not have the
Russell property. Thus, Frege’s theory of extensions, or classes, is inconsistent.

So much for Frege’s theory of extensions, or classes. But what about Frege’s
intensional ontology – his theory of propositions (thoughts) and concepts
(senses)? Is this theory consistent? One might suspect that the theory of concepts
and their objects is susceptible to paradoxes that are analogous to those of naive
set theory. Whether this is actually the case is, however, not obvious, since
Frege never axiomatized his theory of sense and denotation in a rigorous form.

It is clear, however, that theories of propositions and concepts along Fregean
lines are threatened by antinomies, in particular, variants of the Epimenides
paradox for propositions and the so-called Russell-Myhill antinomy, which is
analogous to Russell’s paradox for extensions. That the latter paradox is a threat
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has been pointed out, first by Russell in letters to Frege;13 then apparently inde-
pendently by Myhill (1958), in connection with Church’s logic of sense and de-
notation (1951); and by Anthony C. Anderson (1980, 1987), also in connection
with various versions of Church’s logic of sense and denotation. Recently Kevin
Klement, in a careful study (2002), has shown that Frege’s logical system in the
Grundgesetze becomes inconsistent when it is extended with a theory of sense
and denotation.14 Klement’s point is that Frege would have had to face the threat
of paradox, had he decided to formalize the theory of sense and denotation.

The Russell-Myhill Antinomy. The Russell-Myhill antinomy comes in several
versions. Russell’s original version of the paradox formulated in Russell (1903,
Appendix B, p. 527), can be formulated informally as follows:

(i) propositions and classes are objects.
(ii) By Cantor’s theorem, there are more classes of propositions than

there are propositions. Hence, there are more classes of objects than
there are propositions.

(iii) For any class X of objects, there is the proposition, ∀ x(x ∈  X), that
every object belongs to X.

(iv) If X and Y are distinct classes, then ∀ x(x ∈  X) and ∀ x(x ∈  Y) are
distinct propositions.

(v) From (iii) and (iv) it follows that there is a one-to-one mapping
from classes of objects to propositions. Hence, there are at least as
many propositions as there are classes of proposition.

(vi) (ii) and (v) yield a contradiction.

However, this version of the antinomy presupposes a theory of classes. We
want to prove a contradiction in the Fregean theory of sense and denotation,
without assuming a theory of classes. Instead of the above paradox, we are
looking for a paradox that is stated in terms of the Fregean notions of objects,
senses and propositions. Roughly, we want to prove something of the following
kind:

(i) There are more concepts (senses), than there are objects.
(ii) There are at least as many objects as there are senses.

                                           
13 See Klement (2002) for a detailed discussion of Frege’s reaction to Russell’s attempt to
derive a contradiction in the theory of sense and denotation. Frege did not see Russell’s new
paradox (the Russell-Myhill paradox) as a threat to his logic and philosophy of language,
since (i) it can not be formalized in the language of the Grundgesetze; and (ii) Russell’s way
of formulating the paradox, in a logical notation of his own, made Frege think that Russell’s
derivation of a contradiction was based on equivocations and misunderstandings.

14 Klement (2002), see also Klement (2001).
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Next, we are going to show that a contradiction of the desired kind, a version
of the Russell-Myhill antinomy, can be derived in a extension BFIL+ of BFIL.
The system BFIL+ appears to be sound from the point of view of Frege’s theory
of sense and denotation. We are going to analyze which of the assumptions be-
hind BFIL+ that are responsible for the contradiction.

The intuitive reasoning behind the paradox is perhaps best presented in the
form of an informal cardinality argument:

(i) From Russell’s paradox (which is, in essence, Cantor’s diagonal
proof that card(℘ (A)) > card(A)), we know that the assumption
that there exists a one-to-one mapping from properties of objects to
objects leads to a contradiction. So, intuitively speaking, there are
more properties of objects than there are objects.

(ii) For each property of objects F, there is a corresponding predicate
concept CF that is true of an object x iff x has the property F. Hence,
there are at least as many predicate concepts (i.e., concepts of prop-
erties of objects) as there are properties of objects.

(iii) From (i) and (ii) it follows that there are more predicate concepts
than there are objects.

(iv) On the other hand, for each predicate concept f, there is the propo-
sition that the concept f is satisfied by all objects. Let Π(f) be this
proposition.

