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CRAIG'S THEOREM AND THE EMPIRICAL
UNDERDETERMINATION THESIS REASSESSED"

Christian List

The present paper proposes to revive the twenty-year old debate on the question of
whether Craig’s theorem poses a challenge to the empirical underdetermination thesis.
It will be demonstrated that Quine’s account of this issue in his paper “Empirically
Equivalent Systems of the World” (1975) is mathematically flawed and that Quine
makes too strong a concession to the Craigian challenge. It will further be pointed out
that Craig’s theorem would threaten the empirical underdetermination thesis only if the
set of all relevant observation conditionals could be shown to be recursively enumer-
able — a condition which Quine seems to overlook —, and it will be argued that, at
least within the framework of Quine’s philosophy, it is doubtful whether this condition is
satisfiable.

1. INTRODUCTION

Theory can ... vary though all possible observations be fixed. Physical theories can
be at odds with each other and yet compatible with all possible data even in the
broadest sense. In a word, they can be logically incompatible and empirically
equivalent (Quine, 1970).

Such is Quine’s empirical underdetermination thesis. Although the question of
whether this thesis is plausible is still far from settled — even two decades
after the philosophical debate on this subject was most heated —, philoso-
phers seem to have reached a (limited) consensus on one particular aspect
of this question: William Craig’'s theorem (1953, 1956) concerning the re-
placement of auxiliary expressions is seen as a challenge, if only a theoretical
one, to the empirical underdetermination thesis. Jane English (1973) force-
fully argues for this view, and Quine himself concedes that, although
“[Craig’s] result does not belie under-determination”, “it does challenge the
interest of under-determination” (Quine, 1975, p. 313).

In the present paper, | will argue that a reassessment of this view is
overdue, and that, at least within the framework of Quine’'s philosophy,
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Quine’s thesis can be defended against Quine’s own concession. In particu-
lar, I will show that Quine’'s concession is grounded in a mathematically
flawed use of Craig's theorem. | will then argue that, within the framework of
Quine’s philosophy, it is highly doubtful whether the conditions under which
Craig’s result would pose a challenge to the empirical underdetermination
thesis are satisfiable.

2. THE EMPIRICAL UNDERDETERMINATION THESIS

Using the traditional syntactic approach to scientific theories, we define a
theory to be a deductively closed set of sentences of a formal language.
Given a theory T, a theory formulation of T is a (usually finite) subset S of T,
often interpreted as the set of basic axioms, such that the deductive closure
of S is the whole of T. How are theory and observations related? Typically,
observation sentences of the form “The liquid in this vessel is blue!” are not
directly entailed by a theory (i.e. contained in the set T), because, first, they
lack the generality characteristic of a theory and, second, their truth-value —
unlike the truth-value of a typical theoretical sentence — is dependent upon
the occasion of utterance. Quine portrays the link between a theory and such
sentences as a two-step relation. As a first step, observation sentences are
pegged to specific spatio-temporal co-ordinates so as to make their truth-
value independent of the occasion of utterance. But as theories typically
make little reference to particulars, pegged observation sentences are still
insufficiently general to be directly entailed by a theory. Rather, theories imply
particulars via other particulars, that is to say, via boundary conditions. But,
instead of saying that the conjunction of a theory and a set of boundary
conditions implies certain pegged observation sentences, we may simply say
— and this is the second step of the two-step relation — that the theory
implies appropriate observation conditionals, where an observation condi-
tional is a conditional sentence whose antecedent is a conjunction of pegged
observation sentences and whose consequent is a pegged observation
sentence (Quine, 1975).

In this terminology, two theories are defined to be empirically equivalent if
they entail the same body of observation conditionals. Now the empirical
underdetermination thesis requires that there exist rival theories which are
empirically equivalent, but logically incompatible. However, if the empirical
underdetermination thesis is to be an interesting and nontrivial claim, it must
actually require more than that. It must, firstly, rule out the possibility that two
purportedly irreconcilable rival theories simply turn out to be divergent exten-
sions of a single theory, which itself is not subject to empirical underdetermi-
nation. And it must, secondly, rule out the possibility that two such rival
theories turn out to be notational variants of each other, where one is, for
example, the result of interchanging the terms ‘electron’ and ‘neutron’
throughout the other. To accommodate the first point, the underdetermination
thesis must require not just that there are some pairs of suitable rival theo-
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ries, but that, for any theory, a suitable rival exists. To accommodate the
second point, we introduce a general method of constructing new notational
variants of a theory by defining a reconstrual of predicates to be a function
whose domain is the set of predicates of the relevant language and whose
converse domain is the set of open sentences of the language such that each
n-place predicate is mapped to a sentence with n free variables. Now the
empirical underdetermination thesis can be stated thus: given any scientific
theory, there exists a rival theory which is empirically equivalent to the given
theory and which cannot be rendered logically compatible with it by means of
a reconstrual of predicates2 (Quine, 1975).

