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This paper studies the input-to-state stability (ISS) of nonlinear switched systems. By using Lyapunov method involving indefinite
derivative and average dwell-time (ADT) method, some sufficient conditions for ISS are obtained. In our approach, the time-
derivative of the Lyapunov function is not necessarily negative definite and that allows wider applications than existing results in
the literature. Examples are provided to illustrate the applications and advantages of our general results and the proposed approach.

1. Introduction

Switched systems are a special subclass of hybrid systems
which consist of two components: a family of systems and
a switching signal. The systems in the family are described
by a collection of indexed differential or difference equations.
The switching signal selects an active mode at every instant
of time, that is, the system from the family that is currently
being followed. As a special class of hybrid systems, switched
systems arise in a variety of applications, such as biological
systems [1], automobiles and locomotives with different gears
[2], DC-DC converters [3], manufacturing processes [4], and
shrimp harvesting mode [5]. Many interesting results for
switched systems have been reported in the literature [6-
9]. Qualitative behaviour of switched systems depends not
only on the behaviour of individual subsystems in the family,
but also on the switching signal. For instance, divergent
trajectories can be generated by switching appropriately
among stable subsystems, while a proper switching signal
may ensure stability of a switched system even when all the
subsystems are unstable. Due to such interesting features, sta-
bility of switched systems has attracted considerable research
attention over the past few decades; see [10-15].

When investigating stability of a system, it is important
to characterize the effects of external inputs. The concepts

of input-to-state stability (ISS) introduced by Sontag et al.
in [16, 17] have been proved useful in this regard. Roughly
speaking, the ISS property means that no matter what the
size of the initial state is, the state will eventually approach
a neighborhood of the origin whose size is proportional
to the magnitude of the input. Many interesting results on
ISS properties of various systems such as discrete systems,
switched systems, and hybrid systems have been reported;
see [18-29]. For example, [19] presented converse Lyapunov
theorems for input-to-state stability and integral input-to-
state stability (iISS) of switched nonlinear systems; [22, 23]
studied the ISS of nonlinear systems subject to delayed
impulses; [29] dealt with the ISS of discrete-time nonlinear
systems. However, one may observe that most of them,
such as those in [18-31], require the derivative of Lyapunov
functions to be negative definite in order to derive the desired
ISS property. Recently, [32] proposed a new approach for ISS
property of nonlinear systems. It presents a new comparison
principle for estimating an upper bound on the state of the
system in which the derivative of the Lyapunov function may
be indefinite, rather than negative definite, which improves
the previous work on this topic greatly. The authors of
[33] developed the idea to delayed systems and established
a class of continuously differentiable Lyapunov-Krasovskii
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functionals involving indefinite derivative, which generalizes
the classic Lyapunov-Krasovskii functional method. How-
ever, the approach used there only applies for systems without
switched structures. Moreover, to the best of our knowledge,
there are few results on ISS of switched systems based on
Lyapunov method involving indefinite derivative.

Motivated by the above discussions, in this paper, we shall
study the ISS property for switched systems via Lyapunov
method involving indefinite derivative. Some sufficient con-
ditions based on ADT method are derived. It is worth
mentioning that, although the method used in this paper
is based on [32], the results in this paper are more general
than [32], even for the case of systems without switched
structures. The rest of this paper is organized as follows.
In Section 2 the problem is formulated and some notations
and definitions are given. In Section 3, we present some new
characterizations of ISS based on Lyapunov method involving
indefinite derivative. Examples are given in Section 4. Finally,
the paper is concluded in Section 5.

2. Preliminaries

Notations. Let Z denote the set of positive integer numbers,
R the set of real numbers, R, the set of all nonnegative real
numbers, and R” and R™" the n-dimensional and m x n-
dimensional real spaces equipped with the Euclidean norm
|-|, respectively. anb and avb are the minimum and maximum
of aand b, respectively. P = {1,2,...,m}, m € Z_,isanindex
set, C(J,S) = {¢: ] — S is continuous}, F = {¢: [t;,00) —
P, is a piecewise constant function}. The notations &/” and
o~ denote the transpose and the inverse of &/, respectively.
I denotes the identity matrix with appropriate dimensions.
Consider the following switched system:

X = fa(t) (t’ X, u) > (1)

where x € R" is the system state, u € R™ is a measurable
locally bounded disturbance input, X denotes the right-hand
derivative of x, and 0 € & denotes the switching function,
which is assumed to be a piecewise constant function contin-
uous from the right. When o(t) = i, 1 < i < m, we say that
the mode x = f; is activated. A sequence of discrete times
{t,}, n € Z,, called the switching times, determines when
the switching occurs. Throughout this paper, we assume that
it satisfies 0 < t, < t; < --- < t — 400 ask — +0o
(t, is the first switching time). In particular, we exclude the
possibility of the {t,} having a finite accumulation point, often
referred to as chattering. It indicates that a switching signal
({t,}, 0) has at most finite switching times over a finite time
interval. f,;) € C(R, x R" x R™, R") with local Lipschitz,
and f,(;(£,0,0) = 0, t € R,. In order to study the ISS, in the
following we assume that the solution of system (1) with an
initial condition x(t,) = x, exists on [t,, +00) uniquely.

By the ideas proposed by Hespanha and Morse [34] for
switched systems, we say that a switching signal ({t,}, o) has
average dwell-time (ADT) 7 if there exist numbers N, > 0
and 7 > 0 such that

T-t
N, (T,t) < Ng+ ——, VT >t >t (2)
T

Complexity

where Nj is called the “chatter bound” and N (T,¢) is the
number of switches occurring in the interval [¢,T). We
denote such kind of switching signals by set & .. Denote the
switching times in the interval (t, T] by t, £, ...,y (y,) and
the index of the system that is active in the interval [t,, £, ;) by
Pn

A function « : [0,00) — [0,00) is of class H if « is
continuous and strictly increasing and «(0) = 0. If « is
also unbounded, it is of class #,. A function f : [0,00) x
[0, 00) — [0, 00)is of class F Z if B(:, t) is of class # for each
fixed t > 0, and f(r, t) decreases to 0 as t — oo for each fixed
r=0.

Definition I (see [16]). Suppose that a switching signal ({t,},
0) is given. The system (1) is said to be ISS if there exist
functions y € # ., and f € HZ such that for each ¢, > 0,
x, € R" and for each input u, the solution satisfies

|x ()] Sﬁ(|xo|’t‘t0)+Y(|”|[to,t])’ 3)

for all t > ¢,, where | - |; denotes the supremum norm on
the interval J. This definition depends on the choice of the
switching signal; however, it is often of interest to characterize
ISS over classes of switching signals. We say that system (1) is
uniformly input-to-state stable (UISS) over the class %, (of
switching signal) if for any ({t,},0) € %, condition (3) is
satisfied with the same y and S for every ({t,},0) € # .

3. ISS Theorems

In this section, we shall present some ADT results for ISS
of switched system (1) based on Lyapunov method involving
indefinite derivative.

Theorem 2. Assume that there exist functions «;, o, € Ko,
p € K, a continuous function ¢ : R, — R, continuous
differentiable functions V, : R, x R" — R, and constants
7 >0, p>1suchthat, forallt € R, x € R", andall p,q € P,

ay (Ix]) <V, (t, %) < o (Ix])5 (4)
an an

—Zfytxw+ =L <$ OV, (6.x) ;

whenever V,, > p (|ul) exp (Jt é(s) d5> ;

to
V, (t, %) < uV, (t,x); (6)
t

L (¢(s) +n)ds <0. @)

Then the switched system (1) is UISS over the class F ., where
ADT constant T > 0 satisfies

1
r> =,
n

Proof. Let x(t) be a solution of system (1). Define V() =
VO‘(!)(t’ x(t)) If

(8)

V, 2 pluexp ([ ¢)ds). ©
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during some interval [¢',¢"), in this case, suppose that there
exists switching signal {t,} such thatt' < t, < t,,, < --- <
tm <t'.Forte[tt,), it follows from (5) that

Vo O =V, () exp (f $ () ds) .o

Fort € [t,,t,,,), it follows from (5), (6), and (10) that

v, (t) <V, (t,)exp <L ¢ (s) ds)

(11)
t
<uv, (t') exp (J ¢ (s) ds) .
t/
Then it can be deduced that
' t
Voo () < ;AN”(t ’t)exp (J b (s) ds> Vo (t') ,
‘ (12)
vt e [t,t").
Since p > 1, it follows from the ADT condition (2) that
' t
Vo (1) < [JN"Ht_t )/Texp (J ¢ (s) ds> Vo (t’)
t/
(13)
tIn
= uNoexp (L Tpt +¢(s) ds) Vo (t') .
We denote the first time when
t
Vo © < pubexn ([ 9as)  ao
by £; that is,
f
t (15)
= inf {t >ty Ve () < p(Jul) exp (J ¢ (s) ds)} .
to
Iff, = oo, then it holds that
!'In
Vo () < uoexp (J il o ¢ (s) ds) Vot (to)
oo T (16)

Vt > t,.

