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On the Significance of the Absolute Margin 

Christian List 

British Journal for the Philosophy of Science, forthcoming 
Abstract. Consider the hypothesis H that a defendant is guilty (a patient has condition C), and the evidence 

E that a majority of h out of n independent jurors (diagnostic tests) have voted for H and a minority of k:=n-

h against H. How likely is the majority verdict to be correct? By a formula of Condorcet, the probability 

that H is true given E depends only on each juror’s competence and on the absolute margin between the 

majority and the minority h-k, but neither on the number n, nor on the proportion h/n. This paper reassesses 

that result and explores its implications. First, using the classical Condorcet jury model, I derive a more 

general version of Condorcet’s formula, confirming the significance of the absolute margin, but showing 

that the probability that H is true given E depends also on an additional parameter: the prior probability that 

H is true. Second, I show that a related result holds when we consider not the degree of belief we attach to 

H given E, but the degree of support E gives to H. Third, I address the implications for the definition of 

special majority voting, a procedure used to capture the asymmetry between false positive and false 

negative decisions. I argue that the standard definition of special majority voting in terms of a required 

proportion of the jury is epistemically questionable, and that the classical Condorcet jury model leads to an 

alternative definition in terms of a required absolute margin between the majority and the minority. Finally, 

I show that the results on the significance of the absolute margin can be resisted if the so-called assumption 

of symmetrical juror competence is relaxed. 
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1 Introduction 

 

Suppose there are two states of the world: x = 1 (e.g. the defendant is guilty), and x = 0 

(e.g. the defendant is innocent). An n-member jury has to make a decision on whether or 

not to convict the defendant. The jury’s aim is to ‘track the truth’, i.e. to find that the 

defendant is guilty if and only if the defendant is guilty. Given the state of the world x, 

each juror has the same probability (competence) p > ½ of voting for x. The value of p is 

the same for x = 1 and x = 0. Further, the votes of different jurors are independent from 

each other, conditional on the state of the world. This is the classical Condorcet jury 

model (see, amongst many others, Grofman, Owen and Feld [1983]).  

 

Although the model is usually interpreted in terms of jury decisions, it also applies to 

other situations. It applies whenever the aim is to ‘track’ the true state of the world on the 

basis of multiple independent identically distributed signals, where each signal is not 

perfectly reliable but biased towards the truth. For example, suppose a doctor has to 

determine whether or not a patient has a particular condition C. There are two states of 

the world: x = 1 (the patient has condition C), and x = 0 (the patient does not have 

condition C). The doctor performs a sequence of diagnostic tests, where the different tests 

(possibly repetitions of the same test) are independent from each other, but all have the 

same probability p > ½ of producing verdict x, given the state of the world x.1 

 

Consider two situations: 

 

Situation A. In a 12-member jury (a sequence of 12 tests), 12 jurors (tests) vote for 

‘guilty’ (‘condition C’) and 0 jurors (tests) vote for ‘innocent’ (‘no condition C’). 

 

Situation B. In a 1000-member jury (a sequence of 1000 tests), 507 jurors (tests) vote for 

‘guilty’ (‘condition C’) and 493 jurors (tests) vote for ‘innocent’ (‘no condition C’). 

 

In both situations p is the same, and we attach the same prior probability r to the 

proposition that the defendant is guilty (the patient has condition C) (where 0 < r < 1). In 



 3

which of the two situations is the given majority verdict more likely to be correct? More 

precisely, which of the following two probabilities is the greater one: 

 

(i) the probability that the defendant is guilty (the patient has condition C), given that 

we have situation A, or 

(ii) the probability that the defendant is guilty (the patient has condition C), given that 

we have situation B? 

 

In situation A there is a 100% majority for ‘guilty’ (or ‘condition C’) (12 out of 12 

jurors), whereas in situation B there is only a 50.7% majority for ‘guilty’ (or ‘condition 

C’) (507 out of 1000 jurors). This might lead us to think that probability (i) is greater than 

probability (ii).  