At first sight, we may find this claim puzzling. Surely, we may ask, if our
‘irreconcilable’ rival theories are empirically equivalent, they must have a
considerable number of sentences in common, in particular all the observa-
tion conditionals which each of the theories implies. So, given a set of rival
theories, can we not simply take their intersection as a new theory3 which is
both empirically equivalent to each of the given theories and immune to
empirical underdetermination? Indeed, if the set of desired observation
conditionals to be entailed by a theory is finite, we can easily define the theory
to be the deductive closure of the conjunction of these observation condition-
als; such a theory is obviously unique and unaffected by empirical underde-
termination. Similarly, if the set of observation conditionals is infinite, but
exhibits so much structure that its deductive closure can be expressed as the
deductive closure of a finite theory formulation, it is also possible to construct
a tightly fitting theory. In its most general form, the empirical underdetermina-
tion thesis is therefore wrong.

However, given the complexity of the world, we may expect that, in many
cases, (the deductive closure of) the set of all relevant observation condition-
als is not axiomatizable in terms of a conceptually neat, let alone finite, theory
formulation. Rather, any conceptually manageable (in particular, finite) theory
formulation may well entail (the deductive closure of) the desired observation
conditionals as well as some other (non-observational) sentences. And this is
precisely why we can envisage that the problem of empirical underdetermina-
tion may crop up.

These considerations are certainly plausible. But are they incontroverti-
ble? At this point we should turn our attention to Craig’s theorem, since, as
we have indicated in the introduction, this result is often viewed as providing a
method of constructing a conceptually manageable (at least, theoretically),
though not usually finite, theory formulation which entails exclusively (the
deductive closure of) the desired set of observation conditionals.

2To be precise, we shall say that two theories can be rendered logically compatible by
means of a reconstrual of predicates if there exists a reconstrual of predicates under
which one of the two theories is mapped onto a (not necessarily proper) subset of the
other.

% Since each of the given theories is deductively closed, so is their intersection.
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3. CRAIG’'S THEOREM

Some technical preliminaries are due. A set S is said to be recursively enu-
merable if it can be written as a sequence S = {s;, S, S3, ...} Which can be
generated by means of an effective mechanism (i.e. by means of an appro-
priate Turing machine). A set S is said to be recursive (or decidable) if there
exists an effective mechanism which can determine in a finite number of
steps whether or not any given entity is a member of S. A set of sentences of
a formal language is said to be recursively axiomatizable if it is the deductive
closure of a recursive set of axioms. It is important to note that there are sets
which are countably infinite (i.e. ‘enumerable’), but not recursively enumer-
able4, and that there are sets which are recursively enumerable, but not
recursive’.

The basic insight underlying Craig’s theorem is the following: every theory
which can be expressed as the deductive closure of a recursively enumerable
set of axioms is recursively axiomatizable. Let us briefly go through the proof
of this proposition. Suppose that T is the deductive closure of the recursively
enumerable set of sentences S = {s;, S,, S3, ...}. We shall construct a recur-
sive set of axioms for T. Define S' to be the set {s, (S22 S2), ((S3A S3) A S3), ...}
such that, for each s;in S, S' contains a self-conjunction of s; of length i. The
question of whether or not a given sentence ¢ is a member of S' is mechani-
cally decidable in a finite number of steps. Given ¢, the unique readability of
sentences of our formal language implies that there exist a unique sentence
v and a unigue number n (possibly v = ¢ and n = 1) such that ¢ is a self-
conjunction of y of length n. We then consider the n™ element of the se-
quence {si, Sy, S3, ...}, Which is, by assumption, mechanically accessible in a
finite number of steps, and we compare y with s,. If these two sentences are
identical, we conclude that ¢ is a member of S', and if they are distinct, we
conclude that it isn't. So S' is a recursive set. Furthermore, S and S' are
clearly logically equivalent, and hence they have the same deductive closure,
namely T. Thus S'is a recursive set of axioms for T as required.