(v) However, if f and g are distinct concepts, then it seems intuitively
obvious that the proposition that f is true of every object and the
proposition that g is true of every object are distinct propositions.
So, we assume that:

for all predicate concepts f , g, Π(f) = Π(g) → f = g.

Intuitively, this means that the mapping Π  from predicate concepts
to propositions is one-to-one.

(vi) Propositions are objects, so by (v) there is a one-to-one mapping
from predicate concepts to objects.

(vii) Hence, there are at least as many objects as there are predicate con-
cepts.

(viii) From (iii) and (vii) we obtain a contradiction.

Let us now replace this informal cardinality argument with an argument that
can be formalized in an extension of the language L of our Basic Fregean Inten-
sional Logic (BFIL). First, we add a new symbol Π to the language of BFIL to-
gether with the new formation rule:
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(R13) for any unary function term Φ, Π(Φ) is a singular term.

In this way, we obtain a formal language L+ with the formation rules (R1)-
(R13).

Our intuitive interpretation of Π is as follows: For any (first-level) predicate
concept f, Π(f) is the proposition that the concept f is true of all objects. Thus, if
f is a concept of the property F, then Π(f) is true iff F(x) is true for every object
x. Intuitively, Π is the concept expressed by the universal quantifier, so we can
safely assume that there is such a concept.

Next, we add a new axiom to the formal system BFIL:

(A12) ∀ f∀ g∀ F∀ G[∆(f, F) ∧  ∆(g, G) →
[Π(f) = Π(g) → ∀ x(F(x) ↔ G(x))]].

(A12) says that if f and g are concepts of the properties F and G, respectively,
and the propositions Π(f) and Π(g) are identical, then the properties F and G are
extensionally equivalent.

The intuitive motivation of (A12) is the following. Suppose that f is a concept
of F, g is a concept of G, and F and G are not extensionally equivalent. Clearly,
then, f and g must be distinct concepts. Consider now the two propositions:

Π(f): the proposition that the concept f is true of every object.
Π(g): the proposition that the concept g is true of every object.

If f ≠ g, then it seems possible to have one epistemic attitude (for instance, be-
lief) towards Π(f), without having the same attitude towards Π(g). But, for this
to be possible, Π(f) and Π(g) have to be distinct propositions.

We let BFIL+ be the system that is obtained from BFIL by extending the lan-
guage from L to L+ and by letting the axioms of BFIL+ be the axioms of BFIL,
together with all instances in L+ of axiom schemata in BFIL, together with the
new axiom (A12).

Next, we proceed to give an informal proof of a contradiction from the axi-
oms of BFIL+. It should be clear that our informal proof can actually be formal-
ized in the formal system BFIL+.

Let us say that an object x is irreflexive iff there is a predicate concept f such
that x = Π(f) and x does not satisfy f. That is, x is irreflexive iff, for some con-
cept f, (i) x is the proposition that f is true of every object; and (ii) f is not true of
x. In symbols, this becomes:

(Def. Ir) Ir(x) ↔ ∃ f∃ F(∆(f, F) ∧  x = Π(f) ∧  ¬F(x)),

Here, ‘Ir’ means irreflexive and F is the property designated by f. It follows
from the comprehension schema for properties that the property Ir exists. Thus,
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Ir = [λx∃ f∃ F(∆(f, F) ∧  x = Π(f) ∧  ¬F(x))].

Let, Ir be the sense of the predicate term defining Ir:

Ir = <[λx∃ f∃ F(∆(f, F) ∧  x = Π(f) ∧  ¬F(x))]>,

 i.e., Ir is the concept of an object being irreflexive.
By (A9), we have:

(3) ∀ F(∆(Ir, F) ↔ F = Ir).

We let

r = Π(Ir),

i.e., r is the proposition that the concept of being irreflexive is true of all object.
Next, we want to prove that:

(*) Ir(r) ↔ ¬ Ir(r).

Suppose that Ir(r), i.e., Ir(Π(Ir)). It follows, by (Def. Ir) that,

(4) ∃ f∃ F[∆(f, F) ∧  Π(Ir) = Π(f) ∧  ¬F(Π(Ir))],

Using existential instantiation and the fact that ∆(Ir, Ir) (which we derive from
(3)), we get:

(5) ∆(f, F) ∧  ∆(Ir, Ir) ∧  Π(Ir) = Π(f) ∧  ¬F(Π(Ir)).