 

However, according to a formula by Condorcet, if a majority of h jurors have voted for x 

and a minority of k jurors against x, the probability that the verdict of the majority is 

correct, i.e. that x is the true state of the world, is 

 

          ph-k 

 . 
 ph-k + (1-p)h-k 

 

Condorcet's formula has a striking implication, as summarized by McLean and Hewitt 

([1994], p. 37): 

 

"... the probability of [a correct majority judgment] can be improved by 

increasing h-k. Note h minus k, not h+k nor (h-k)/(h+k). What matters is the 

absolute size of the majority, not the size of the electorate, nor the proportion 

of the majority size to electorate size. If the jury theorem is applicable, we 

should talk about 'a majority of 8', 'a majority of 20', etc., not 'a two-thirds 

majority' or 'a three-quarters majority'. Condorcet did so in most of his later 

work." 
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In the example of situations A and B above, since the absolute margin between the 

majority and the minority in situation B (507-493=14) is greater than the one in situation 

A (12-0=12), it follows that probability (ii) is greater than probability (i).  
 
This paper reassesses this result and explores its implications. Let me summarize my 

argument. First, I derive a more general version of Condorcet's formula, by applying 

Bayes's theorem to the classical jury model. I show that Condorcet's formula is a 

simplification which leaves out an important complication. According to Condorcet’s 

formula, the probability that the verdict of the majority (for x) is correct, given the size of 

the majority, is a function of two parameters: the absolute margin between the majority 

and the minority (h-k), and the competence of each juror (p). I show that it is in fact a 

function of three parameters, the third parameter being the prior probability (r) that x is 

the true state of the world.  

 

Second, I show that the more general formula still confirms Condorcet’s basic insight. If 

we fix the prior probability r, the posterior probability that x is the true state of the world 

given the size of the majority depends only on the absolute margin between the majority 

and the minority (h-k) and is an increasing function of that margin.2 The posterior 

probability that x is the true state of world is invariant under changes of h and k (and 

consequently of h/n) that leave h-k fixed. I show that a similar result holds when we 

consider not the degree of belief we attach to the hypothesis that x is the true state of the 

world, given the evidence that a majority of h out of n jurors have voted for x, but the 

degree of support that evidence gives to the hypothesis.  
 

Third, I argue that the result has an implication for how special majority voting should be 

defined from the classical Condorcet jury perspective. In many jury decisions, special 

majorities of at least 10 out of 12 jurors are required for a ‘guilty’ verdict. Special 

majority voting is usually defined in terms of the proportion of the jury required for a 

positive decision (e.g. conviction). Suppose we use special majority voting for 

‘epistemic’ reasons, i.e. because of a concern for tracking a true state of the world.3 Then 

the standard definition of special majority voting not only has the wrong focus, but may 
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be even counterproductive, given the assumptions of the classical Condorcet jury model. 

Alternatively, special majority voting can be defined in terms of the absolute margin 

between the majority and the minority required for a positive decision. I show that this 

alternative definition is ‘epistemically’ sound, and that it should thus be recommended 

from the perspective of the classical Condorcet jury model. It follows that, if we 

nonetheless want to defend special majority voting under the standard definition, then we 

must either defend it for reasons other than ‘epistemic’ ones or reject the classical 

Condorcet jury model and find an alternative model that avoids the present results on the 

significance of the absolute margin. 

 

Finally, I show that such an alternative model can be obtained by relaxing the assumption 

of symmetrical competence. Specifically, suppose each juror's probability of voting for 

'guilty' given guilt (p1) differs from the probability of voting for 'not guilty' given 

innocence (p0). Then it is no longer true that the probability that the defendant is guilty 

given the size of the majority for 'guilty' depends only on the absolute margin between 

the majority and the minority (h-k).4 For any fixed absolute margin h-k, that probability is 

now a monotonic function of the total number of jurors n. If p1 < p0, it is an increasing 

function, which converges to 1 as n tends to infinity. If p0 < p1, it is a decreasing function, 

which converges to 0 as n tends to infinity. 

