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Abstract: It makes sense to attribute a definite percentage of variation in some measure of behavior to variation in heredity only if
the effects of heredity and environment are truly additive. Additivity is often tested by examining the interaction effect in a two-way
analysis of variance (ANOVA) or its equivalent multiple regression model. If this effect is not statistically significant at the a = 0.05
level, it is common practice in certain fields (e.g., human behavior genetics) to conclude that the two factors really are additive and
then to use linear models, which assume additivity. Comparing several simple models of nonadditive, interactive relationships
between heredity and environment, however, reveals that ANOVA often fails to detect nonadditivity because it has much less power
in tests of interaction than in tests of main effects. Likewise, the sample sizes needed to detect real interactions are substantially
greater than those needed to detect main effects. Data transformations that reduce interaction effects also change drastically the
properties of the causal model and may conceal theoretically interesting and practically useful relationships. If the goal of partitioning
variance among mutually exclusive causes and calculating “heritability” coefficients is abandoned, interactive relationships can be

examined more seriously and can enhance our understanding of the ways living things develop.
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1. Introduction

The statistical analysis of data helps the researcher detect
consistent patterns of results that might otherwise be
obscured by uncontrolled and unknown sources of varia-
tion. Like every analytical technique, a statistical method
is based on certain assumptions about the properties of
the objects being studied. If assumptions are not valid,
the method can lead to erroneous conclusions just as
readily as can a faulty laboratory procedure. A method
can be used with confidence only if there are effective
ways to test its validity. As discussed by Crusio (in press),
certain experimental designs do not lend themselves to
tests of crucial assumptions, no matter how many obser-
vations are made. Another difficuity, the focus of this
target article, arises when a test is possible, at least in
principle, but is so insensitive that violations of assump-
tions often escape detection.

The widespread application of the analysis of variance
(ANOVA) to factorial experiments in the behavioral and
brain sciences provides a case in point. This technique,
first devised by Fisher and Mackenzie (1923) for use in
agriculture, is convenient for evaluating the results of an
experiment in which every category of one factor (e.g.,
variety of a crop species) is combined with every condi-
tion of another factor (e.g., kind or amount of fertilizer).
The classical ANOVA method is gradually being replaced
by a more flexible technique, multiple regression, which
fits data to a linear equation with one term for each
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separate “effect” in the experiment, but for simple fac-
torial designs the two procedures are essentially the same
(Edwards 1979). ANOVA partitions the total variationina
measure (e.g., crop yield) among four contributing
causes: (a) the “main” effect of variety averaged over all
kinds of fertilizer, (b) the main effect of fertilizer averaged
over all varieties, (c) the “interaction” of variety and
fertilizer, and (d) sources of variation or “error” within
each group. Interaction in a factorial experiment signifies
the departure of a group mean score from the simple sum
of the respective main effects. If present, it indicates that
crop yield depends on the specific combination of variety
and treatment. One of the great merits of the ANOVA
method is that it can readily detect interaction. Unfortu-
nately, the technique is relatively insensitive to certain
types of interaction and can be quite misleading when
interpreted uncritically.

Many psychological theories rise or fall with the occur-
rence or absence of statistical interaction. Discussing the
question of whether or not drive and reinforcement are
independent, Mackintosh (1974) wrote: “In principle,
the question should be answered easily, requiring no
more than a large factorial experiment in which several
levels of drive are combined with several magnitudes of
reinforcement, with an analysis of variance being per-
formed to test for a significant interaction of the two
factors” (p. 154). Another example is the “person-situa-
tion” question. Psychologists ask whether an individual
has a distinct personality, which remains the same in a
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variety of situations (relative stability), or whether per-
sonality is highly flexible and specific to circumstance
(situationism). It could also happen that personality
changes according to the situation but that the kind of
change depends on stable characteristics of the person
(coherence). Rival explanations such as relative stability
and coherence are often contrasted using ANOVA. Mag-
nusson and Allen (1983) state: “Though most of the
variance in a Person X Situation matrix of data is usually
because of the main effects of persons, enough variance is
left that can be explained by interindividual differences in
patterns of cross-situational profiles to support the co-
herence model” (p. 24).

The detection and interpretation of interaction are
important in virtually every area of the behavioral and
brain sciences, but they are nowhere so crucial as in
human behavior genetics, where the prevailing models
seek to partition variance between two sources, nature
and nurture. Controversies in behavior genetics (e.g.,
Henderson 1979; Wahlsten 1979) have led to further
questions about the validity and sensitivity of analysis of
variance. The answers have implications for many other
fields of study. The following discussion is therefore
directed to a specific issue in behavior genetics but can
easily be extended far beyond behavior genetics.

2. Two research agendas

Almost any characteristic of living organisms can be
shown to vary as a consequence of both heredity and
environment. Some studies attempt to understand the
causes of these individual differences by examining the
functional roles of heredity and environment in indi-
vidual development, especially how they relate to or
depend upon each other; other studies try to estimate the
strength of the influence of one factor versus the other in a
population of organisms. These two research agendas can
be contradictory. It is possible to ascribe a definite per-
centage of individual differences in a population to varia-
tion in heredity, for example, only if heredity and en-
vironment are strictly additive and act separately from
one another in the course of development.

Let us recall a theorem from introductory statistics. If
one variable, Y, is the sum of two other variables, Xand Z,
then the variance of Y is equal to:

Var(Y) = Var(X) + Var(Z) + 2Cov(XZ).

If X and Z are uncorrelated, then Cov(XZ) = 0 and the
variance of a sum is the sum of the separate variances.
Suppose X is a measure of one’s heredity (H) and Z
represents one’s environment (E). We then arrive at the
basic causal model in quantitative behavior genetics, Y =
H + E, according to which a measured characteristic of an
individual is the sum of the two separate components.
This model is the conceptual basis for analysing or parti-
tioning variance in a population, because it implies that:

Var(Y) == Var(H) + Var(E).
As expressed by Fuller and Thompson (1978) (who used P
for “phenotype” rather than Y): “The fundamental prob-
lem of quantitative behavior genetics is to partition V,
{[Var(Y) here}] into its components so as to estimate the

proportional contributions of genes and life histories to
population variability” (p. 52). The heritability coefficient
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(h?) in the broader sense expresses the proportion of
measured variation among individuals attributable to
variation in their heredities, Var(¥)/Var(Y). According to
Plomin (1988): “Behavioral genetics is only useful for
addressing the extent to which genetic and environmen-
tal variation contribute to phenotypic variation in a popu-
lation” (p. 107).

The Y = H + E model corresponds to a very simple
diagram of causal relations:

H\
E /
This implies that the influence of heredity on the devel-
opment and eventual magnitude of some characteristic is
completely separate and distinct from the influence of
environment, and that the effect of environment does not
depend on a person’s heredity. Heritability analysis, to
be valid, requires that a particular model of development
be true. Research results that cast doubt on the additivity
of H and E necessarily cast doubt on the interpretation of
heritability (McGuire & Hirsch 1977; Wahlsten 1979)
because nonadditivity of the contributing causes makes it
invalid to partition the variance into distinct components
and thereby renders a heritability coefficient meaningless
(Lewontin 1974). Quantitative genetics broadly con-
ceived can incorporate interactive effects (e.g., Cavalli-
Sforza & Feldman 1973), but heritability analysis cannot.
The direct investigation of individual development
through longitudinal observation and concurrent experi-
mental manipulation of heredity and environment, on the
one hand, makes no a priori assumption about the ad-
ditivity of H and E. Rather, it uses genetic variants to help
interrogate nature. Logically, this research agenda ought
to precede attempts to partition variance but, histor-
ically, it did not. Academic interest in hereditary sources
of individual differences in intelligence and other human
attributes preceded the scientific study of behavioral
development by many years (Fancher 1985), just as
statistical techniques designed to partition variance pre-
dated important insights into the roles of genes in
development.

Y

3. Developmental and statistical interactions

Because heritability analysis requires the absence of
statistical interaction involving H and E, and because the
basic formula Y = H + E is a model for an individual, the
question of statistical interaction is sometimes posed as a
question of whether H and E interact in the course of
development. This can lead to some confusion in termi-
nology and meaning because differing interpretations of
interaction and “interactionism” abound, especially
among psychologists.

In personality theory, for example, “interactionism” is
sometimes taken to mean that the combined effects of the
qualities of individuals and the situation in which they are
reared or tested must be considered (Bowers 1973; Mag-
nusson & Allen 1983), which to some theorists makes the
interaction term in ANOVA of critical importance. How-
ever, if one simply asserts that both factors must be
considered, this does not necessarily invalidate an ad-
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ditive model (H + E). On the contrary, it can lead to bold
claims that quantitative genetic analysis will finally re-
solve the person-situation debate (Rowe 1987).

Concerning human intelligence, Fancher (1985)
writes: “Everyone now recognizes that heredity and
environment never work in isolation, but only in
interaction with each other. From the moment of birth
onwards, each child’s real or presumed ‘nature’ helps
determine its nurture” (p. 231), as when a “bright” child
is given special advantages. He hopes scientists will
achieve “an approximate appreciation of the relative
strengths of the two factors.” Evidently, Fancher uses
“interaction” in the sense of the covariance of H and E,
which remains compatible with additivity.

Another concept of interaction is the genetically deter-
mined “norm of reaction” (Platt & Sanislow 1988), in
which the kind and degree of response of a developing
organism to a particular environment is itself assumed to
be hereditary. This notion, advocated strongly by
Schmalhausen (1849), is generally not compatible with
the additivity of effects of H and E in a factorial experi-
ment (Lewontin 1974). However, Schmalhausen defi-
nitely separated the causal contributions of H and E: “In
the development of any individual, environmental factors
act only as agents releasing form building processes and
providing conditions necessary for their realization”
(p- 2).

As Oyama (1985) has so well documented, many con-
temporary advocates of interactionism assign a one-sided
role to the genotype as the source of information giving
form to living things. Her own use of interactionism is
fundamentally different. [See also Johnston: “Develop-
mental explanation and the ontogeny of birdsong” BBS 11
{4) 1988.] The form of a developing organism is seen as a
product of the interactions among the parts of the system,
so that “the informational function of any developmental
interactant is dependent on the rest of the system”
(Oyama 1988, p. 99). If there is no developmental infor-
mation inherent in a component of a living thing apart
from its multifarious relations with other componenets, it
makes no sense to assign a certain fraction of a phe-
nomenon to one contributing cause. However, for Oyama
(1988, p. 98): “Interactionism does not dictate any partic-
ular outcome” of a study, and it does not require that
statistical interaction be observed in every experiment.

Thus, some views of developmental interaction (e.g.,
Fancher’s) are compatible with the additivity of H and E,
whereas others (Schmalhausen’s) assume nonadditivity,
and yet another (Oyama’s) makes no consistent prediction
of statistical results. Finding a statistical interaction be-
tween H and E would place heritability analysis in peril
but would not by itself allow us to draw finer distinctions
between the norm of reaction and Oyama’s
interactionism.

4. Testing alternative models

A perusal of the current literature indicates that the
heritability coefficient and the general idea of partitioning
variance are very widely accepted in behavioral science.
A rather small number of scholars may be aware of the
insecure foundations of this approach, but a large major-
ity of interested readers is not. One objective of this
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target article, therefore, is to explain clearly why and how
the presence of statistical interaction should be assessed.
To understand this problem better, let us contrast two
alternative models. The scientific method requires that,
to demonstrate that one hypothesis is true, reasonable
alternative hypotheses must be shown to be false.

Model I: Y=H + E
Model II: Y = H'E

According to the second model, heredity and environ-
ment are multiplicative rather than additive. This means
that an individual with a heredity more favorable for or
vulnerable to developing some characteristic will change
more in response to a particular change in environment
than will one with a lower value of H. For example, the
induction of neural tube defects by various doses of
insulin given to pregnant mice occurs with a steeper dose-
response curve in fetuses carrying the genes rib fusion
(Rf) or crooked (Cd) than in their littermates (Cole &
Trasler 1980). Many other reasonable models of H X E
interaction could be postulated (e.g., Cavalli-Sforza &
Feldman 1973), but this one is the simplest and reveals
the fundamental difficulty with heritability analysis. A
multiplicative model also provides good expression of a
deeper meaning of interaction, as with the formula for the
area of a triangle, where it makes no sense to assign
greater responsibility for the area to the length of the base
than to the height or vice-versa.

Let us use these models to predict the outcomes of
some simple experiments we could do in a laboratory. Let
H; represent the effect of the heredity of a particular
strain of animal and let E, represent the effect of the
environment in which it is raised. Of course, genes
themselves are sequences of nucleotide bases in DNA
molecules and as such are categorical variables, whereas
H; is taken to be a continuous variable on an interval
scale. For purposes of explication here, the usual pro-
cedure of quantitative genetics (Plomin et al. 1980) is
used, which maps genotypes at many loci onto a single
scale of measure. The value Y, is a measure of an in-
dividual i with heredity j reared in environment k, and
M, is the mean score of a large number of such or-
ganisms.

For our first experiment, let us raise equal numbers of
mice of strain 1 in two different environments, which is
the proper method for assessing the plasticity or modi-
fiability of a characteristic. The design has only two
groups.

It seems intuitively obvious that any difference in group
means, AM = M,, — M,,, must be attributable solely to
the difference in environment, because all subjects have
the same heredity. This may be reasonable logically, but
it is mathematically true in general only if Model I is
correct (or if the functions for the two strains are parallel
across the range of E,). Now, compare predictions of the
two models.

Model I: AM = (H, + E,) — (H, + E,)
=(H, - H)) + (E, - Ep) = AE
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According to Model I, the group mean difference does
not depend on which strain we choose for the
experiment.

Model II: AM = H, E, — H, E, = H,(E, — E,) = H, AE
According to Model 11, the group difference depends
jointly on the magnitude of the environmental difference
(AE) and the strain’s heredity. The larger the magnitude
of H,, the greater will be the group difference, which is a
clear case of interaction.

Next, let us compare two strains raised in the same

laboratory environment, which allows a crude measure of
heritability (Hegmann & Possidente 1981).

H, H,

£y

Compare the predictions of the two models:

Model I. AM = (H, + E)) — (H, + E))
(H, - Hy) + (E, — E,) = AH
Model II: AM = H,E, — H,E, = E,(H, — Hy) = E,AH

Again intuition tells us that AM must reflect only AH, but
according to the multiplicative model the manifestation of
a particular strain difference in heredity depends on the
environment in which the animals are raised. Under
Model II, the proportion of total variance attributable to
the strain difference is no longer a valid indication of the
magnitude of the AH effect or of “heritability” in the
usual sense.

Although the two models make very different numer-
ical predictions for both experiments, there is no practical
way to test them because there is no way to measure the
H or E component directly. Lacking this, both models
predict that the group difference will not be zero, and
virtually any outcome is consistent with either model.
Hence, an experiment must be designed so that the two
models predict distinctly different testable outcomes.
The solution is a two-way factorial experiment, in which
at least two strains are reared in at least two

environments.
H, H,
E, | My | My
E2 M12 M22

We can ask whether the difference in strain means in E,
is the same as in E,.

Model I: AM in E, = (H, + E,) — (H, + E,) = H, — H, = AH
AMinE, = (H, + E)) — (H, + E,) = H, — H, = AH
Therefore,

(AM in E,) — (AM in Ey) = AH — AH =

Model Il: AM in E, = H,E, — H,E, = E,AH
AM in E, = H,E, — H,E, = E,AH

Therefore,
(AM in E)) — (AM in E) = E,AH — E,AH = | AHAE
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Model I predicts that the strain difference will be the
same in both environments, whereas Model II predicts
they will be different. The usual way to evaluate these
alternatives is two-way analysis of variance (ANOVA), in
particular the interaction term. The additive model re-
quires that there be no significant interaction between
strain and environment, whereas Mode] II and a host of
other models expect significant interaction. This is essen-
tially the same test proposed by Plomin et al. (1977) for
use in human adoption studies. They noted that the test
proposed by Jinks and Fulker (1970) using monozygotic
twins “may confound some purely environmental effects
with genotype-environment interaction” (p. 314). Fur-
thermore, Vetta (1981) has pointed out a serious algebraic
error in the Jinks and Fulker (1970) paper which renders
their test of interaction meaningless.

If there is agreement about this general approach for
assessing H X E interaction, what are the results ofits use
in practice? Even among specialists in behavioral genet-
ics there is still widespread support for Plomin’s (1988)
view that H and E are additive and that behavioral
genetics “is only useful” for partitioning variance. Here
the problem is not a lack of understanding about the
importance of interaction in theory. Rather, there is a
divergence of opinion about its occurrence in reality. A
central issue in this regard is the sensitivity of the test of
additivity to the presence of real nonadditivity in the
data.

Interaction has been evaluated in studies of human IQ
and usually none is seen (Plomin et al. 1977; Plomin &
DeFries 1983; Plomin 1986). Generalizations have then
been made that heredity and environment are truly
additive, and sophisticated path models have been de-
rived to partition variance and covariance under the
assumption that interaction is negligible (e.g., Heath et
al. 1985; Henderson 1982; Phillips et al. 1987; Plomin et
al. 1985). On the other hand, an immense collection of
well-controlled laboratory studies of animals has pro-
vided abundant evidence of significant and illuminating
interactions between heredity and environment (Carlier
& Nosten 1987; Cole & Trasler 1980; Erlenmeyer-Kim-
ling 1972; Goodall & Guastavino 1986; Kinsley & Svare
1987). At the 1987 Behavior Genetics Association meet-
ing in Minneapolis, the concurrent sessions on human
and animal studies were almost like two separate worlds
in terms of attitudes towards interaction. Many human
behavior geneticists dismissed interaction and cited
heritability estimates with great confidence, while most
of those studying mice, rats, and fruit flies documented
one case of interaction after another and expressed skep-
ticism about heritability coefficients.

How can it be that investigators draw such different
conclusions about heredity-environment interaction? It
is argued in this target article that the commonplace tests
of interaction using ANOVA (analysis of variance) are
relatively insensitive or have relatively low power to
detect nonadditivity. The usual practice is to hypothesize
zero interaction and, if no significant interaction term is
found, to conclude that the factors are truly additive,
which is tantamount to accepting a null hypothesis of
additivity as true. In research with laboratory animals
where heredity is under experimental control and large
numbers of subjects with the same genotype can be
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assigned to rearing in distinctly different environments,
substantial interactions are often detected, whereas they
may pass unseen in an adoption study because of low
power of the statistical test. The history of this problem
suggests that serious errors of interpretation can occur if
ANOVA is applied uncritically.

5. The problem of power: History

What has been termed an “unpleasantness” about the
analysis of variance of a factorial design (Traxler 1976) was
first pointed out by Neyman (1935) in response to a
presentation on the topic by Yates (1935) at a meeting of
the Royal Statistical Society in England. Yates touted the
factorial design as a method for detecting interactions, yet
he stated that “if there is no evidence of interac-
tion . . . the two factors . . . may be regarded as ad-
ditive” (p. 193). Neyman responded with a hypothetical
numerical example in which applying certain fertilizers a,
b, and c to a plot separately reduced yields but in several
combinations increased yields. He then used Monte
Carlo simulation to generate 30 random sets of data from
his hypothetical population, obtaining 27 main effects of a
significant at the 0.01 level but nine instances when the a
main effect was significant while neither thea X bnora x
c interaction achieved significance at even the 0.05 level.
He warned that when interactions “do exist and are
somewhat malicious the method may give unsatisfactory
results” (p. 238), and he concluded that “the cause of the
trouble lies in interactions which are very large and yet,
owing to insufficient replication, are not likely to be found
significant” (p. 241).

Tang (1938) used the noncentral F distribution to
determine precisely the power of the one-way ANOVA.
Kempthorne’s (1952) influential treatise explained how to
calculate power for the one-way design and suggested
how to do it for interaction terms involving one degree of
freedom. For other situations, he assured the reader: “Tt
is a simple matter to obtain the sensitivity of any experi-
ment” (p. 225). Kempthorne noted that the results of a
factorial design may be “difficult to interpret” when
interactions are appreciable with respect to main effects
and warned the tests of additivity “may have rather low
power in detecting non-additivity” (p. 258). Scheffé
(1959) also gave examples of power for the one-way design
and claimed that “calculations for other experimental
designs are similar” (p. 62). He further advised that if
additivity of factors is to be accepted on the basis of a
nonsignificant test of interaction, “it is wise to try to
answer the question whether this test has reasonable
power” (p. 94). Thus, by 1960 the importance of the
problem of interaction for ANOVA and the proper ap-
proach to calculating power were generally understood
by expert statisticians, although the degree of insen-
sitivity to interaction was not widely known.

The work of Cohen (1977) made power calculations for
interactions more readily accessible to the less mathe-
matically sophisticated in the behavioral and brain sci-
ences. However, little use was made of this feature of the
book. Reviewing the situation in 1976, Traxler observed
that many modern experimenters interested in syn-
ergistic or other interactive effects seem to lack awareness
of the problem of low power. Kraemer and Thiemann
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(1987) remarked recently that “those who are able to do
power calculations readily are generally those who least
know the fields of application, and those who best know
the fields of application are least able to do power calcula-
tions” (p. 99). Their own work will help to overcome this
problem, except with regard to interactions in ANOVA,
which they did not discuss.

Today the problem of the power to detect interaction,
which is certainly relevant for any research involving
factorial design and ANOVA, is not generally understood
among the practitioners or the consumers of behavior
genetic research. From time to time there has been
mention of the rather low power of tests of heredity-
environment interaction (Eaves et al. 1977; Freeman
1973), but this has remained obscure in the pages of
specialty journals. The present target article tries to
explain this matter in a way that will make it comprehen-
sible for anyone familiar with basic algebra and the
ANOVA method.

6. An instructive example: Gravitation

A great danger in using ANOVA may occur when the true
state of nature is markedly nonadditive but the statistical
test is oblivious to this and misrepresents reality as
additive. What if we apply factorial design and ANOVA to
a situation known to be governed by a physical law? For
example, according to Newton’s law of universal gravita-
tion, the force (F) of attraction between two objects is
proportional to the product of their masses (m; and m,)
divided by the square of the distance (d) between their
centers of mass. The G value in the equation is the
gravitational constant.

_ Gm,;m,

dz

What would happen if a zealous advocate of heritability
analysis were transported to a physics laboratory and
asked to determine the nature of gravitation empirically?
He might construct a simple apparatus as in Figure 1,
where a 100 kg iron ball is affixed to a bench and another
iron ball is suspended by a fine wire at a distance (d’) from
the surface of the first ball. The displacement of the
second ball by the first yields a measure of force. If our
experimenter runs a study with four levels of mass (m,)
combined factorially with four distances (d’) between the
balls, as in Table 1, the results for the ANOVA will be as
shown in Tabie 2. The range of mass is limited by his
ability to move the weights and the distance is limited by
the size of the room. One presumes he makes small
measurement errors on four trials under each condition of
the study, resulting in a small within-group variance, so
that the actual means of four separate measures in each
condition deviate somewhat from the theoretical values
in Table 1.

The experimenter’s conclusions from the ANOVA
would be that both mass and distance are important for
the force, although the internal factor (mass) is rather
more important and accounts for more variance than the
external factor (distance), and that mass and distance are
additive because the interaction term is not even close to
significance. He might even proclaim a simplified law of

F
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g

Figure 1. Apparatus to measure the force of gravitational
attraction (F) between a large iron ball (m,) and a suspended iron
ball (m,) whose surfaces and centers of gravity are d’ and d em
apart, respectively.

gravitation, F = w + m + d. No doubt the interaction
would have been significant, had a wider range of mass
and distance been observed with more replications of the
experiment. Indeed, a really large sample analyzed with
the more sophisticated techniques of multiple regression
and factor analysis can lead to models of motion far more
complicated than anything ever imagined by Newton (1.
Nabi, cited in Levins & Lewontin 1985).

7. Insensitivity to H x E interaction

Insensitivity to nonadditivity is not specific to the gravita-
tion example. It is inherent in the typical use of the
analysis of variance procedure, because ANOVA regards
interaction as whatever is left over after the main effects of
each factor averaged over all levels of the other factor(s)

Table 1. Expected force of attraction (dynes)

Distance (d’)

Mass (m,) 100 125 150 175 cm
25 .0109 .0076 .0055 .0042
50 .0210 .0146 .0108 .0083
75 .0307 .0215 .0159 .0122

100 Kg .0401 .0281 .0208 .0160
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Table 2. Two-way ANOVA for data in Table 1

Source SS af MS r est w2
Mass 0.00355 3 0.00118 12.97** (.28
Distance 0.00246 3 0.00082 8.98** (.19
Mass x Distance 0.00120 9 0.00013 1.46% —
Error 0.00438 48 0.00009

*P>0.10

*% P < 0.0005

have been taken into account (Fisher & Mackenzie 1923).
To know just how insensitive it may be, one must calcu-
late statistical power.

The power of a statistical test is the probability of
rejecting a false null hypothesis. A particular hypothesis,
such as additivity of heredity and environment, may fail
to be rejected on the basis of ANOVA for one of two
reasons: (a) It may be true. (b) It may be false, but the test
may have low power. The degree of power of the test of
one hypothesis can be assessed only with reference to a
specific alternative hypothesis. Additivity must be
judged with regard to specific kinds of nonadditivity.

If the additive model of behavior genetics (Y = H + E)
predicts no significant H X E interaction, what is the
power of a test of this hypothesis against the simple
multiplicative model (Y = H-E)? This can be answered by
supposing that the true relation is multiplicative and then
determining what the results of an experiment would be.
Suppose the score of an individualis Y = H-E + €, where
€ is the deviation of that individual from the mean of all
those with the same heredity reared in the same environ-
ment. Let the values of € be normally distributed with a
mean of zero and variance o2. For simplicity, suppose the
experiment is done with ] strains reared in K different
environments, and that the levels of H are equally spaced
at h units apart and levels of E are e units apart. The score
for individual i from strain j in environment k is taken to

be
Y = (hike) + ¢,
and the expected value of all members of that group is
M, = (ik)(he).

From this relation we can easily determine the group
means, as shown below.

STRAIN (j)
- 1 2 3 ...... ]’ Mk
= M
=~ 1 | he 2he 3he Jhe (J + Dhe/2
Z,
§ 2 | 2he | 4he | 6he 9Jhe 2(J + Dhe/2
Z 3 | 3he | 6he | Ohe 3Jhe | 30 + Dhe/2
[S=B .
& K | Khe | 2Khe | 3Khe JKhe | K(J + 1)he/2

These expected means are all we need to calculate
power of the tests of main effects and interaction. Cohen
(1977) estimates power in terms of the effect size para-
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meter (f) which is homologous to the effect size measure
(d) for a £ test on two independent groups:

- M
d="2_ "2 for two groups;
5

F=IM , for J groups.
o

The standard deviation o is a measure of variation within a
group, whereas oy, is the standard deviation between
true group means. Effect size compares differences be-
tween groups to variation within groups. The d coefficient
denotes the number of standard deviations by which two
true group means differ. Cohen (1977) considers d values
0f0.2, 0.5 and 0.8 to represent small, medium, and large
effect sizes, respectively, in psychological research. The f
coefficient of effect size compares the standard deviation
between several true group means to the standard devia-
tion within a group.! Cohen (1977) considers f values of
0.1, 0.25, and 0.4 to be small, medium, and large effect
sizes, respectively, in analysis of variance with several
groups. Effect sizes tend to be smaller when there are
several groups because some of the groups are likely to
have intermediate values.

For K environments, the standard deviation of row
means is defined as

where M is the grand mean of all groups and M, is the
mean for environment k. In the case of a two-way factorial
experiment where | strains are each reared in K different
environments, the mean for environment k, My, is the
average across the J strains. It follows that:2

J + Dhe \/m

O =

4 3
Likewise for variation among the J strains,
_ K+ Dbhe [+ DJ -1

Ty 3

When J = K, a square factorial design,

_(J+Dhe [+DI-1
- 4 \/ 3

oy =0

The effect for interaction, oj, compares each group
mean, My, to the value expected from the sum of the
main effects. That is, interaction in a two-way ANOVA is
regarded as the “leftovers” after additive effects have
been taken into account. For strain j reared in environ-
ment k, the mean value expected from the two separate
main effects combined additively is

M+ (M, = M) + (My ~ M) = M, + M, — M,
and the deviation of the true group mean from this is

My = (M, + M = M) = My = M; — M, + M.
Across all J-K groups,

J K
2 2 (M — M, — My + M)

2 j=1k=1
91 \

JK
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which yields (see Note 2)

o= 20+ 00 - D + & - 1
When J = K:

_Jg+ung- Dhe

%1 12

Now, for the purpose of calculating power, the princi-
pal concern is with power of tests of main effects relative
to power of the test of interaction, which may be deter-
mined using the ratio f;;/f;. For the multiplicative model
with equal numbers of strains (J) and environments (K):

_ a0 _

NEERY

f,
fult o/o g-1

Thus, to compute power we can first specify {i; and then
determine f; from the above ratio. This is done in Table 3
for small, medium, large, and very large values of f when
there are 10 subjects per group and a = 0.05 (see Note 3).

Clearly, the test of H X E interaction when a multi-
plicative model obtains has very low power compared to
the tests of main effects, which tells us that with n = 10
the ANOVA will usually point to additivity of H and E. As
the number of strains and environments is made larger,
the power of the test of interaction becomes greater, but
even with 25 groups and 250 subjects it reaches only a
modest 57%. If the Bonferroni correction is applied to the
a level because several tests are being done simul-
taneously, the power of the tests of main effects and
interaction will both decline but the problem of the
relatively low power of the test of interaction will remain
and could even be magnified for certain effect sizes and
sample sizes.

The results for a 2 X 2 design may seem a little
perplexing at first glance. After all, there will be one
degree of freedom for the numerator and effective sample
size of 19 (see Note 3) for the tests of main effects and
interaction alike. Shouldn’t the power functions for both
main effects and interaction therefore be identical? Defi-
nitely not. The shape of the power function in ANOVA is
indeed determined by the degrees of freedom, but it is
also determined by the noncentrality parameter (Tang
1938), which is in turn determined by the effect size f (see
Note 1). The principal problem of power in two-way
ANOVA is not simply a matter of degrees of freedom.

Table 3. Power of tests of main effects of H (and E)
and H x E interaction using o = 0.05 and n = 10
subjects per group, when Y = H-E. | = number of strains
and environments.

Main
effect
size

) J= 2 3 4 5 J= 2 3 4 5

Test of

Test of strain effect interaction

0.1 9 11 14 19 5 6 6 6
0.25 31 50 71 88 7 9 12 14
0.4 67 92 99 >99 12 18 26 36
0.5 87 99 >909 >99 16 27 41 57
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Rather, it follows from the way the variance among all JK
groups is partitioned among main effects and interaction,
and this partition depends on the specific model of nonad-
ditivity chosen as an alternative to the null hypothesis of
additivity. There is no such thing as a power function
existing apart from specific numerical alternatives to the
null.

8. Reasonable alternatives to additivity

The simple multiplicative model is not the only reason-
able alternative to additivity when different strains are
involved. If the response is linear for each strain, there is
no reason why the Y intercept should always be zero, as
with Y = H-'E. Consequently, several other models
shown in Figure 2a were assessed for power of main
effects and interaction. Certain of these were similar to
models proposed for interacting genetic and cultural
inheritance (Cavalli-Sforza & Feldman 1973) and for
mental disorders (Kendler & Eaves 1986). Because the
“norm of reaction” is often not linear when a wide range of
environments is evaluated (Henry 1986), two nonlinear
models were also considered. Although it is sometimes
proposed that the norm of reaction is genetically deter-
mined (e.g., Hull 1945; Schmalhausen 1949; Via & Lande
1985), this is not realistic because the response to a new
environment also depends on prior rearing conditions
(Denenberg 1977). Nevertheless, for clarity, each model
assumes that any parameters (a, b) are specified by
heredity and that parameter values are equally spaced for
the five strains. Rather than derive the ratio of effect sizes
(fiz/f) using algebra, a computer program was written to
generate expected means for a five strain by five environ-
ment (X = value of E) design and then to calculate oy,
o, and o;. Table 4 presents power estimates for each
model whenn = 10 and o = 0.05. The largest main effect,
be it for H or E, is taken to have a large effect size, f = 0.4.