It follows from (8) that there exists ¢ > 0 small enough such
that

ln—M+sS17, 17)

which together with (7) yields that
Vo (B) < HNOeXP (—e(t—to)) Vot (ty), Vt=t,. (18)
It then follows from (4) that

Ix (t)] < a; ' (yNﬂexp (—e(t—ty)) ay (x (to))) . (19)

Thus x(t) is bounded by a & Z-class function, which implies
that system (1) is ISS. Hence we only need to consider the case
that £, < co. It follows from (18) that

Vo () < pexp (£ (£~ t5)) Votz) (o) »

(20)
telted).
For t > f,, we denote the first time when
t
Vo (8) > p (Jul) exp <j ¢ (s) ds) (21)
to
by #,; that is,
£
(22)

¢
= inf {t > 112 Vi (6) > p (Jul) exp (L ¢ (s) ds)} )

If £, = 0o, then it is obvious that system (1) is ISS. Assuming
that t; < oo, then

Vi, (6) < p (Jul) exp (j 6(5) d5>

<p (g ) exp [ 991ds), )

te [fl,?l).

Then we further denote the second time when
t
Voo (£) < p (|ul) exp <L ¢ (s) dS) (24)

by £,; that is,
£
R t (25)
= inf {t 2ty Vo (1) < p(lul) exp <J ¢ (s) ds)} .
to
Due to the continuity of V() and the monotonicity of
p(lu(t)]), when £, < oo, it holds that

Vo @) =p(u @ e ([ s05),

Vo () < ™ exp (j (B2 +60))ds) Vo @)
<o ([ (B +00)ds) (@)
(o0e)vven( [ 20

t
-p(lulg, ) exp <L ¢ (s) ds) <y



t/]
- exp (L (% + ¢(s)) d5> p(lul[to,ﬂ) <t

cexp (—e(t = 1)) p (Il ) < ™ p (Il ) »
Vt € [?l,fz).

(26)

By this way, it can be deduced that, for every ¢t > £, it holds
that

Va(t) (t) < #NO/\P (|u|[t0,t]) > (27)

where

t
Azexp(J (/)(s)ds>vl. (28)
to
It follows from (20) and (27) that

Vo (1) < U™ exp (—e (t — 1)) Vo) (£0)
. (29)
+uAp (lul[to,t]) >

for all t > ¢, which together with (4) yields that
e (0)] < oq " (267 exp (e (¢ ~ £9)) o (| (8)]))
+ 05;1 (2yN°/\p (|u|[to,t])) (30)

= B|x (to) ot = to) +y (11l »

for all t > t,. This indicates that system (1) is UISS over the
class # .. The proof is completed. O

In particular, if system (1) is given in the form of
x = f(txu), (31)

which is a general case without switched structure, by
Theorem 2, one may derive the following corollary.

Corollary 3. Assume that there exist functions oy, &, € Ko,
p € K, a continuous function ¢ : R, — R, a continuous
differentiable function V : R, x R" — R,, and a constant
n > 0 such that, forallt € R,, x € R", (7) and the following
conditions hold:

o (Ix]) <V (£ x) < o (Ix])5

ov ov
af (t,x,u) + > < )V (t,x) (32)

whenever V > p (|u|) exp (Jt b (s) ds) .
t

Then system (31) is ISS.

Remark 4. Recently, [32] has presented some sufficient con-
ditions for ISS property of system (31) based on Lyapunov
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method involving indefinite derivative under the assumption
that

LOO ¢ (s)ds < oo,

, (33)
J ¢ (s)ds=e(t-t,),
f

where ¢"(s) = ¢(s) V0, ¢ (s) = [-p(s)] VO, and e > 0 is
a constant, while our ISS result in Corollary 3 only requires
that (7) holds, which has wider applications. For example, ¢ =
sint—0.9and t, = 0, and itis easy to see that ¢ is a sign reversal
function. In this case, one may choose # = 0.1 such that

t t
J (P (s)+n)ds = J (sins—0.8)ds <0, Vi>0, (34)
o 0
which implies that (7) holds. However, it is easy to see that

JOO ¢* (s)ds = 0. (35)
0

Next we consider the time-varying linear switched system
in the form of

%= Ay (X (6)+ By (Du(t), t20,  (36)

where x(t) € R" is the system state, u € R™ is locally
bounded input, and A,,(t) € R™" and B, () € R™" are
time-varying functions. To ensure the ISS property of (36),
we present the following result.