Now Craig’s theorem concerning the replacement of auxiliary expressions
is actually a special case of the result we have just proved.

Let T be a theory expressed in a formal language L, where T has a
recursive theory formulation, and let P be the set of all predicate symbols of
the language L. Consider any recursive subset P* of P, interpreted, for
instance, as the subset of all ‘essential’ (as opposed to ‘auxiliary’) predicates
of L. Let L* denote that part of the language L which contains all the sen-
tences that can be expressed in the restricted vocabulary contained in P*.
Craig’s theorem states that the restriction of T to L* — i.e. the set of all those

* Consider, for instance, the set of all non-theorems of first-order Peano-arithmetic.
® Consider, for instance, the set of all theorems of a first-order system of the predicate
calculus.
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sentences of T in which only predicates in P* (e.g. ‘essential’ ones) occur —
is recursively axiomatizable.

This follows immediately from the basic insight we have just proved; to
apply this insight, it is sufficient to show that the restriction of T to L* is recur-
sively enumerable; its recursive axiomatizability will then follow. We first note
that the set of all sentences of T is recursively enumerable: using the stan-
dard method of Gédel-numbering, we can effectively generate all well-formed
strings of symbols of L, and, since T has a recursive theory formulation, it is
possible to determine in a finite number of steps whether or not a given string
of symbols of L constitutes a deduction of a sentence of T from the theory
formulation of T. By selecting the last line of each such proof, our mechanical
enumeration of all proofs of sentences of T can easily be converted into a
mechanical enumeration of all sentences of T. But as P* is a recursive subset
of P, there exists a mechanical procedure for deciding in a finite number of
steps whether or not a given sentence of T belongs to the restriction of T to
L*: the procedure simply needs to check whether all predicate symbols that
occur in the given sentence are contained in P*. Using this decision proce-
dure, our effective procedure for enumerating all sentences of T can be
transformed into an effective procedure for enumerating all sentences of the
restriction of T to L*. The recursive axiomatizability of the restriction of T to L*
now follows from its recursive enumerability, as indicated above.

Let us return to our original question. We have seen that the empirical
underdetermination thesis is parasitic upon the claim that, given a sufficiently
complex set of observation conditionals, (i) the deductive closure of this set is
not axiomatizable in terms of a conceptually neat theory formulation, and (ii)
any conceptually manageable theory formulation will entail (the deductive
closure of) the given set of observation conditionals as well as some other
(non-observational) sentences. In what way could Craig’'s theorem pose a
challenge to this claim?

4. QUINE’S USE OF CRAIG’'S THEOREM

Let us quote Quine in detalil:

Consider any [theory] formulation, and any [my italics] desired class of conse-
quences of it. For our purposes these consequences would be observation condi-
tionals, but for Craig they can be any [my italics] sentences. Then Craig shows how
to specify a second or Craig class of sentences which are visibly equivalent, one by
one, to the sentences of the desired first class; and the remarkable thing about this
second class is that membership in it admits of a mechanical decision procedure.

In the cases that matter, these classes are infinite. Even so, the second or
Craig class evidently makes the original finite [theory] formulation dispensable, by
affording a different way of recognizing membership in the desired first class. In-
stead of showing that a sentence belongs to it by deducing it from the finite [theory]
formulation, we show it by citing a visibly equivalent sentence that belongs, testa-
bly, to the Craig class.
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This result does not belie under-determination, since the Craig class is not a
finite [theory] formulation, but an infinite class of sentences. But it does challenge
the interest of under-determination, by suggesting that the finite [theory] formulation
is dispensable; and indeed the Craig class, for all its infinitude, is an exact fit, being
a class of visible equivalents of the desired class. ... Each sentence in the Craig
class is simply a repetitive self-conjunction, ‘ppp...p’, of a sentence of the desired
class. ...

Why, when the desired class is undecidable, should this Craig class of its re-
petitive self-conjunctions be decidable? The trick is as follows. Each of the desired
sentences (each of the desired observation conditionals, in our case) is deducible
from the original finite [theory] formulation. Its proof can be coded numerically,
Gdodel fashion. Let the number be n. Then the corresponding sentence in the Craig
class is the desired sentence repeated in self-conjunction n times. The resulting
Craig class is decidable. To decide whether a given sentence belongs to it, count
its internal repetitions; decode the proof, if any, that this number encodes; and see
whether it is a proof of the repeated part of the given sentence. (Quine, 1975, pp.
324-325)

Obviously, the basic idea is to invoke Craig’'s theorem to establish the exis-
tence of a recursive (but possibly infinite) set of sentences which is logically
equivalent to the desired set of observation conditionals and which can be
used as a tightly fitting theory formulation for the deductive closure of our set
of observation conditionals.