In no case does the power of the test of interaction
achieve an acceptable level of 80% or more when one or
both main effects are virtually certain to be detected with
ANOVA. Tt comes close to 80% for two Y = a + bX
models, but when main effect size is 0.3 for these, the
power of the test of main effects is 98% but the power of
the test of H X E interaction is only 46%. The power of
the test of interaction is relatively low even when the
directions of effects of environment are opposite for
several strains (Y = a + bX, Case 1, and Y = aX e~ bX), or
when the rank orders of the strains change across environ-
ments (Y = a + bX, Case 2).

a. EXPECTED VALUES FOR FIVE STRAINS

Ory-n.e 2 s Y=a+bX
20 sl Case 1
19
st ab
0
e
. e
t L L L | J O>| ] ) 1 ]
z 1z 3 i s 2z 3 4 &
o
= g Y=as+bX 10>Y=a(1-e'b><) Y = aXebX
ol
67Case2 6[
8r r
al- 4L
P [
ok oF
J i
O_J; 1 B S| ] 1 i1 i 1 o - i3 i i
1 2 3 4 5 [¢] i 2 3 4 1 2 3 4 5
ENVIRONMENT (X)
b. PROFILES OF SIMPLE MAIN EFFECTS
Cyshee I y-ne Myzarox
r Case 1
P PN S - 2k 2
z
9 [
E P . 1 ) L . 1 L L . ! 5 ;
o 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
a
Q *rv-asnx ‘Tv:au-e“) T ¥ = axesx
a Case 2 r
2 \/ 2,//~ : /’\
A

‘1 ‘2 3 4 f’) 0 1 2 3 4 1I é
ENVIRONMENT (X)

Figure 2. (a) Expected values of a measure Y under six models
for five strains of mice reared in five different environments
where levels of environment (X) are 1.0 units apart. Parameters
of each model are assumed to be determined by each strain’s
heredity. (b) Profiles of simple main effects of heredity at each
level of environment for the six models in Figure 2a, expressed
as a proportion of the combined sum of squares for heredity and
heredity by environment interaction.

The inescapable conclusion is that the usual application
of two-way ANOVA is relatively insensitive to the pres-
ence of real nonadditivity of the kind considered plausible
by many investigators. There are basically two views
about this reality. If the principal objective is to partition
variance and calculate heritability coefficients, this may
be seen as evidence that analysis of variance is “robust”
with respect to the assumption of additivity. On the other
hand, if the goal is to understand the nature of develop-
ment, the way things work, there will tend to be skep-
ticism about a statistical procedure which takes data that,
to the educated eye, show obvious differences in slopes
and shapes of the norm of reaction for different strains,
and apparently crunches them into a set of parallel
straight lines. From the latter perspective, it will be

Table 4. Effect sizes and power for six models using ] = K= 5, n = 10 and o = 0.05

Effect sizes

Power of tests of

Model fy fe £, H E HxE
Y=H+E 0.40 0.40 0.00 >99 >99 —_
Y= HE 0.40 0.40 0.19 >99 >99 36
Y = a + bX, Case 1 0.40 0.00 0.28 >99 — 78
Y = a + bX, Case 2 0.00 0.40 0.28 — >99 78
Y = a(l — e~bX) 0.26 0.40 0.14 90 >99 19
Y = aXe~bX 0.40 0.34 0.21 >99 >99 47
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difficult to understand how any inquiry could possibly
benefit from a test with inherently low power which often
vields deceptively simple results.

It is noteworthy that techniques which estimate
heritability by assuming no H X E interaction can yield
strongly biased estimates when certain kinds of interac-
tion are indeed present in the data. After a detailed
mathematical study of path analysis, Lathrope et al.
(1984) concluded that among “the principal effects of
interaction are a mean overestimate of the genetic
heritability” (p. 618). One hopes that this finding will not
discourage investigators from seeking better ways to
detect H X E interaction and its consequences.

9. The perception of simple main effects

IfANOVA is so insensitive to interaction, then alternative
approaches are required. Taking the relationships in
Figure 2a, which usually yield nonsignificant H X E
interaction terms, let us construct for each one a profile of
expected simple main effects of heredity or strain dif-
ference at each level of environment (Figure 2b). For
each of these examples there are five levels of E and
hence five simple main effects of heredity. The total of the
sum of squares (SS) for these five must be equal to the SS
for the main effect of heredity plus the SS for H X E
interaction (Winer 1971). Thus, we can compute, at each
level of E, the proportion of (SS;; + SSyg) which is
accounted for by that particular simple main effect. If the
relation between H and E is truly additive, then that
proportion should be the same across all levels of E
(Figure 2b). On the other hand, the profile of simple main
effects is markedly uneven for the other cases in Figure
2b. An obvious departure of this profile from a horizontal
line should alert us to the possible presence of nonad-
ditivity in the relation between H and E, and thereby
caution us against accepting a null hypothesis as true
merely because we cannot conclusively prove it false. The
need to interpret the pattern of results by careful inspec-
tion is emphasized by Bolles (1988), whose Rule 5 is:
“Always, always plot up the data to see what the numbers
say. The numbers that you collect in an experiment will
tell you if you have found something, even while statis-
tical tests are fibbing, lying, and deceiving you” (p. 83).

The utility of this approach is sometimes recognized
implicitly when scientists look at graphs from a two-factor
experiment, perceive what appears to be interaction, and
then do separate ¢ tests to confirm this impression. But
does this approach truly prove the existence of nonad-
ditivity? One example suggests caution. The most widely
cited report of heredity-environment interaction in psy-
chology is the Cooper and Zubek (1958) study of the
McGill “bright” and “dull” rat strains (bred selectively for
errors on the Hebb-Williams mazes) reared in three
laboratory environments (restricted, normal, and en-
hanced). (As Platt & Sanislow [1988] point out, the data
for rats in the “normal” environment actually came from a
separate experiment performed earlier.) The authors
compared various pairs of the six groups, totalling only 65
rats or 10.8 per group, using separate f tests, and it is
generally believed that this demonstrated H X E interac-
tion (Platt & Sanislow 1988). However, an ANOVA on the
six groups using raw data kindly provided by R. M.
Cooper reveals significant main effects of strain (F = 4.98,
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p < 0.05) and environment (F = 14.33, p < 0.01) but no
significant interaction (F = 3.07, p > 0.05). The F ratio
for H X E interaction is slightly below the critical value of
3.15. Properly speaking, the data provide suggestive
evidence but not conclusive proof of H X E interaction.
The mere observation that two strains differ significantly
at a = 0.05 in one environment but not in another does
not necessarily warrant rejecting the hypothesis of ad-
ditivity. After all, one value of ¢ might be just great
enough to achieve significance while the other ¢ falls a bit
short of significance. In the Cooper and Zubek (1958)
data, the strain difference was obviously large in one
environment and small in the others, which was quite
sufficient to convince most of us that there was H X E
interaction.

10. Sample sizes for detecting interaction

It would seem that many studies of heredity and environ-
ment end up in a twilight zone of inconclusive results
where different people can easily interpret subtle pat-
terns in the data to be hints of this or that, where the
fading hopes of some are kept alive by “almost significant”
interaction effects or results “tending in the direction of
significance,” while others are relieved that the interac-
tion effect was not quite large enough to rule out
heritability calculations. From a statistical standpoint,
the studies often lack sufficient power to shed much light
on the nature of H X E interaction.

Looking closely at the data may help us avoid such
serious mistakes as accepting a false null hypothesis, but
the gaze of an experienced investigator is also fallible and
can never be a complete substitute for a statistical test.
Outright rejection of additivity really ought to require a
significant interaction term in the ANOVA. If we are
careful to avoid Type I errors when testing for the
presence of main effects, surely we should also try to
avoid them when testing for interactions. Why opt for a
more complex model if it really isn’t necessary?

Perhaps we would be wise to anticipate these various
difficulties and address them at the design phase before
data are collected. If the effect size for a plausible kind of
interaction is substantially less than for the main effects,
then a larger sample size will be required to detect the
interaction than will be needed merely to detect average
effects of the treatments. If it really matters whether or
not the phenomena being studied are nonadditive, one
needs to use larger samples than are customary for finding
main effects. Proving nonadditivity false requires, at the
very least, that the power of a test of interaction be
substantial, 80% or preferably 90%, and that a proper
sample size be chosen to guarantee sufficient power.
Cohen (1977) provides convenient tables of sample sizes
which yield different degrees of power for various effect
sizes. A normal approximation that is useful when the
interaction term has one degree of freedom is provided by
Lachenbruch (1988). As shown above, for a two strain by
two environment experiment the effect size for interac-
tion under the Y = H-E model will be f; = 0.133 when
main effect sizes are large (0.40). The required sample
sizes to detect such an interaction at powers of 80% and
90% with o = 0.05 are more than 125 and 167 subjects per
group, respectively, according to Cohen’s tables. These
values may appear extremely large, but the analysis of
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variance with its definition of interaction as leftovers
demands large samples. What reason could one possibly
cite for using an analytical device because of its ability to
detect nonadditivity, yet choosing a sample size that
renders it ineffective? The finest optics in the world will
portray a fuzzy image if the camera is out of focus or

shaking.

11. Perils of ad hoc scale transformations

It is sometimes proposed that interaction in any kind of
factorial design be addressed by transforming the scale of
measurement to make the main effects additive. For
example, Dunn and Clark (1974) recommend the pro-
cedure of Tukey (1957) whereby a computer is used to
find the values of the constants C and p in the transforma-
tion (Y + C)» which minimize the size of the interaction
term relative to main effects. In biometrical genetics in
particular, the investigator is advised to search for a
transformation that will eliminate heredity-environment
interaction entirely, so that heritability and other param-
eters can then be estimated (Jinks & Broadhurst 1974, p.
11; Mather & Jinks 1982, p. 64).

Is this approach legitimate? Perhaps it is, if there is no
other way to meet the assumptions of equality of within-
group variances, normality, and independence of errors.
When a mean-variance correlation occurs for response
time measures or when many observations in some
groups occur near the upper or lower limit of the scale, a
transformation may be necessary to permit a valid test of
significance, and such a transformation may also elimi-
nate a two-way interaction. If the interaction does have a
rather trivial origin in mean-variance correlation, then
the transformation may be warranted. Even then, there
may be pitfalls inherent in the procedure, because pa-
rameter estimates of the logarithm of a variable, for
example, can produce biased estimates of the un-
transformed measure and can distort the estimates of
variance components (Heth et al., 1989; Kvalseth 1985).

There has been some dispute in the pages of the
Psychological Bulletin about whether the scale of mea-
surement affects decisions about statistical significance,
with arguments that it does not (Davison & Sharma 1988,
Gaito 1980) and counterexamples showing that it can
(Townsend & Ashby 1984), but this particular dispute has
been focussed on comparisons of two independent
groups. Concerning the consequences of transformation
for two-way interaction, there is no doubt that conclu-
sions can be drastically altered. The question is: should
they be altered?

The model on which ANOVA is based assumes equal-
ity, normality, and independence of within-group devia-
tions, but it does not assume additivity of effects, al-
though path analysis does (Wright 1921). Transformation
solely to eliminate interaction is a device to create the
appearance of simplicity in the data, and there is a danger
that this will be an entirely false appearance. For those
who wish to learn how development actually works,
wholesale and ad hoc testing of various transformations
for the express purpose of getting rid of H X E interaction
is counterproductive, because the shape of a functional
relationship between variables provides a valuable clue to
their causal connections. On the other hand, those whose
only goal is to parcel out the variance among separate
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causes can proceed only in the absence of H X E interac-
tion and therefore they may be more willing to transform
the scale of measurement, even if causal relations become
distorted.

To return to the gravitation example, we can see that
transformation of scale can radically alter the causal or
explanatory model. If we apply a logarithmic transforma-
tion to Newton’s law, the equation becomes additive.

Gm,m,
dz

Physicists use this approach to.analyze sources of mea-
surement error, but they do so from a perspective very
different from that of investigators who choose a transfor-
mation without knowledge of the form of a genuine law of
nature. If we let the log transformed variables in New-
ton’s law be the primed (') variables, it reads: F' = G’ +
m;’' + m," — 2d’. The interpretation of this equation is
altogether different from the real law if we forget about
the transformation and take the terms at face value. Addi-
tivity implies a causal model which separates the contri-
butions of the two masses, whereas the multiplicative

lnF=ln[ ]=ln’G+lnm1+lnm2—21nd

m;
mé—\FF vs. 1M | <t T
Y
model implies wmutual interdependence. Newton

achieved a profound insight, which had eluded most
predecessors who regarded the weight of an object as an
inherent property of that object itself, something that
existed in isolation from its surroundings. He argued that
every speck of matter in the universe has mutual attrac-
tion with every other speck. Mutual attraction is ex-
pressed as the product of the masses. The weight of an
object is the result of its interaction with other objects. It
makes no sense to say that a person’s weight depends
more on body size than planet of residence. The additive
model is really no simpler than the multiplicative one, in
that both have three variables and a constant. The log
transform alters the relations among the variables; conse-
quently, transforming the scale of measurement may
conceal the relations among heredity and environment,
as it might conceal the essence of gravitation.
Transformation to suppress H X E interaction may
create further obstacles to applying the knowledge gained
from ANOVA. Consider the first use of ANOVA for a two-
way factorial design by Fisher and Mackenzie (1923) to
examine the yield of 12 potato varieties under six condi-
tions of manure at the Rothamsted Experimental Station.
Yields ranged from 26.5 Ibs. per row for the Up to Date
variety with farmyard dung to 1.6 lbs. per row for the
hapless “undunged” Duke of York. The effect of sulfate of
potash appeared to depend strongly on variety of plant
and presence of dung, but the interaction term was not
significant, although main effects were large. Inspecting
their data, Fisher and Mackenzie observed a nonadditive
pattern whereby higher yielding plants benefitted more
from manure; they accordingly wrote that: “A far more
natural assumption is that the yield should be the product
of two factors, one depending on the variety and the other
on the manure” (pp. 316-17). Rather than transforming
their original observations of yields, they showed that the
data “are better fitted by a product formula than by a sum
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formula” (p. 320). Modern quantitative behavioral genet-
ics, however, would dictate a transformation to achieve
additivity. Such a procedure may be convenient for the
theorist, but the everyday men of the soil must sell their
potatoes by the pound and purchase manure by the ton. If
there is a variety whose yield increases more than others
for the same bulk of fertilizer applied, they would cer-
tainly want to know about this. After all, they cannot pay
their bills in the square root of pounds sterling. To the
farmer or scientist struggling to understand how things
grow or develop, real interactions should not be hidden
by ad hoc scale transformations.

Of course, transformation of scale need not conceal
information. If we can discover a transformation that
effectively eliminates interaction from the ANOVA, this
reveals something about the mathematical structure of
the original observations (Lubin 1961). There is no se-
rious harm in generating additivity with a logarithm,
provided the investigator remembers to calculate and
report the anti-log when interpreting the results, rather
than reifying the additivity. For example, Box and Cox
(1964) used a log transform of a measure of strength of
worsted yarn in a three-way ANOVA to demonstrate that
the relations among weight of the load, length of yarn,
and duration of loading are multiplicative because the log
of strength eliminates the interactions. A problem arises
when the original data are transformed and the profound
effects of the change of scale on the causal model are
neglected when presenting the results. If H and E really
are multiplicative in a particular situation, a calculated
“heritability” is nonsensical and taking the log of the
observations may compound this.

12. Other approaches

The primary remedy proposed here for the problem of
the low power of tests of interaction is the same as the one
suggested by Neyman in 1935: Use larger samples, sup-
plemented by a large dose of caution and rigor when
interpreting results. Are other, possibly more palatable
solutions available?

Neyman (cited by Traxler 1976) also proposed that
additivity should be affirmed only if the main effects are
significant at the 0.01 level, whereas interactions are not
significant at the 0.05 level. Using different a levels could
indeed reduce or even eliminate the imbalance in the
power of the tests, although this could become rather
cumbersome because the values of a required to equate
the powers would depend on the specific alternative
model being contrasted with the additive model. Fur-
thermore, if the o level is set at 0.05 for the interaction
term, the larger samples documented in section 10 are
still required.

The interaction term in a J X K factorial design pro-
vides a global test of all possible kinds of deviations from
strict additivity and hence may not be very sensitive to
particular kinds of nonadditivity. It is possible to test
more specifically for linear interactions whereby groups
at different levels of one factor have different slopes of
linear response to levels of the other factor or when the
factors are thought to be multiplicative (Freeman 1973;
Mandel 1961). Perkins and Jinks (1973) used a similar
approach to show that large variations among 82 strains of
tobacco plants in response to 16 fertilizers were almost
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entirely due to interactions of the linear type. These
procedures will probably have greater power than the
global F test, although the amount of gain has not been
evaluated. However, there is concern that these tests
may be biased (Roux 1984). Of course, they can provide
no improvement at all for a 2 X 2 design and are need-
lessly complex for modest experiments having few de-
grees of freedom for the interaction term, which can be
assessed more readily with orthogonal contrasts (Lachen-
bruch 1988).

A more radical departure from the standard ANOVA
procedure is provided by the likelihood ratio test (Marler
1980), which compares the likelihoods of a particular set
of data according to two distinct hypotheses, neither of
which must serve by default as the null hypothesis. This
approach can be extended to more than two reasonable
alternatives, as done by Debray et al. (1979). Similarly,
one could compare additive and various nonadditive
models of heredity and environment in a factorial design.
These calculations require much more effort from the
investigator and considerable computing time, but they
should yield greater statistical power than the ANOVA
approach. Unfortunately, this would also require much
greater mathematical knowledge on the part of the
reader.

13. Heritability and eugenics

Analysis of variance may be useful in identifying signifi-
cant sources of individual differences, but its insensitivity
to the underlying mathematical structure of functional
relationships limits its utility to the early phases of inves-
tigation. If variations in both heredity and environment
are found to contribute to individual differences in behav-
ior, then the next phase of the research ought to lock
more closely at the intricacies of the two processes in the
developing organism using larger samples and more sen-
sitive analytical methods. Simply to cite a heritability
coefficient or compare the relative strengths of the main
effects of heredity and environment in a factorial experi-
ment does not advance our understanding of the nature of
development.

Unfortunately, estimating heritability seems to be the
main objective of some investigators. As Kevles (1985)
and Fancher (1985) have documented, many of the found-
ers of human behavioral genetics were committed to a
program of eugenics. The only practical application of a
heritability coefficient is to predict the results of a pro-
gram of selective breeding. The rate of change in the
average value of a characteristic during the first few
generations under a regime of artificial selection of
breeders will be directly proportional to the heritability
(in the narrow sense) of the characteristic in the popula-
tion. If such a goal is eschewed, there is no compelling
reason to focus attention on “heritability” and ignore
interaction.

i4. Gene action is interactive and dynamic

Of course, statistical problems are not the only challenges
to theories of additivity of heredity and environment, and
statistical solutions are not likely to settle this dispute.
Perhaps the greatest weakness in the Y = H + E model is
the assertion that the effects of one’s heredity on develop-
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ment are entirely separate from those of one’s environ-
ment. This claim is contradicted by many discoveries in
developmental biology.

There are now good reasons to believe that the genes in
the nucleus do not contain a program for development or
ablueprint for brain structure (Gerhart 1982; Stent 1981).
The timing and spatial location of important events in
development are not directly specified by information
intrinsic to the genes in the nucleus (Davidson 1987;
Easter et al. 1985; Oyama 1985). Rather, a gene codes or
programs for a protein or enzyme, and the consequences
of this activity at the level of macromolecules for events at
the cellular and organismic levels, depend on other parts
of the cell, other cells in the growing organism, and even
events outside the organism. The metabolic activities of
DNA molecules are subject to control by factors outside
the nucleus of the cell (Blau et al. 1985). The actions of
certain genes can be modified greatly, even sometimes
switched on or off entirely, by changes in temperature
(Atkinson & Walden 1985; Heikkila et al. 1986), light
{Klein & Yuwiler 1973), diet (Benkel & Hickey 1987), and
even the maternal environment (Carroll et al. 1986).
Developmental biology is tuned in to nonadditive pro-
cesses (Pritchard 1986). Direct evidence of biochemical
gene action in an environmental context supports a dyna-
mic and interactive view.

The continued use of statistical tests insensitive to
interaction is distressing, not merely because it fosters a
false impression that heritability analysis is justified, but
because valuable information about processes of develop-
ment may be lost. A knowledge of interaction deepens
our understanding of how living things acquire form and
motion. According to Lubin (1961): “The most important
questions that can arise from a statistical finding of in-
teraction are those which are non-statistical. . . . For me,
significant interactions raise two most important ques-
tions: How does this interaction occur? How can 1 bring it
under experimental control?” (p. 816). Likewise, for
Lassalle (1986), H X E interactions should be viewed “as
powerful tools which can assist us in understanding the
underlying processes of behaviour” (p. 205), and for
Bateson (1987) “analyses of statistical interaction should
be the starting points of attempts to understand how
developmental processes work and should not be treated
as ends in themselves™ (p. 2).

ACKNOWLEDGMENTS

Supported in part by grant 4878 from the Natural Sciences and
Engineering Research Council of Canada. I thank Margot And-
ison for drawing Figure 1 and Susan van Ballegooie for typing
the manuscript. The initial version of this paper was written
when the author was at the Department of Psychology, Univer-
sity of Waterloo, Ontario.

NOTES

1. Effect size f for a one-way ANOVA is related to an alter-
native measure of effect size, the proportion of total variance
attributable to differences among group means, termed n2 by
Cohen (1977) and w2 by Hays (1988), according to the relation

.
1+ £
For w2, small, medium, and large effect sizes would be about

0.01, 0.06, and 0.14, respectively. Cohen (1977) gives power in
terms of f, but several other sources use the noncentrality

2
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parameter of the noncentral F distribution, A, or related mea-
sures 8 or ¢, with the following relations among them for
groups of n observations each:

é=fVn ,
3 =¢V]=1{fVn ,
A = 82 = {2n].

2. Principal steps in the derivation of o are

M = J+ 1)(I§+ 1he

s

M, — M = a +21)he[k B (K;— 1)] ,

i M, — M)z = ( + 12he)K(K + DK ~ 1)
k=1

48

For finding o, the first step for each group is:

. + 1 K+1
Mjk—Mj"“Mk‘l'M: [j"(J—2")][k— (-—2—)]].’16
Across all J-K groups, this yields:
] K

2 2 (My—M,~M;+M)
j=1k=1

. _ JKJ+1J- DE+ DK -1)(he)
- 144

3. The tables in Cohen (1977) and most other sources on
power of ANOVA apply directly to a one-way design, but our
interest here is in a two-way factorial design. Cohen (1977)
addresses this problem by noting that a mean for one level of
the first factor across all levels of the other is not based on only
n observations; rather, it is based on nK observations. Of
course, a few degrees of freedom are lost because of constraints
placed on the data in computing between-groups sums of
squares; hence, the effective sample size (n’) for a test of the
main effect of heredity is

! error

- dfbetween +1

When there are 5 strains reared in 5 environments and
n = 10 subjects per group, effective sample size per strain for
the test of the main effect is 46. For the test of interaction, n’ =
14.2 because

n +1=Knh—-1)+ 1

. dferror + 1 — JK(n - 1) + 1
R T-DK-D+1

That is, the power of the test of the interaction term is essentially
the same as the power of a test of variation among 17 groups with
14.2 observations per group in a one-way design.

Rather than deriving all values of power by interpolation from
the tables given by Cohen (1977), the normal approximation to
the noncentral F distribution (Severo & Zelen 1960) was used.
This is not the best available approximation (Tiku 1966), but it is
reasonably good when we are interested in statistical power to
only two decimal places or the nearest percent, and it is much
easier to compute.
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An interaction effect is not a measurement

Fred L. Bookstein

Center for Human Growth, Department of Biology, University of Michigan,
Ann Arbor, M! 48109-0406

Electronic mail: fred_|._bookstein@um.cc.umich.edu

Wabhlsten’s target article inquires about when it “makes sense to
attribute a definite percentage of variation in some measure of
behavior to variation in heredity.” Yet the discussion does not
touch upon technical aspects of heritability per se, such as the
relations between parental and offspring scores. Instead, the
fallacies of the behavioral genetics literature surveyed here
exemplify confusions about the meaning of quantification in
science that run far deeper.

To ask, with the target article, “Y = H + E — true or false?” is
to conceal the underlying issues of mensuration. The scientist
and the user of analysis of variance (ANOVA) approach the issue
of describing Y, H, and E radically differently. Whereas the
scientist would demand that E and H be measured in their own
units, the user of ANOVA implicitly “measures” categories of E
and H using the units of Y instead. When main effects are
measured in units of the dependent variable, then the H X E
interaction has no operational meaning as an amount of anything
“per” anything else; it has no units; it is not a measurement. The
relevant aspect of Newton’s law of gravitation, reviewed in the
target article, is that masses are measured in units of mass, not in
units of force. It is this possibility of direct measurement,
regardless of functional form, that saves the physicist from the
futilities of ANOVA.

Once H and E are measured directly, the issue of “interac-
tion” is trivial. Temporarily, in the interest of clarity, assume
that we already know how to measure H and E as numerical
variables x and z, and that the true law describing the depen-
dence of Y on x and z is some noise-free function ¥ = f{x,z). In
this setting, the condition equivalent to absence of the interac-
tion term in an ANOVA of Y upon H and E is that f be
“separable”:

fix.z) = glx) + hiz), (1a)

the mathematical functions g and h replacing the familiar “main
effects” of H and E. The assertion of separability is a single
partial differential equation of second order:
92f
Frem 0 everywhere. (1b)
But no particular interest inheres in this separability condi-
tion in the absence of other equations governing the behavior of
g and h. (For instance, in classic studies of intergenerational
heredity, g takes the form of a linear regression to the mean.)
When such additional equations are not forthcoming, the
knowledge of separability (absence of interaction) is of no partic-
ular value, as it can always be guaranteed by small changes in the
measurement system. Define a critical point of f as an (x,z) pair
where both first-order partial derivatives

3f/dx and 8f/dz

are zero at the same time. It is a theorem that any f{x,z) without
critical points in aregion of interest can be expressed as perfectly
linear in some deformed version of the (x,z) — coordinate system.
The theorem, a prologue to the so-called “Morse Lemma”
(Poston & Stewart 1978, sec. 4.2), guarantees that we can write
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faz) = fo + (;J-:)Ox’ + (::—f)oz’ 2

(no further terms), where x' = x + small stuffand z’ = z + small
stuff are gently nonlinear functions of the originally measured x
and z. For an exploration of this and other aspects of catastrophe
theory, refer to Poston and Stewart.

Thus, in the absence of critical points we can always make an
interaction term disappear by slightly altering our scheme for
measuring x and z. The presence of critical points is far more
important than this: It is generic, not an accident of small
changes in measurement systems. Consider (Figure 1) the two
surfaces y = —x2 — 22 (left) and y = x2 —2z2 (right). Neither has
any “interaction terms” like 2z — but they could not be more
different in their scientific implications. Whereas the former has
a global maximum at one point (0,0) of the domain of its
arguments, the latter goes off to = « twice each as one goes
around lines through the origin. (The cases are distinguished by
the sign of the discriminant B2 — AC of the quadratic approx-
imation Ax2 + 2Bxz + C2z2to Y.) Rewriting x2 — z2as (x + z)(x —
z), we see again that, as the target article avers, there is no
intrinsic difference between additive (“interaction-free”) and
multiplicative models. Instead, there remain huge differences
among varieties of critical points even in the absence of interac-
tions. The presence of a “statistically significant” interaction
term — say, 2xz — doesn’t tell us whether the situation is free of
critical points or, if not, whether it resembles more the ex-
tremum, the saddle surface, or some other more exotic
possibility.

In a stochastic setting (noise present), the separability condi-
tion (la) or (1b) is replaced by a statement about expected
values: for any z; and z,, we are asserting that E[f(x,z;) — f(x,2,)]
is independent of x (from which it follows that E[f{x,z) — f(x,,2) ]
must be independent of z). In most applications, E[f(:,2)] will
then exist as an expectation, for fixed z, over the universe of
possible x’s as they substitute for the dot under stratified sam-
pling, and likewise E[f(x,-)] exists as an expectation for fixed x
over stratified sampling of zs. But, as we have seen, it is not the
existence of these expectations that is the scientific issue here ~
we can almost always redefine x and z jointly so that these
expectations exist and can be computed either via formula (2) or
by sums of squares analogous to those in Figure 1. Itis the forms
of the functions E[f{*,z)] and E[f(x,-)] that are crucial, specifical-
ly, the number and genres of their critical points, regardless of
any interactions.

Analysis of Y, H, and E culminates in scientific understanding
of the determination of Y only when the factors H and E have
been explicitly measured separately and independently. The
mensural fallacy underlying the literature criticized in the target
article arises in the confusion between the H and E of “Y = H +
E” — continuous variables x and z — and H and E as the mere
names of “groups” or “strains” or “conditions” not otherwise
calibrated. In the absence of interaction, the ANOVA computes
E[Y|H = h] and declares it to be the “value” of each state h of H,

st
AL iy
LA
L

Two mathematical surfaces, each free of

Figure 1. (Bookstein).
interaction terms, which show essentially different behavior in
the vicinity of their critical point. (left) y = — a2 — 22. (right) y =
a2 — 22
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in units of Y. The interaction term is not a measurement; it is
merely that single word of (risky) authorization.

The scientist needs to know the form of f; its separability can
always be arranged a posteriori. Once this functional form is
known, the difference between Y = H + E and Y = HE is
intellectually and scientifically trivial; without knowledge of the
form of f, path modeling or any other sort of causal modeling is
actively misleading. It follows that it never makes sense to
“attribute a definite percentage of variation in some measure of
behavior to variation in heredity” at all, or to have a theory “rise
or fall with the occurrence or absence of statistical interaction.”
Such procedures and decisions confuse the provenance of values
of single measures with statements about the relationships
among multiple measures. Once direct quantification of H and E
is at hand, we are able to inspect the function f directly, and we
thus have no need to partition any sums-of-squares involving Y.
In measuring main effects only by their consequences, ANOVAs
quantify ostensible causes in the wrong units, while the “in-
teraction effect” is a measurement of nothing at all.

Methodological heterogeneity and the
anachronistic status of ANOVA in
psychology

Daniel Bullock

Cognitive & Neural Systems Program, Boston University, Boston, MA
02215.

Electronic mail: danb@bucasb.bu.edu

Wabhlsten’s instructive reminder of ANOVA’s marked additivity
bias forces us to confront the following question: What can be
said of any research enterprise that appears to be unaware that
its primary data analytic technique exhibits such a bias when
used with typical sample sizes? Either (1) the research enter-
prise is of poor quality because it lacks the secondary consisten-
cy tests that would typically reveal the additivity bias, or (2) the
secondary tests are in place but fail to reveal any method bias
because the phenomena really are additive, or (3) the hypo-
thetical “researchers” care more about sustaining the thesis of
additivity than about gaining a more veridical understanding of
the subject of research.

In the case of the natural subject matter for an unbiased
science of behavior genetics, it is extremely unlikely that the
effects of heredity and environment are for the most part truly
additive. Thus if behavior geneticists have heretofore found the
additive model near-universally applicable, as Wahlsten claims,
then either they have failed to incorporate the kind of secondary
checks essential for good science, or they have systematically
ignored abundant counterindications. In either case, it would
be reasonable to conclude that many past claims by behavior
geneticists are unreliable.