From (5) using (A12) we get:

(6) ∀ x(F(x) ↔ Ir(x)).

(5) and (6) yield:

(7) ¬ Ir(Π(Ir)), (i.e., ¬ Ir(r)).

Thus, we have proved:

(8) Ir(r) → ¬ Ir(r).

To prove the other direction of (*), we assume ¬ Ir(r), i.e., ¬ Ir(Π(Ir)). (Def. Ir)
yields:

(9) ∀ f∀ F[∆(f, F) ∧  Π(Ir) = Π(f) → F(Π(Ir))].

From (9), we get by predicate logic:

(10) ∆(Ir, Ir) ∧  Π(Ir) = Π(Ir) → Ir(Π(Ir)).

Since we have ∆(Ir, Ir), we finally get:

(11) Ir(Π(Ir)).

Thus, we have also proved:
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(12) ¬ Ir(r) → Ir(r).

(8) and (12) yield the contradictory conclusion (*).
Since this derivation can easily be formalized in BFIL+, it follows that that

system is inconsistent.

7. The Epimenides paradox

It is now time to turn to the Epimenides paradox, a version of the Liar paradox
applied to propositions rather than sentences. 15 Suppose that one and only one
sentence is engraved on Epimenides’ tomb, namely:

(Λ) No proposition expressed by a sentence engraved on Epimenides’
tomb is true.

Let λ be the proposition expressed by the sentence Λ and let ‘Q’ be a predi-
cate constant denoting the property (Fregean concept) of being a proposition ex-
pressed by a sentence engraved on Epimenides’ tomb. We then have:

(1) λ = <∀ x(Q(x) → ¬True(x))>
(2) Q(λ)
(3) ∀ x(Q(x) → x = λ)

i.e., (1) λ  is the proposition that no object having the property Q is true; (2) λ
itself has the property Q; and (3) λ is the only object having the property Q. As
the above story shows, these assumptions are intuitively consistent.

However, we can derive a contradiction from (1) - (3):

(4) True(λ) assumption
(5) True(<∀ x(Q(x) → ¬True(x))>) 1, 4, logic of identity
(6) ∀ x(Q(x) → ¬True(x)) 5, by the (E) schema
(7) ¬True(λ) 2, 6, predicate logic
(8) ⊥ 4, 7, ⊥ -introduction
(9) ¬True(λ) 4–8, ¬ -introduction, 4 is cancelled
(10) ¬True(<∀ x(Q(x) → ¬True(x))>) 1, 9, logic of identity
(11) ¬∀ x(Q(x) → ¬True(x)) 10, the (E) schema.
(12) ∃ x(Q(x) ∧  True(x)) 11, predicate logic
(13) True(λ) 3, 12, predicate logic
(14) ⊥ 9, 13, ⊥  introduction.

                                           
15 There are, of course, countless variants of the Epimenides paradox for propositions. For
instance, C. Anthony Anderson (1987) uses the following Liar sentence: ‘Church’s favorite
proposition is not true’. The assumption is then made that the proposition expressed by this
sentence happens to be Church’s favorite proposition.
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This derivation of a contradiction from the intuitively consistent assumptions
(1)-(3) can easily be turned into a formal derivation in BFIL.

The Epimenides paradox is simpler than the Russell-Myhill antinomy, since it
can be stated in the Basic Fregean Intensional Logic, BFIL. Moreover, it does
not depend on any assumptions about the individuation of Fregean senses. On
the other hand, it is based on the assumption that situations like the one de-
scribed in the paradox do occur, or at least are possible.

8. A way out?

Let us return to the Russell-Myhill antinomy. Intuitively, the following assump-
tions built into the system BFIL+ are responsible for the contradiction:

(i) There is a domain of absolutely all objects over which the individ-
ual variables of L+ range.

(ii) Every formula ϕ(x) of L+, with x as its only free variable, defines a
property of objects.

(iii) For every property P of objects, there is a predicate concept f,
which is a concept of that property.

(iv) For every predicate concept f, there is the proposition Π(f) that f is
true of every object.