However, Quine’s argument is logically flawed. Although Quine is of
course especially concerned with sets of observation conditionals, he insists
that, for “any desired class of consequences” (my italics) of a theory formula-
tion, we can specify a second class of sentences which is decidable and
whose elements are logically equivalent to the elements of the given class.
Let us examine this rather general claim first. In the next section, we shall
then turn to Quine’s more specific claim regarding the application of Craig’'s
result to classes of observation conditionals.

The see whether the former claim is tenable, let us choose any finite
theory formulation which has an infinite set of consequences, say T, and let
us construct a particular subset of T, for which we will subsequently try to
specify the corresponding ‘Craig class’ as explained by Quine. As before, we
note that T is a recursively enumerable set. So T can be expressed as a
mechanically producible sequence {t;, t,, t3, ...}. Let M be any subset of the
natural numbers which is not recursively enumerable®. Define S = {t,: n € M}.

® In note (4), | have cited the set of all non-theorems of first-order Peano-arithmetic as
an example of a set that is countably infinite, but not recursively enumerable. Call this
set A. We can use A to generate the required set M as follows. A is clearly a subset of
the recursively enumerable set of all well-formed formulae of an appropriate first-order
language. Call the latter set B. Then B can be expressed as the sequence {b;, b,, bs,
...}. Now define M = {n € N : b, € A}. If M were recursively enumerable, we could easily
combine our enumeration mechanism for M with that for B so as to construct an
enumeration mechanism for A. But this would imply the recursive enumerability of A, a
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If S were recursively enumerable, we could use our enumeration mechanisms
for S and for T to construct an enumeration mechanism for M. But there
exists no such enumeration mechanism for M; and, in consequence, S cannot
be recursively enumerable.

Using the method proposed by Quine, we shall define S' to be the ‘Craig
class’ corresponding to S. Quine’s claim is that S' is decidable. We may
already be puzzled here. Why? Given any sentence ¢ of T and assuming that
the Godel number of its proof is n, define y to be a self-conjunction of ¢ of
length n, and use Quine’s suggested decision procedure to determine
whether or not y is a member of S'. As Quine demands, we “count its internal
repetitions” — the answer is n —, we “decode the proof, if any” — the result is
a proof of § —, and we “see whether it is a proof of the repeated part of the
given sentence” — the answer is ‘yes’! And this answer follows irrespective of
whether or not the original sentence ¢ is contained in S and also irrespective
of whether or not the sentence v is contained in S'. Something must have
gone wrong.

And indeed, we shall now see that Quine’s claim that S' is decidable gives
rise to a contradiction. So let us begin with the assumption that “membership
in [S] admits of a mechanical decision procedure”. Given an effective
mechanism for generating the sequence of all well-formed formulae of our
formal language, we can go through this sequence of well-formed formulae,
one by one, mechanically testing whether or not each of the enumerated
formulae is contained in S'. In this manner, we can mechanically enumerate
all members of S'. But, of course, each element of S' is simply a certain self-
conjunction of a corresponding element of S. So we can easily transform our
mechanical enumeration procedure for S' into a mechanical enumeration
procedure for S. This implies that S is recursively enumerable, a contradic-
tion!

So what has gone wrong? Recalling our exposition of Craig’s theorem, we
can easily see that Quine’s claim is simply too strong. Instead of starting off
with “any desired class of consequences” (my italics) of a given theory
formulation, he should have started off with a recursively enumerable set of
consequences. The required “visibly equivalent” ‘Craig class’ could then be
constructed in the manner explained in our proof of the insight preceding
Craig's theorem.

Bearing these observations in mind, we should now turn to Quine’s more
specific point, namely that Craig’s result, applied to the class of all desired
observation conditionals, may “challenge the interest of under-determination”.

contradiction! Hence M is a subset of the natural numbers which is not recursively
enumerable.
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5. DOES CRAIG’'S THEOREM “CHALLENGE THE INTEREST OF
UNDER-DETERMINATION”?