Beyond that, it is important to diagnose the problem correctly
and to improve the future record. Wahlsten focuses on
ANOVA’s additivity bias and recommends using sufficiently
large numbers of subjects per cell to ensure that ANOVAs will
have enough power to detect interactions. However, this strat-
egy does not solve the root problem: Behavior genetics needs
additional methods that afford consistency checks against results
obtained with ANOVAs. Unlike other scientific enterprises,
behavior genetics (as represented by Wahlsten) has allowed
itself to become defined by its use of a single method:
heritability analysis. This is rather like someone who claims to
be a carpenter but refuses to use any tool other than a hammer:
It is not surprising that such a carpenter professes to see nothing
more in the world than lots of raised nails.

If Wahlsten’s representation of the field is accurate, we
should probably conclude that the phrase used above, “un-
biased science of behavior genetics,” is an oxymoron. No enter-
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prise based on a single measurement device can be an unbiased
science of anything. The solution is to add whatever methods
behavior geneticists use to the broader toolkit of developmental
psychobiology and cease talking of behavior genetics as a sepa-
rate science. Though Wahlsten implicitly suggests that the
result will be a net loss of interest in heritability analysis, it
might instead be a transformation of the role of heritability
analysis. Whereas it is of little scientific interest merely to
partition phenotypic variance between heredity and environ-
ment, it would be of considerable scientific value to understand
why some behavioral phenotypes fit an additive model whereas
others do not.

More generally, though, interest should shift to characteriz-
ing the heterogeneity of types of heredity/environment interac-
tion in behavioral development (e.g., Bullock 1987; Oyama
1985). Here progress will depend on proposing quantitative
models of actual processes, and testing such models at the level
of behavioral phenotypes as well as at any other levels, e.g., the
neural networks level, known to be “interposed” between genes
and behavior. In this context ANOVA will no longer serve as
more than a minor player, because it will be possible to predict,
hence tailor a test for, specific nonadditive effects.

In the search for types of interaction, it is useful to remember
the basic logic of evolution. For Darwin, the primary observa-
tion was the correlation between characteristics of organisms
and features of their local habitats. His and subsequent explana-
tions of how this pattern arose made reference to some variants
gaining a competitive advantage in a fixed environment and
eventually filling the population in that specific environment
with their descendents. This suggests that important residual
variation in a population (the usual subject for behavior genetics
studies) will often relate to the efficiency with which a lineage
makes use of specific environmental resources. On the other
hand, when environmental resources are plentiful, the more
efficient organism may have no real competitive advantage
because even inefficient organisms flourish. Finally, there are
often limits to how much of a phenotype is useful to an organism:
Too many fruits break the limb. These considerations suggest
that one may often see a highly nonadditive pattern in which
lines for different strains diverge from an initial point but
reconverge at some high value of the phenotype as the environ-
ment becomes quite favorable relative to all strains’ efficiencies.
This pattern is akin to the fifth shown in Wahlsten’s Figure 2, for
which ANOVA has less detective power than for all the other
models shown (see Table 4, fifth row).

The point about behavior genetics usually pertaining only to
residual, individual difference variation, is a critical one. The
basic covariation of species-general characteristics with average
expected environment often means in practice that one can
expect an inverted u-shaped function between an environmen-
tal quantity and phenotype value. For example, too much
fertilizer or too much water kills the plant. By sampling only
similar strains and only near the mean of the average expected
environment, researchers may be able to find locally additive or
near-additive relations, but this hardly gives an accurate picture
of the system under study. It is particularly problematic in those
species which, far from leaving the occurrence of an average
expected environment to chance, actively construct and main-
tain such an environment. Of course, humans are the most
extreme examples of such a species (Bullock 1987).

It might seem that human intelligence is a counterexample to
the claim that most phenotypes are useful only up to a certain
point. Intelligence is a special case because it is what may be
called a second-order behavioral phenotype, that is, a phe-
notype that functions to abet the development of other behav-
ioral phenotypes. It is also a very distributed phenotype, having
many components that have emerged at different times in
phylogeny. The ultimate effect of further increments in intel-
ligence is to increase the rate of skill development. That is why it
is best measured by an essentially open ended set of tasks: What
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one really measures is differences in the speed with which
testees have explored and internalized the space defined by the
set of language games (Wittgenstein 1953), or modules of cultur-
al practice (Adams & Bullock 1986), jointly available to tester
and testee. I use festee rather than individual because the speed
with which someone explores and internalizes modules of cul-
tural practice depends heavily on teachers, who are a critical
evolved component of the intelligence of a developing human
(Bullock 1987). Needless to say, such a situation poses special
problems for researchers whose goal is an additive partitioning
of genetic and environmental sources of variance.

As Wahlsten recounts, ANOVA was invented by Fisher to
serve in the assessment of agricultural yield experiments, not as
akey tool for the developmental sciences, which seek to explain
how structure emerges in nature. Equally to the point, ANOVA
was invented before generalized regression analysis, before
most of the modern field of measurement theory came into
existence, and before high-speed computers removed computa-
tional complexity as a critical determinant of the practicality of
using most data analytical procedures. It was also invented
before it became feasible to study n-body, highly interactive
dynamical systems via numerical simulations. Because of these
interim developments, the special status of ANOVA in psychol-
ogy — it remains the primary and in some cases the sole
paradigm of applied mathematics in many psychology curricula
— is an utter anachronism and extremely destructive of intellec-
tual potential among young research psychologists. I agree
completely with Wahlsten’s implication that performing endless
partitionings of variance has almost nothing to do with promot-
ing scientific understanding in Piaget’s sense, where “to under-
stand is to reconstruct.” But the remedy is to train many more
psychologists as better system modelers and applied mathe-
maticians, not solely to urge interpretive caution and larger
samples, a recommendation that might even perpetuate the
undue hegemony of ANOVA.

Interaction between genotype and
environment: Yes, but who truly
demonstrates this kind of interaction?

Michele Carlier and Catherine Marchaland

Génétique Neurogénétique et Comportement, URA 1294 CNRS, UFR.
Biomédicale, Université Paris V, 45 rue des Saints Peéres, 75270 Paris
Cedex 06, France

That Wahlsten’s target article called for a commentary from two
specialists of two different disciplines is proof of its inter-
disciplinary value.

From the genetic standpoint. Finding an interaction between
genotype and environment (GxE) helps to identify some of the
physiological pathways from genes to behavior. For example,
the effect of a given treatment could be considered a compensa-
tion for possible defects of given genes. Roubertoux (1981),
Carlier et al. (1983), and Carlier & Robertoux (1986) developed
this point of view before others who are cited by Wahlsten. One
can wonder, however, when experimental design makes it truly
possible to detect a GXxE? Let us take the example chosen by
Wabhlsten (section 4.1) which is a very common design in
behavior genetic research:

J strains are reared in K different environments. The two
independent variables are the strain and the environment. Thus
the interaction, if interaction there is, is a strain x environment
interaction and not a genotype x environment interaction. In
fact, different strains (inbred or selected) differ both in genotype
and in maternal environments (cytoplasmic, uterine, and
postnatal) provided to offspring. Thus the inference from the
strain effect to the genotypic effect is based on the assumption
that these maternal effects are null. This mistake is very easy to
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make. One of the present commentators did so herselfin a paper
on the GxE (Carlier & Roubertoux 1986, p. 71) when presenting
results observed on pup development in mice. Three years
earlier she had pointed out the risk of this kind of error in a
paper. In the title of this very paper she herself made the
mistake (Carlier et al. 1983). This mistake is of great significance
in human behavior genetics, however. Authors come to in-
terpret as a GxE effect data collected using a cross-fostering
design where the independent variables are the characteristics
of the biological parents and the adoptive parents (e.g., 1Q,
economic status, etc.).

In a recent paper Roubertoux et al., (in press) noted the
scarcity of experimental papers demonstrating a true GxE. This
might be due to the high technology required to show such an
interaction (Carlier & Nosten 1987; Carlier et al., in press). In
this field, without a straightforward separation between the
genotypic effect and the different components of maternal
environment {cytoplasmic, uterine, and postnatal), nothing can
be demonstrated. Ovarian transplantation (or egg transfer)
jointly implemented with fostering provide the means of sepa-
rating these components. To our knowledge, Nosten & Rouber-
toux (1988) have presented the first true GxE in two inbred
strains of mice, CBA/H (H) and NZB (N). An effect of parental
versus F1 uterine environment on age at eyelid opening ap-
peared in H pups and not in N pups. Nosten (1989) presents
other evidence for a truly interactive effect on early develop-
mental markers and these effects are not limited to the prewean-
ing period (Roubertoux et al., in press).

From the statistical standpoint. Three points have to be stated
once again: (1) an effect is more or less established according to
the level of significance; (2) the level of significance of the F test
only provides information about the existence of a theoretical
effect but provides no information about the effect size: (3) the
nonsignificance of the F is no more than an admission of igno-
rance and one cannot conclude from it that there is no effect. We
are not proposing here an alternative to the ANOVA. However,
we are proposing the use of Bayesian methods as a cure for some
of its shortcomings. ’

The Bayesian methods were developed by Rouanet et al.
(1978), then improved by Rouanet & Lecoutre (1983). As in
using ANOVA, the distribution of the data is considered normal
and the variances are considered homogeneous. Bayesian pro-
cedures give information about the magnitude of the effects. Let
us consider d the observed effect and 8* the theoretical effect.
From the d and the F ratio one can establish a probability
distribution which takes the same form as a generalized Student
t with center d and scale e = | d |/ V/F (with q d.f.). If q is high
the Bayes-fiducial distribution is approximately normal with
center d and scale e. With the Bayes-fiducial guarantee fixed at y
one can infer a statement which gives decision rules about the
size of the effect 3.

If F is significant, a “noticeable effect” is tested with:

sid>0
sid<0

P(5*>?)=y
P(&*<?P)=1r

If F is not significant, a “negligible effect” is tested with:
P([p¥ <?)=1~

It must be pointed out that sometimes no decision can be
made. For example, when testing an interaction effect, if the F is
not significant and if the negligible effect does not appear, it is
not possible to conclude anything without the risk of committing
a type 2 error.

An alternative solution suggested by Wahlsten is to duplicate
the experiment with higher levels of freedom. Would it be
possible to be less demanding for the significance level of the
interaction?

These Bayes-fiducial methods do not answer all of Wahlsten’s
questions because they use the F test, which is the target of
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Wahlsten’s critique. They demonstrate that all is not lost,
however, when the F is not significant.
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Inheritance and the additive genetic model

James M. Cheverud

Department of Anatomy & Neurobiology, Washington University School of
Medicine, St. Louis, MO 63110

Wahlsten emphasizes the importance of genotype by environ-
ment interaction effects in the causation of behavioral phe-
notypes and points out that the usual ANOVA model gives
primacy to additive effects, thus disguising the presence and
relative importance of interactions in the developing phe-
notype. I believe that this problem with heritability analysis
occurs because researchers attempt to use a model developed
for the study of inheritance to investigate the developmental
mechanisms underlying phenotypes. Quantitative genetics is
concerned with the statistical effects of genes on phenotypes,
not their physical, physiological, or mechanical effects or ac-
tions. Gene effects should not be reified as gene actions. These
statistical effects are partitioned so that heritable and nonherita-
ble variance can be separated from one another. They are not
partitioned in a manner which leads to necessarily important
distinctions about the physiological development of a character.

Quantitative genetics developed out of the search for a theory
of inheritance which was consistent with Mendel’s laws, but
could account for the inheritance of complex characters (Provine
1971). An accurate theory of inheritance was needed to for-
malize Darwin’s theory of evolution. Fisher (1918) succeeded in
doing so and developed the basic ANOVA model in order to
derive the covariance among relatives based on Mendel’s laws,
thus providing a quantitative theory of inheritance for complex
traits. According to this theory, only the additive effects of genes
can be passed on from parents to their offspring because, in a
diploid population, each parent contributes only a single allele
to their offspring at any given locus. For this reason, dominance
effects, which result from the interaction of the two alleles
carried at a locus, and the variance associated with them, cannot
be inherited in a random-bred population. The additive or
breeding value of an allele is the crucial characteristic in a model
of inheritance. However, it does not depend only on the action
of a gene, but also on the frequency that gene has in the
population (Falconer 1981).

The concepts of additive effect and heritability — the propor-
tion of phenotypic variation which is inherited — play very
important roles in evolutionary models and empirical studies of
inheritance which are directed towards evolutionary problems
(Falconer 1981; Lande 1976; 1979). The concepts were devel-
oped for this purpose and are currently accepted as successfully
applied in an evolutionary framework. Since genotype by en-
vironment interactions do not bias heritability estimates, they
are often not considered explicitly, although important evolu-
tionary models including genotype by environment interaction
have recently been developed (Via & Lande 1985).

It is not surprising that the additive genetic model, which was
developed from and as a theory of inheritance, is perhaps less
informative concerning gene actions or physiological effects.
The distinction and relationship between the statistical and
physiological effects of genes is an important one to keep in mind
(Cheverud 1984; 1988). Quantitative genetics is concerned with
the statistical effects of genes since these effects are important
for evolution. Genes also affect development in a mechanical or
physical sense. When these gene actions have phenotypic con-
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sequences and vary across the population, they will have statis-
tical effects. Genes act in development, regardless of whether
they vary in a particular population. Thus the additive genetic
model may not be suited to Wahlsten’s goal, which is to “under-
stand the nature of development” (sect. 8, para. 3).

If heritability analysis is not precisely suited to the study of
development and gene action, why is it so commonly used and
what can replace it? First, I believe that it is commonly used
because it can at least provide evidence that genes play a role in
the development of a particular phenotype. We can only detect
gene action through statistical variation in gene effects. Mo-
lecular genetics is now beginning to allow direct experiments on
gene action, but this work is still in its infancy, especially with
regard to complex morphological and behavioral phenotypes.
Thus, a significant main effect in an ANOVA should only be
taken as evidence that genes affect individual differences in a
phenotype. The fact that the effect is additive is important only
for analyses of inheritance and evolution, not for development.
The further test for genotype by environment interaction is
performed as described by Wahlsten (1989) and is appropriately
conservative. We should only consider the possibility of this
interaction after having first shown that genetic variation causes
variation in phenotypes. Again, this should not be considered as
a good estimate of the relative degree of interaction, but rather
only as evidence that interaction does occur. It is an appropriate
test for this circumstance since interaction is a statistically and
physiologically more complex developmental model than sepa-
rate additive environmental and genetic effects.

The only way to improve the genetic analysis of development
would be to generate developmental models which would help
guide the analysis, just as the Mendelian model of inheritance
guided the development of ANOVA. Riska (1986) and Slatkin
(1987) have presented developmental models and investigated
their consequences for patterns of heritable variation. Wahisten
simulates several nonadditive developmental models and shows
that ANOVA does a poor job of statistically detecting the
physiological interaction simulated. If an accepted model of
phenotype development could be generated, the form of statis-
tical analysis would be dictated by that model, just as the form of
ANOVA was dictated by the Mendelian model of inheritance.
Just as no one would analyze gravitation with an additive model,
knowing the multiplicative relations between force of attraction,
the masses of the objects, and their separation, no one would
analyze development with an additive model if some reasonable
quantitative model of development were available. The prob-
lem is not with ANOVA, but with the lack of developmental
theory.

Huxley’s (1932) model of relative growth is a good example of
a developmental model which drives the statistical analysis of
data. Because of Huxley’s model of multiplicative growth, most
studies of allometry apply linear models only after logarithmic
transformation. This transformation is motivated by practical
considerations concerning ease of calculation, since the multi-
plicative model could be estimated directly with maximum

likelihood methods.
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Additivity, interaction, and developmental
good sense

David A. Chiszar and Eugene S. Goliin

Depariment of Psychology, CB 345, University of Colorado, Boulder, CO
80309

A popular text on evolutionary biology contains the following
passage:
Very often the reaction to a difference in environment differs
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among genotypes. There is then a Genotype X Environment
Interaction (V) that contributes to the phenotypic variance,
so that Vp = Vg + Vg + V4. In this case the genetic vari-
ance is not readily distinguishable from the environmental
variance because each depends on the other (Lewontin 1974,
Gupta & Lewontin 1982). We will proceed, as most workers in
the field do, by ignoring the Genotype X Environment Inter-
action, which in practice is often included in the term Vg.
(Futuyma 1986, p. 197)

A major point in the target article states that ignoring significant
Vaxg is a dubious practice because it makes estimates of
heritability difficult, even impossible, to interpret. Another
point raised by Wahlsten is that commonly used statistical tests
of interaction do not have adequate power, suggesting that Type
IL error rates are distressingly high, not only in the assessment of
Vi but also in other scientific domains where interactions are
evaluated in the context of factorial experimentation and fac-
torial ANOVA techniques. It is the juxtaposition of these two
points that has startle value. The first one has long been clearly
recognized (see references cited by Futuyma 1986), but it
continued to be ignored because investigators had a false sense
of confidence in the veracity of statistical tests that failed to
confirm the presence of interactions. Wahlsten’s articulation of
the power issue now forces a reassessment of the tradition of
ignoring Vg, &

Edwards (1985) points out “that in experimental work signifi-
cant main effects are more common than significant two-factor
interactions, and significant two-factor interactions are more
common than significant three-factor interactions” (p. 242).
Many reasons probably contribute to this state of affairs, includ-
ing the power issue developed in the target article. To this
argument we add another suggestion. Numerous statistics texts
discuss the robustness of ANOVA vis a vis violations of the
assumptions of normality and homogeneity of variance, usually
citing Box (1954), Norton (1952), Boneau (1960), and Baker et al.
(1966). These studies concentrate on single-factor experiments
(hence, on main effects) and on Type I errors. Only a few studies
have evaluated ANOVA robustness with respect to Type II
errors, and these too have concentrated on main effects (e.g.,
Donaldson 1968; Tiku 1971). Hence, it is unclear that factorial
ANOQVAs, interaction factors in particular, are robust against
departures from normality and homogeneity of variance. Fur-
thermore, both Type I and II error rates need to be considered
in Monte Carlo simulations designed to study these matters.
Since violations of these assumptions are common in behavioral
research, and since the demonstrable robustness of single-factor
ANOVA has created a sense of complacency regarding such
violations, it is possible that the inherently low power of typical
ANOVA tests of interactions has been exacerbated by an incre-
mented Type II error rate induced by violations of foundational
assumptions regarding within-condition variances. The upshot
of Wahlsten’s insights plus this commentary is that Edwards’s
actuarial statement about interactions may be not only a com-
ment on the structure of behavioral processes, it may also
represent the historical accretion of Type I errors that have
been generated for several different reasons. We hope that
Monte Carlo or other appropriate techniques will be applied to
test the suggestions made herein. The issues at stake extend far
beyond behavioral genetics and evolutionary biology; indeed,
they embrace the entire actuarial state of affairs captured by
Edwards’s summary remark.

Box (1953) made an analogy between tests of homogeneity of
variance executed prior to ANOVA and putting to sea in a row
boat to learn whether the water is safe for an ocean liner. In that
context the remark was reasonable, yet considerations raised by
the present exchange are on a more titanic scale.

The use of an inadequate statistical model, as is so clearly
shown in the target article, is directly related to afaulty notion of
development. It is based on a commonly held assumption, often
implicit, by human behavioral geneticists, that hereditary influ-

Commentary/Wahlsten: Heredity-environment interaction

ences can be made intelligible without recourse to consideration
of extra-hereditary factors. Without such an assumption reliance
on an additivity model is untenable.

A contrary view has been put forward by Alberch (1983}, who
has written that even if the complete DNA sequence of an
organism were known, its morphology could not be reconstruct-
ed without knowledge of the epigenetic interactions that gener-
ate the phenotype. What is required is the adduction of the
organizing principles that mediate development. Such a posi-
tion seeks to account for development by emphasizing the in-
principle inseparability of organism and environment (Chauvin
1977). 1t follows from this position that reductive explanations
are insufficient to account for the complex patterning involved
in psychobiological development (Gollin 1985).

Wabhlsten is exactly on the mark when he emphasizes that the
issue is not heritability analysis but rather the loss of informa-
tion about developmental processes. Those experimental at-
tempts to clarify the developmental process — for example, an
organism-level X task-levels design — are thwarted by their
reliance on a statistical device that raises severe barriers to the
elucidation of interactive relationships. The primary objective
of such experimental designs is the generation of a matrix of data
that reveals both behavioral and biological differences that
relate to organismic variation (e.g. age, strain, pathology, etc.),
and behavioral and biological similarities that exist in spite of
this variation. It is from the pattern of differences and sim-
ilarities obtained from the Organism X Task analysis that an
interpretation of the contribution of organismic variation to the
functional system derives (Gollin 1965, Castro & Rudy 1989).
The very insensitivity of the ANOVA design, as Wahlsten so
clearly demonstrates, is what allows additivity models to be
retained,; it also encourages the avoidance or rejection of those
developmental models which stress the inseparability and inter-
definition of genome, organism, and ecosystem.

On the insensitivity of the ANOVA to
interactions: Some suggested simulations

Domenic V. Cicchetti
VA Medical Center and Yale Universily, West Haven, CT 06516

Wabhlsten presents cogent arguments to support his conclusion
that the analysis of variance (ANOVA) is quite insensitive to
heredity (H) environment (E) interactions. In developing his
argument, the author discusses the important issues of power,
effect sizes, sample sizes, and alternative approaches to the
ANOVA. As he notes, the results of his analysis “have implica-
tions for many other fields of study.” This well-conceived and
carefully reasoned treatise represents a significant contribution
to our understanding of obstacles that may prevent or deter the
obtaining of valid scientific knowledge, with respect to the
heredity-environment controversy and more generally.

It seems to this commentator that Wahlsten has provided the
conditions for a more definitive solution to the problem. This
can be accomplished by designing an appropriate computer
simulation which would provide answers to a number of critical
questions that still plague the field.

One could begin perhaps with two general conditions to
simulate the H-E “true” state of affairs: 1. The Null Case, one in
which an ideal additive population is simulated (i.e., absence of
an H-E interaction effect), and 2. The Non-Null Case, in which
an ideal nonadditive population is simulated (i.e., presence of an
H-E interaction effect that is both statistically and biologically
meaningful). Other sources of variation that could be studied
systematically include the specific type of interaction deriving
from the simulated population; the type of statistical approach to
data analysis (e.g., ANOVA; the Neyman or Traxler, 1976,
approach; the likelihood ratio approach); the simulated effect
size itself (small, medium, large).
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Once these populations are constructed, one could then draw
randomly from them (with replacement) in the sample size
range usually used in research studies of H-E effects. It would
then be a relatively straightforward matter to calculate, under
each of the simulated conditions (or assumed “true” states of
knowledge), at least the following: alpha (Type I) error, beta
(Type II) error, power, effect size, strength of the relationship,
and minimal sample size requirements for detecting correctly
the population results.

It should be realized that computer simulations appropriately
designed and executed, can be used to answer a host of impor-
tant questions that cannot be answered on the basis of a small
number of isolated studies. Thus, for example, my colleagues
and I have used computer simulation methodology to under-
stand why so many inconsistencies and contradictory findings
exist among hemispheric-asymmetry studies involving left-
handers. In comparing samples randomly drawn (with replace-
ment) from a large parent population of sinistrals, we assessed
the role of alpha and beta errors in inconsistent results in the
field. We could distinguish sample and population results that
were statistically meaningful from those which were both statis-
tically and clinically relevant, and we realized in a much broader
context the need for a more positive attitude toward the design,
execution, and publication of replication studies (Soper et al.
1988). Clearly, these are all issues for H-E research as well.

Given that the analysis of covariance (ANCOVA) is a close
relative of ANOVA, the author should consult the scholarly
contribution of Adams et al. (1985), who used computer simula-
tion methodology to examine some of the assumptions underly-
ing ANCOVA (analysis of covariance), as they relate to research
in the field of neuropsychology.

In summary, then, the Soper et al. (1988) and the Adams et al.
(1985) investigations can be explored for general information
concerning the design of computer simulation studies. The
author could, if desired, tailor his own research design to fit the
specific requirements for further investigations of the H-E
interaction issue.

How important is detecting interaction?

James F. Crow

Genetics Department, University of Wisconsin, Madison, WI 53706
Electronic mail: wrengels@wiscmacc.bitnet

Wabhlsten’s point about the difficulty of detecting significant
interaction of heredity and environment is well taken, but I
disagree that it is meaningless to measure heritability unless the
additivity assumption is met. A simple genetic example, similar
to the gravitational model that he discussed, illustrates the
point. Suppose that the true relation between genetic and
environmental factors is multiplicative, but we don’t know this
and follow the usual procedures, analyzing the data as if the
factors were additive. How great is the error of estimation of
heritability and how likely are we to detect the interaction?

Conusider a trait determined by four equal, additive, normally
distributed genetic factors and four environmental ones. The
trait value is the product of the two sums. To model parent-
offspring correlation in random environments, two of the four
genetic elements are shared by the two relatives. A simulation
generated a correlation of 0.242, leading to a heritability esti-
mate of 0.484, close to the 0.5 expected from the model of equal
genetic and environmental influences (Table 1, line 1). The
error is minor despite a rather wide range of values; the coeffi-
cient of variation, 0.36, is larger than that for such quantitative
measures as size, blood pressure, and IQ. The numbers in line 2
are based on the perhaps more realistic assumption that factors
are multiplicative within as well as between the two compo-
nents. The heritability is slightly farther from the expected
value, as expected, but still very close.
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Table 1 (Crow). The effect of curvilinearity on estimates
of heritability from parent-offspring correlation

Mean/ Coef. Est.

Line Transformation Maximum Var. h2

1 XXy 0.36 0.484
2 ex 0.36 0.474
3 ex 0.53 0.459
4 log X 0.40  0.491
5 tanhX 0.591 0.37 0.476
6 tanhX 0.755 0.31 0.438
7 2X — .3X2 0.499 0.30 0.495
8 2X — X2 0.815 0.30 0.317
9 2X — X2 0.876 0.20 0.123

What would happen if a breeder naively used the observed
parent-offspring correlation measures to predict the result of
selection? In line 2 the mean is 7.856, with a standard deviation
of 2.862. Suppose the upper 50 percent of his population are
permitted to reproduce. If the breeder erroneously assumes
normality and additivity, this corresponds to a selection differ-
ential of 0.80; that is, the mean of the selected group is 0.8
standard deviations above the population mean. The heritability
has been estimated as 0.474, so the progeny will be 0.8 X 2.862
X 0.474 = 1.085 units above the mean, or 8.941.

Suppose the breeder is more sophisticated and applies a log
transformation to these data. The transformed mean and stan-
dard deviation are 2.000 and 0.354, and the calculated
heritability is 0.497 (very close to the theoretical 0.5). The
expected increase is 0.8 X 0.354 X 0.497 = 0.1407, so the
progeny mean (m) and standard deviation (o) are 2.1407 and
0.354. Our sophisticated breeder of course transforms back into
the original units. These have a log-normal distribution and the
transformed mean is exp(m + ¢2/2), or 9.055 (Moran 1968, p.
317). The error of predicting the next generation by the naive
procedure, 8.941 versus 9.055, is only about 1% — not worth
worrying about.

The interaction induced by multiplicative behavior in this
case is very small, and could never by detected by any reasona-
bly sized experiment, even if there were not the uncontrolled
errors and covariances that beset such studies. But the positive
side is that the error introduced by ignoring interaction is trivial.

1. Transformations to remove metrical bias.It is convenient to
classify interactions into two categories. The first kind results
from what R. A. Fisher called metrical bias and usually pre-
serves rank order. This can often be removed by a simple
transformation. The second kind, perhaps more interesting, is
too complex to be removed by any simple or obvious transforma-
tion. The multiplicative example is the first kind.

Wabhlsten fears that a transformation may conceal interesting
relationships, and it may. Yet, it seems to me that the discovery
of a linearizing transformation usually tells more about the
underlying mechanisms than would the finding of an interaction
component of the variance alone. That a log transformation is
linearizing does not, of course, prove that genes and environ-
mental factors multiply, but that’s the way to bet. It provides a
hypothesis to be tested further.

Table 1 gives some additional examples. In each case, I
generated measurements by adding 8 normally distributed,
random variables and then transformed those measurements
into what would correspond to observed values. The transfor-
mation is, of course, the inverse of what would be used to
linearize the observations.

Line 3 shows the effect of an enhanced range; the coefficient
of variability is increased to 53 percent, and the estimated
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heritability is now about 92% of its expected value. Line 4
considers data that interact in the opposite way; the curvature is
downward rather than upward. Lines 5 and 6 model a situation
in which the distribution saturates at the upper end. Again the
error is not great, but becomes greater as the mean approaches
the maximum, as expected.

Plant and animal breeders, as well as human quantitative
geneticists, often neglect interactions because there is no prac-
tical way to measure and deal with them. An appropriate
transformation can improve the accuracy of prediction, but
often the game isn’t worth the candle. If the interaction is due to
metrical bias, other errors are likely to dwarf those due to
nonadditivity.

On the other hand, there may not be any simple transforma-
tion that linearizes the process. This kind of interaction - real
interaction — calls for a different approach. Unfortunately,
simply showing that there is an interaction component to the
variance doesn’t suggest how to go about understanding it. The
approach depends on the subject matter. An interaction compo-
nent in the analysis of a series of corn hybrids might suggest
testing the influence of specific variables such as amount of rain,
day length, and temperature. This might reveal that some
strains are best suited to a long growing season with heavy
rainfall, for example, and would permit allocating strains to
specific environments. Behavioral studies designed to identify
interacting factors have to be based on some hypothesis and an
experimental design appropriate to it.

One kind of relationship that can lead to greatly reduced
heritability occurs when there is an intermediate maximum
value for the trait; beyond a certain point, genetic and environ-
mental factors that previously increased the trait now decrease
it. Again as expected, the nearer the mean is to the maximum,
the lower the heritability. The last three examples in Table 1 are
of this type. They differ from the first six in that they cannot be
linearized by a transformation; no single-value inverse function
exists. This kind of relationship could lead to a serious under-
estimation of the degree of genetic influence; but a (narrow
sense) heritability analysis would correctly predict the slow
progress of breeding experiments. In this case, improving the
environment wouldn’t help much either. The interaction must
be taken into account, if it can be understood.

2. What use is a heritability estimate? 1 disagree with
Wahlsten’s view that the only reason to know heritability is to
predict the results of selection. One can be interested in the
heritability of IQ without advocating a breeding program. A
broad sense heritability of 0.2, based on identical genotypes in
independent environments, tells us that 80 percent of the
variance is environmental. This says that changes of existing
variables within the existing range can have a substantial effect
on the trait. On the other hand if the heritability is high,
environmental manipulations will have little effect unless they
extend beyond the existing range, or bring in new factors.

A strength of a heritability estimate is that, remarkably, it tells
us how much influence existing environmental factors have,
even when we have no idea what the environmental factors are.
This is also its weakness, for one has to look elsewhere to
discover which environmental factors are important. Unfortu-
nately, environments don’t follow the simple, mechanistic rules
of Mendelism. It is a matter of knowledge and ingenuity on the
part of the investigator to pick out likely candidates and test
them.

I have the same view of interaction. Just detecting genotype-
environment interaction tells us little. One has to have specific
testable hypotheses. To increase the probability of finding
interactions, increasing the size of the experiment is often too
expensive. It may be more profitable to enhance the genetic
variance by, for example, using diverse inbred lines (which,
incidentally, reduces the error variance), and to manipulate the
environment by extending the normal range or introducing
novel factors.

Commentary/ Wahlsten: Heredity-environment interaction

3. Why have laboratory experimenters and those involved in
uncontrolled breeding or population experiments treated in-
teraction so differently? Wahlsten finds this surprising; I don’t.
Drosophila and mouse mutations with major effects often in-
teract in complex ways. The study of embryology using genetic
methodology emphasizes interactions, and the interactions of
mutations have often been the key to a deeper understanding.
An excellent example is the molecular and mechanistic under-
standing of the nervous system that has come from just such
studies. The whole pattern of embryological development thus
revealed is a tangled network of interactions. The interaction of
specific mutations with specific environmental agents — viruses
or hormones ~ has likewise yielded fruitful insights.