Theorem 5. Assume that there exist constants 1 > 0,4 >

1, w, > 0, and continuous functions ¢ : R, — R and

¢ : R, — R such that, forallt € R, and all p,q € P,
w, < Uwg, (7), and the following hold:

t_
A, (D) + AE (t) + B, (t) Bg (t) exp (— L é(s) ds)

t_
capexp( [ $6)-4@ds) 1, 7
0
<G (1) Ly,
Then system (36) is UISS over the class &, where ADT

constant T > 0 satisfies (8).

Proof. Let x(t) be a solution of system (36) and define
Vp(t) = Vp(t, x(t)). Then the proof of Theorem5 is
similar to Theorem 2. We only need to notice that the
following are chosen: Vp(t) = wpx(t)Tx(t) and p(lu]) =
ul(Hu(t). Tt then follows from Theorem?2 that when
V,(t) > p(lul) exp( [, ¢(s)ds), it holds that w,x" (H)x(t) >
uT(t)u(t)exp(f; ¢(s)ds), which, together with (37), leads to
the following:

V, () = 2w,x" (t) % () = 2w,x" () (A, (£) x (t)
+B, (O u(t) =2w,x" () A, (t)x(t)

+20,x" (1) B, () u(t) < 2w,x" (1) A, () x ()



Complexity
+exp (— r&s) ds) w,x’ (t) x B, (t) B, () x (£)
0
t_
+ wpuT (t)u(t)exp (J ¢ (s) ds) < wpr ()
0

: [AP (t)+ A} (t) + B, (t) B, (¢)

con(-f00)

+w, exp (Lta(s) - ¢ (s) ds> . Inxn] x(t) < (1)

' Vp (t) >
(38)

which implies that condition (5) holds. Then it is easy to check
that all conditions in Theorem 2 hold and thus Theorem 5 can
be derived. The proof is completed. O

In particular, if we choose $(t) = ¢(t), then the following
corollary can be derived directly.

Corollary 6. Assume that there exist constants > 0, y >
1, w, > 0, and continuous function ¢ : R, — R such that, for
allt € R, and all p,q € P, w, < pw,, (7), and the following
hold:

t
A, D)+ AT; (t) + B, (1) BZ; (t) exp (— L ¢ (s) ds) )

<(¢t) = w,) - L.

Then the system (36) is UISS over the class F ,, where ADT
constant T > 0 satisfies (8).

In addition, note that the ISS property guarantees the
uniform asymptotic stability (UAS) of a system with a zero
input. Consider the nonlinear switched system

X = fo) (6%), (40)

where o € & is the switching function, f, € C(R,xR",R") is
local Lipschitz and f,(t,0) = 0, x(t,t,,x(t,)) is the solution
for system (40) with the initial value x(¢,) € R" and an initial
time t, > 0. Then we have the following result for system
(40).

Corollary 7. Assume that there exist functions o, &, € K o,
a continuous function ¢ : R, — R, continuous differentiable
functions V, : R, x R" — R,, and constants € R, p > 1
such that, forallt € R,, x € R", and all p,q € P, (4), (6), (7),
and the following condition hold:

oV oV
a—xf’ fp(t:x) + a_tp <PV, (t,x). (41)

Then system (40) is UAS in Lyapunov sense, where ADT
constant T satisfies (8).

4. Applications

In this section, we present two examples to illustrate our main
results.

Example 8. Consider the switched system (1) with P = {1,2},
t, =0, and

fHtxu)=a(t)x+b(t)u,
(42)
Ltxu)=ct)x+d(t)u,

where a(t) = —cost — 5/6,b(t) = (1/6)exp(—sint —
(2/3)t), c(t) = —cost — (1/2) exp(cost — 2/3), and d(t) =
exp(cost —sint — (2/3)t).