(v) Propositions are objects.
(vi) Properties (of objects) are defined for all objects.
(vii) If f and g are distinct concepts, then Π (f) and Π(g) are distinct

propositions.

By denying any of these assumptions, we can avoid the contradiction. One
way to avoid the Russell-Myhill antinomy is to give up the assumption (vii).
This assumption would not hold if we identified concepts (Fregean senses) with
Carnapian intensions, i.e. functions from possible worlds to extensions. If we let
f be the intension of ‘odd natural number’ and g the intension of ‘even natural
number’, then ‘everything is an odd natural number’ and ‘everything is an even
natural number’ are both necessarily false. Hence, they have the same Carnapian
intension. This only shows, however, that Fregean senses cannot be identified
with Carnapian intensions. Carnapian intensions are too coarse grained to play
the role of Fregean senses. (vii) is a consequence of the principle of maximum
distinction,16 and it is needed for explaining failures of substitutivity in proposi-
tional attitude contexts. So (vii) is not an assumption that a Fregean philosopher
would like to give up.

                                           
16 Cf. Section 1 above.
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The assumptions (ii)-(iii) also seem indispensable from a Fregean perspective.
These assumptions are needed in order for every well-formed expression of L+,
or any extension of L+ with additional constant symbols for objects, properties,
relations, or functions, – to have both a sense and a denotation. Assumption (v)
seems hard to deny once we admit propositions as entities and understand what
Frege means by an object.

So let us look at the remaining assumptions (i) and (vi). One interesting alter-
native would be to give up (vi), but keep the assumption (i). Presumably, that
would mean abandoning classical logic in favor of a logic with partially defined
predicates. There are such approaches in the literature, but we are not going to
consider them here. Instead, we want to see what can be accomplished within
the confines of classical logic.

8.1. The paradoxes as diagonal arguments. Now, we want to focus on the re-
maining assumption, i.e., the assumption (i) that there is a domain of absolutely
all objects for the individual quantifiers to range over. That there is a logical dif-
ficulty involved in this assumption was first stated by Bertrand Russell:

If m be a class of propositions, the proposition “every m is true” may or may not
be itself an m. But there is a one-one relation of this proposition to m: if n be dif-
ferent from m, “every n is true” is not the same proposition as “every m is true.”
Consider now the whole class of propositions of the form “every m is true,” and
having the property of not being members of their respective m’s. Let this class be
w, and let p be the proposition “every w is true”. If p is a w, it must posses the de-
fining property of w; but this property demands that p should not be a w. On the
other hand, if p be not a w, then p does possess the defining property of w, and
therefore is a w. Thus, the contradiction appears unavoidable.
...The totality of all logical objects, or of all propositions, involves, it would seem,
a fundamental logical difficulty. What the complete solution of the difficulty may
be, I have not succeeded in discovering; but as it affects the very foundations of
reasoning, I earnestly commend the study of it to the attention of all students of
logic. 17

In his later work, within the framework of the ramified theory, Russell re-
solves the paradox by denying the existence of a totality of all propositions that
one can quantify over:

Whatever we suppose to be the totality of propositions, statements about this to-
tality generate new propositions which, on pain of contradiction, must lie outside
this totality. It is useless to enlarge the totality, for that equally enlarges the scope
of statements about the totality. Hence, there must be no totality of propositions,
and “all propositions” must be a meaningless phrase.18

                                           
17

 Russell (1903), Appendix B, p. 527-528.
18 Russell (1908), (p. 154 in van Heijenoort (1967)).
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Russell’s idea is to look upon the paradoxes as diagonal arguments. Adapting
the idea to Frege’s ontologi, the idea is that every domain of entities of some
kind (in particular, any domain of objects) is extendible, in the sense that there
will always be entities of the given kind that cannot, on pain of contradiction,
belong to the given domain. The paradoxes that we have considered so far can
all be viewed in this way as diagonal arguments. Consider, first, Russell’s para-
dox for classes. Suppose that U is any domain of objects and that every property
F of objects in U, has an extension {x ∈  U: F(x)} such that:

(∀ x ∈  U)[x ∈  {x ∈  U: F(x)} ↔ F(x)].

Consider, now, the Russell class for U:

rU = {x ∈  U: F(x)}.