If interactions are so important, why have seemingly naive
additivity assumptions been so successful in breeding experi-
ments? Why has selection worked as well as it has? Why have its
results been predictable from simple theory? Part of the answer,
of course, is that the sizable uncontrolled errors make it hard to
detect departures from predictions. But I think there is also a
deeper reason.

Performance traits in livestock, and very likely the genetic
components of such things as human intelligence, are deter-
mined mainly by the combined effects of many allelic dif-
ferences with individually small effects. For the same reason
that linear approximations work in physical sciences (Hooke’s
Law, the linear terms in a Taylor expansion), these small
effects are approximately additive. Tiny increments of
anything are additive. This includes environmental as well as
genetic factors. A similar conclusion comes from the findings of
Keightley (1989) on enzyme kinetics. In his words, “Data on
enzyme activity variation from natural and artificial populations
suggest that such variation generates little nonadditive vari-
ance despite the highly interactive nature of the underlying
biochemiical system.”

To go further afield: Evolutionists have long agreed that the
steady improvement of adaptation depends mainly on multiple
genes with small effects. Ifinteractions were rampant, evolution
(at least in sexual species) would be impossible. The results of
selection would be chaotic. A certain amount of additivity is a
prerequisite for evolution.

So I don't find the difference in emphasis surprising. If the
object is to make predictions and determine the relative impor-
tance of genetic and environmental influences in the existing
population, there is sufficient additivity to render correlation
and variance analysis appropriate. If the idea is to get at deeper
mechanisms, then one needs to identify specific genes and
environmental factors with large effects, not part of the normal
population; they are quite likely to interact, and finding strong
interactions argues that they are functionally related.

Eddington, quoted by Fisher (1930, p. viii), said: “We need
scarcely add that the contemplation in natural science of a wider
domain than the actual leads to a far better understanding of the
actual.” That is what experimenters do. They introduce mutant
genes that are far outside the range of anything that would
survive in nature and they consider environmental extremes far
outside the ordinary, or even of a totally different kind. This is
the way to find causes and interactions among causes.

Estimating heritabilities in quantitative
behavior genetics: A station passed

Wim E. Crusio

Institut fir Humangenetik und Anthropologie, Universitdt Heidelberg, 6900
Heidelberg, Federal Republic of Germany
Electronic mail: /37 @dhdurz2.bitnet

Wahlsten’s target article boils down to an eloquent attack on
quantitative behavior genetics and in particular on the practice
of partitioning the variance among mutually exclusive causes
(heredity and environment). He focuses on genotype-environ-
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ment interaction (GXE), but he might just as well have chosen
genotype-environment covariation as the target for his wrath.
When written in full, quantitative-genetics’ basic causal model
is

Var(Y) = Var(H) + Var(E) + 2 Cov(H,E) + Var(GXE)

(assuming that GXE is uncorrelated with either H or E; see
Plomin et al. 1980). Partitioning the variance into components
due to hereditary and environmental causes is thus valid only if
both interaction and covariation of genotype and environment
are negligible. This condition can be approached only in tightly
controlled animal experiments, where subjects with different
genotypes may be provided with as uniform an environment as
technically feasible. In such a situation, only microenvironmen-
tal variation could induce either interaction or covariation be-
tween genotype and environment. Here, GXE may be ade-
quately dealt with by applying appropriate transformations.
Wahlsten quite justifiably remarks that “the interpreta-
tion . . . isaltogether different . . . if we forget about the trans-
formation.” Forgetting important features of an experiments’
design or analysis is obviously a bad research strategy. In any
case, if either interaction or covariation between genotype and
environment (or, for that matter, interactions between geno-
type and treatment, environment and sex, etc.) are present in a
particular experiment, estimates of heritabilities are uninter-
pretable.

Still, as noted by Wahlsten, even when heritability estimates
are valid, they can only be used to predict the effects of possible
selection pressures. As such, these estimates have only a very
limited value for researchers investigating animal behavior and
are without purpose in human-behavior research. Studies
whose only goal it is to estimate the heritability of a psycho-
phene have been useful in the past when many ethologists and
psychologists had to be convinced that heredity can play an
important causal role in interindividual differences in behavior,
It is by now clear that this approach is basically sterile and that
these efforts should be abandoned.

The above applies, also of course, to most behavior-genetic
analyses in which variance is partitioned. Although the knowl-
edge that a significant portion of phenotypic variation is at-
tributable to a certain source might be of interest (e.g., Plomin
& Daniels 1987), information about the absolute or relative size
of this portion in a certain experimental situation is less impor-
tant (because it will vary with the specific conditions of that
particular situation).

All this should not be interpreted as a plea to abandon all
quantitative-genetic procedures relying on the partitioning of
variance. As explained recently (Crusio in press; Crusio et al.
1989), combining these methods with multivariate techniques
might allow the analysis of causal relationships between, for
example, neural and behavioral phenotypes. Estimating
heritabilities as a goal in itself is clearly a thing of the past. We
should now occupy ourselves with more important and more
rewarding problems.

Monotone interactions: It’s even simpler
than that

Robyn M. Dawes

Department of Social & Decision Sciences, Carnegie Mellon University,
Pittsburgh PA 15213-3890

Electronic mail: bitnet: rd1b@andrew.cmu.edu

I agree, completely. My only concern is that the complexity of
the presentation — involving simulations and analogues — will
obscure the simplicity of the basic point. With the editor’s
indulgence, I would like to present a simpler explanation, which
I have used with my students for many years.
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Figure 1 (Dawes). The three 2 X 2 interactions.

Figure 1 presents three interactive patterns of group means in
a2 X 2 design in which the sum of squares between groups is
constant (= 12). The first pattern [1(a)] is termed crossed
(corresponding to Wahlsten’s “Case 27 in his figure 2(a)); the
second [1(b)] is termed sprayed (corresponding to Wahlsten’s
“Case 17); the third is termed monotone (corresponding to
Wahlsten’s Y = H-E example). Since there are four means, any
interactive patterns in the 2 X 2 design can be conceptualized as
alinear combination of these three basic patterns. (Indeed, with
an arbitrary zero point — here set equal to the overall mean — any
pattern at all can be, including a “no interaction” pattern.)

The bottom part of Figure 1 breaks down the deviations (from
the overall mean of 0) into row effects (presented on the side),
column effects (presented at the top) and interaction effects
(presented in the cells) according to the standard ANOVA
model. The important result is that the sum of squares for
interaction for a sprayed interaction is one half that of the
corresponding crossed one, and for a monotone interaction one-
third. (That reflects the “overall effect” of a sprayed interaction’s
being split equally into row and interaction effect and that of a
monotone interaction’s being equally distributed across row,
column, and interaction effects.) It follows directly from the
definition of the standard F-test that three times the sample size
is required to obtain a specified significance level for a monotone
interaction as for a crossed one of the same magnitude — where
magnitude is defined in terms of the sum of squares between
means. Twice the sample size is required for a sprayed interac-
tion. If magnitude is defined in terms of the sum of absolute
deviations, rather than the sum of squared deviations, the
comparable proportionality figures are 9 and 4.

It is difficult for investigators to increase sample sizes by such
radical amounts when they realize that the “interactions” they
have hypothesized (usually verbally) are not crossed. Many (at
least several of my students and colleagues) then have the
creative idea of analyzing their data through multiple regression
techniques using dummy coefficients “fitted” to the type of
interaction anticipated. Thus the row and column factors for a 2
X 2 crossed interaction are coded (+1, —1) (so that the upper
left and lower right cells are weighted +1, the others —1); the
row and column factors for a 2 X 2 monotone interaction are
coded (0, 1) (so that one product is 1, the other three 0), and
those for a sprayed interaction are coded (0, 1) and (+1, —1).
The (again verbal) rationale is that while ANOVA tests for
interactions of any sort through the omnibus F-test, the more
specific coefficients provide tests of particular types of interac-
tion. The analogy is often drawn to testing specific trends rather
than relying on omnibus tests — e.g., in contingency tables or
one-way ANOVA designs.

Unfortunately, this procedure does not work — at least not for
the 2 X 2 design.! The problem is, as Cohen and Cohen (1975,
pg. 295) point out: “Only when u [a main effect] and o [the other
main effect] have been linearly partialled from uv does it, in
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general, become the interaction IV we seek.” Let me illustrate.

Consider a monotone pattern of cell means (3, 3, 3, 9) that
correlate perfectly with the coefficients (0, 0, 0, 1) of the
interaction term obtained when the main effects are coded (0,
1). The multiple correlation from both main effect coefficients
and interaction coefficients is 1.00, but the main effect coeffi-
cients each correlate .577 with the cell means, and since they are
independent, they jointly predict the cell means with an R2 =
.66 (= .5772 + .5772). The residual increase in R2 from the
interaction coefficients is thus .33 (= .5772). In contrast, consid-
er the coefficients (+1, —1, —1, +1) of the interaction term
obtained when the main effects are coded (-1, +1). Again, the
multiple correlation is +1.00, and since the main effect correla-
tions are unaltered, the residual increase in R2 for the interac-
tion coefficients is again (.33 (= .572). The only difference is that
with this (=1, +1) coding the interaction coefficients are uncor-
related with the coefficients of the main effects. The residual
increase in R2 is identical.

Conversely, consider a crossed pattern of cell means (3, 0, 0,
3) that correlates perfectly with the interaction coefficients (+1,
—1, -1, +1) obtained from the (—1, +1) coding of main effects.
How can the “residual” correlation of the interaction coeffi-
cients (0, 0, 0, 1) — obtained from (0, 1) coding of the main effects
— also have a residual value of +1.00? The answer is found by
noting that the (3, 0, 0, 3) pattern is perfectly predicted by
weighting each main effect —3, the interaction effect +6, and
adding +3 to the result; for example, 3= (=3) X 0+ (=3) X 0 +
(+t6) X0+ 3;0=(—3) X0+ (—=3) X 1+ (+6) X0+ 3, and soon.
Thus, the cell means are perfectly predicted from a linear
combination of the main and interaction effects. Since the
correlation of both main effects with (3, 0, 0, 3) is zero, however,
the residual effect of the (0, 0, 0, 1) interaction coefficients
accounts totally for this perfect correlation. What has happened
is that the main effects have become suppressor variables, since
their coefficients are positively correlated with the coefficients
of the (0, 0, 0, 1) interaction term but uncorrelated with the cell
means.

My illustration involves perfect prediction in the simplest 2 X
2 design. The general principle applies mutatis mutandis to
imperfect prediction in more differentiated designs. The gener-
al linear model is a general linear model.

Finally, students and colleagues sometime confuse interac-
tion with confounding — as would occur in Wahlsten’s context if
intelligent organisms selectively migrated to “intelligent en-
vironments.” That’s a whole different problem, a complex one
involving the relationship between “balanced” and “represen-
tative” designs — and futile (Darlington 1968) attempts to uncon-
found intrinsically confounded variables in contexts not involv-
ing experimental manipulation.

We are stuck with the profound 66-year-old conclusion of
Fisher and Mackenzie (1923) that interaction is whatever is left
over after main effects are removed. Everything Wahlsten
pointed out follows from that ohservation.

NOTE

1. Over my objections, one proposal using such coefficients has been
published in a select journal in the psychological literature. Rather than
cite it to tear it apart, however, I warn the reader that such propositions
occur — in the most reputable settings.

Effects of correlation on interactions in the
analysis of variance

Victor H. Denenberg

Biobehavioral Sciences Graduate Degree Program, University of
Connecticut, Storrs, CT 06269-4154
Electronic mail: biosadm3@uconnvm.bitnet

Several years ago two graduate students showed me a set of data
represented by two curves. Curve A increased linearly over the
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Table 1 (Denenberg). Two group repeated measurement

design
Subject C E D=E-C
S, 4 7 3
S, 6 7 1
S, 8 7 -1
S, 10 12 2
S5 12 14 2
s2 10.00 11.30 2.30
s 3.16 3.36
T, = .8937
t = Mean D/SE,; = Mean D/(sj/N)l/2
= 1.40/(2.30/5)12 = 2.06
Source df MS
Trt 1 4.90
S 4 20.15
TS 4 1.15
F = MS/MS,, = 4.90/1.15 = 4.26
t2=F = (2.062 = 4.24
2 = s2 + s2 — 2r_.s.s,
= 10.00 + 11.30 — (2)(.8937)(3.16)(3.36) = 2.30
= 2nMS,, = 2.30

five observation periods. Curve B was flat over the first three
trials and was numerically lower than A; it then increased very
sharply and had higher values than A for the last two trials. It was
“obvious” to me and to the students that there had to be an
interaction of treatments (A or B) and trials since the two curves
crossed. But the students had found the interaction to be
numerically small and far from significant. They were puzzled
and asked me for an explanation. I didn’t have one at the time,
and put the problem aside to think about at some future date.
Wahlsten’s fine paper, with his demonstration of the loss of
power for tests of significance of interaction in the analysis of
variance (ANOVA), was the necessary stimulus to get me to
return to that problem.

I approached the interaction question from a vantage point
different from Wahlsten’s, and without any initial concern about
power. However, my solution led to the same general conclu-
sion, although with an important restriction. My general thesis
is that the correlation between the treatment conditions (in my
example Curves A and B) significantly affects the numerical
value of the interaction term, and this may result in the loss of
statistical power. Let me now develop that argument.

To begin, consider the data in Table 1. Five subjects were
tested under a control and an experimental condition. The first
three columns contain the subject identification and their data.
The last column is the difference between the C and E scores
and will be used to calculate the correlated t-test. The column
variances and the standard deviations for the C and E columns
are given below the table. Beneath that is given the correlation
between C and E. These data will be used in the calculations
that follow.

The test of the mean difference between C and E can be done
via a correlated t-test or the analysis of variance. Both ap-
proaches will be used here. The easiest way to do the correlated
t-test is to use the difference score approach as discussed in any
introductory statistics text. The calculations using the difference
scores are shown in Table 1, and ¢ is found to be 2.06. Using
ANOVA, the F-test for the treatment effect is 4.26. With 1 df in
the numerator #2 = F. In this problem 2 = 4.24 which is within
rounding error of 4.26.
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The next point to make is that the variance of the difference
scores, s 2, can be obtained from the data in the C and E
columns and is a joint function of the variances of these two
columns and their correlation. The formula is

$q2 = 8.2 + 5.2 — sre. Sc Se o))

The correlation between the C and E columns is .8937. When
Formula (1) is applied to the data in Table 1, 5,2 = 2.30, which is
identical to s42 when directly calculated.

One more point is needed to complete my argument. Note
that the error term for the ANOVA, MS,, is an interaction term
and has the value 1.15. Also note that s42, used in the de-
nominator of the ¢-test, has the value 2.30, twice that of MS,..
The general relationship between any interaction, MS_, and
s42, is:

int?

InMSp = 542, 2

where n = number of ocbservations per cell, and the calculations
are carried out in the usual manner of using totals rather than
means. In this example, n = 1. The lastline in Table 1 shows this
relationship.

We can combine Formulas (1) and (2) to define MS,, as
follows:

MS; = [8c2 + 562 — 2re Sc Sol/2n 3

We now see that the interaction term is directly affected by
the degree and direction of correlation between the two treat-
ments (C and E). This is the major point of my thesis. However,
before drawing any general conclusions, it is necessary to show
that the relationships described above are not limited to the
correlated t-test but also apply to factorial experiments.

The single-factor repeated measurement design in Table 1
can easily be generalized to a factorial experiment. Table 2
shows a 2 X 4 factorial experiment with 4 observations per cell.
Only the cell totals are given. From these one can calculate the
mean squares for A, B, and the AB interaction. (The error mean
square is irrelevant and is not shown.) In addition to the usual
information, the final column of that table shows the difference
between the A, and A, treatments, in parallel with Table 1.
Beneath the data table are listed column variances and the
standard deviations for A; and A,. The correlation between A,

Table 2 (Denenberg). 2 X 4 Factorial design.

Table 3 (Denenberg). 2 X 3 Factorial design.

A, A, A, — A,
B, 31 7
B, 9 31 52
B, 49 25 —24
s2 408.33 12.00 550.33
s 20.21 3.46
n = 3 per cell
r . = —.9286

Source df MS

A A, A, — A,
B, 23 45 22
B, 80 97 17
B, 110 58 ~52
B, 90 65 -25
52 1392.25 488.92 1247.00
S 37.31 22.11
n = 4 per cell
Tapa0 = -3843
Source df MS
A 1 45.12
B 2 314.42
AB 2 155.88
Error 24
sj = 1247.00
=53+ 5,3 — 2ry 55, Sup = 1247.13
= 2nMS,, = 1247.04
130 BEHAVIORAL AND BRAIN SCIENCES (1990) 13:1

A 1 48.39
B 2 1.39
AB 2 91.72
Error 12

sj = 550.33

=53+ 53 — 2, .0 Sap Sag = 550.20
= 20MS,, = 550.32

and A, is .3843. MS_, is found to be 155.88 from the ANOVA.
The variance of the difference between A; and A,, s 2, is 1247,
whether calculated from the difference column in Table 2 or via
Formula (1). This is equal to 2nMS,,.

A final example is given in Table 3 for a 2 X 3 factorial with 3
observations per cell. Here, however, the correlation between
A, and A, is —.9286, and this results in a very large interaction
term.

I can now answer my graduate students’ question. The reason

for the failure to find the “obvious” interaction was that the two
curves had a high positive correlation, and this correlation acted
to reduce the variance associated with the interaction mean
square, as can be seen from inspection of Formula (3). This is a
perfect example of Wahlsten’s thesis that the test for interaction
has less power than the test for main effects.
Since MS, , and 5,2 are functionally related, this means that
Formula (3) can be used to help gain insight into Wahlsten’s
arguments. The crux of the formula resides in the correlation
term, r... When the correlation is positive, the value of MS, is
reduced; when negative, it is increased. This leads to the
general conclusion that an interaction mean square will be
numerically reduced if the correlation between the two data sets
is positive; it will be increased if the correlation is negative, and
it will not be affected if the correlation is zero. Reducing the
value of the interaction term (relative to the zero-correlation
condition) is equivalent to reducing the power of the interaction
test. Thus we arrive at Wahlsten’s position. However, according
to my development, his conclusion holds only for the condition
where the correlation between two data sets (or the average
intercorrelation when there are more than two data sets) is
positive. In contrast, a negative correlation would act to increase
the power of the interaction test.

Finally, I enthusiastically applaud Wahlsten’s emphasis on
the use of interaction as a sign to the investigator to think
carefully about the meaning of underlying processes. Statistics,
like other tools, is to be used in the service of science, not as an
end in itself.
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Donr’t kill the ANOVA messenger for bearing
bad interaction news

Douglas K. Detterman
Department of Psychology, Case Western Reserve University, Cleveland,
OH 44106

Wahlsten makes two serious errors in his analysis of the use of
interaction in behavior genetics. First, he equates science with
statistics. Second, he fails to take into account previous attempts
to discover H x E interactions. More seriously, he compounds
these two errors by implying that behavioral genetic analyses, as
currently carried out, are seriously flawed.

The first problem with Wahlsten’s analysis is that he equates
the statistical methods used with the theory. This seems to be a
frequent error of the statistically sophisticated and it is particu-
larly prevalent among students who have just completed a series
of statistics courses. Statistics are merely a tool and have nothing
whatsoever to do with the correctness of a theory.

Behavior genetics makes a clear statement about genetic (H)
and environmental (E) influences related to phenotypic (P)
variance:

P=H+ E + HE + error

Analysis of variance, on the other hand, makes a clear statement
about the score model when there are two variables in the
model:

X=A+B + AB + error

Because there is a superficial correspondence between the two,
it is possible to use analysis of variance to test the behavior
genetic model. But the statistical model is different from the
model proposed by the theory. The validity of the behavior
genetic model is completely unaffected by the power of analysis
of variance. Analysis of variance is only a tool and, as such, is no
more relevant to the substance of a theory of behavior genetics
than are arguments over the refining powers of optical and
atomic microscopes to theories of cell development. Though
one method may give better kinds of data to support or reject the
theory, the method itself has no bearing on the essence of the
theory.
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Figure 1. (Detterman). Predicted values of Wahlsten’s sample
gravity data without an interaction term. Dashed lines are
predicted values, solid lines are actual values for each mass of
my.
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Figure 2. (Detterman). Predicted values of Wahlsten’s sample
gravity with an interaction term. Dashed lines are predicted
values, solid lines are actual values for each mass of m,,.

This point is easy to see in a reconsideration of data which
Wabhlsten considers to be an instructive example: The gravita-
tion data is presented to show the shortcomings of analysis of
variance methodology, but this example is a better demonstra-
tion of the shortcomings of the hypothetical scientist who col-
lected the data than of the methodology used. Wahlsten gener-
ated data from the equation giving the mutual force of attraction
between two bodies. He then analyzed those data with analysis
of variance and, because the interaction between mass and
distance was not statistically significant, concluded that the
analysis of variance would fail to capture the law of gravitation.

To determine exactly what went wrong, I used multiple
regression to predict the group means of force from mass and
distance first and then from mass, distance, and the mass X
distance interaction. Figure 1 shows the predicted scores from a
regression equation using only mass and distance. The squared
multiple correlation is .89. Figure 2 shows the predicted scores
from a regression equation using mass, distance, and the in-
teraction of mass and distance. The squared multiple correlation
is .96. The addition of the interaction terms accounts for about
7% of the total variance. Graphically, it is easy to see that the fit
in Figure 2 is only slightly better than the fit in Figure 1 for these
data. In addition, both fits are better than you would even get
from most theories in the behavioral sciences.

Science requires parsimony — an explanation is most powerful
when it is simplest. If the interaction effect of mass X distance in
the above analysis were not statistically significant, parsimony
would require us to accept the simple additive model of mass
and distance. This simple model provides a highly adequate fit
of the data at hand. Analysis of variance is providing an appropri-
ate conclusion for the data set used.

However, I do not think that any reasonable scientist could
look at Figure 2 and not long for more data on the question. The
obvious problem, acknowledged by Wahlsten, is that the range
of values is restricted. Had a wider range of data been used it is
obvious the conclusion would have been quite different. Statis-
tical techniques, like computers, follow the GIGO principle
(garbage in, garbage out).

From Wahlsten’s analysis of these data, he would have us
conclude that we should all be thankful that Newton never
invented analysis of variance. But I conclude from my reanalysis
that we are fortunate that Newton collected data more sensibly
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than Wahlsten constructed his examples. It is certainly not
possible to conclude from Wahlsten’s analysis of variance that
the law of gravitation is incorrect. Neither can it be concluded
that the analysis of variance is flawed. The only appropriate
conclusion would seem to be that the data collected must be
appropriate for testing a specific theory with a given method. In
that respect, I fully agree with Wahlsten’s conclusion that larger
numbers of subjects should be used in such studies. But I
already believed that before reading Wahlsten’s analysis (Det-
terman 1989).

The second problem with Wahlsten’s argument is that he
gives little attention to the previous efforts to find H x E
interactions. Plomin (1986), on the other hand, devotes an
entire chapter to the topic, considering both human and animal
studies. And Plomin is well aware of the power issues involved
in the detection of interactions (see p. 106). Plomin’s conclusion,
based on this review, was that H x E interactions are hard to find
and when they exist they account for a small portion of the
variance. This is remarkably similar to the conclusions drawn by
Cronbach and Snow (1975) regarding aptitude by treatment
interactions. Evidently, interactions between abilities and en-
vironment do not account for a large portion of the variance in
human behavior.

Wahlsten must agree that H x E interactions do not account
for a large portion of the total phenotypic variance. If H x E
interactions accounted for larger portions of the variance then
even statistical techniques with lower power would be able to
detect them. If the H X E effects are very small, then the
question becomes one similar to the gravitation example above:
Is it more parsimonious to exclude or include the interaction
effect? Currently, researchers in behavior genetics find no
compelling reason to include interactions in their models. But
like any group of scientists they can easily be convinced by
overpowering data. The real problem with H x E interactions is
not with the analysis of variance but with the absence of per-
suasive data indicating the interactions are important to a
behavior genetic model. 1 would suggest that if Wahlsten
believes that H x E interactions are important and he knows why
they have not been found, that he carry out research demon-
strating some important H x E interactions. Such findings would
make an extremely important contribution.

Finally, there is an implication running throughout
Wabhlsten’s target article that a variance accounting approach
should be abandoned because, as nearly as I can tell, the method
involves the computation of heritability. Wahlsten seems to
believe that heritabilities are somehow evil, noting that “the
only practical application of a heritability coefficient is to predict
the results of a program of selective breeding.” This is the
emotive equivalent of saying that the only practical reason for
studying cholera is to develop germ warfare weapons.
Heritabilities are nothing more than a way of representing
portions of variance according to a particular model. In my
opinion, a variance accounting approach also has many desirable
characteristics which recommend it over a hypothesis testing
approach. In short, the arguments presented by Wahlsten are
not convincing either against the use of analysis of variance or
against the currently prevalent theory of behavior genetics.
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Interaction and dependence prevent
estimation

R. M. Dudley

Mathematics Department, Room 2-245, Massachusetts Institute of
Technology, Cambridge, MA 02139

In human behavior genetics, IQ has been studied perhaps more
than all other traits combined (Plomin 1983). The data are
usually summarized by kinship correlations (Bouchard &
McGue 1981), with special emphasis on twins and adoptive
kinships. There are interaction problems even thornier than
those Wahlsten rightly points out. Very few analyses of variance
as such for IQ have been published; they cannot be done from
correlations alone.

Interaction can be defined in theory without reference to
analysis of variance. Let S be a function of genome and environ-
ment, here an IQ test score. In any given population under
study, genomes and environments each have probability dis-
tributions. Let C be the average value of S if an individual’s
genome and environment were chosen independently at ran-
dom. For a given genome, let the average value of S over
environments be C + G, the genotypic value. For a given
environment, let the average values of S over genomes be C +
E, the environmental value. The additive model holds if S = C
+ G + E. In general, S = C + G + E + I, where I is the
interaction. For a further analysis, the interaction can be ex-
panded as

[=GE, + GeEo + ...,

where G, are genetic and E; are environmental variables (Free-
man 1973), all with 0 averages. G, need not be functions of G,
nor E, of E.

“Heritability” is defined (here) as the ratio of variances h2 =
var(G)/var(S). Its dependence on the particular distributions of
genomes and environments under study is too often neglected.
The IQ data base spans cognitive environments varying with
time (across the advent of television), geography, etc.

For humans (and for other species in their normal habitat
outside of designed studies), environments and genomes are
dependent (family members share genes and environments).
Then the variance of § is a sum of variances and covariances,

var(S) = var(G) + var(E) + var(l) +
+2(cov(G,E) + cov(G,I) + cov(E,I)).

It is impracticable to estimate both var(I) and cov(G,E) if they
are not zero (Layzer 1974). The terms cov(G,I) + cov(E,I) raise
further obstacles. They can be removed (Jacquard 1983) by
changing definitions, which does not solve the original problem.

Even under an additive model S = C + G + E, and even if E
is uncorrelated for any two individuals, possibly living together,
the estimation of heritability from kinship correlations is compli-
cated by genetic phenomena: dominance, epistasis (nonadditive
interactions within genetics), assortative mating (Carter 1977)
and lack of equilibrium (Ewens 1979, p. 287). Each G, in the
interaction is subject to these complications. Assortative mating
no doubt also has environmental aspects.

The fit of the additive model to data can be deceptive because
interaction effects on kinship correlations can be confounded
with purely genetic effects (Le Roy 1960a, p. 122; 1960b; Plomin
etal. 1977). Specifically, one-egg twins raised together will have
interaction terms more alike than those of two-egg twins, a
complication in the “twin method.” If the additive model
“explains” more than 100% of the variance (Jencks et al. 1972, p.
266) that is evidence for (not against) interaction, since the net
contribution of all terms involving interaction to var(S), namely
var(l) + 2(cov(G+E,I)), may be negative.

How close can we come to an analysis of variance for adoption
studies of IQ? The results in Table 1 are rough for several
reasons, but illustrative. Define a “—” environment as one in
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Table 1 (Dudley). Environment dominates average IQs
in adoption studies.

Born into

- +
Raised + 112 112
in - 91 NA

which genetically average children raised there will get average
IQ scores less than 100, and a “+” environment as an adoptive
one or “matched control” (Leahy 1935). There are published
studies of children adopted away from “—" environments with
IQ data for biological mothers (Skodak & Skeels (1949), non-
adopted (half-) siblings (Schiff et al. 1978) or estimated IQ scores
for biological relatives (Scarr & Weinberg 1976). Data on chil-
dren born into “+” environments as compared to children
adopted by age 6 months came from Horn et al. (1979) and
Leahy (1935). In Scarr & Weinberg (1976) adoption was by age 1
year. Data are apparently not available (NA) for children born
into “+"*homes and raised in “—" homes, soonecellinthe 2 X 2
table is empty. Analysis of variance and tests for interaction are
not possible, but one can estimate the main effects if the additive
model were assumed.

These data show a strong environmental effect but little or no
genetic effect (Horn et al. 1979, p. 196), either by social class of
origin (Schiff et al. 1978) or skin color (Scarr & Weinberg 1976).
Correlations from some of the same studies suggest genetic
effects, due in part to selective placement, or perhaps again
showing nonadditive interaction.

Studies of separated one-egg twins are further from allowing
an analysis of variance, because the environments of the “sepa-
rated” twins were often quite similar (Farber 1981; Kamin 1974,
pp. 50-62; Newman et al. 1937, pp. 337-41). So environmental
and interaction terms may contribute to the correlations. In one
case environments did make a 24-point difference in “identical”
twins scores (Newman et al. 1937).

The most widely used general method of heritability estima-
tion for IQ is path analysis, assuming the additive model. With
interaction, as Wahlsten says, there is no reliable way to esti-
mate the heritability of 1Q.
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One statistician’s perspective
Colin Goodall

Program in Statistics and Operations Research, School of Engineering and
Applied Science, Princeton University, Princeton, NJ 08544
Electronic mail: colin@jackknife.princeton.edu

I wish to compliment the author on addressing the statistical
problem of detecting heredity environment interaction so vig-
orously. Since the target article evokes general issues in statis-
tical modelling and the analysis of variance, to comment fully on
it would require at least a short course. Such a course would
cover basic 1-way and 2-way ANOVA, the meaning of interac-
tions, and the assumptions underlying the use of analysis of
variance. It then would move on to more advanced topics, such
as the estimation of contrasts, the interpretation of factors as
fixed or random, the analysis of covariance, and more-than-2-
factor analysis. In lieu of the course, I recommend an ANOVA
classic, Snedecor and Cochran (7th ed., 1980), which includes as
examples some agricultural field trials, the same type of data as
those mentioned in Wahlsten’s paper. The advantage of this text

Commentary/Wahlsten: Heredity-environment interaction

is that it discusses the mechanics of analysis of variance and
connects with Wahlsten’s paper without the interference of
heredity and environment as meaning-laden labels of the factors
involved. The mechanics of ANOVA have considerable impor-
tance; the limitations of ANOVA must be thoroughly under-
stood before heredity versus environment can be debated.
Wabhlsten appears to agree with this observation: On the sur-
face, his principal point is a statistical one, namely, that large
sample sizes are needed to detect interactions.

Moving to newer work, the recent revitalization of the field of
analysis of variance has been led by the need for efficient
industrial experimentation (Box et al. 1978). In the social sci-
ences the text of Fox (1984) is a contemporary exposition of the
linear model. The two volumes of Hoaglin et al. (1983; 1985)
present the more exploratory aspects of data analysis, including
2-way analysis and transformations, and we can look forward to
one or more additional volumes from these editors specifically
on analysis of variance. This forthcoming work promises to be an
original and perceptive exposition of analysis of variance, and
will meet many of the statistical concerns of Wahlsten’s paper
head on.