Note that a(t) and c(t) are sign reversal functions. Most
of existing results, such as those in [18-23, 26-29], are
inapplicable to switched system (1). Choose V, (¢, x,u) = |x]
and V, (t, x,u) = (1/2)|x| as ISS-Lyapunov functions. It is easy
to see that condition (6) holds with y = 2. Let p(t) = t and
¢(t) = —cost — 2/3, and then when

t
Vi (t, x,u) > p (lu]) exp (J b (s) ds> , (43)
0
that is,
. 2
x| > Ju] exp <—smt - §t>, (44)
it leads to

5 1
V, (t,x,u S(—cost——) x|+ = |x
1 ( ) p | x| 6||

< (—cost— §>V1 (t, x,u) (45)
=)V, (t,x,u).
Similarly, it can be deduced that V,(t,x,u) < (—cost —

2/3)V,(t, x,u) when V,(t, x,u) > p(|u|) exp(j; ¢(s)ds). Thus
condition (5) is satisfied. Choose # = 0.45 such that

J: (p(v)+n)dv= Lt (- cosv—0.2167) dv < —0.02 o)

<0, Vt>O0,

which implies that (7) holds. Note that Inyu/y =~ 1.5403.
Hence, the switched system (1) is UISS over the class &,
with 7 > 1.5403. In particular, if we choose the switching
sequence t,, , = 6n —4, t,, = 6n, n € Z, and let x(0) = 5,
T = 3,u = sat(x), then Figures 1(a) and 1(b) illustrate the
switching signal and the state trajectory of system (1), respec-
tively.

Remark 9. Note that, if we choose V, = |x| in the above
example, then it can be deduced that V, < (-cost +
(1/2) exp(cost) —2/3)V,, which goes against condition (5). It
indicates that sometimes it is necessary and important to con-
sider multiple Lyapunov functions for switched systems. In
addition, it is easy to check that the ISS Theorems in [32] are
invalid for the above example due to the stronger restriction
on¢*.
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FIGURE 1: Simulation results for Example 8.

Example 10. Consider the time-varying switched system (36)
with P = {1,2} and

%(t)

=[A;+AA, (D] x

%(t) =

where

AA, (t)

[A, +AA, ()] x (1) + [By + AB, ()] u, (1),

-0.105
—-0.11
-0.115 -0.005
A, =
-0.005 -0.115

o
I
N
I

1
b, = ——sint,
2

(-sint —exp (-21t)),

1 1 1
c= —exp(— (cost— -t - 1))
10 2 5

(t) + [By + AB, ()] uy ()

(47)

(48)

In this case, choose w; = 0.01, w, = 0.02, # =
and ¢(t) = —sint — 0.2. Then it is easy to see that

0.1, u=2,

Jt (¢ (s)+n)ds= Jt (-sins—0.1)ds <0, Vt>0, (49)
0 0

which implies that (7) holds. Moreover, note that

A, (t)+ AT (t) + B, (t) B] () exp (— L é(s) ds)

—sint —0.21 0
- 0 —sint-021)"

A, () + AL (t) + B, (t) B] () exp (— L é(s) ds)

0.22) '

Note that Inu/n = 6.931. Thus it follows from Corollary 6
that the switched system (36) is UISS over the class %, with
T > 6.931. In particular, if we choose the switching sequence
th,, = l4n—1,t, = l4n,n € Z, and let x7(0) = (3,3),
T =7,u, = sinx, u, = sat(x), then Figures 2(a) and 2(b)
illustrate the switching signal and the 2-norm of the state
trajectory of system (36), respectively.

(50)

—sint —0.22 0
0 —sint —exp (-2t) —

5. Conclusion

In this paper, we presented some new ADT-based suffi-
cient conditions for ISS of switched systems via Lyapunov
method involving indefinite derivative. The ISS property of
the switched system can be guaranteed under the designed
ADT scheme. Our results improved some recent work in the
literature. Two examples were given to show the effectiveness
and advantage of the obtained results. It should be pointed
out that the main results of this paper are based on multiple
Lyapunov functions, which are more general than existing
results in some cases. Since complex factors such as nonlin-
earities, impulsive perturbations, and delays exist widely in
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FIGURE 2: Simulation results for Example 10.

various engineering systems [35], future work can be done to
develop the Lyapunov method involving indefinite derivative
to switched systems subject to complex factors.
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