Clearly — and as Jane English (1973) argues conclusively —, if the set of all
relevant observation conditionals could somehow be shown to be recursively
enumerable, we would immediately be in a position to infer that the deductive
closure of that set was recursively axiomatizable. In this case, there would
indeed exist a tightly fitting theory formulation which could be regarded as
‘conceptually manageable’ so long as our notion of ‘conceptual manageability’
were to admit not only finite theory formulations, but also recursive ones. In
particular, there would be no room for empirical underdetermination. For the
present purposes, let us concede all this and focus upon the observation that
the claim that Craig’s theorem challenges the empirical underdetermination
thesis hinges crucially upon the recursive enumerability of the set of observa-
tion conditionals. In the remaining part of this paper, | will argue that, at least
within the framework of Quine’s philosophy, the question of whether the
relevant set of observation conditionals is recursively enumerable is likely to
receive a negative answer.

Essentially, there are two strategies through which one might hope to
establish the recursive enumerability of this set. One strategy would be to try
to construct an explicit enumeration mechanism directly, and the other
strategy would be to invoke a suitable subdivision of our language into ‘theo-
retical’ and ‘observational’ terms, in the manner of Craig’s theorem. We shall
discuss each strategy in turn.

Presumably, an effective mechanism for enumerating all observation
conditionals would have to be a combination of an effective mechanism for
enumerating all sentences of our theory, which, as we know, exists, and a
mechanical procedure for determining in a finite number of steps whether or
not each such sentence is an observation conditional. The task of designing
the latter procedure is tantamount to the task of designing a mechanical
procedure for determining in a finite number of steps whether or not a given
sentence is an observation sentence; for, the relation between observation
sentences and observation conditionals (via pegged observation sentences)
seems sufficiently systematic to be tractable by a mechanical procedure. But
can this new task be performed?

Quine defines observation sentences in terms of a behavioural criterion:
an observation sentence is an occasion sentence — i.e. a sentence whose
truth-value depends upon the occasion of utterance — on which all compe-
tent speakers of the relevant language “give the same verdict when given the
same concurrent stimulation” (Quine, 1969, p. 87)7. This definition not only

" As Davidson (1990) argues, Quine vacillates between two different criteria for defining
observation sentences. The definition | state here makes use of the proximal criterion,
Quine’s ‘official’ one, according to Davidson. Under the distal criterion, the subclause
“when given the same concurrent stimulation” would have to be replaced with the
subclause “when presented with the same intersubjectively shared situation”. Whilst
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relies on contingent facts about the behaviour of the relevant group of com-
petent speakers, but it is, in particular, ‘community-specific’ in the sense that
the question of what occasion sentences are regarded as observation sen-
tences may depend upon the community of witnesses that is taken to be
relevant, and upon the witnesses’ background conceptual frameworks. Given
all this and the fact that the cognitive and behavioural sciences are still in
their infancy, the sheer idea of designing a mechanical procedure for deter-
mining in a finite number of steps whether or not a given sentence is an
observation sentence according to the stated behavioural criterion appears to
be highly implausible.

As a result, the second strategy, namely the search for a suitable subdivi-
sion of our language into ‘theoretical’ and ‘observational’ terms, may seem to
be a more promising way of establishing the recursive enumerability of the
set of all relevant observation conditionals. If we could capture the observa-
tional part of a theory by devising such a linguistic subdivision, the premises
of Craig’s theorem would be met, and (the deductive closure of) the set of
observation conditionals would be axiomatizable in a tightly fitting way.

Jane English, for instance, recognises the difficulties involved in the task
of devising the required linguistic subdivision, but holds that “[i]f ... science is
recursively axiomatized, the problem of saying which of the system'’s terms
are observational is tractable” (1973, p. 454). Whether or not there are
philosophical views according to which the present strategy would be re-
garded as promising, | will here point out that, from a Quinean perspective, it
won't. First and foremost, a Quinean would strongly resist the idea of drawing
a principled distinction between ‘theoretical’ and ‘observational’ terms. As
Quine is more than ready to argue, the smallest individually significant units
of language are statements or sentences rather than terms (1953, section 5;
and 1960). Observationality, for Quine, is a property of sentences or state-
ments, but not of individual terms: the same term can occur in a broad range
of fundamentally different sentences, observational and non-observational
ones, and no sense can be made of claims about the alleged ‘observational’
or ‘theoretical’ nature of a term on its own.