Before turning to detailed comments on Wahlsten’s paper, it
is worthwhile remarking that questions about heredity vs.
environment and the use of analysis of variance are much less
controversial than C. Spearman’s and L. L. Thurstone’s devel-
opment and use of a sophisticated statistical technique, factor
analysis, to define an intelligence quotient. Jensen (1985) and
commentators provided a general review and discussion, while
Gould (1981) explains at length why this is a misuse of statistics.
[See also Jensen: “The nature of the black-white difference on
various psychometric tests: Spearman’s hypothesis” BBS 8(2)
1985.] It is fair to say that many statisticians have misgivings
about factor analysis as methodology per se. On the other hand,
whatever the validity and outcome of the heredity versus en-
vironment debate, there is no doubt that analysis of variance is
one of the most well-founded, best-understood and most reli-
able of statistical techniques!

An additive relationship is said to exist between a response
variable y and two factors « and B if their joint contribution to
the response is the sum of a separate contribution from each
factor (Emerson & Hoaglin 1983). The additive model, with
replication, written

Yy = 1t ooy + B + e D

is the simplest 2-factor model to fit and to interpret. The change
in the mean response, p. + ; + §,, when the level of the first
factor changes from «; to o, is the same whatever the level of
the second factor. In a specific practical situation do we really
believe that the additive model is at all realistic? The answer is
no: Much more likely than not, there will be some interaction.
The appropriate question is, therefore, how large should an
interaction be for it to be important for us? To answer this the
size of the interaction is compared to the sizes of the main effects
and all three are compared to the error variance. (As an extreme
case, the interaction may be so large that it is not worth our
while separating out one or the other of the main effects.)
Testing an interaction for statistical significance means we
strongly wish to avoid rejecting the additive model by chance
alone. That is, hypothesis testing tends to give additivity the
benefit of the doubt, although we may never really believe it to
be true, and we may in fact be prejudiced toward requiring
substantial evidence that the interactions are negligible before
accepting additivity. If an interaction is to be statistically signifi-
cant when the underlying population interaction is relatively
small relative to the error variance, then the sample must be
large. This leads to the classical power computation. In practice
we would not, or should not, utilize our resources solely to
demonstrate the statistical significance of an interaction that is
too small to bother with anyway. Instead, if more data are to be
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collected, the model should be refined through the introduction
of other variables.

From a somewhat different point of view, suppose that, in a4
X 4 table, the observed mean-squares for the 2 main effects, the
interaction and the error are in the proportions 120:75:20:10.
Then the interaction would be statistically significant at a proba-
bility of 5% if 6 or more replications were used. On the other
hand, with proportions 120:75:15:10, no number of replications
would suffice. This example, chosen to parallel the author’s
Table 2, though admittedly “upside down,” illustrates that the
interaction must be sufficiently large compared to the error of
replication for statistical analysis to give results. In fact, the
number of replications matters only if the interaction mean
square is between 18.8 and 25.3 (with error mean square 10).
For both sets of proportions used by way of illustration we may
be perfectly prepared to conclude that the two factors are
approximately additive: 120 and 75 are large compared to 15 and
20. An essential caveat to this conclusion is that it applies within
the respective ranges of the two factors considered. Wahlsten’s
computation of o, oy, o} illustrates very clearly how the
interaction effects in a model can increase quadratically when
the increase in the main effects is only linear.

Broadly stated, the goal of statistical analysis is to find a
parsimonious algebraic representation of the given data, with
the use of inference tools to determine whether one or more
components of the mode! may be due to chance alone. The
choice of model is bound up with the types of departures of the
data from the model. Least-squares or nonlinear least-squares
techniques (Bates & Watts 1988) are appropriate provided the
error distribution is Gaussian. We must therefore ensure that
the data in each cell of the 2-way table is Gaussian. A transforma-
tion may be required, or separate weights if the variances
appear to be unequal (Carroll & Ruppert 1988). Transformation
should be regarded, therefore, as an integral part of the statis-
tical analysis.

Emerson and Stoto (1983) point to the serendipitous effects of
transformation, a transformation to promote symmetry/Gaus-
sianity may also promote additivity. In specific cases the model
is determined by detailed subject-matter specific insight —
considerations about the form of a reaction in chemical kinetics,
for example. However, questions of heredity versus environ-
ment cover so broad a range of subject matter that the model
cannot be restricted indiscriminately to untransformed
ANOVA. Thus, in general, one or more alternative models
should be presented for interpretation in terms of heredity
versus environment.

One alternative is a multiplicative model, which is additive on
the log scale. Recognizing that the log transformation tends to
bring the errors to Gaussianity, it can be fitted by nonlinear or
weighted least squares on the original scale, or by ordinary
ANOVA on the log scale. Interpretation poses no difficulties,
since in percentage terms, the effects of the two factors are
additive. If the data are fitted well by a more complex model,
such as Y = aXe~bX, then this model should hold great intrinsic
interest, especially to the theorist of heredity versus environ-
ment who wishes to understand how the 2 factors X and b
interact. The farmer may require a simpler rule of thumb,
obtained by linear approximation, and will ignore a small in-
teraction, but that is not a key concern in the theoretical debate.

On the relativity of quantitative genetic
variance components

Charles J. Goodnight

Department of Zoology, The University of Vermont, Marsh Life Science
Building, Burlington, VT 05405-0086

Electronic mail: cgoodnig@uvmvm.bitnet

Narrow sense heritability is defined as V,/V,,, the ratio of the
additive genetic variance, V,, to the phenotypic variance, Vp
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(Falconer 1981). Fisher (1958) originally defined the additive
genetic variance in terms of the average effects of alleles;
however, additive genetic variance plays a central role in quan-
titative genetic theory because of its functional significance. The
additive genetic variance is the component of the phenotypic
variance that can contribute to a lasting response to selection.
For this reason, narrow sense heritability is important for the
field of quantitative genetics because it is directly proportional
to the response to natural selection.

The additive genetic variance and heritability of a population
are measured by statistical means and they reflect the potential
for evolutionary change in a particular population at a particular
time. In measuring the additive genetic variance in a popula-
tion, it is often convenient to divide the phenotypic variance
into additive and environmental components:

Vp =V, + Vg

The second component of the phenotypic variance, the “en-
vironmental” variance, Vg, needs further exploration. In this
partitioning of the phenotypic variance, “environmental” does
not mean “nongenetic.” For example, only a slightly more
detailed genetic analysis is likely the reveal that the environ-
mental variance includes dominance variance, and possibly
other forms of genetic variance. In other words, in 2 quantitative
genetic model environmental variance is actually residual vari-
ance, that is, phenotypic variance that cannot be assigned an
explicit causal explanation.

Broad sense heritability is ideally the ratio of the total gen-
otypic variance to the phenotypic variance. Measuring the
genotypic variance, however, will be a difficult, if not impossi-
ble, task in a sexually reproducing organism (Falconer 1981). If
it can be measured it must still be recognized that the measure
of the genotypic variance is for a particular environment and for
a particular breeding structure. Thus, a measure of the gen-
otypic variance in a laboratory setting may have little bearing on
the genotypic variance in the field.

This does not mean that measures of narrow and broad sense
heritabilities are without utility. It simply means that it is
necessary to recognize the relativity of quantitative genetic
measures. Strictly speaking, quantitative genetic measures are
only accurate for the conditions under which they were mea-
sured. A properly executed measure of the narrow sense
heritability will give an accurate measure of the potential for a
response to selection in that particular population in that partic-
ular environment. Similarly, broad sense heritability is an
indication of the portion of the phenotypic variance that can be
assigned to genetic effects in a particular setting. To use an
estimate of heritability measured in one population or environ-
ment to draw conclusions about heritable variation in another
population or environment is an extrapolation and should be re-
cognized as such.

When studying the effects of genetic and environmental
influences on the expression of a trait in an organism, a common
approach is to use a factorial design experiment that exposes sets
of relatives to multiple environments. In this case, an analysis of
variance will provide a measure of the resemblance among
relatives in the context of this experiment. For example, if sets
of individuals with one parent in common are exposed to a range
of environments then the variance among these half-sibling
families will be a measure of  of the additive genetic variance in
this set of environments. If selection were to be applied to a
population in this set of environments then 4 times the variance
among (half) sibling families would be predictive of the response
to selection. A problem arises when the factorial experiment
does not accurately reflect the population and environment that
is being studied. For example, if the environments were chosen
to be a range of environments, rather than a random sample of
the environments the population naturally experiences, then
the experiment is not likely to be predictive of a response to
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selection in nature. This will be particularly true if there are
genotype environment interactions. As Wahlsten points out,
the analysis of variance approach maximizes main effects at the
expense of the interaction effects. This is likely to make it
difficult to compare such an experiment to a natural population.
If the number of environments is small and the different
environments are identifiable, then it is often possible to use
multivariate analysis of variance to analyze genetic and environ-
mental factors affecting a population (Via 1984a; 1984b; Via &
Lande 1985). As with a univariate approach, a set of relatives are
raised in a series of environments. However, in the multivariate
approach the genetic variance components are measured sepa-
rately for each environment and the correlation among the
performance of relatives in different environments is also exam-
ined. This approach postulates that the expression of a trait in
different environments is actually different correlated traits.
That is reasonable because for many traits different genes will be
expressed in different environments. The power of this ap-
proach lies in the fact that there is a separate measure of the
additive genetic variance in each environment. The response to
selection will then be determined by the responses to selection
in each of the individual environments and the genetic correla-
tion among the expression of the traits in the different environ-
ments. This approach avoids many of the pitfalls of a univariate
analysis of variance because the estimates of the variance com-
ponents in single environments are not made at the expense of
the interaction among environments; however, it is still a linear
approximation to what may be a very nonlinear world.

Through the ANOVA looking-glass:
Distortions of heredity-environment
interactions

Gordon M. Harringion

Department of Psychology, University of Northern lowa, Cedar Falls, 1A
50614-0505

Electronic mail: harrinni@uiamvs.bitnet

Wabhlsten has forcefully reminded us that statistical manipula-
tions provide a looking-glass that may offer us, as they did Alice,
new visions and insights at the risk of distorting reality. Many
years ago, [ was an expert witness in a federal court hearing on
sex discrimination in academe. The defendant’s expert present-
ed a total regression analysis (ANOVA) showing that most of the
variance in salaries was a main effect of academic rank, sex
effects were small, and interactions with sex were negligible.
My developmental perspective, to look at factors in the order in
which they entered into career development, prevailed; with a
stepwise regression first extracting sex effects, then experience,
then the interaction of sex with experience, and then rank — sex
effects and interactions with sex were large and the contribu-
tions of rank were negligible. When factors are correlated,
ANOVA will ascribe components of variance based on what best
fits the specific data set, including the vagaries which would be
relegated to error variance if the study were replicated. Stan-
dard textbooks have always emphasized that unless there is a
good logical reason to expect the linear equation to represent
the situation veridically, “fitting a straight line can be regarded
only as an empirical exercise, with no meaning to the constants
obtained beyond the purely formal one of specifying the straight
line that most nearly represents the observed data” (Ezekiel &
Fox 1959, p. 67).

With respect to the salaries, there were interactions. With
sex genetically determined and years of experience clearly
environmental there was a genetic-environmental interaction.
Neither I nor the defense seriously considered gaining ad-
ditivity by scale transformations. It is hard enough to explain to
a judge why we measure variability in square dollars. The
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prospect of explaining salary differences in log-dollars rather
than dollars and variability in square log-dollars is truly daunt-
ing — besides which, it is easy to explain that women receive
smaller annual increments than men do. I would find it difficult
to explain to a judge that the smaller increments are just an
apparent effect and the reality is that there is no difference in
increments once we measure salaries in log-dollars. For ex-
planatory purposes a model must be logically and theoretically,
not empirically, based.

A universal example among those who teach statistics is the
observation that the correlation between the annual Swedish
birth rate and the number of storks nesting is higher than any
other known correlation in the scientific application of statistics.
Cited to demonstrate correlation is not causation, it does repre-
sent a regression model which fits the data almost perfectly.
Hence it offers predictability, the primary requirement for
scientific meaning, but it lacks explanatory value. We reject the
observed regression as a causal model as a matter of logic
relating to matters we understand. In the early history of
statistical applications, lacking understanding, psychology was
obsessed with empirical curve fitting and every set of data tock
the investigator to Pearson’s (1930) tables to discover which
model should be selected for the observed data. But in fact, for
any set of data, one can empirically fit more than one model
perfectly with zero error variance (e.g., a Taylor series or a
Fourier series).

Ultimately we learned we needed a logical basis for model
selection. Ezekiel and Fox (1959), after fitting several curves to
the same data, observed: “It is quite apparent that the dif-
ferences in the shapes of the several curves are due solely to the
particular form of equation used in computing them. There are
certain types of relations which can be accurately represented
by each of these equations. When it is fitted’ to data where that
type of relation is really present, it can give a curve which
accurately represents the central tendency of the data. But
when the same equation is fitted to data for which the underly-
ing relationship follows a different function, the resulting curve
gives only a distorted representation of the true relation — it
shows the relationship only insofar as it is possible to do so
within the limits of the particular equation used” (emphasis in
the original, pp. 101-102).

Suppose, lacking a theoretical model, one chooses to use an
empirical approach to interactions to gain additivity. How shall
one choose the transformation? Time measures for runway
learning in my laboratory certainly need transformation, but
should it be log-latency, which fits some strains of rats, or speed,
which fits others? These represent two different models of
learning. Complete faith in empirical decision making would
lead to the possible conclusion that the principles of learning
vary with genotype. Powers (1950; 1955) reported crop genetics
data which necessitated transformations to handle genetic in-
teractions where different transformations were required for
different years of data collection on the same population. Thus,
transformations which allowed the data to be interpreted for
some purposes sacrificed any possibility of gaining knowledge
about other aspects of the data.

One issue of genetic-environmental interactions and power of
the analysis of variance has not been addressed. Wahlsten points
out that human studies generally report no interaction between
heredity and environment. Suppose, however, that the behav-
ior of parents is influenced by the behavior of their children, that
is, that parental behaviors are at least in part a response to the
behavior of their children. Suppose further that those child
behaviors are also subject to some genetic influences. Then,
since parental behavior is an environmental influence we have a
genetic-environmental interaction or, more precisely, a phe-
notype-environment interaction. That is, the dependent vari-
able, phenotype, also affects the independent variable, environ-
ment. Such phenomena are known to occur in infrahumans
where maternal effects may modify genetic effects toward inter-
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mediate expression (Fulker 1970). From an evolutionary view-
point such maternal effects minimize extremes where inter-
mediate behaviors are more adaptive. It is easy to imagine a
similar adaptive process in humans — parents increasing their
behavior modification activities in response to and counter to
behavioral extremes. Then the appropriate model would not be
a single function combining heredity and environment ad-
ditively but a resultant of independent heredity and environ-
ment functions with some common variables. If the parental
environment is affected by genotype, a regression coeflicient of
genotype exists in the environmental function that is indepen-
dent of the comparable coefficient in the genotype function.

1t is just such reciprocal interaction conditions which necessi-
tated structural equation modeling in economics (Haavelmo
1943; 1944), an approach with conceptual origins in genetics
(Wright 1934). Reciprocal influences have a profound effect on
ANOVA. A nonsignificant interaction variance is meaningless as
a model of parenting if the interaction is the resultant of two
regression coefficients of opposite sign. What is the power of the
test? Econometricians would conclude that the ANOVA results
are biased rather than unbiased estimates so that increasing
sample size cannot increase precision; thus, there is no power.
In reviewing the conditions requiring structural equations,
Goldberger (1973) points out that this is a substantial rather than
a statistical use of the term, bias. To be statistically precise, it
would be more accurate in the parenting example to say that the
analysis estimates only the observations to be expected on
replication and does not estimate the underlying parameters or
the parameters which would be obtained in a fully controlled
experiment. The ubiquity of genetic-environmental interac-
tions in the animal laboratory where experimental control is the
rule and their paucity in human studies where control is limited
may not reflect a species difference but rather a distorted human
image which can be seen in its true form only with theoretically
structured models.

Why do gene-environment interactions
appear more often in laboratory animal
studies than in human behavioral genetic
research?

Norman D. Henderson

Department of Psychology, Oberlin College, Oberlin, OH 44074
Electronic mail: fhenders@oberlin.bitnet

Wahlsten argues that the prevalence of GxE interactions (GxE)
nullifies efforts in human behavior genetics to partition variance
into G and E sources, yet this meaningless activity continues
because the power to detect GxE is so low. He refers to an
“immense collection” of animal studies showing GxE, reviews
the long recognized problem of low power to detect interac-
tions, gives an example in which the true relationship between
distance, mass, and force of attraction is missed using a factorial
ANOVA, and illustrates the low power to detect some multi-
plicative relationships between G and E.

When Wahisten (1979) first raised the GxE issue, his selective
examples and overstated conclusions moved Fuller (1979, pp.
473) to respond, “Fortunately most persons working in this area
are aware of its sensitive aspects, and know the complexities of
G-E correlations and interactions.” Fuller also questioned the
basis for Wahlsten’s genetic nihilism, given the data available at
that time. The intervening decade has brought a flood of sophis-
ticated large-scale research, continued theoretical attention to
GxE (e.g., Henderson 1986; Parsons 1988), and an emphasis on
power and design considerations (e.g., Hewitt et al. 1988;
Martin et al. 1978) in behavior genetics. Wahlsten has neverthe-
less restated some of his 1979 argument, missing the point of
much of the contemporary human research, as he concentrates
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largely on the lack of power to detect model-destroying GxE.
Fuller’s 1979 commentary would apply just as well to this target
article.

1 shall focus my comments on Wahlsten’s “Minneapolis BGA
experience,” where he heard frequent reports of GxE in animal
research but few in the human data.! Commentary length limits
do not allow me to explore some statistical, philosophical, and
motivational issues in the target article. For example: Is
Wahlsten’s low-power issue as serious as the pervasive tendency
in biobehavioral research to ignore GxE by keeping it buried in
error terms? Why does the presence of interactions vitiate the
partitioning of variation into linear and nonlinear components in
random models? What is the scientific objective of human
behavior genetic research? Why does Wahlsten focus critically
on human behavioral genetics (including the eugenics section
and the rehash of a long ago discovered typographical error in
Jinks & Fulker 1970) when the interaction issue has implications
for all research areas?

Although I do not characterize the number of animal studies
showing GxE as immense, compared with almost none reported
in human research, the frequency of GxE does differ between
the two research domains. I suspect that this is not because of
small-N low power in human versus animal research as
Wabhlsten implies. The low-power argument pertains to both
human and animal research yet we find GxE in the latter, which
often involves smaller Ns and less reliable measures than those
used in human research.

Wabhlsten’s contrived example of the ANOVA-oriented phys-
icist provides one clue to the animal-human difference in GxE
occurrences. His hapless researcher would probably have
flunked Experimental Design 101 for failing to heed an impor-
tant rule ~ maximize experimental variance. In a world to be
explained in which mass and distance both vary by more than
ten orders of magnitude, our experimenter respectively limits
the range on these variables to only 4:1 and less than 2:1, much
as if he had placed a mask containing a tiny window over the
appropriate graph in Wahlsten’s Figure 2a and saw little interac-
tion. With the same N but an increasing range of values of mass
(m,) and distance (d), the m, X d interaction not only becomes
highly significant, it soon accounts for more experimental vari-
ance than the main effects. A log transformation would eliminate
the interaction and reveal to our physicist the log m,-2 log d
relationship of Newton’s law.

Animal researchers rarely forget the maximization rule; they
tend to maximize experimental variance with a vengeance.
Variance among a random sample of inbred strains is twice the
additive genetic variance found in a random breeding popula-
tion for a trait. Often strains or selected lines are chosen for their
wide differences on a character, resulting in genetic variance
many times greater than that of a natural population. Environ-
mental variables (which can be either experimental treatments
administered before testing or different test environments) are
likewise pressed to maximum practical experimental limits,
exceeding normal variation. This animal-laboratory variance
maximization strategy is infrequent in human research, where
both the G and the E variation of tested samples tend to be equal
to or smaller than that of the general population. Returning to
the graphs in Figure 2a: If most individuals live in environments
falling between levels 1 and 3 and nearly all belong to one of the
middle three genotypes, GxE will account for little of the
explained variance in all but the Y = a + bX examples. The latter
interactions are rare, even in animal research, and may often be
artifacts of the limits of the design or the dependent variables
used (e.g., Henderson 1968; 1979a; 1979b).

Could we generate more or larger GxE in human research?
Yes, but probably not by simply increasing sample sizes.
Human studies with large samples often produce estimates of
GxE effects sizes near zero and larger samples are not likely to
change this finding much. A better strategy might be to mimic
some of the animal research paradigms. For example:
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1. assemble two genetically different groups of children, one
exhibiting moderate mental retardation associated with a single
gene and a second group without the deleterious gene;

2. assign half of each group to an environmental condition
providing few learning opportunities and the remainder to an
“enriched” condition, with training ranging from rudimentary
skills and knowledge such as dressing oneself or knowing one’s
name, to high level skills and knowledge such as playing the
violin or solving trigonometry problems;

3. measure these skills and knowledge levels and runa 2 X 2
ANOVA for each individual variable and several composite
scores.

I am confident that this questionable experiment will gener-
ate GxE and that these interactions will differ depending on the
behavior measured. Large genetic differences observed be-
tween the two untrained groups on simple tasks might often be
nonexistent in the trained groups. In contrast, both untrained
genetic groups would probably score near zero on a trigonome-
try problem while the two trained genetic groups would proba-
bly differ considerably in their ability to solve it. A composite
score generated from a mix of easy and difficult tasks (not unlike
current psychometric instruments) might show little GxE.

Many variations of this theme exist. Genetic groups could
differ on sensory or motor capacity, drug sensitivity, growth
rate, etc. and treatment or test environments would be de-
signed to exaggerate or attenuate these differences for highly
specific behavior. [See Macphail: “The comparative psychology
of intelligence,” BBS 10(4) 1987] Although these crude human
analogs of laboratory animal research designs are good bets to
generate GxE, reports of such effects are largely absent from the
literature. Perhaps their absence is not because of low statistical
power on an ominous conspiracy among researchers, but be-
cause such designs would often be unethical, trivial or unin-
teresting for the study of human variation. Genotypes could
surely be found that respond differentially to environmental
influence, but this would hardly vitiate current variance and
covariance estimation strategies.

NOTE

1. All six reports of animal GxE at Minnesota involved differential
sensitivity of strains or selected lines to pharmacological agents or stress,
unusual paradigms in the human research.

A nemesis for heritability estimation

Jerry Hirsch

Departments of Psychology and of Ecology, Ethology and Evolution,
University of Winois at Urbana-Champaign, Champaign, IL 61820
Electronic mail: jhirsch@h.psych.uiuc.edu

Congratulations to Wahlsten, who clarifies in fundamental, but
elementary, statistical reasoning why the tidal wave (on the
positively accelerated “rate of publication,” see DeFries &
Plomin 1978, p. 473) of unjustified human heritability estimates
has done so much harm over two decades to an important
research topic. The logic of this methodology is widely misun-
derstood throughout the scientific community (a particularly
influential, and thus all the more unfortunate, example was the
comment, “Genetics and hereditable [sic!] IQ” by the editor of
the important journal Nature propounding his plea: “Genet-
icists (and others) should not . . . be fearful [to] . . . . search
for blocks of data that may throw light on the heritability of
intelligence™). (Maddox 1984, p. 579, emphasis in original) See
Harrington (1988) for a penetrating analysis of “intelligence”
testing. The impact of this misunderstanding has been rein-
forced by a series of reviews in the Annual Review of Psychology
(Broadhurst et al. 1974; DeFries & Plomin 1978; Fuller 1960;
Henderson 1982; Lindzey et al. 1971; Loehlin et al. 1988;
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McClearn & Meredith 1966), almost universally accepted as
authoritative accounts of the growth of scientific knowledge
about human behavior genetics. The signal exception is Fuller’s
(1960, p. 43) first behavior genetics review in that series, which
does consider the Anastasi (1958) discussion recognizing the
“How much” question as obsolete.

Earlier, without explicitly considering the question of statis-
tical power, for which unique contribution Wahlsten now de-
serves full credit, several excellent scientists had already ana-
lyzed the inadequacy of the heritability solution to the
misconceived nature-nurture question (Fisher 1951; Haldane
1946; Hogben 1939; 1951; Loevinger 1943), but their valuable
contributions are not considered in the literature to which they
are so relevant. [t was the inventor of the analysis of variance, R.
A. Fisher, who warned against “the so-called coefficient of
heritability, which I regard as one of those unfortunate short-
cuts which have emerged in biometry for lack of a more thor-
ough analysis of the data” (Fisher 1951, p. 217). Haldane,
Hogben, and Loevinger had made explicit the invalidity of
generalizations about either heredity or environment because of
the existence of interactions. Haldane (1946) showed that in
“general m genotypes in n environments generate (mn)!/m!n!
kinds of interaction” (Hirsch 1970). In the simplest type of
interaction, even

though the phenotypic response of a genotype might change from one

environment to another (therefore the label interaction), a similar

change would occur for all genotypes. That kind of relationship
between genotype and environment would permit generalizations

such as “while the impoverished environment depresses all scores, a

shift to the enriched environment increases all scores.” The majority

of possible interactions, however, preclude generalization. For ex-
ample, Haldane has shown that even in the relatively simple condi-
tion with m = 3 genotypes in n = 3 environments, there are only

(mn)l/(m!)"n] = 280 cases out of a total (mn)!/m!ln! = 10,080 pos-

sibilities, in which the order of merit of the m genotypes is the same in

the n environments, that is, where such generalizations might be

permissible. (McGuire & Hirsch 1977, p. 43).

We then went on to show that the “general expression for
the proportion of interactions permitting generalization is
1/(ml)n-1). Note how this proportion must diminish as m and n
grow large, that is, with each increase in the number of pos-
sibilities to be taken into account.” (McGuire & Hirsch 1977, p.
43) A minor correction I should make to the opening sentence of
Wabhlsten’s abstract is to add “environment,” that is, . . . at-
tribute . . . to variation in heredity [or environment] only
if . ..,” because the restriction on generalization applies
equally to both.

Thus, for the human heritability-estimation bandwagon to
roll on, it was necessary to assure its target audience, consisting
largely of development psychologists and social scientists, that
troublesome interactions simply do not exist. Jinks and Fulker
(1970) accomplished that mission from the prestigious platform
of APA’s Psychological Bulletin. As Wahlsten correctly calls to
our attention, I published Vetta’s invalidation of their mean-
ingless test of interaction. Why? Because the Psychological
Bulletin’s editor at that time “refused to allow Dr. Vetta to
publish his correction.” In his “letter of rejection, he remarked
to Dr. Vetta: Your paper does not materially alter the implica-
tions of Jinks and Fulker’s analysis, at least for a psychological
audience.” (Hirsch 1981, p. 23) — a sadly correct but revealing
commentary on psychology’s low status as a science, a state of
affairs analogous to that commented on by Meehl (1978, p. 806)
in a somewhat different context when he complained that ““soft’
areas of psychology lack the cumulative character of scientific
knowledge.” Fourteen years later, when Peter Schénemann
reanalyzed another part of Jinks and Fulker (1970) that dealt
with the Shields twin study and thoroughly invalidated their
analysis of those important data, once again an editor of the
Psychological Bulletin refused to publish Schénemann’s (1987)
important analysis and correction on the false grounds that an
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old, no longer relevant or influential method was being crit-
icized, despite the contrary evidence readily available in the
Science, and Social Science, Citation Indexes!

In the Psychological Bulletin Plomin et al. (1977, p. 309) could
still write: “This truism for the individual [heredity-environ-
ment interaction] is simply false for individual differences in a
population,” and a special issue of Behavior Genetics has re-
cently appeared extolling

The hypothesis testing revolution in human behavior genetics

sparked by Jinks and Fulker’s seminal paper in 1970 [which] has

simply passed by many people in the field. This is not altogether
surprising; to a newcomer it is difficult stuff, requiring a reasonable

grasp of statistics and polygenic inheritance as well as at least a

smattering of calculus and matrix algebra (Martin et al. 1989, p. 5).
At his departure on receiving his degree, Terry McGuire re-
turned my copy of Hogben’s Nature and Nurture and remarked
that “we should have all read this, because he has said almost
everything there is to say.” So, I terminate this comment with
the final words from 50 years ago:

The application of statistical technique in the study of human inheri-

tance is beset with pitfalls. On the one hand the experimental

difficulties of the subject matter necessitate recourse to mathematical
refinements which can be dispensed with in animal breeding. On the
other there is the danger of concealing assumptions that have no
factual basis behind an impressive facade of flawless algebra. The
student may recall the words of Wilhelm Ostwald: “Among scientific
articles there are to be found not a few wherein the logic and
mathematics are faultiess but which are for all that worthless, because
the assumptions and hypotheses upon which the faultless logic and
mathematics rest do not correspond to actuality” (Hogben 1939, p.
121).

How does one apply statistical analysis to
our understanding of the development of
human relationships

Oscar Kempthorne
CAA Statistical Laboratory, lowa State University, Ames, IA 50011

The first sentence of the target article’s abstract caused me
discomfort, which I will try to explain. In fact, it does not make
“sense to . . . [etc.]” We have two forces, heredity (H) and
environment (E). It is obvious that the result, the outcome (P), is
a result of interaction, using this word in a general scientific
sense, of these two forces. In addition, there is the obvious
possibility of measurement error, which I will denote by M. So
we can write P = f{H, E, M). This merely says that P is
determined by H, E, M through some formulaf{-,-,-). We then

hypothesize, and reasonably so, that there are a number of

possible heredities and a number of possible environments, and
anumber of possible measurement errors. Rather obviously we
hypothesize that the numbers in each case are very large. We
hypothesize that for a given H, say H;, agiven E, say E, and a
given M, say M,, thereisa measurement P, Puk, phenotype It
is obv1ous then that we have a three-factor situation, and we
naturally use the ideas of factorial structures, experimental
designs and Mendelian genetics. From this, we have a full
factorial model:

Pj = o + b + ¢ + (he)y + my + (hm)y + (em)y +
(hem)y;.

This is a model that is not of full rank. We can adjoin conditions
on the parameters {h}, {e;}, {m;}, and so on, to make the model
of full rank. In the conceptual structure we have specified, for
definitional purposes, we suppose that some superentity, such
as God, knows the whole story. Our task is to obtain data and
then to form some ideas about the nature of the “parameters,”

w, {h}, {ej}, and so on.
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One objective that is worth pursuing is to attempt to describe
the variation in the attribute P in terms of the classificatory
factors H, E, and M. This is what so-called heritability analysis is
about. An obvious first step is to suppose that there is no
relationship of the variation of e to levels of H and E. This may
not be true, of course. Another way of expressing this is to
assume that there is no interaction in a statistical sense of M with
H and E. We then have

Py = p + hy + ¢ + (he)y + my,
This relationship is assumed to hold for all (i, j, k) combinations
in the population of (ijk) combinations under consideration.

We now wish to apply this (very near) identity to ideas of
heritability. We are interested in understanding the variation of
{P;}, which we characterize by variance. By our assumptions

var(Py) = var(p + h; + ¢ + (he)y) + var(my)

We can give explicit identification of the terms p, {h;}, {e;}, (he);;
by basing them on the hypothetical population in WthI!l Ievels
of H are equally associated with levels of E. We may assume that
the average of {my } is zero. So p is the mean of this hypothetical
population. All this is entirely natural and very assumption free.
The trouble starts with var{p. + h; + e, + (he),} which equals
var(h,) + var(e) + var((he),) + 2 cov(h e) +2 cov(h (he)y;) +
cov(e (he), i) 1f all the covariances are zero life is 51mple and

var(P) = ver(h) + var(e) + var((he)y) + var(m)

But this is most questionable with respect to any behavioral
trait. It is obviously sure that there is association of h; and e;. In
the context of IQ, one need only lock at the various families of
the Enlightenment in Great Britain in the last century, the
Darwins, the Huxleys. . . .

The problem here described is not mentioned at all by
Wahlsten. The next problem, supposing this one has been
surmounted, is the role of the interaction contributions, {(he),}.
Obviously, there will always be some interaction; we need only
think about “some village Hampden, some mute inglorious
Milton, some Cromwell” of Gray’s Elegy, or a Beethoven born
in a slum.