By Russell’s argument, rU cannot, on pain of contradiction, be a member of U.
Of course, if we assume that U is a domain containing absolutely all objects,
including all classes, we get a contradiction. But we can also view the argument
as a proof that there is no such domain.

Next, let us consider the Russell-Myhill paradox. Suppose that U is any do-
main of objects. Let IrU be the property of an object in U being non-reflexive.
IrU is the corresponding concept, and rU = Π(IrU) is the proposition that every
object in U is irreflexive. Now, for every x ∈  U,

Ir(x) ↔ ∃ f∃ F(∆(f, F) ∧  x = Π(f) ∧  ¬F(x)).

So, if rU were in U, we would have:

Ir(rU) ↔ ¬  Ir(rU).

Hence, we conclude that rU does not belong to U. Thus, U cannot contain
every object. So, this paradox too is viewed as a diagonal argument for the con-
clusion that there is no domain of absolutely all objects.

Finally, let us consider the Epimenides paradox. Consider again the inscrip-
tion on Epimenides´ tomb:

 (Λ) No proposition expressed by a sentence engraved on Epimenides’
tomb is true.

Now, we should ask ourselves what domain of objects U it is that is presup-
posed in Λ. Thus, Λ will express different propositions for different domains U.
So let us write λU for the proposition that Λ expresses relative to the domain of
quantification U. On the assumption that λU belongs to U, we can prove:

True(λU) ↔ ¬True(λU).
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Thus, λU cannot belong to U. Thus, we have still another proof that there is no
domain of absolutely all objects. A paradoxically sounding corollary is that there
cannot be any absolutely general propositions.

Our conclusion from the three paradoxes is the same: No domain of objects is
universal.19 For any domain, there are objects that cannot, on pain of contradic-
tion, belong to that domain.20

8.2. A hierarchical approach. Now, one might ask whether Frege’s ontology
and theory of sense and denotation can be modified in such a way that the as-
sumption of a universal domain of objects is given up. It may seem natural then
to look for some kind of hierarchical approach. Here, I am going give a rough
sketch of what one such approach might look like and what its philosophical
motivation might be.

Frege’s views about intensional entities, like propositions (thoughts) and con-
cepts (senses), seem to be the expression of an extreme form of Platonic realism.
Propositions, concepts, together with classes and other abstract entities, are
thought of as existing in a “third realm”, quite independently of human cognitive
or linguistic activities. From this point of view, it seems natural to assume the
existence of a fixed universal domain U containing absolutely all objects in-
cluding concrete objects in the physical world, abstract extensional objects like
sets, numbers and truth-values, as well as abstract intensional objects like propo-
sitions and singular concepts. A Platonic realist of this kind is also committed to
the universal applicability of classical two-valued logic. Frege, of course, en-
dorsed what we might call the Fregean conception of sets as extensions of prop-
erties governed by the above axioms (F1)-(F3). As we have learned from Rus-
sell’s paradox, the Fregean conception of sets is inconsistent. A Platonic realist
is not willing to give up classical logic, so a Platonic realist about sets who is
also committed to the Fregean conception of sets is in deep trouble. Fortunately,
there is a competing conception of sets that is apparently consistent, namely

                                           
19 See Glanzberg (to appear) for a defense of the claim it is impossible to quantify over abso-
lutely everything.

20 There is the fairly obvious objection that these statements are self-defeating, since they ap-
pear to presuppose quantification over absolutely all domains and all objects. I believe that
the objection can be met though, perhaps, by considering statements like ‘any domain can be
expanded’, not as ordinary quantifications realistically construed but rather, along intuition-
istic lines, as expressing rules: for any domain D, one can construct a more comprehensive
domain. However, I am not going to discuss this issue further here. See also Glanzberg’s (to
appear) discussion of this objection.
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Zermelo’s iterative conception of sets, that yields a conceptual foundation for
Zermelo-Fraenkel set theory.