But even if, contrary to Quine’s position, a principled distinction between
‘theoretical’ and ‘observational’ terms could be drawn, it would remain highly
unclear whether we would be in a better position to utilise Craig’s theorem to
challenge the empirical underdetermination thesis. Let me explain. It is well
known that a restriction of the vocabulary of our language is not a particularly
accurate or successful method of pinpointing sentences with an observational
content. The fact that all the predicate symbols occurring in a given sentence
are ‘observational’ predicate symbols does not guarantee that the sentence
itself is an ‘observational’ sentence. As van Fraassen argues, “[t]he empirical
import of a theory cannot be isolated in this syntactical fashion, by drawing a

the two accounts have rather distinct philosophical consequences in many respects,
the important point to note in the present context is that both definitions are essentially
behavioural.
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distinction among theorems in terms of vocabulary. If that could be done, T/E
[i.e. the restriction of a theory to that part of our language in which there are
only ‘observational’ predicate symbols] would say exactly what T says about
what is observable and what it is like, and nothing more. But any unobserv-
able entity will differ from the observable ones in the way it systematically
lacks observable characteristics. As long as we do not abjure negation,
therefore, we shall be able to state in the observational vocabulary (however
conceived) that there are unobservable entities, and, to some extent, what
they are like. The quantum theory, Copenhagen version, implies that there
are things which sometimes have a position in space, and sometimes have
not. This consequence | have just stated without using a single theoretical
term. Newton'’s theory implies that there is something (to wit, Absolute Space)
which neither has a position nor occupies a volume. Such consequences are
by no stretch of the imagination about ... the observable world” (van Fraas-
sen, 1980, pp. 54-55).

So even on an optimistic view on whether the empirical import of a theory
can be captured by means of a suitable restriction of its vocabulary, we would
have to acknowledge that the set of all relevant observation conditionals was
only a proper subset of the set of all sentences of the theory expressible in
the restricted vocabulary. In consequence, even a suitably constructed Craig
reduction would not constitute a perfectly tightly fitting theory, for it would
entail all sentences of the theory expressible in the restricted vocabulary and
not just the genuinely observational ones; again, there would be logical space
for empirical underdetermination.

The following objection could be raised: is it not conceivable that, although
the set of all relevant observation conditionals is indeed a proper subset of
the set of all sentences of the theory expressible in the restricted vocabulary,
the former set logically determines the latter, in the sense that, once truth-
values are assigned to all observation conditionals, this will immediately imply
an assignment of truth-values to all sentences expressible in the restricted
vocabulary (or, in other words, once we know what sentences are contained
in the former set, we have no degrees of freedom in choosing what sentences
are to be included in the latter one)?

However, van Fraassen’'s above cited argument provides a straightfor-
ward counterexample to this objection. As we know, the totality of genuine
observation conditionals of Newtonian mechanics is logically compatible both
with the statement that there exists such a thing as absolute space and with
the statement that there doesn't exist such a thing. But as demonstrated by
van Fraassen, such statements can be expressed solely in terms of the
‘observational’ vocabulary. Hence we see that the set of genuine observation
conditionals of Newton’s theory by no means logically determines the set of
all those sentences of the theory that are expressible in the ‘observational’
vocabulary. The objection must therefore be rejected.

We conclude that, from a Quinean viewpoint, it is doubtful whether the
conditions under which Craig’s theorem would pose a challenge to the
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empirical underdetermination thesis can be satisfied. Neither the idea of
directly designing an effective mechanism for enumerating all observation
conditionals, nor the idea of devising a suitable subdivision of the terms of the
relevant language into ‘theoretical’ and ‘observational’ ones are particularly
promising strategies for establishing, as required, that the set of all observa-
tion conditionals entailed by a theory is recursively enumerable.

6. CONCLUSION

From the perspective of Quine’s philosophy, | have argued for a revision of
the view that Craig’s theorem poses a (theoretical) challenge to the empirical
underdetermination thesis. | have shown that Quine's concession to the
Craigian argument can probably be traced back to the fact that Quine invokes
Craig’'s theorem in a mathematically flawed way. Indeed, once the require-
ment that the set of all observation conditionals be recursively enumerable is
recognised, Quine’s empirical underdetermination thesis can be defended
against the Craigian challenge. This is not to say, however, that the thesis is
correct. There may (or may not) be independent reasons why the empirical
underdetermination thesis is untenable.
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