How can we assess the role? A little progress in thought has
been made for the hypothetical case in which H and E are
equally or proportionally associated. Suppose in our data set a
random subset of m levels of H is associated with a random set of
n levels of E and r observations are made on each combination.
Then there is an ANOVA:

d.f. expectation of mean square
2
levels of H m—1 a2, + rcréle + mo.i
levels of E n—1 of + ro, _ + rmo?
interaction of H& E~ (m—1)(n—1) o2, + ro'ie
measurement mn(r—1) o,

An exposition of this can be found in Kempthorne (1957,
Chapter 13) and in various statistical textbooks The total vari-
ance under this model is 62, + 02 + o2, + o- The proportion
of variance associated with H is ™

2
h

3
02m+0}2]e+a,2n+0'h

a.

which can, perhaps (but only perhaps) be called “heritability.”
Then we can see that the sensitivity of the (usual) F-test for
interaction depends on the numerator's and denominator’s
degrees of freedom, (m-1) (n-1) and mn(r-1) respectively. The
sensitivity of this test can be obtained from Tang’s tables as
exposited by Kempthorne (1952, Chapter 11), or in various
other works. The sensitivity of the F-test for interaction can be
evaluated. It is not at all clear, however, how one can assert that
the tests for interaction have much less power than tests for main
effects.
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This commentator questions the relevance of arguments
based on fixed factors, as in Fisher & Mackenzie (1923), and
judges much of the discussion of the work of Neyman and of
others cited to be irrelevant. It should be recognized that the
notions of components of variance and consequent ratios do not
have causal content. They are useful in devising schemes of
artificial selection. Kempthorne (1978) may be found useful.

It is quite unclear how the ideas of the target article can be
applied to human behavior traits: perhaps to human twin situa-
tions, though randomness of association of H and E will be
absent. The only application in humans is to the study of
correlation and regression among relatives. To examine for
interaction one could examine the regression of offspring on
parent in disparate environments. With an interaction between
H and E, the regressions should be different. My main eriticism
of Wahlsten’s paper concerns its failure to distinguish between
the nonadditivity of H and E and association of H and E in the
data under study. It is suggested that most of the literature on
heritability in species that cannot be experimentally manipu-
lated, for example, in mating, should be ignored.

This commentator agrees emphatically with the last sentence
of the abstract.

Heredity and environment: How important is
the interaction?

Paul Kline

Department of Psychology, University of Exeter, Exeter, Devon EX4 4QG,
England

Electronic mail: kiine@exeter.ac.uk

It must be made clear, from the outset, that this commentary is
written by, to quote Wahlsten: One who knows the field rather
than the power caleulations of analysis of variance. Yet from this
perspective there are several points above this target article that
need to be made.

Wahlsten’s main argument, that analysis of variance is rela-
tively insensitive in the detection of interactions with the result
that heritability estimates are not appropriate, at least in their
present form, seems well taken. However, his implications and
conclusions may not be so readily accepted.

The first difficulty concerns the psychological meaning. All
workers in the field accept that psychological traits or charac-
teristics are influenced by both genetic and environmental
factors and that genetic factors operate necessarily within an
environment. Thus, in this sense the importance of interaction
is a given. As Wahlsten argues, this does not invalidate an
additive model. Even more important, the claim that there is a
correlation between genetic and environmental factors does not
preclude additivity: e.g., in his example “when a bright child is
given advantages.” This example could easily be extended so
that we can think of a bright child actually creating a more
stimulating environment by going to libraries or joining in adult
activities. In fact, this is 2 model which many developmental
psychologists would regard as quite reasonable, both in respect
of intelligence and other traits of ability and personality. Be-
cause it is consonant with the partitioning of variance into the
main factors and with an additive model, the fact that analysis of
variance is weak in the detection of interactions does not seem
important.

Other arguments are raised by this example. The first is a
simple logical issue: The fact that analysis of variance does
underestimate interactions does not mean that interactions
must be present and that, therefore, biometric analysis must be
worthless, as is implied in the target article. Indeed, as the
example of the previous paragraph shows, this is far from the
case. The second point concerns the general overstatement of
the case. For example, Wahlsten argues in the case of gravity
that it makes no sense to claim that a person’s weight depends

Commentary/Wahlsten: Heredity-environment interaction

more on body size than planet of residence. Surely this cannot
be so since in calculating a person’s weight, in any place in the
universe, the body size is constant, and all we need to know is
the mass of the relevant planet.

Similarly, even if there is a genuine statistical interaction it
does not mean that it is nonsense to attempt to quantify the size
of the contribution of the two main factors. It could well be the
case that the environment contributed far more than did genetic
factors to the variance, although there was also an interaction.
What Wahlsten has shown is that the contribution cannot be
calculated with a simple additive model rather than that the
computation is not meaningful. Certainly it would be useful for
theory building to know the relative contributions.

There is a further aspect of Wahlsten’s argument that I
believe to be unsound. This concerns his use of nonhuman
examples. With the possible exception of the higher apes (and
here the effects would be small), man alone strongly influences
the environment in which he lives. Thus, experiments in which
animals are placed into static environments (and indeed all
studies with animals) are barely analogous to the human case
and extrapolation is dubious.

A final, more general, point needs to be made about this
paper. This concerns the use of results of research where the
contributions to the variance are computed with additive mod-
els. If theories are constructed from the results that preclude
interaction then the warnings of Wahlsten’s paper are serious,
but it is doubtful that they are. First, as was discussed, some
meanings of interaction imply only correlated genetic and en-
vironmental determinants and second, whether interactions are
present or not, research into this subject is bound to involve
both determinants, and interactions, if present, will be dis-
covered that way.

It must be concluded, therefore, that Wahlsten’s target arti-
cle is valuable especially for users of biometric analysis, because
it alerts them to a potential source of error. In practice, how-
ever, it appears that this source of error is unlikely to lead to
poor interpretations except where study of the problem is left
entirely to biometric methods.

Flechsig’s rule and quantitative behavior
genetics

H.-P. Lipp
Institute of Anatomy, University of Ziirich, CH-8057 Ziirich, Switzerland

Wahlsten’s target article is lucid, polite, and subversive. He
uses the genetic field’s own weapons to shake the main concep-
tual pillars of classical behavior genetics. His most effective tool
is the analysis (even if a little too pat) of gravitation by means of
ANOVA. I am, by and large, a partisan of Wahlsten’s view and
thus enjoy his bold move. His article may not convince propo-
nents of the line of research under attack, but it is sure to sow a
seed of doubt among nonpartisan scientists about the ap-
plicability of linear statistical methods to dynamic processes
underlying brain development and the organization of behavior.

Much of my own work is based on the use of genetically
defined animal models to study the covariation of brain traits
and behavior, yet from the viewpoint of individual development
of the brain (Lipp et al. 1989). This has led to a conclusion similar
to Wahlsten’s, namely, that linear least square methods for
partitioning hereditary and environmental sources of behavioral
variation are inappropriate tools for addressing psychobiological
problems concerned with the individual (the focus of interest of
most psychologists), and may easily lead to false conclusions
with regard to populations (the proper domain of behavior
genetics). This judgment is not based on primarily statistical
arguments; it is derived from the nature of the behavioral
phenotype which is dealt with by behavior genetics using linear
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least square methods. The issue has been addressed by
Wahlsten briefly (section 14, p. 19).

Let us assume an allele with specifically behavioral effects, a
“psychogene,” and let us assume that the adult brain represents
a hierarchy of dynamically interacting systems; let us add to this
what is known about the dynamics of mammalian brain develop-
ment (Lipp 1979; Lipp & Schwegler 1982, Lipp 1989). The first
problem that arises concerns how a “psychogene” can achieve
reliable observability at the behavioral level at all. Its expression
and penetrance is hindered by a formidable array of buffering
and correcting mechanisms. These include system homeostasis,
behavioral adaptation by means of learning, adult plasticity of
the brain, and a battery of developmental mechanisms for
cerebral reorganization such as axonal sprouting and regression,
cell death, and other processes of neuronal competition, collec-
tively labelled developmental buffers (Finlay et al. 1987; Katz &
Lasek 1978; Katz 1982; Lipp 1979). Each of these mechanisms is
capable of masking the behavioral consequences of a psycho-
gene, and none of them obey the rules of linear interactions and
additivity required to assess properly the contributions of he-
redity and environment. Moreover, they are sensitive to other
genetic influences and to a host of environmental factors. [See
also Johnston: “Developmental Explanation” BBS 11(4) 1988.]

Nevertheless, psychogenes probably do exist. Otherwise,
rapid selective breeding for behavioral traits would be impossi-
ble (Bignami & Bovet 1965; Bovet et al. 1969; Collins 1979;
DeFries et al. 1970; Masur & Benedito 1974; Van Abeelen et al.
1973; Van Oortmerssen & Bakker 1981). It would seem that the
reliable expression of behaviorally relevant alleles reflects the
operation of the Flechsig’s rule (the “myelogenetic law”), ac-
cording to which hierarchically superimposed brain systems
develop late — a criterion used to define cortical regions with
protracted myelination such as associational areas (Flechsig
1920). Hence, psychological specificity of genes can simply be
encoded through timing — the latest acting genes automatically
affecting the top-ranking system levels of the brain which are
presumably responsible for managing the overt behavior of an
individual. A familiar example is given by the set of genes that
control the onset of puberty. In terms of complexity, the result-
ing changes in brain and behavior triggered by the rising
hormone levels most certainly exceed other somatic changes.
Yet the causative gene action is relatively simple. In general
terms, the behavioral consequences of many genes are not a
property encapsulated in the DNA, but depend on the develop-
mental stage and configuration of the target systems in the
brain.

Accepting Flechsig’s rule leads to the paradoxical conclusion
that single gene effects on behavior are most likely to be
observed by concentrating on complex behavioral traits: If a
gene acts very late, its effects escape the extremely powerful
masking effects of developmental reorganization and are modi-
fied solely by the system homeostasis of the top-ranking sys-
tems, or by learned behavioral adaptation. Thus, its effects are
more easily discovered than those of earlier acting alleles, be
this by an observer or by natural selection. On the other hand,
the behavioral expression of such an allele is inevitably variable,
strongly dependent on particular environments, and prone to
interaction with both environment and genes. Moreover, if late-
maturing brain systems are the chief targets of “psychogenes,” it
also means that these systems remain modifiable by environ-
mental influences during a long ontogenetic period: To the
behaviorally relevant brain systems, it matters little whether it
has been modified by a gene or by an external factor (Lipp et al.
1988). Thus, depending on the conditions, the very same allele
may at one time result in a sample of phenotypes with a high
degree of heritability, and another time in a sample charac-
terized by much environmentally dependent variability. It
would seem that the ongoing debate and conflicting results on
the heritability of schizophrenia (Byerley et al. 1989; Kennedy
et al. 1988; McGue et al. 1983) may in part reflect such interac-
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tion between gene effects and developmental properties of the
brain (Lyon et al. 1989). If this scenario is correct, there is
obviously no logical way to disentangle hereditary and environ-
mental contributions to a particular behavioral phenotype, and
the results of the classical partitioning by means of ANOVA are
meaningless, certainly for predicting the behavior of an indi-
vidual, but perhaps also for theories of population genetics and
evolution. For example, selective breeding for behavioral ex-
tremes might well succeed for a trait that has not shown much
heritability.

In terms of research strategy, this line of thought reaches the
same conclusions as Wahlsten: To assess the effects of genes on
behavior, it is first necessary to understand how variations of the
brain develop and how they influence behavior. Understanding
the target paves the way for understanding how genes modify it.
This is not to denounce the computational attempts of behavior
genetics as generally meaningless, for if strong heritability of a
phenotype is found, it is indicative of gene action on brain and
behavior, and thus heuristically meaningful. The underlying
theory may be wrong, but the results remain valuable for the
interested neurobiologist.
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Why are interactions so difficult to detect?

Scott E. Maxwell

Department of Psychology, University of Notre Dame, Notre Dame, IN
46556

Electronic mail: srggcc@irishmvs.bitnet

Wahlsten has provided a valuable message not ounly to re-
searchers in behavior genetics but also more broadly to behav-
ioral researchers in general. Although, as he acknowledges, at
least some statisticians have been aware for several decades of
problems of low power for testing interactions, applied behav-
ioral researchers have by and large shown no sensitivity to this
phenomenon. In particular, behavioral researchers continue to
seek interactions in factorial designs with very small cell sizes,
apparently oblivious to the likely impact of low power on their
results. This practice has continued despite warnings from
Cohen (1977, p. 375) that interactions are typically more diffi-
cult to detect than main effects. Similarly, more than a decade
ago, Cronbach and Snow (1977) provided explicit sample size
advice for behavioral researchers interested in detecting an
aptitude-treatment interaction (ATI). They stated: “An ATI
study is an experiment, and most investigators have followed
experimental tradition, employing 40 or fewer Ss per treatment.
This is radically wrong. The ATI study must be much larger than
a study where main effects or single correlations are at issue”
(1977, p. 46). Wahlsten is right that despite such admonitions
from recognized methodological authorities, most behavioral
investigations of interactions are extremely susceptible to Type
II errors. Indeed, Sedlmeier and Gigerenzer’s (1989) recent
survey of the power of studies published in Journal of Abnormal
Psychology suggests that typical power values in this area are
even lower than Cohen (1962) found in a comparable survey
twenty-five years earlier.

Although the reasons for continued inadequate power are
certainly complex, one contributing factor in the case of interac-
tion research may be the lack of understanding on the part of
most researchers as to why tests of interaction often lack power.
In particular, researchers may have failed to appreciate that
interaction tests frequently lack power for two reasons, one
intrinsic to behavioral phenomena, and the other often reflect-
ing a suboptimal method of data analysis.

One reason that interaction tests may suffer from low power is
that the effect size for the interaction (f;) may be smaller than the
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effect size for a main effect (fy; and f;). Although it is mathe-
matically possible for f; to far exceed fj; and f;, in reality it often
happens that f; is smaller than {;; or f;, or both. For example, in
every situation simulated by Wahlsten, f; is smaller than either
f;; or I (see his Table 4). Such an outcome is to be expected
when the interaction is ordinal with respect to the main effect
factor in question.

To consider this point in detail, consider a 2 X 2 design where
iy is the population mean for the cell in row j and column k.
Without loss of generality, assume that the rows are arranged so
that ju;; < ;. The interaction is ordinal with respect to the row
factor if and only if .}, < py,. Given the usual side conditions
that effect parameters be constrained to sum to zero, cell means
can be written as

BPiu=p—-—a-pB-ap
Rig=p~atp+ap
Bor =g ta—B+af
Moo = p t ot B —aB.

However, py; < p,; implies that —a < af. Similarly, p;, < p,,
implies that o < a. Together, then, —a < af < @, so thatan
ordinal interaction implies that (@8)2 < (a)2. Asa consequence,
the effect size for the interaction will be less than the effect size
for the row main effect. Such a pattern will occur when one
environment (or one strain) is optimal for everyone, but the
precise magnitude of the advantage of this environment (or
strain) over others varies as a function of strain (or environment).
To the extent that environments and strains operate in this
fashion, interaction effect sizes will necessarily be smaller than
at least one of the effect sizes for the main effects.

Even if the interaction effect size were equal to the effect size
for the main effect, the power for the interaction test might be
lower than the power of the main effect test, because power also
depends on effective sample size. The ¢ index for an effect in a
factorial design is approximately equal to the product of fand n’,
where n’ is given by

, N —ab 1
n =-————7 .
dfeffect +1

When both factors have more than 2 levels, the degrees of
freedom for the interaction effect will exceed the degrees of
freedom for either main effect. As a consequence, n’ will be
smaller for the interaction than for either main effect, and power
will suffer accordingly.

Thus, tests of interactions often suffer from two disadvantages
relative to tests of main effects. While a lower effect size is often
an intrinsic disadvantage, the second disadvantage of larger
df g is to some extent under the experimenter’s control. This
second disadvantage occurs because the interaction test is a
global one, which is somewhat sensitive to all forms of interac-
tion but may not be highly sensitive to any particular form. As
Rosenthal and Rosnow (1985) and others have pointed out,
however, planned comparisons of interaction contrasts may
increase power substantially. For example, Levin (1975) shows
that ¢ for a planned contrasts is given by

¢ = Vn2/202%c? |

It can be shown that ¢ for the optimal interaction subeffect can
be written as

¢ = VnXX(ap;)?/202.
In contrast, ¢ for the global interaction effect is given by

& = Vn2Z(app)2/[(a—L)(b-1)+1Jo? .

When both factors have more than 2 levels (i.e.,a>2,b > 2), ¢
for the planned comparison can greatly exceed ¢ for the interac-
tion. For example, in Wahlsten’s “Y = a + bX, Case 1” example,
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& for the optimal interaction subeffect is larger than ¢ for the H
main effect. A test of this specific interaction hypothesis may
yield more power than the test of the H main effect for this
configuration of cell means. Thus, to the extent that the experi-
menter is able to anticipate correctly the pattern of cell means,
power to detect nonadditivity can be greatly increased by
testing planned comparisons instead of the global interaction.

Some researchers might argue that nonsignificant interac-
tions are not problematic, since the interaction sum of squares
simply serves to lower proportions of variance accounted for by
main effects. Wahlsten convincingly argues, however, that
developing a correct model of the phenomenon under study is
more important than partitioning variance. In this respect, the
traditional variance partitioning approach underlying ANOVA
has obscured the goal of developing a model to understand
behavior. This goal is consistent with recent developments in
behavioral statistics texts (e.g., Judd & McClelland 1989; Kenny
1987; Maxwell & Delaney 1989) toward approaches that empha-
size building models and comparing them not just for multiple
regression but for ANOVA as well.

In summary, Wahlsten is right that interactions are often
difficult to detect. The fault lies not with the statistical tech-
niques themselves, however, but with the intrinsic nature of
many behavioral interactions and the frequent use of suboptimal
data analysis techniques. A priori power calculations are essen-
tial. Fortunately, power calculations are becoming feasible even
for complex designs with the development of appropriate soft-
ware. Finally, researchers are encouraged to formulate specific
interaction hypotheses when possible, and to test correspond-
ing planned comparisons.

Who believes in estimating heritability as an
end in itself?

Peter McGuffina and Randy KatzP

alniversity of Wales College of Medicine, Heath Park, Cardiff CF4 4XN,
United Kingdom and ®Department of Psychology, Toronto General Hospital
and University of Toronto, Toronto, Ontario, Canada M5G 2C4

Wahlsten has provided a perceptive, lucid, and well-argued
critique of some of the shortcomings of “heritability” coeffi-
cients, focussing in particular on the hazards of overlooking
gene-environment interactions. However, we wonder if, in
emphasizing some of the more blatant misuses of the concept of
heritability, he has effectively set up a straw man for enthusiastic
dismemberment. For example, we think it would be a hard task
to find a reputable human behaviour geneticist who disagreed
with Wahlsten’s strictures on the misuse of heritability by
would-be eugeneticists. Furthermore, we would not even at-
tempt to defend the idea that estimation of heritability can be
seen as an end in itself. Indeed, Wahlsten’s final sentence
quoting Bateson (1987), is very similar to the views we have
previously expressed (McGuffin & Katz 1986) that “calculation
of heritability is in itself an empty exercise if it does not lead to a
more specific consideration of the ways in which genes and
environment coact and interact to produce the phenotype.”

Quite apart from the problem of arriving at an inflated
estimate of additive genetic effects at the expense of multi-
plicative gene-environment effects, estimates of heritability
have other short-comings which Wahlsten does not mention.
Commonly applied models often require the prior assumption
that nonadditive genetic factors are negligible, i.e., that there is
no dominance or epistasis. At an even more fundamental level it
is important to remind BBS readers, particularly nongeneticists
and nonbiometricians, that heritability is the proportion of
variance accounted for in the population. It does not have a
simple meaning at the individual level. Thus, suppose we find
that the heritability for IQ is .5 in a certain population. We
cannot then take an individual member of that population and
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declare that half of the 1Q score is determined by his genes.
Similarly, heritability is specific to the population in which it is
estimated. Other populations may differ with respect to genetic
or environmental variance or both and hence the ratio of genetic
to total phenotypic variance may differ too. Despite all of these
caveats, we believe that the concept of heritability and more
generally the practice of partitioning components of the phe-
notypic variance, does have some utility. Our own work has
focussed mainly on the genetics of abnormal behaviour and so
we will take three examples from this area to illustrate our case
that estimation of variance components can provide useful
insights and pointers for further research.

1. Heritability as a pointer to diagnostic validity. The introduc-
tion of operational definitions of mental illness (e.g., American
Psychiatric Association 1980) has overcome most of the earlier
problems of reliability for researchers in this field. The question
of diagnostic validity, however, still presents serious difficulties.
For example, “schizophrenia” could now be defined in a variety
of ways, all of which have acceptable reliability (Kendell 1982).
When multiple definitions have been used in practice in the
same study, however, they have been found to overlap only to a
modest extent (Brockington et al. 1978). The researcher, there-
fore, has a real dilemma about which definition to use. One
possible solution is to use aetiological factors to select a defini-
tion which is valid as well as reliable. Probably the best
aetiological clue in schizophrenia derives from the consistent
evidence from genetic studies (Gottesman & Shields 1982),
which suggests that the heritability is substantial (McGue et al.
1985). Blindly rediagnosing a series of schizophrenic probands
and their monozygotic or dizygotic co-twins using a variety of
reliable operational definitions of schizophrenia led to the con-
clusion that not all of these delineate an equally heritable
syndrome (Farmer et al. 1987; McGuffin et al. 1984). Some
definitions, for example the one embodied in the diagnostic and
statistical manual, 3rd edition (American Psychiatric Associa-
tion, 1980), provide a heritability of around 80%, but when the
disorder is defined using only Schneider’s (1959) first rank
symptoms, the heritability is effectively zero. The results pro-
vide a strong hint as to which definition to choose if the focus of
research is to be on biological or genetic aspects of schizo-
phrenia.

2. Heritability, family environment, and eating attitudes. The
aetiology of anorexia nervosa (AN) is even more obscure than
that of schizophrenia. However, AN is known to respond to
family psychotherapy, and family psychodynamic factors have
often been invoked as partial causes of the condition. Recent
evidence also suggests, however, a genetic contribution (Hol-
land et al. 1988). To investigate these further, Rutherford and
her colleagues (in preparation) analysed Eating Attitude Tests
(EAT) scores (Garner & Garfinkel 1979) in a twin sample of
normal young women. High EAT scores are said to detect cases
of AN with good sensitivity and specificity and so studying the
sources of variation in normal EAT scores is of potential interest
to the clinician. Like Wahlsten, we generally favour the use of
likelihood ratio tests in comparing models. We therefore used a
computer program to compute the maximum likelihood of a
general model in which phenotypic variance was the sum of
additive genetic variance (VG), variance due to common family
environment (VCE) and the variance due to “specific” environ-
ment not shared within the family (VSE). This was compared
with reduced models in which each of the variance components
in turn was fixed at zero. We found that although the major
source of variation in EAT scores (about 60%), was environmen-
tal, this consisted entirely of VSE, with VG accounting for the
remaining 40%. In the full model, with no bounds set on the
parameter estimates, VCE tended to become slightly negative,
suggesting that, if anything, family environment makes young
women less rather than more like their siblings. These findings
may be surprising for some psychodynamic theorists, who
emphasize explicitly intrafamilial factors, but are similar to the
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results of studies on other personality traits (Henderson 1982).
We suggest that studies of this type can provide important
preliminary information for attempts to investigate environ-
mental aetiology more directly, as well as an antedote to the
adoption of a priori assumptions concerning sources of environ-
mental influences.

3. Heritability estimates and clues to the causes of depression
One of the problems about aetiological studies in mental illness
is that researchers have always tended to approach potential
causal factors one at a time. A review of the literature of
depression (McGuffin & Katz 1986), however, suggests a com-
plex range of phenotypes, all tending to be familial but having
variable heritability and common environmental components.
We therefore mounted a study of life events and other forms of
adversity in a series of probands with clear-cut onsets of depres-
sion presenting to the Maudsley Hospital, London. A number of
unexpected findings emerged (Bebbington et al. 1988; McGuf-
fin et al. 1988). For example, not only was depression more
common in the relatives of depressed probands than in the
general population but so also were threatening life events.
Furthermore, although the general population sample showed a
very strong relationship between recent threatening events and
depressive disorder at the time of interview (Bebbington et al.
1981), there was only a modest difference in the proportion of
current “cases” of depression between those relatives who had
or had not experienced recent threatening events. Thus, when
we applied a logistic regression model with presence or absence
of current depression as the dependent variable, both recent life
events and relationship to a depressed proband proved to be
highly significant explanatory variables but there was also a
highly significant interaction effect between life events and
family membership. Finding that both liability to depression
and propensity to experience life events as threatening are
familial and interact raises the possibility that event-associated
depression is something which occurs in hazard-prone rather
than just stress-susceptible individuals. Although these com-
plex results are clearly not compatible with a simple additive
model, such a model provided the essential starting point for our
investigation.

In conclusion, we agree with most of Wahlsten’s criticism of
heritability coefficients and agree with him that human be-
haviours are often likely to be more causally complex than the
usual representation in simple additive models. We remain
convinced, however, that simple models provide the best place
to begin. Estimation of variance components can provide valu-
able insights provided they are not awarded undue respect.
Thus, it is of no interest whatsoever to know that the heritability
of IQ is “really” .8 rather than .6 or .4 but it is potentially of
considerable value to know that both genes and family environ-
ment make a significant and substantial contribution to the
variance of IQ or proneness to depression. Discovering this is a
necessary first step, but it is just a first step, and few would argue
that it is sufficient in itself.

Good, bad, and ugly questions about
heredity

Helmuth Nyborg

International Research Center for Psychoneuroendocrinology, Institute of
Psychology, University of Aarhus, DK-8240 Risskov, Denmark
Electronic mail: psynbo@dkarho2.bitnet

Models of nature-nurture interaction date back at least to the
golden age of ancient Greece. The models have not grown
sufficiently in sophistication, however, to accommodate recent
findings, so a more dynamic, nonlinear approach is now called
for.

Plato represented a moderate environmentalist position:
Men are born noble but society can easily corrupt them. His
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colleague, Aristotle, was a convinced hereditarian: People are
born different and the differences can and should be exploited
by society. The medieval church claimed: Man is born with
original sin, but a good Christian upbringing helps. Rousseau
declared that we are savages born noble, but that we are
corrupted by a less than perfect society. In early nature-nurture
debate, the attitude of the participants was the evidence,
exceptions went largely unnoticed, the nature of hereditary and
environmental variables was left unspecified and the assump-
tions of independence and linear relationships were not tested.
Nobility, sinfulness, and corruptibility eventually dropped out
of the nature-nurture vocabulary because they were too elusive.

Other abstract variables took their place, however. The con-
temporary idea of heredity reflects a coefficient based on indi-
vidual differences around a population mean. Interaction means
statistical interaction. Statistics is used to determine how much
of average development and functioning is due to the stabilizing
(additive?) effects of genes and how much is due to (additive?)
modifying effects of the environment. Gene effects are typically
assumed rather than localized and specified. Environmental
effects refer to social or cultural dimensions intuitively deemed
important by the investigator.

One is left with the impression that the nature-nurture debate
still operates at a very high level of abstraction and intuition.
There is nothing inherently wrong with abstraction or calling
things by names, but there must be a certain reality behind it. 1
suggest that the recent tremendous progress in molecular biolo-
gy may help us better discriminate between fact and fantasy and
distinguish the good, the bad, and the ugly questions about
nature-nurture interaction.

From this point of departure, good questions are:

What are the chemical characteristics of the particular DNA
material the fetus received from its father and mother?

What structural and chemical developmental effects did this
particular combination of DNA give rise to bodywise and
brainwise?

To what extent, through which mechanisms, and in which
ways are the combined DNA actions influenced by well-defined
physical and chemical influences of the environment and vice
versa?

These are good questions because the variables can be opera-
tionalized and studied by the powerful tools of the natural
sciences.

The question: “Why not assume that heredity and environ-
ment reflect well-defined, independent, and linearly related
variables?” was not originally a bad question, because it led to
preliminary evidence that genes count in development. But, it
is ugly to continue on this track, as we now know that the idea of
independence and additivity no longer holds, as illustrated so
well by Wahlsten. The major question: “What is the relative
contribution of heredity and environment in explaining the total
phenotypic variability for a given trait?” is really a bad one,
because (1) linear models obscure the existence of dynamic
interactive relationships between heredity and environment,
(2) statistical solutions are not likely to settle this problem, and
(3) modern developmental biology now acknowledges the im-
portance of nonadditive processes (Pritchard 1986).

Nonlinear models, however, may be quite difficult to apply.
The adoption of such models by the natural sciences has led to
much controversy, and parts of modern physics have become
“entangled” (Glashow 1988). Can we expect similar chaos in
the behavioral sciences after having docked linear nature-nur-
ture models? Not necessarily. Dynamic nonlinear models for
variable expression of genes have already been developed for
the area of neuroendocrinology (Nyborg 1983; 1984) and seem
able to explain rather complex aspects of the dynamic biphasic
relationships between genes, hormones, body and brain devel-
opment, functioning, and behavior (Nyborg 1988; 1989; sub-
mitted a; b; Nyborg & Boeggild 1989). Briefly, these models
reflect the observation that a microscopic dose of sex hormone
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can selectively enhance or suppress the protein production of
thousands of genes, with cascades of early organizational and
later activational effects on the development and functioning of
body and brain and, accordingly, on behavior. “Optimal” de-
velopment and functioning seems to depend on intermediate
plasma sex hormone concentrations. Lower and higher plasma
concentrations both have detrimental effects although for dif-
ferent reasons. Further process nonlinearity arises because the
actions of sex hormones are highly sensitive to certain changes
in environmental conditions and to the considerable variation
in receptor availability, sex hormone binding globulins, and
turnover rate. All this speaks for treating each individual as a
self-contained dynamic system of processes that interacts with
its surroundings in nonlinear ways but within limits set by its
DNA material, by ongoing physiological processes, and by the
character of environmentally modulated changes in neuro-
transmitters, including those caused by other people. Tempo-
rary high-level stress in a pregnant woman may, for example,
permanently switch myriads of fetal genes on or off, with
profound long term effects on development and functioning.
All this illustrates what is wrong with traditional models.
Assumptions of independence and additivity are often violated,
and they lack precision about the character, mechanisms, and
locus of action of the relevant causal variables. They group
individuals by the thousands, use averaging population statis-
tics, and then make implicit inferences about individuals. The
new model will focus first on the chemical and physical agents
and physico-chemical processes that make each individual dif-
ferent and then look for communalities (Nyborg 1977, 1987).
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Trying to shoot the messenger for his
message

Robert Plomin

Center for Developmental and Health Genetics, College of Health and
Human Development, The Pennsylvania State University, University Park,
PA 16802

Electronic mail: pvg@psuvm.bitnet

The target article is useful in emphasizing the need to study
genotype-environment interaction and the large samples re-
quired to do the job. However, there is not much new here
except for two conclusions, and these are wrong. One conclu-
sion is that the presence of genotype-environment interaction
(GxE) “renders a heritability coefficient meaningless.” The
other conclusion is that difficulties in finding GxE using the
traditional analysis-of-variance model means that we should
abandon this model. Using the traditional model, the message
from the literature is that it is difficult to demonstrate GxE;
Wabhlsten’s remedy is to try to shoot the messenger.

Biased reporting of the GxE literature. Readers of the target
article may not be aware that this GxE ground is well worn. The
biased reporting of the GxE literature implies that behavioral
geneticists have not considered GxE. For example, the target
article states that “Plomin’s (1988) view” is “that H and E are
additive” and that behavioral genetics “‘is only useful’ for
partitioning variance.” The fuller quote is that “according to
Plomin (1988): Behavioral genetics is only useful for addressing
the extent to which genetic and environmental variation con-
tribute to phenotypic variation in a population.” The target
article misuses this quote to imply that I have not considered
GxE. The quotation was taken out of context from a discussion of
a completely different topic: “Unless you are interested in
individual differences within a species you will not be interested
in behavioral genetics because behavioral genetics is only useful
for addressing the extent to which genetic and environmental
variation contribute to phenotypic variation in a population”
(Plomin 1988, p. 107).