The question now arises whether there is an iterative conception of proposi-
tions and their constituents that is comparable to Zermelo’s iterative conception
of sets. Perhaps, we could define a cumulative hierarchy of intensional entities
comparable to the cumulative hierarchy of sets, or perhaps, more like the hierar-
chy of constructible sets. These two hierarchies usually referred to as V and L,
respectively, differ with respect to their respective modes of defining, at a given
stage, the sets at the next stage from the old ones. In the cumulative hierarchy,
one uses the full power set operation to define the new sets, thereby referring to
all sets belonging to the full universe of sets, V, that are subsets of the given
stage. This procedure is, obviously, impredicative. When defining the various
stages of the constructible hierarchy, on the other hand, one is only allowed to
quantify over and refer to such sets that are obtained previously in the construc-
tion of the hierarchy. In this respect, the constructible hierarchy of sets is analo-
gous to Russell’s (1908) ramified theory of types, where (i) the propositions are
divided into orders; and (ii) a propositional quantifier never ranges over the to-
tality of all propositions, but only over the propositions of some given order; and
(iii) a proposition that involves quantification over the propositions of a given
order will itself be of higher order than the propositions in the domain of quanti-
fication.

Now let us see how we can construct a hierarchy of Fregean entities in a way
that is analogous to the construction of the constructible sets. First, we define a
hierarchy of objects of different order α, where α is an ordinal. We let:

(1) D0 = the domain of all extensional objects.
(2) Dn+1 = Dn ∪  {x: x is a mode of presentation (sense) of an object of

domain Dn that is defined only by reference to items of level α}.
(3) Dδ = ∪ α<δDα for δ a limit ordinal.

The definition of Dα+1 should be understood in such a way that a proposition or
concept of order α can only refer to or quantify over objects of order < α . In
other words, no impredicative propositions or concepts are allowed.

This definition of a hierarchy of propositions and concepts is analogous to the
definition of the sets in Gödel’s hierarchy of constructible sets:21 When defining
a new set at a certain level α+1 of the constructible hierarchy one allows in the
definiens only quantifiers ranging over the domain Dα and parameters (con-
stants) belonging to Dα. Similarly, a sense or “a mode of presentation” at order

                                           
21 See, for instance Devlin (1977).
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α+1 should only quantify over or refer to objects that are given previously, i.e.,
that belong to Dα.

If Dα is the domain of all objects of a certain order α, then n-ary functions of
order α are functions from (Dα)n to Dα and n-ary attributes of order α are func-
tions from (Dα)n to {t, f}. That is, functions and attributes of order α are not de-
fined for objects outside of Dα. The order of an item is the smallest ordinal α
such that the item occurs at order α.

It is important to notice that, according to this approach, there is no domain
(totality) of absolutely all objects. Consider now the concept relation ∆ between
objects. This relation does not exist as one single relation in the hierarchy. In-
stead, we have for each α > 1,  a concept relation ∆α of order α  that holds be-
tween two objects x, y in Dα iff x is a mode of presentation in Da of y. For this to
hold, the order of x must be greater than the order of y.

There is also no single notion of truth that is applicable to all propositions. In-
stead, we have the following notions of truth and falsity for each order α > 1,

Trueα(x) =df. ∆α(x, Τ)
Falseα(x) =df. ∆α(x, ⊥ ).

If ϕ is a sentence expressing a proposition of order α, then:

Trueα(<α>) ↔ α

The Russell-Myhill paradox is no longer a threat to the theory of sense and
denotation. There is not one property of an object x being irreflexive, instead we
have for each α > 1, a property Irα such that for all x ∈  Dα,

Irα(x) ↔ ∃ f∃ F(∆α(f, F) ∧  x = Π(f) ∧  ¬F(x)),

where f is a function variable of order α and F a predicate variable of order α.
Consider now the concept Irα+1  of Ira such that ∆α+1(Irα+1,  Ira) and the propo-

sition Π(Irα+1 ) that says that Irα+1 is true of all objects of order α. However, rα+1

is a proposition of level α+1, so the property Ira is not defined for rα+1. In other
words, the Russell-Myhill Paradox does not arise. The Russell Paradox and the
Liar Paradox are treated analogously.

Of course, this is only a very rough sketch of a theory of well-founded propo-
sitions and concepts. Maybe, this idea is worth pursuing. On the other hand, one
might feel the restriction to well-founded propositions to be overly confining.
However, the discussion of self-referential, or circular, senses and propositions
will have to await another occasion.*

                                           
* I am grateful to Anders Berglund, Dominic Gregory, Peter Melander, and Bertil Strömberg
for helpful suggestions and comments.
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