Of the many papers and books I have written relevant to the
topic of GxE, why does the target article use a six-page response
to a book review (Plomin 1988) as the representative of
“Plomin’s view?” Contrary to the impression given by the target
article, I have tried hard, but in vain, to find GxE. For example,
a 1977 Psychological Bulletin paper entitled Genotype-environ-
ment interaction and correlation in the analysis of human
behavior (Plomin, DeFries, & Loehlin 1977) considered how
GxE affects twin and adoption estimates of genetic influence and
proposed a new test of specific GxE using adoption data, a test I
used subsequently in research on GxE. In addition, our text on
behavioral genetics (Plomin, DeFries, & McClearn 1980; 1989)
discusses GxE and two recent books include chapters on GxE
(Plomin 1986; Plomin, DeFries, & Fulker 1988). The 1988 book
presents extensive GxE analyses in infancy and early childhood
using data from the longitudinal Colorado Adoption Project.
Little evidence is found for GxE when the most widely used
measures of environment and development are employed. This
chapter is also relevant to the target article’s implication that
behavioral geneticists are unaware of the relatively low power of
tests of GxE:

Limitations on the capacity of the CAP sample to detect interactions

should be mentioned. As always, our results are bounded by sample

size, for instance. The probability of detecting significant interactions
will increase as the number of subjects increases, as the number of
variables decreases, and as the amount of variance explained by the
interaction increases in proportion to the total variance explained by
the multiple regression (Cohen & Cohen 1983). Given the CAP

sample size and R2 of 10 to 20%, our analyses had approximately 80%

power to detect interactions that account for 5% of the total variance.

However, if interaction effects account for as little as 1% of the

variance, one would need a sample size of more than 600 to detect a

significant interaction with 80% power given an R2 of 10 to 20%. One
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could argue that interactions that account for less than 1% of the

variance are not very important (Plomin et al. 1988, p. 250)

In summary, though I stand accused of ignoring GxE, I have
in fact developed methods and collected extensive data in an
attempt to identify specific GxE.

Animal studies. The target article states that in contrast to
human research, “an immense collection of well-controlled
laboratory studies of animals has provided abundant evidence of
significant and illuminating interactions between heredity and
environment.” I disagree. The most systematic research on the
topic was conducted by Henderson (1967; 1970; 1972) in a series
of studies involving thousands of mice. In one study, for exam-
ple, (Henderson 1972), mice from six inbred strains and their
hybrid crosses were reared in impoverished or enriched condi-
tions for the first six weeks of life. As in hundreds of other strain
studies, escape-learning proved to be substantially influenced
by genetic factors as evidenced by large strain differences.
However, rearing environment and the interaction between
genotype and rearing environment had little effect. Hender-
son’s earlier work and dozens of other studies occasionally
report significant genotype-environment interactions. How-
ever, the significant interactions are not consistent within stud-
ies, nor do they replicate across studies. Moreover, the interac-
tions, although significant given the large samples used in these
studies, account for minuscule portions of variance. For exam-
ple, a study of 12 Drosophila strains reared under 20 different
environmental conditions (Taylor and Condra 1978) found sev-
eral significant GxE interactions, but, as noted by DeFries
(1979), the largest effect only accounted for 2% of the total
variance.

Heritability and GxE. The target article is wrong in concluding
that the presence of GxE “renders a heritability coefficient
meaningless.” Main effects and interactions are independent —
main effects of G and E are not invalidated by the presence of
GxE interactions (Plomin et al. 1980; 1989). In the target
article’s example of different inbred strains of mice reared in
different environments, finding an interaction between strains
and environments has no effect on the main effects of strains or
of environments.

The target article seems more concerned with denigrating
heritability than with finding evidence for GxE. The last sen-
tence of the abstract, for example, states that if the calculation of
“*heritability’ coefficients is abandoned, interactive rela-
tionships can be examined more seriously and can enhance our
understanding of the ways living things develop.” What is
preventing Wahlsten from doing this if he so chooses thus
demonstrating to the rest of us how a more serious examination
of interactions can enhance our understanding of the ways living
things develop?

Does Wahlsten really believe in a model that says that
behavior is solely a function of the interaction between G and E?
This position carries the implication that there are no “main
effects” of the environment. That is, a completely interactive
model means that environmental effects cannot be isolated
because they are hopelessly enmeshed with the effects of hered-
ity.
If Wahlsten really believes in a purely interactive model, why
does he not specify what the expectations of his model are for
such designs as MZ and DZ twins reared apart and reared
together as well as for other family and adoption designs to show
that his model fits the data better than the traditional analysis of
variance model? There is no conspiracy against interaction: If an
interactive model could be shown to fit the data better than the
traditional model, researchers would be quick to use it.

In summary, it is a lot easier to talk about GxE than it is to find
it. Rather than trying to shoot the messenger because of his
message, it would be far more useful to collect empirical data
(not thought experiments about gravity) that demonstrate the
importance of GxE. My reaction to Wahlsten’s article is that
when all is said and done, not much new is said and even less is
done about identifying specific GxE.
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Inherited quality control problems

Peter H. Schénemann

Department of Psychological Sciences, Purdue University, West Lafayette,
IN 47907

Electronic mail: kc@brazil.psych.purdue.edu

Ironically, despite Mr. Justice Holmes’ assertion in
Buck v. Bell that “three generations of imbeciles are
enough,” there is some evidence to suggest that
Carrie Buck’s daughter Vivian, who was only one
month old at the time she was appraised as “mentally
defective” by a nurse, was in fact very bright

(Areen 1985, p. 835).

Wahlsten tells us that a whole century of heritability estimates
may have to be debunked because behavior geneticists over-
looked the fact that interaction tests lack power. As he also
notes, the power issue goes back at least to 1935. Thus he
confronts us with yet another installment in a long series of
interrelated revelations about mental tests which began in
earnest when Kamin (1974) discovered that Burt’s twin data
were faked. It continued with Pike (1978) and Slack and Porter
(1980), who reported that the SAT is much more coachable than
we had been led to believe and Flynn (1987) who found that IQs,
far from holding constant or even declining as we had repeatedly
been warned, actually show massive gains. Crouse and
Trusheim (1988) informed us recently that the incremental
validity of the SAT over high school GPA is virtually zero.

The special twist of Wahlsten’s story is that it implicates a
basic statistical issue, which, moreover, had been discussed
since 1935. How then can behavior geneticists still be confused
about it? What is so difficult about appreciating the difference
between a false positive and a false negative, say, of an AIDS
test? As it turns out, behavior geneticists are not alone in their
confusion about such elementary statistical issues:

Questions of significance level versus power are indeed complex and

not susceptible to easy answers. 1 shall circulate your letter back to

the Associate Editor to see if he has comments on this aspect of your
letter (Editor of the Journal of the American Statistical Association,

personal communication, 1980).

This exchange was triggered by a brief Note (Schonemann
1981) which contested Geweke and Singleton’s (1980) claim
that the likelihood ratio test in (unrestricted) factor analysis
“has considerable power even when the sample size is only 10”7
(p. 136). I showed that this stunning claim was misleading
because, to arrive at it, the authors had used totally unrepre-
sentative communalities (in the high 90s) in their simulation.
For communalities in the range of the actually published em-
pirical factor analyses (which average in the 60s, e.g., French
1951), the power of this LRT barely exceeds the alpha level for
sample sizes of N = 100, let alone for N = 10.

When the editor instructed me to address the effect of the
communalities on the null distribution (1), I asked him to explain
to me the relevance of the null distribution for tests of fit which
lack power. He never did answer this question.

Lack of statistical quality control stretching over decades is
the rule rather than the exception in the mental test field.

For example, [ know of no prominent statisticians who raised
fundamental objections against Holzinger’s “heritability index”
h2 (Newman et al. 1937), which has been used without interrup-
tion from the 1930s to the 1980s in the belief that it estimates the
ratio of the genetic variance over the sum of genetic plus
environmental variance. As was recently shown in
(Schénemann 1989a), it cannot possibly estimate this ratio
because Holzinger had made a mistake in deriving it. As a
result, h2 contains no environmental variance at all.

Similarly, when Vetta (1981) tried to lodge legitimate crit-
icisms of faulty claims by Jinks and Fulker (1970) — who, among
other things, purported to be able to estimate the number of
genes involved in IQ with uncanny precision: >22-100 (p. 348)

Commentary/Wahlsten: Heredity-environment interaction

— the editor of the Bulletin refused to publish his critique
(Hirsch 1981, p. 23). No statistician in this country noticed
anything wrong with the Jinks & Fulker paper, which Eysenck
(1973) had praised as “the cornerstone on which any future
argument about heritability must be based.” More recently,
Schénemann 1989a) showed (a) that the Shields (1960) data
consistently violate several conditions implied by the genetic
model Jinks and Fulker fitted to them, and (b) that a purely
environmental model fits them better by a factor of 2.

What all these cases have in common is that (a) they all involve
precisely defined statistical problems which have unambiguous
answers, (b) faulty statistical claims often remain uncorrected for
decades because editors refuse to publish valid criticisms,! and
(c) statisticians are no better at quality control than psychol-
ogists. The present target article provides yet another illustra-
tion of this theme:

Its focal point, the lack of power of interactions tests, is a
statistical issue par excellence. Presumably, then, at least some
of the six-odd reviewers were statisticians. Why did none of
them notice that Wahlsten’s discussion of the power of interac-
tion tests, his gravity example, his references to expected
values, to Cohen’s tables, and to noncentrality parameters suffer
from the technical defect that they all refer to the wrong type of
analysis of variance model? The models needed to justify the
heritability computations, if any, are not fixed effects but
random effects (“variance component”) models which, under
the alternative, do not involve the noncentral F-distribution at
all. Rather, they involve the central F-distribution (e.g., Scheffé
1959, p. 244; Snedecor & Cochran 1967, p. 280).

This technical blemish in no way diminishes the importance
of the power issue Wahlsten raised which, in fact, extends far
beyond behavior genetics. However, it underlines the need to
take a hard look at the present peer review system (cf. Peters &
Ceci 1982; Harnad 1989) as a mechanism for ensuring statistical
quality control. Recent events have heightened public
awareness that faulty and fraudulent research claims, if left
unchallenged over long periods of time, can have serious
consequences.

NOTE

Whatever the reader may have gathered from Shockley’s (1987)
misleading Continuing Commentary, there never was any room for
doubt that Jensen’s positive Spearman correlations remain artifacts even
under the changed (2-sample) definition of “Spearman’s hypothesis”,
since both Guttman (1986) and I had submitted detailed evidence to this
effect in two independent papers to BBS, which were both rejected. For
further details see (Guttmann 1986; and Schénemann 1989b).

Variation in means and in ends

Arie J. van Noordwijk

Zoologisches Institut, CH 4051 Basel, Switzerland
Electronic mail: noordwijk@urz.unibas.ch

Noah said to the animals: “Go and multiply.” “We
can’t,” said the adders, “being adders, we can only
add.” Noah then said: “No problem,” and gave them
log tables.

It is sometimes forgotten that a variance is an average squared
deviation from ¢ mean. In analyzing a problem, one should
therefore carefully choose one’s means. In an experiment one
can even choose the deviations of the group means from the
grand mean, and thereby choose part of the variance. In the
end, we make statements about our own reality. This is nicely
illustrated by the gravitation example Wahlsten gives. A large
part of the variance of the product of two variables is correctly
ascribed to the factor varying fourfold, and less to the factor
varying less than twofold.

I would want to argue that if these relative variations in mass
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and distance are representative for our world, then for many
practical purposes mass and distance can be treated as additive.
In a situation where different models cannot be discriminated
with reasonable effort, a choice between them can become very
important if we want to extrapolate. When we require interpola-
tion only, structurally incorrect models with a good fit to data
can still be very helpful. The past two decades have given us
good examples of both in the field of macro-economics.

Many people, if not most, think in terms of addition. My best
example to illustrate this comes from a practical joke I was
marginally involved in. Living on the fourth floor of a six-story
student residence, we stuck an index card in the elevator with
the text: “Button 6 out of order, press 2 & 4.” Some victims used
the stairs from the fourth floor up for days. It would be most
interesting to turn this joke into an experiment and to compare
the reactions to this obviously false additivity in departments of
psychology, physics, biology, engineering and law.

I heartily concur with Wahlsten that (a) it is silly to conclude
that two factors are “truly” additive if an interaction is not
demonstrable and (b) that one should have a realistic idea of the
power of tests. Problems of interpretation arise from both
under- and overpowered tests. It is useful to point out the
relatively low power of tests for interactions. What I miss,
however, is general advice. Creating a greater diversity of
circumstances, not only through extending the range of vari-
ables, is probably the best general recipe for increasing the
discriminatory power of tests.

Wabhlsten creates the impression that it is criminal to treat the
real world as additive. I see a contradiction between his treat-
ment of transformations that might improve additivity and his
stated aim of better understanding developmental processes. In
my experience, knowing which transformations should be ap-
plied contains a wealth of information in itself. At the same time,
the very same process may be additive or multiplicative de-
pending on the level of observation. At the population level,
reproduction is best described as a multiplicative process; at the
individual level we normally ask different questions, e.g., ques-
tions concerning the timing of events. In this context the
reproductive process can be adequately described by: 1 +1=3
or occasionally 4.

What is required to study mechanisms? One gets the sirong
impression that Wahlsten’s target article has a generally valid
methodological point, namely, that the test for an interaction in
an ANOVA is not so powerful, but that most of its space is
devoted to a topical rather local debate. Creating a dichotomy
between investigating mechanisms and calculating heritabilities
is rather odd to me, because the very reason why my colleagues
and I calculate heritabilities is to gain an understanding of
mechanisms of micro-evolutionary change. My own field is
evolutionary biology, and more specifically genetic ecology,
which can be described as the application of quantitative genet-
ics to natural populations. Natural populations tend to live in
heterogeneous environments and to show nonrandom associa-
tions of genotypes over environments either as a consequence of
selection or as a consequence of habitat choice. Moreover,
natural selection is virtually always a consequence of changes in
environmental conditions. The same environmental conditions
may totally alter the expression of genetic variation. It is there-
fore likely that average heritabilities multiplied by average
selection pressures give a false indication of the realized re-
sponse to selection. Much depends on how selection operates.
In my eyes it is likely that for adapted organisms, most traits are
almost selectively neutral most of the time in most places. In
tackling such problems, apportioning the total variance to ge-
netic and environmental components under different sets of
environmental conditions is a very helpful summary statistic.
The changes in this summary statistic can discriminate among
potential mechanisms.

Thus, a heritability estimate becomes as much an ecological
parameter as a genetic parameter. One can take this a step
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further and play around with a subdivision of the environmental
variance. Analogous to the customary subdivision of the genetic
variance V_ into a number of components, the additive genetic
variance V_, the dominance variance V,,, interaction (epistatis)
variance V,:

Ve=Vo+Va+ V... )

it is possible to subdivide the environmental variance, for
example, into a component due to temperature, a component
due to food abundance and the rest due to unexplained environ-
mental variance. The reason why this isn’t customary is that
quantitative genetics has been developed and is mostly applied
in the controlled laboratory and agricultural environment. If we
use F for known environmental factors, we could write our
example as:

P=G+F, +F+E ©)

at the individual level.

Where the contribution to the phenotype from temperature
conditions depends on the genotype, we could formulate the
reaction norm for temperature as:

F = f(G.T) @)

or, in words: The effect of temperature on the phenotype is a
function of the genotype and temperature. A simple function
might be a sum of two independent effects. Using a sum is
helpful in that it allows us to maintain a distinction between the
mean effect of an environmental factor on phenotype- and
genotype-specific deviations.

Conclusion. Quantitative genetics is very much a top down
approach, using extreme simplifications to concentrate on the
most important quantitative aspects. Of all the simplifications
made and of all the distortions of reality that are thereby
introduced, assuming additivity often adds only relatively minor
errors. If some people conclude in some cases that their example
shows true/real additivity, one should fulminate much more
against the true/real than against the additivity.

Apart from the fact that in my area predicting the response to
selection is directly relevant, but rather difficult, studying the
ecology (in its literal sense of relations to the environment) of
subdivisions of the phenotypic variance is an important way to
gain insight into the mechanisms of genotype-environment’
interactions. As far as I can judge, the latter would be equally
valid in a psychological context. It is then probably most impor-
tant to choose one’s environmental means very carefully.

Recommended further reading: The Bioscience special issue
on reaction norms (July/August 1989) with contributions by
Stearns (1989), Scharloo (1989), Schlichting (1989), Dodson
(1989), and van Noordwijk (1989) gives an overview of many
different ways to study interactions of genes and environment.

Author’s Response

Goals and methods: The study of
development versus partitioning of variance

Douglas Wahlsten

Department of Psychology, University of Alberta, Edmonton, Alberta,
Canada T6G 2E9

Electronic mail userdiwa@ualtamts.bitnet

The central thesis of the target article is that the statistical
power of two-way analysis of variance to detect certain
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kinds of interaction or nonadditivity is substantially less
than the power to detect main effects in the same circum-
stances. Among the 26 commentators on this article, 24
express agreement in one form or another with this claim.
This is gratifying, but not entirely surprising, because the
point had been made some time ago by Neyman (1935)
and has been reiterated from time to time in the liter-
ature. It is apparent that several commentators (Dawes,
Denenberg, Maxwell) had already addressed this matter
in their teaching and scholarly studies, if not in print. It
must be admitted, however, that many researchers in the
behavioral and brain sciences were not aware of the
extent of the difficulty, or of its history. The target article
demonstrates the magnitude of the difference in power
specifically for a multiplicative model and several other
realistic alternatives to additivity. This should help to
create an awareness of the problem among readers, but,
as Lipp predicts and several commentators confirm, it is
not likely to dissuade the advocates of heritability analysis
from practising their art. The various commentaries illus-
trate with great clarity how the different perspectives and
goals of investigators condition their attitudes towards
statistical methods.

1. Questions of power and light. Several commentators
argue persuasively that the problem of low power could
be studied or expressed differently and perhaps more
simply.

Dawes demonstrates clearly how the linear contrast for
interaction in a2 X 2 design can help us compare different
types of interaction and their main effects. Using this
approach with the Y = (jh)(ke) model when h = e = 1, the
means would be

H, H,
E, 1 2
E, 2 4

The contrast for the strain difference would be (4 + 2) — (2
+ 1) = 3 and for H X E interaction would be (4 — 2) ~ (2
— 1) = 1. This humble example does get at the essence of
the matter. I believe (with Lachenbruch 1988) the sample
size required to achieve a specified degree of power
should be inversely proportional to the square of the
contrast, which implies that about nine times as many
observations per cell will be needed to detect the multi-
plicative interaction compared to the main effect (see
Wahlsten [unpublished]). The relative sample sizes indi-
cate the additional quantity of subjects, time, and grant
funds needed to detect real nonadditivity in the data.
Dawes also presents valuable advice on the proper way to
code interactions in multiple regression analysis.
Denenberg expresses the problem in terms of the
correlation between group means across the various
treatments. When two rat strains respond the same way
to several environments, the correlation will be very
high, and the mean square for interaction according to his
equation (3) will approach zero. If there is no correlation,
as when one strain is strongly affected by the treatment
and the other shows no change at all, interaction should
be substantial. This should apply to the scenario por-
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trayed by Kline, in which one main effect is much larger
than the other but the interaction is significant. If they
respond in opposite ways, yielding a negative correlation,
interaction should predominate. Denenberg suggests
that the power of the test of interaction will be lower than
for the main effects only when the correlation is positive.
However, my example of Y = a + bX, Case 1, in Figure
2(a) of the target article suggests that the power to detect
the interaction can be lower than for the main effect when
the correlation is negative. Denenberg’s formula (3) ap-
plies to sample data, whereas power calculations require
population parameters derived from a model specified a
priori. As suggested by Maxwell, the respective degrees
of freedom are also part of the story; that is, the number of
strains and treatment conditions as well as the correlation
across treatments must be considered.

Maxwell casts further light on the subject by showing
that the ordinal versus disordinal distinction between
kinds of interactions does inform us about relative power
in the specific instance of the 2 X 2 design when the
degrees of freedom for main effects and interaction are
identical. I agree with his contention that, for larger
designs, the power of the test of interaction can be
increased by using a planned contrast to test for an
optimal interaction subeffect. Presuming that the test is
planned before peeking at the results, this is feasible only
when one has a good idea about the nature of the biolog-
ical or psychological processes involved. Those aiming
simply to partition variance may be stuck with the feeble
global F test of interaction.

Cicchetti proposes that computer simulation be used to
explore further aspects of the problem which may not be
amenable to the technique I used. Chiszar, & Gollin and
Maxwell make a similar suggestion. The Soper et al.
(1988) and Adams et al. (1985) studies mentioned by
Cicchetti as well as the study by Heth etal. (1989) provide
excellent examples of the utility of this approach. When 1
first presented a paper on this topic at the Behavior
Genetics Association meeting in Minneapolis (Wahlsten
1987a), I used a Monte Carlo program written in “C” to
obtain a quick estimate of relative power for a 5 X 5
design. Subsequently, 1 adopted the algebraic method
because of its greater apparent elegance, but I acknowl-
edge that there will be trouble extending it to situations
where a computer simulation would work readily. For
example, Chiszar & Gollin point out that ANOVA main
effects and Type I errors may be relatively robust against
nonnormality or heterogeneity of variance, but that these
issues have not been well evaluated with regard to in-
teraction or type II errors. These and other violations of
assumptions could be incorporated into a Monte Carlo
study, with due attention to the properties of the random
number generator (Press et al. 1988, Chap. 7).

Several commentators recommend alternative ap-
proaches to the standard ANOVA rather than increasing
sample size. Bullock maintains that the larger n does not
solve the root problem afflicting behavior genetics; he
calls for the use of consistency checks on the results of
ANOVA and better training of psychologists in applied
mathematics. His remedies have considerable merit. 1
contend that if one wishes to rely on the results of
ANOVA to assess interaction, larger samples ought to be
used. At the same time, in section 12 of the target article I
note that the global F-test is not necessarily the best
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solution. Carlier & Marchaland propose Bayesian in-
ference as a cure for some of the shortcomings of ANOVA,
because decisions about significance are contingent upon
effect size. Bayesian methods also incorporate explicit
statements about the investigators’ beliefs (Berger &
Berry 1988) and thereby discourage impetuous accep-
tance of the null hypothesis. Both consistency checks and
Bayesian inference can help to avoid the worst pitfalls of
ANOVA, as can the likelihood ratio test advocated by
Marler (1980) as well as by McGuffin & Katz. Goodall
informs us of a forthcoming volume on ANOVA which
addresses these issues directly, so that our minds can
remain open to new procedures. However, I doubt that
any mathematical method can obviate the need for larger
samples when one is seeking to make a finer discrimina-
tion or to test for subtler effects such as multiplicative
interaction. Better math can increase efficiency and re-
duce the drain on scarce research funds, but this cannot
equate the sensitivities of even the best test to large and
small effects.

Of course, extending the range of circumstances to
achieve higher power, as suggested by Henderson and by
Van Noordwijk, could preclude the need for larger sam-
ples if the experiment allows for this; but the power of
ANOVA will still be lower for the interaction than the
main effects if H and E are multiplicative.

2. Generality of the model. Two commentators (Kem-
pthorne, Schénemann) assert that a random-effects
rather than a fixed-effects model should have been used.
Although neither claims definitively that the problem of
low power to detect interaction would disappear with a
random-effects model, they suggest that the central the-
sis is not established beyond doubt in the target article.
Neither elaborates reasons why one model is preferable.
Having reconsidered the question, I still think the fixed
effects model is appropriate for the present purpose.
Furthermore, the central conclusion would not be al-
tered by using the random effects model; on the contrary,
the power to detect heredity by environment (H X E)
interaction would be even lower than with a fixed-effects
model.

The main issue in choosing the model is the generality
of the results. With fixed effects involving, for example,
two inbred mouse strains reared in two environments,
the results must be considered specific to the strains and
environments actually studied. On the other hand, if
several genotypes are sampled randomly from a larger
population of diverse genotypes, as proposed by Kemp-
thorne, and several rearing environments are similarly
chosen, then results can legitimately be applied to the
entire population.

Let us ask: How do the users of two-way factorial
designs actually choose their animal subjects and levels of
environment, and what sorts of generalizations do they
make? As Henderson confirms, when rodents or flies are
the subjects, it is customary and wise to choose strains
likely to have extreme scores or, as advocated by Ward
(1985), known to differ greatly at a large number of
genetic loci. It is common practice to test a wide variety of
strains and then choose two with extreme scores for
further genetic analysis (Bauer & Sokolowski 1985;
Wimer & Wimer 1982). Alternatively, selective breeding
may be used to produce a maximum difference in behav-
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ior (Brush et al. 1985; Ricker & Hirsch 1988). Environ-
ments are typically chosen to yield a large difference in
outcome, and care is exercised to restrict conclusions to
the conditions actually observed.

The 2 X 2 design in particular inherently lacks gener-
ality. Even if the uninitiated were to choose strains and
levels of environment entirely at random with the most
inscrutable of computer programs, I cannot imagine even
one experienced researcher accepting the results as rep-
resentative of a wide range of strains and treatments.

When two- and three-way factorial designs are used,
relatively few levels of each factor are commonplace. It is
not at all surprising therefore that tabulations of power of
ANOVA, such as those by Cohen (1988) as well as Rotton
and Schénemann himself (1978), often restrict attention
to fixed effects models.

If the design of the experiment does indeed warrant
use of a random effects model, the power of the test of H
X E interaction can be readily estimated. Koele (1982)
considers a two-way design where the significance of the
interaction term is tested against the error mean squares
using the critical ratio F. If the true variance of interac-
tion effects is 6% ; and the error variance is 62, the result is

Power = Pr{F = F /(1 + no 2,,/02}.

In the target article I follow Cohen’s convention for effect
size f as the ratio of standard deviations. For two-way
interaction o,5/0, = f;. Thus,

Power = Pr{F = F /(1 + nf?)}.

Although Kempthorne suggests that the power of the
interaction effect in a random effects design can be
assessed with Tang’s tables of the noncentral F distribu-
tion, Scheffé (1959, p. 227), Koele (1982) and
Schonemann argue that the central F distribution is ap-
propriate in this situation. Let us now compare the power
of the same interaction effect size estimated (a) as in
Cohen (1988) under the fixed effects model with the
noncentral F distribution, as done in the target article,
and (b) under the random effects model as in Koele (1982)
with the central F distribution. Let there be five levels
each of heredity and environment with 10 subjects in
each of 25 groups, and let a = 0.05. The power to detect
H X E interaction is generally lower under the random
effects model.

The test of main effects under a random effects model is
properly done with respect to the interaction mean
squares if the interaction is indeed significant. This out-
come will have devastating consequences for the power of
tests of main effects; but it will occur rarely because of low
power and is not pertinent to the theme of the target
article, where the focus is on situations in which there
really is interaction but the researcher concludes that
there is none. In such a situation, one may decide to test
the main effects against the error term, a step to be taken
with trepidation (Hays 1988) although it is often taken in
practice. Suppose the main effect size for heredity or a
strain difference is 0.4 in a 5 X 5 experiment with 10 mice
per group. As shown in the target article, under a fixed
effects model the power to detect the main effect will be
greater than 99%, whereas with random effects it will be
46%. Multiplicative interaction with equally spaced lev-
els of H and E will have a corresponding effect size of
0.189, which will yield power of 36% under a fixed effects
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Table 1. Power (%) of 5 X 5 ANOVA to detect interaction
under fixed effects and random effects models with
same effect sizes when n = 10 and o = 0.05.

Interaction

Effect Size Fixed effects Random effects

0.05 6 6
0.10 11 9
0.20 41 27
0.30 84 59
0.40 99 84

model and 24% under random effects. That is, under a
random effects model the power to detect the H X E
interaction is considerably lower than to detect the main
effect of strain, but the difference in power is not as great
as with fixed effects. The central thesis of the target article
is supported under a random effects model as it is usually
applied.

Because a fixed effects model is appropriate to the
target article and conclusions are the same under a
random effects model in any event, Schénemann’s alle-
gation about lack of “quality control” on the part of the
eight (not six) BBS referee reports is without merit. It
strikes me as bizarre how Rotton and Schénemann (1978)
once stated “in factorial designs interaction tests seldom
match the power of main effect tests” and provided an
illustrative example, yet now Schénemann neither claims
priority nor repeats this unequivocal remark.

3. Complexity of the models. Several commentators sug-
gest that a more complete model of heredity and environ-
ment should be used. If one were to propose a viable
model of human behavior, without doubt several addi-
tional processes should be considered. The two-way fac-
torial design with genetically uniform inbred strains ran-
domly assigned to extreme environments as outlined in
the target article is aimed expressly at avoiding certain
complications in order to reveal the fundamental problem
of insensitivity to interaction in the clearest possible way.

Crusio, Dawes, Dudley, Harrington, Kempthorne,
Kline, and McGuffin & Katz argue that heredity and
environment can be correlated, and that such covariance
can be important in a realistic model of behavior. For the
case of human society or animal populations outside the
laboratory, I concur. Confounding of H and E, an ex-
treme form of covariance, can make the estimation of
some parameters impossible, and covariance occasioned
by genetically influenced behavioral modification or
choice of the environment can wreak havoc in a path
model. As Goldberger (1978) and Taylor (1980) have
shown, even minimally complete models suffer from
underdetermination in which there are more parameters
to be estimated than there are observed correlations
available. Harrington also suggests that structural equa-
tions can yield biased results when two regression coeffi-
cients are opposite in sign, so that interaction will fail to
appear regardless of sample size. The critique by Kem-
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pthorne (1978) of prevalent misconceptions is most infor-
mative, as is the review of additional criticisms by Dudley
and Hirsch. Let me assure these astute commentators
and BBS readers that I do not think H X E interaction
poses the only challenge to heritability analysis. The two-
way factorial design using inbred strains minimizes
covariance, as Crusio notes; and omitting such an effect
from the ANOVA model can be justified in the target
article and in the laboratory when an experiment of this
kind is done.

Kline questions the relevance of studies of nonhuman
animals to humans because “man alone” has a strong
influence on the environment. My reading of behavioral
ecology suggests otherwise. Bullock states that humans
are the “most extreme” in this respect but are not alone.
The very essence of animal behavior is transformation and
creation of the environment, as should be apparent in the
cycle of ingestion, digestion, and excretion, as well as in
the phenomena of habitat selection, burrowing or nest
construction, etc. Chiszar & Gollin stress the “inter-
definition of genome, organism, and ecosystem.” Lewon-
tin (1982) also explains very well the interpenetration of
the organism and its environment. In the laboratory we
attempt to restrict the operation of some of these pro-
cesses in order to simplify and analyze mechanisms. Just
as Mendel needed a uniform plot of ground to reveal laws
of genetic transmission, so is precise control of heredity
and environment in the lab helpful to document interac-
tion. In society at large we should expect to find both
Mendelian inheritance and heredity-environment in-
teraction, and we should be skeptical of any model which
presumes the presence of one but the absence of the
other.

Dudley and McGuffin & Katz propose that a realistic
model ought to incorporate interactions between genes at
different loci (epistasis) as well as between genes and
environment. This is especially important when one
wishes to analyze the components of global heredity,
which can only be done with cross-breeding schemes.
Comparing several inbred strains varies heredity but
cannot further elucidate its mechanisms. As mentioned
by Crow, there is abundant evidence that the conse-
quences of genes at one locus depend on genotype at
other loci. This has been amply demonstrated for mouse
pigmentation (Lamoreux & Pendergast 1987), obesity-
diabetes (Coleman 1981), and brain development (Bill-
ings-Gagliardi & Wolf 1988; Kerner & Carson 1986), and
evidence is sometimes found for behavior (Bateson &
D’'Udine 1986). When one is attempting to understand
the dynamics of development, these phenomena can be
most informative. Contrary to the claim by Crow that
inbreeding reduces error variation, inbreeding often in-
creases phenotypic variance above the level seen in F,
hybrids (Hyde 1973; Palmer & Strobeck 1986), and this
may very well stem from epistatic interaction.

If a more complex model were formulated to take
account of several kinds of covariance and gene-gene
interaction as well as heredity-environment interaction,
the sensitivity of the test of interaction would very proba-
bly be extremely low — if a decisive test could be formu-
lated at all for humans. The 2 X 2 test proposed by Plomin
et al. (1977) is not valid because it classifies adoptees by
phenotype of biological parents rather than the adoptees’
own genotypes. Any test of G X E interaction must
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involve replicated genotypes reared in different environ-
ments. Otherwise, innumerable combinations of genes
and environments can yield the same phenotypic out-
come. The target article concentrated on the 2 X 2 test of
interaction because it is advocated by well-known
spokesmen for behavior genetics. The point is made that
even if one considers this test credible for humans (which
I do not) the power is usually so low that any negative
results must be inconclusive. The great confidence with
which some researchers proclaim the absence or rarity of
H X E interactions is not warranted by the shaky ladder of
dubious assumptions on which they stand.

4. Focus on development. The target article contrasted
two research agendas: the study of development and the
partitioning of variance. The commentaries indicate that
this dichotomy was no figment of my imagination. Devel-
opmentalists have very little interest or faith in assigning
definite percentages of variance to contributing causes.
Inferential statistics may be used as an aid to decision
making, but the statistical models are not reified the way
they so often are in behavior genetics. The developmen-
tal perspective in no way denies the importance of genes
or espouses ~genetic nihilism,” as implied by Hender-
son. Interactionism advances beyond the sterile nature-
nurture dichotomy inherent in the ubiquitous G + E of
human behavior genetics.

Bookstein stresses that “the scientist needs to know the
form of f,” the function relating heredity and environ-
ment. Bullock says we need “quantitative models of
actual processes.” Cheverud wants us to improve the
genetic analysis of development by generating “develop-
mental models which would help guide the analysis.”
Chiszar & Gollin seek “the adduction of the organizing
principles that mediate development.” Crusio urges the
use of genetic techniques for studying causal rela-
tionships between brain and behavior. Harrington
instructs us that “for explanatory purposes a model must
be logically and theoretically, not empirically, based,”
and he shows how a developmental perspective can
specify the proper order of entry of variables into a
multiple regression equation. Lipp argues that “under-
standing the target” of gene action should precede studies
of how genes affect it. Maxwell stresses the importance of
developing a “correct model of the phenomenon under
study.” Nyborg is after precise knowledge about “the
character, mechanisms, and locus of action” of causes,
and he is not satisfied with gene effects that are “assumed
rather than localized and specified.”

Explorations of physiologically real interactions can
lead to noteworthy progress in our understanding of
ontogeny (e.g. Beardsley 1988; Ingham 1988; Vardimon
etal. 1988; Yeakley et al. 1987). The hypotheses proposed
by Lipp and Nyborg exemplify the fruitfulness of a
developmental perspective. Lipp proposes that later act-
ing “psychogenes” will tend to affect neural systems at a
higher hierarchical level, and that single gene effects are
more likely to be observed on complex behaviors. This
approach to behavior genetics is meaningful for the devel-
opmentalist. Nyborg envisions bidirectional relations in a
way that informs rather than offends the psychologist
interested in chemistry and behavior. Dynamic nonlinear
models of gene action in neuroendocrinology illustrate
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the merits of a physiological and psychological interac-
tionist approach (see Nyborg).

Crow draws a distinction between H X E interaction
which can and cannot be removed by a monotonic trans-
formation and regards only the latter as “real.” However,
to the developmentalist the judgment of which is real and
which is mere appearance cannot be made simply from
mathematical form. One must know how things actually
work. Only then can certain functional relationships be
regarded as trivial instances of apparent interaction,
while others are seen as profound. Likewise, the merits
or demerits of the idea mentioned by Goodnight and
championed by Falconer (1981) — that gene-environment
interaction can be subsumed under genetic correlation as
the proportion of genes acting in common in two environ-
ments to determine two measures — must be decided by
molecular biology, not by population genetics. 1, for one,
very much doubt the veracity of this hypothesis because
the calculations assume additivity of genes and environ-
ment within the corresponding environments, while al-
lowing qualitative differences befween environments.

Plomin’s contention that main effects and interactions
are “independent” makes no sense from a developmental
perspective (Lewontin 1974; Oyama 1985). It is also
mathematically wrong for the case of a random effect
model that ought to be applied to a human population.
The two-way fixed effects ANOVA we use in laboratory
studies will separate the total variance into four separate
piles even when the true functional relationship is multi-
plicative. Main effects are defined as being additive, and
interaction is defined as the departure from additivity. If
there is clearly significant departure from additivity, the
null hypothesis of additivity should be rejected outright.
Then there is no additivity at all and main effects are mere
artifacts of the algebra. If H and E are multiplicative, then
100% of the relationship is H-E and none of it is additive.

Plomin’s claim that in the target article the finding of
interaction had no effect on the main effects is mistaken.
As explained in section 7, I arbitrarily fixed the effect size
f of the largest main effect at 0.4 for every model so that
relative power could be better perceived. I also showed
in section 7 that, under the Y = H-E model the difference
between strain means in a one-way design depends on the
environment in which they are reared. If J strains with
values for heredity H equally spaced by h units are all
reared in E; = e then the standard deviation of strain
means is

_he [0+D(-1)

TnT g 3

which includes the e term reflecting the rearing environ-
ment. If they are instead reared in K different environ-
ments, as in the target article,

K+1) he +1)(J-1)
0H=(2)'7‘/0 Q(J )

That is, multiplicative interaction increases the main
effect of strain by a factor (K + 1)/2. If this be seen as
independence, then new spectacles are in order.

The developmentalist seeking to understand functional
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relations needs better measurement of the fundamental
processes, not just better statistics. Bookstein argues
persuasively for this and provides instructive examples in
his own applications of tensor biometrics (Bookstein
1987). 1 agree that two-way ANOVA does not really
provide a measure of interaction in the strict sense.
Perhaps we should name the interaction mean squares an
indicator. Now, can we ever measure H, E and H X E
interaction in their own units? For environment, many
obvious examples of degrees of temperature, mg/kg for a
dietary component, hours spent reading, and so on, are
familiar. Current conceptualization and attempts at mea-
surement of environment in human behavior genetics
leave much to be desired (Wachs 1983), but proper
measures are possible. Heredity, especially the genetic
aspect, poses greater difficulty because it is inherently
categorical. For example, the “jimpy” (jp) gene in mice
differs from the normal allele by a substitution of an
adenine for a guanine nucleotide base in the DNA (Nave
et al. 1987). The genetic variable strongly affects the
abundance of myelin proteolipid protein (Gardinier &
Macklin 1988), but a measure of the protein is not a
measure of the gene itself, nor is the amount or spatial
distribution of myelin in the nerve bundle a measure of
the gene because numerous other genetic loci and in-
teracting physiological processes combine to govern the
result (Lemke 1988).

Given that genotype must be a categorical variable, it
can be represented by a dummy variable in a multiple
regression equation for suitably designed experiments;
and this can provide an index of H X E interaction. For
example, Bulman-Fleming and Wahlsten (1988) found
that the adult brain weights (measured in milligrams) of
inbred BALB/cWah2 mice declined linearly with litter
size (measured in number of pups). However, the slope of
the relationship was significantly steeper when the mice
were derived from ovarian tissue grafted into an inbred
BALB/c mother (5 mg smaller for each additional pup)
than when grafted into an F, hybrid mother (3 mg/pup).
Is the slope of the line in mg/pup a measure of the
maternal environment, whereas the 2mg/pup difference
in slope measures interaction? Neither is a measure.
What we measure is brain size of mice from litters of size
2, brain size of mice from litters of size 3, and so on. A
slope of 5mg/pup is then an inference drawn with the aid
of linear regression across litters. Because the difference
in brain size between different litter sizes must represent
an effect of environment, it may be seen as a pure
indicator of environment alone, but the significant in-
teraction alerts us to the fact that the value of 5mg/pup is
strain dependent, as well.

A closely related matter is raised by Carlier &
Marchaland, who point out that inbred strains differ in
maternal environment as well as genotype and that conse-
quently a strain-by-environment interaction cannot dis-
criminate between gene-environment interaction and
interaction with maternal environment. They are abso-
lutely right about this. Henderson fails to make this
important distinction. I myself have emphasized the
confounding of genetic (G) and E effects in strain studies
(Wahlsten 1979), and results confirming the importance
of maternal environment have been reported from my
laboratory (Bulman-Fleming & Wahlsten 1988; Wahlsten

Response/Wahlsten: Heredity—environment interaction

1983; Wainwright 1980). Is it fair and proper that I should
now be hoist on my own petard? In the target article I was
careful to talk about the heredity of a strain and to use the
symbol H rather than the customary G found so per-
vasively in behavior genetics texts, but apparently T was
not careful enough. There are passages, such as the
second paragraph of Section 4, where the distinction
between H and G is obscure. In a factorial experiment
comparing inbred strains, heredity is “an operationally
defined entity which includes the usual direct chro-
mosomal influence . . . plus the less-widely recognized
differences in maternal environment” (Wahlsten 1983, p.
220).

The studies by Carlier and her co-workers show how
the maternal environment itself can interact with geno-
type. Psychologists are gradually becoming aware of the
importance of the very early environment for behavior
(e.g., Gutzke & Crews 1988; Smotherman & Robertson
1988). The comments of Carlier & Marchaland as well as
Harrington pose a challenge for human adoption studies
because adopted away twins always share a prenatal
environment and the singleton adoptee spends at least
nine months in an environment provided by its genetic
mother. As if things were not already complicated
enough, we must now be aware of maternal effect genes
(Winslow et al. 1988) and chromosomal imprinting (Reik
et al. 1987; Sapienza et al. 1987). Cest la vie!

Crow and van Noordwijk suggest that gene effects may
be highly nonadditive at one level, the molecular level in
particular, and yet appear additive at another level.
Although these points are made in defense of heritability
analysis, they warrant careful study on their own merits
because of the developmental content. I cannot agree
with Crow’s strong statement that “tiny increments of
anything are additive.” This fundamental theorem of
calculus cannot explain the behavior of certain deter-
ministic but nonlinear dynamic systems of interactions
under conditions far from equilibrium — the realm of
so-called “chaos”™ (Gleick 1987; Grebogi et al. 1987). Such
systems are characterized by a sensitive dependence
on initial conditions that makes long-term prediction
of macroscopic behavior such as weather all but impos-
sible from the standpoint of a collection of locally acting
causes.

Hyperion, a moon of Saturn, has an orbit so chaotic that
a measurement accurate to 10 digits would not be suffi-
cient to know its location, even crudely, a mere two years
later (Killian 1989); it is safe to say that it will still be
orbiting Saturn, but for many asteriods the limits of their
orbits are not assured. The history of physical science on
the earth might read quite differently if Newton had sat
beneath a lurching, irregular Hyperion among a multi-
tude of moons rather than the spherical solitaire he knew
so well. I suspect that Crow and Van Noordwijk are right
about definite nonadditivity at one level and apparent
additivity at another, and that chaos theory will prove
applicable to embryonic and social development alike. If
so, any claim that valuable information about mechanisms
of development can be gleaned from patterns of correla-
tions among measures of the outcomes of development is
dubious. [See also Skarda & Freeman: “How brains make
chaos in order to make sense of the world” BBS 10(2)
(1987)]
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5. Should ANOVA be banned? Although Bookstein seems
to advocate a ban on ANOVA, I do not. Plomin attributes
to me the view that, because of the low power of ANOVA
to detect interaction, the traditional analysis of variance
model should be abandoned and the messenger shot.
Detterman echoes this view.

My opinion, as stated in the target article, is that (a) ifa
researcher wants to use two-way ANOVA to test ad-
ditivity, then a large sample size should be used to insure
sufficient power for the test of interaction, and (b) if the
functional relationship between two factors such as H and
E is nonadditive and perhaps multiplicative, then it
makes no sense to ascribe a definite percentage of the
total variance to mutually exclusive and independent
causes. Thus, I maintain that the ANOVA is appropriate
in some situations but not in others. In section 13 of the
target article, I suggest that it is useful in the “early
phases of investigation.” While sympathizing with the
view of Cheverud that the main problem is not so much
with ANOVA as with developmental theory, I am sen-
sitive to the criticism by Bulleck that calling for larger
sample sizes may serve to perpetuate the “undue
hegemony of ANOVA” in psychology.

Especially in a one-way research design, partitioning
the variance can be very helpful. Knowledge that cog-
nitive gender differences sometimes account for a paltry
1% of total test score variance (Hyde 1981) and that the
magnitude of the difference is approaching the vanishing
point (Feingold 1988) can and should inform current
debate about gender discrimination in education and
hiring. Estimating the strength of an effect, which im-
plicitly requires a partition of variance, allows us to make
a wise choice of sample size on the basis of power
calculations. When two or more factors vary simul-
taneously, however, the difficulties with ANOVA multi-
ply and the tidy division of variance loses credibility.

6. What good is heritability? While advocating a flexible
approach to data analysis and ANOVA, 1, along with
Hirsch, see the net contribution of the concept of
heritability in behavior genetics as negative. Bookstein
also expresses concern that without a better understand-
ing of functional relations path modelling “is actively
misleading.” Kempthorne urges that most of the liter-
ature on heritability of human behavior be ignored.
Other commentators, however, offer a spirited defence of
this controversial h2.

Heritability is central to human behavior genetics as it
is commonly practised, but Bullock finds it difficult to
believe my representation of the field is accurate. I direct
him to the comments of Crow, Detterman, Henderson
and Plomin, and to the leading text by Plomin et al.
(1980), for up-to-date examples. McGuffin & Katz
wonder whether any behavior geneticist really sees the
estimation of h2 as an end in itself or cares whether the
value is 0.8 or 0.6 or 0.4. Here we can examine the two
most recent semi-official overviews of the field in the
Annual Review of Psychology. Henderson (1982) pres-
ents numerous estimates of the heritability of IQ, person-
ality, and psychopathology. He gives a tentative estimate
that narrow heritability of IQ might be “between .3 and
.6,” and he points out that more recent studies using
better methodology yield lower heritability values.
Loehlin et al. (1988) question Henderson’s interpretation
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of history and, on the basis of even more recent data,
assert: “It now appears that heritability estimates of
general intelligence are back up again . . .” (p. 103) and
have “reversed the trend toward lower heritability esti-
mates” (p. 104). Peer commentary on the Plomin and
Daniels target article in BBS [10 (1) 1987] also reveals
some who care a great deal about the precise numerical
value.

It is sometimes suggested that heritability analysis is
justified because a finding of H X E interaction is a rare
occurrence. Plomin, echoed by Detterman, argues this
point. Carlier & Marchaland note the low prevalence of
reports of genuine gene-environment interaction in be-
havior genetics. In weighing the evidence, we should
keep in mind that, in the pages of a journal like Behavior
Genetics, few serious attempts to test for H X E or GxE
interaction are to be found at all. The most common
design used by laboratory researchers in this field is a
genetic crossing or selection experiment with all subjects
reared in similar circumstances. We must also contend
with the zeitgeist in the field so well satirized by Salshurg
(1985); “having a significant interaction is a little like
eating chicken with your fingers in public or wearing
track shoes to a wedding. Somehow it is all your fault, and
you are not quite sure what you have done wrong.” He
claims that “editors scream your experiment is no good”
when presented with interactions. 1 have heard tales of
this happening to my friends, and it has certainly hap-
pened to me. There may be a reporting bias in the
literature.

Among active behavior genetics researchers, our two
most senior colleagues, Benson Ginsburg and John Paul
Scott, began their studies on mouse social behavior with
discrepant findings (Ginsburg & Allee 1942; Scott 1942)
produced by interaction with rearing and testing condi-
tions (Ginsburg 1967). Ginsburg has been an interac-
tionist even since, so we might posit a critical period for
acquiring a developmental perspective. In any instruc-
tive review of research on early experience and mouse
strains, Erlenmeyer-Kimling (1972) noted that “gene-
environment interactions are numerous and . . . treat-
ment effects are frequently reversed in direction for
different genotypes.” (p. 201) I have not done a rigorous
count, but 1 am impressed by the large number of my
colleagues who have reported or discussed interactions
recently (e.g. Crabbe et al. 1988; Donovick & Burright
1984; Goodlett et al. 1987; Graf 1987, Satinder & Sterling
1983; Wilson & Sinha 1985; Zacharko et al. 1987). Others
are mentioned in the target article. Detterman’s claim
about “the absence of persuasive data indicating that
interactions are important to a behavior genetic model” is
an incredible statement that is a denial of the literature,
not a review of it. Those who are blind to the existence of
interaction will never progress to a discussion of more
challenging issues, such as the distinction between in-
teraction and separability mentioned by Bookstein and
elaborated by Gregorious and Namkoong (1987).

In future, anyone who does review the literature on H
X E interaction would be well advised to assess not only
whether the interaction F ratio was significant at a = 0.05
but what the power of the test was. Examples in the target
article suggest that reports of significant interaction will
tend to be infrequent even when H and E are not
additive. When power is low, results will also be difficult
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Figure 1. (Wahlsten) Locomotor activity in five studies of the

Bailey recombinant inbred mouse strains and their two pro-
genitor strains. In each study, the standard deviation of the nine
strain means was determined. The value of z represents the
number of standard deviations by which a strain mean differed
from the mean of all nine strains in the study in question. The
various studies assessed locomotor activity in either an open
field (Crabbe et al. 1982; Moisset 1977), a shuttle box without
electric shock (Crabbe et al. 1982; Oliverio et al. 1973), an arena
(Simmel & Eleftheriou 1977) or a straight runway (Peeler &
Nowakowski 1987). Abbreviations: B, BALB/cBy]; C,
C57BL/6By]; D, CXBD/By; E, CXBE/By; G, CXBG/By; H,
CXBH/By; 1, CXBI/By; ], CXBJ/By; K, CXBK/By.

to replicate, so Plomin’s claim that failure to replicate
plagues the H X E literature supports my thesis. Even
more telling is a point he failed to mention: Main effects
often do not replicate either. That is, the rank orders of
strains given similar tests of behavior often differ greatly
between laboratories (Wahlsten 1978). Figure 1 presents
standardized mean values of motor activity of the seven
Bailey (By) recombinant inbred strains and their two
progenitors in five laboratories. The C57BL/6By] strain
is generally high and BALB/cBy]J is generally low, but the
recombinants show far less consistency. Such discrepant
results indicate a strong interaction of strain with either
rearing or testing conditions. Peeler (1986) has shown
that in the same laboratory the apparent genetic influence
on activity depends on the time of day when testing is
done and prior experience in the apparatus. As Hirsch
points out, only a small fraction of possible interactions
can be seriously assessed in our experiments, but those
not scrutinized in a factorial design can intrude nonethe-
less and make replication in different situations quite
unreliable. Kline contends that low power to detect
interaction does not mean it must be present every-
where. None will disagree. However, low power does
warn us that failures to detect or replicate an interaction
do not prove that the factors are additive.

A large number of informative interactions has been
reported with impressive consistency in the field of
teratology as well as in studies of mouse genes such as
“viable yellow” (Frigeri et al. 1988), “obese” (Bellward
and Dauncey 1988) and “staggerer” (Guastavino 1988),
not to mention strains of wheat (Roberts & Larson 1985)
and Mendel’s favorite, the garden pea (Reid & Murfet
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1977). Numerous studies of developmental genetics sup-
port Bullock’s argument that H X E interactions are likely
to occur in nature. Geoodall also says we should expect to
find some interaction.

Given this, we could insist that the statistical hypoth-
esis of nonadditivity be treated as the null hypothesis and
that additivity be seriously entertained only when the
null hypothesis can be firmly rejected. This would not
require any revolution in mathematics. Simply do a
transformation of the data before every ANOVA and ask
whether the interaction is significant. If H and E really
are additive, this should create an interaction that could
be removed by a suitable reverse transformation. On the
other hand, if power were very low, the transformation
would be of little consequence either way. Goodall
proposes that transformation be regarded as an integral
part of data analysis and that alternative models with and
without transformation be routinely considered in studies
of heredity and environment. This could strengthen
many studies. My opposition to ad hoc transformations
applies to studies where only one analysis of a trans-
formed measure is presented to the reader as the only
reasonable interpretation of the data.

Detterman, Henderson, and Plomin assert strongly
that no H X E interaction has been demonstrated with
humans. The immense literature on well-established
Mendelian disorders refutes them decisively. For phe-
nylketonuria and similar metabolic disorders, the child
with two recessive genes is less able to regulate the levels
of important substances in the blood and is more sensitive
to variations in the diet. Whether the genetic defect
would also interact with psychological treatments, as
suggested by Henderson, is difficult to know because
ethics forbid that a healthy child should be deliberately
subjected to a poor education in the name of science. In
the ethereal realm of “polygenic” behaviors where genes
cannot be identified or counted, no conclusive test of
specific GxE interaction exists. Nevertheless, in the
study of psychopathology, it is often claimed that geno-
type determines susceptibility or vulnerability to the
induction of psychosis by adverse experience (Kendler &
Eaves 1986; Schulsinger etal. 1987; Tienari etal. 1987). If
all is additive, why do psychiatrists bother with this
blatantly interactionist theory?

When the possibility of H X E interaction is acknowl-
edged, Detterman and Plomin insist that h2 is still good
because the interaction accounts for relatively little vari-
ance. Crow proves h2 expected with additivity is only
slightly less when a multiplicative model is used, and with
several types of transformation. Cheverud’s position that
interaction does not greatly bias the value of h2 appears
confirmed here, although there are other situations
where the bias can be larger (Lathrope et al. 1984). Better
support for the central thesis of the target article can
hardly be imagined. Crow proves that the h2 coefficient
derived from parent-offspring regression is insensitive to
the underlying structure of the data. Hence, h? cannot
help us discover that structure or gain deeper insights
into the nature of development. Locking at his model
from the standpoint of an interactionist, let us inquire
about the effects of changing the environment by the
same amount for every child in the population. The
additive model says that every child’s phenotype should
increase by the same amount. For the multiplicative
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model, we need some numbers. Suppose both H and E
factors have means of 3.0 and standard deviations of 1.0 in
the population, and that H and E are uncorrelated. Now
add 2.0 to each child’s E value. For a child withalow H =
1.0, the phenotype will increase by only 2 units, whereas
a lucky one with H = 5.0 will increase by 10 units, fully
five times the increase for the less fortunate peer. Being
oblivious to the functional relation between H and E,
heritability analysis cannot predict the effect of changing
the environment.

However Crow, Goodnight, and Kempthorne assure
us that h2 is useful in predicting the response to selective
breeding, even when H and E are not at all additive.
Sometimes the prediction is quite good, yet there are
instances, especially with reproductive traits, when re-
sponse to selection falls short of expectations from the h?
value (Nordskog 1977). Wright's (1978) assessment of
several decades of work on animal breeding also warrants
caution. One particular shortcoming of the straightfor-
ward heritability approach is that it may hold for the first
few generations of selection, but it cannot predict when
or where the selection limit will be reached or whether
there will be asymmetry of response in high and low lines.
Strictly speaking, h? from parent-offspring regression
really does not predict anything. Suppose we estimate h?
by computing the regression of the mean score of the
parents on the mean score of their offspring. Hill (1970)
has demonstrated that the most efficient way to estimate
h2 is in fact to do a selection experiment for only one
generation. Selection is essentially a parent-offspring
regression study where the middle-scoring parents are
not included. Perhaps one generation of selection can
predict the response to selection in the next generation.
This tells us simply that the properties of the population
do not change much in one generation, whatever the true
developmental relationship between H and E.

Cheverud and Lipp argue that calculation of h2 can be a
useful starting point because it provides evidence of
genetic variation, whereas McGuffin and Katz recom-
mend its use as a diagnostic aid in seeking forms of a
heterogeneous disorder that may be heritable. Two ob-
jections come to mind. First, in studies of selective
breeding or inbred strains, genuine chromosomal genetic
effects cannot be distinguished from maternal environ-
ment effects (Carrier & Marchaland) or cytoplasmic
inheritance. Likewise, twin studies are contaminated by
covariance, cytoplasmic and uterine environment effects,
and adoption studies are afflicted with covariance and
stubborn maternal environment effects. Because h? is
supposed to reflect only Mendelian gene effects in the
numerator (Falconer 1981), it should not be reported
unless other hereditary factors can be positively ex-
cluded. Second, evidence of putative genetic variation
requiring further study can be shown with general pur-
pose statistics. The approximate extent of hereditary
variation among inbred strains or selected lines can be
neatly summarized by estimated w2 (Hays 1988). If MZ
twins show a much higher intra-class correlation than DZ
twins or if parent-offspring regression is substantial, the
presence of hereditary variation is a reasonable bet.
Precisely what kind of hereditary mechanism are in-
volved generally cannot be known solely from a strain or
twin study. These kinds of experiments ought to be
regarded as preludes to a more comprehensive study.
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Unfortunately, the h2 coefficient is bound up with a very
specific genetic theory, and citing a number for h2 implies
to many readers in psychology that they have just beheld
the finale. What h2 means to Falconer (1981) or Plomin et
al. (1989) is automatically conveyed to a psychology stu-
dent familiar with these authorities, even though the
writer himself does not take the precise value of h? too
seriously. What h? means to those with less education, I
shudder to think.

Crow regards h? analysis as a useful, albeit indirect,
approach to assessing the impact of environmental varia-
tion, e2. In this vein, Heath et al. (1985) use h2 values to
draw conclusions about changes in schooling in Norway,
and Plomin and Daniels (1987) cite results of path analysis
to support their proposal that personality is unaffected by
experiences common to members of a family. I cannot see
how global statements about environmental variance tell
us anything more about the specific actions of experience
than the global h2 tells us about the number, location, and
physiological characteristics of relevant genes. As Wachs
(1983) and Bookstein aver, to learn how environment
affects the development of behavior we must have accu-
rate measures of relevant features of experience. Fur-
thermore, heredity and environment are not the only
sources of individual differences in a population. Durable
and noteworthy variations in the structure of an organism
can emerge via processes internal to the embryo that are
neither hereditary nor responses to local variations in the
environment. (Kurnit et al. 1987, Lewontin 1982;
Wahlsten 1987b; 1989b). With three sources of individual
differences the potency of one cannot be specified by
studying another.

Goodnight suggests that the absolute value of h2 is not
particularly useful but that the relative magnitudes of
additive genetic and dominance variance have some rele-
vance. Crow and van Noordwijk see a role for h? in
evolutionary theory, and Crow thinks evolution must
proceed gradually, in small, additive increments. On the
other hand, several theorists see a close link between
development and evolution, and, from this perspective,
question the neoDarwinian dogma (Ho & Fox 1988). As
suggested by van Noordwijk, phenotypic plasticity can
play a very important role in molding an organism to its
niche (Cavalli-Sforza 1974; Greene 1989); hence, gene-
environment interaction should be central to evolution-
ary theory (e.g., Via & Lande 1985).

Finally, McGuffin and Katz suggest that my discussion
of alink between heritability and eugenics sets up a straw
man, and they claim no reputable human behavior genet-
icist would use heritability for eugenic purposes. It seems
to me that the link between h2 and selective breeding is
inherent in a quantitative genetic model and has little to
do with reputation. Because of this link, the heritability
coeflicient is not ethically neutral when it is computed for
human IQ. Even if the scientists doing the computation
are not proponents of eugenics, others may and probably
will vulgarize their writings for eugenic purposes (Stein
1988). Within recent memory, some quite reputable
geneticists have promoted selective sterilization of
people with low intelligence (see Hirsch 1981; Nanney
1986). Today the Pioneer Fund seeks to advance its
program of “racial betterment” (Lichtenstein 1977; May
1960) through large grants to several members of the
Behavior Genetics Association (McCann & Currie 1989).
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The stuff of controversy should not be brushed aside as
mere straw.

7. Charges of bias. The target article, Plomin says,
implies that behavioral geneticists, including himself
“have not considered GxE” and have been “ignoring
GxE.” However, the target article in section 4 credits
none other than Plomin et al. (1977) with proposing a
formal 2 X 2 test of interaction. It cites five other items
with him as senior author. My article states that in
behavior genetics “the problem is not a lack of under-
standing about the importance of interaction in theory.
Rather, there is a divergence of opinion about its occur-
rence in reality.” The commentaries prove the latter
point. As I also stated in the target article, the problem of
low power is “generally understood by expert statisti-
cians.” A paper by Eaves et al. (1977) is cited as an
example. Henderson quotes a sentence written by John
Fuller in response to my 1979 paper to show how behav-
ior geneticists supposedly knew all about interaction 10
years ago. However, my 1979 paper did not raise the
issue of power of ANOVA to detect interaction. Further-
more, it is timely now to repeat Fuller’s next sentence in
that response concerning interactions: “It is good to be
reminded that overlooking their existence may lead to
faulty conclusions and premature generalization” (Fuller
1979).

Plomin states that I set out to denigrate heritability. It
may appear that way to some people, so let me emphasize
that the points made about the low power to detect H X E
interaction apply to any kind of two-way or higher order
interaction. Hirsch is right that assigning a percentage to
environmental variance confronts the same problems as
heritability. As van Noordwijk instructs, the same issues
apply if we want to partition environmental sources of
variance. Goodall stresses that ANOVA is perfectly gen-
eral in this respect. Dudley presents three cells of an ideal
adoption design with four groups. The fourth cell, chil-
dren born into favorable homes but adopted into rela-
tively poor homes, has now been filled in an excellent
study done by France (Capron & Duyme 1989). The
increase in IQ provided by going from a poor background
to a favorable family environment was comparable to the
decrease resulting from transfer in the opposite direction.
The two-way interaction was not significant, but it suf-
fered from the very problem of low power discussed in
the target article.

8. Two kinds of gravity. The parody of Newton’s law
attracted some attention. Lipp was struck by the meaning
that evidently missed Detterman. We should thank
Detterman for his lovely graphs, because they bolster the
conclusions I drew from Figure 2(a) in the target article.
Henderson and Detterman want to see results when
much wider ranges of mass and distance are used, so I
provided the intrepid experimenter in section 6 of the
target article with several burly assistants and sent them
outside to a football field to gather data. Unfortunately,
wind increased the error variance, and nothing was signif-
icant at all! Kline says we only need to know the mass of
the relevant planet in order to calculate a person’s weight
because body size is constant throughout the universe.
Given: I live in Edmonton, Alberta, on the planet earth.
Can Kline therefore tell me my weight? van Noordwijk
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says a choice between models is determined by practical
purposes and becomes most important when we want to
extrapolate. Newton’s law speaks to this matter, too. It
could not be decisively verified by reference to the facts
used to formulate the law, no matter how closely data and
theory matched. It had to predict something new. This
took place in 1846 when Leverrier used Newton’s law to
predict the location of an unknown planet from perturba-
tions in the orbit of Uranus and then the existence of
Neptune was confirmed by Galle and d’Arrest at the
Berlin observatory using Leverrier's coordinates
(Grosser 1979). What could be less practical than the
exuberant delight of star gazers at this brilliant feat? It
didn’t really make much practical difference until the era
of rocket journeys over 100 years later. Fortunately for
us, the likes of Newton, Edmund Halley, and their
followers would settle for nothing less than truth. On this
day, August 25, 1989, the Voyager II space satellite flew
past Neptune, guided by knowledge of a law of nature
that predicted because it explained.
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The Medical Research Modernization Committee is composed of health
care professionals who lend their experience and expertise to identify and
promote modern methods of biomedical research, many of which have
exceeded or outdated traditional animal "models" in accuracy and rele-
vance.
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