 

2 The classical Condorcet jury model and the Condorcet jury theorem 

 

We use the labels 1, 2, …, n to denote the n jurors. We represent the state of the world by 

a binary variable X which takes the value 1 for ‘guilty’ and 0 for ‘not guilty’. We 

represent the votes of the jurors by the binary random variables V1, V2, …, Vn, where each 

Vi takes the value 1 for a ‘guilty’ vote and 0 for a ‘not guilty’ vote. The vote of juror i is 

correct if and only if the value of Vi coincides with the value of X. Capital letters are used 

to denote random variables and small letters to denote particular values. The classical 

Condorcet jury model assumes: 

 

Competence. For all jurors i = 1, 2, …, n, p1:=P(Vi=1|X=1)>½ and p0:=P(Vi=0|X=0)>½. 
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Symmetrical competence. We have p1=p0=:p. 

 

Independence. For each x∈{0, 1}, V1, V2, …, Vn are independent from each other, given 

the state of the world x. 

 

The model’s most famous implication is the Condorcet jury theorem. Given the state of 

the world x, the probability that a majority of jurors will vote for x is greater than the 

probability that a majority will vote against x, and the first of these two probabilities 

converges to 1 as the number of jurors tends to infinity.5 In the medical example, the 

Condorcet jury theorem can be interpreted as follows. Given the state of the world x, the 

probability that a majority of tests will produce verdict x is greater than the probability 

that a majority of tests will produce the opposite verdict, and the first of these two 

probabilities converges to 1 as the number of tests tends to infinity.6 

 

Let us state the Condorcet jury theorem more formally. For each x∈{0, 1}, let Nx := 

|{i∈{1, 2, …, n} : Vi = x}|. Then Nx is the random variable whose value is the number of 

jurors voting for x (where x is 0 or 1). Here Nx > n/2 means that there is a simple majority 

for x. Since Nx is binomially distributed (with parameters n and p), we have: 

 

Lemma 1. For each x∈{0, 1}, we have: 

        n 

(a)  for each h = 0, 1, 2, …, n, P(Nx = h|X=x) = (    ) ph(1-p)n-h;  
          h 
 

                       n 

(b) P(Nx > n/2|X=x) = ∑  (    ) ph(1-p)n-h. 
       h>n/2    h 
 

Theorem 1. (Condorcet jury theorem) For each x∈{0, 1}, P(Nx > n/2|X=x) converges to 

1 as n tends to infinity. 
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Thus the Condorcet jury theorem concerns  

 

(iii) the probability that x is the verdict of a majority of jurors, given that the state of 

the world is x. 

 

Determining this probability is useful for assessing the epistemic properties of majority 

voting from a ‘global’ perspective. A decision procedure (such as simple majority voting) 

tracks the truth if the following two subjunctive conditionals are true:  

 

• If x = 1 were the true state of the world, then x = 1 would be chosen. 

• If x = 0 were the true state of the world, then x = 0 would be chosen.7 

 

For any given values of n and p, lemma 1 allows us to determine the probability that x=1 

is chosen under simple majority voting, given that x=1 is the true state of the world, and 

the probability that x=0 is chosen, given that x=0 is the true state of the world. If both 

probabilities are close to 1, then this suggests that simple majority voting performs well 

at ‘tracking the truth’. Motivated by this consideration, we say that a decision procedure 

tracks the truth in the limit if it satisfies the following condition: 

 

Truth-tracking in the limit (T).  

• P(1 is chosen|X=1) converges to 1 as n tends to infinity, and 

• P(0 is chosen|X=0) converges to 1 as n tends to infinity. 

 

By the Condorcet jury theorem, for each x∈{0, 1}, the probability that x is chosen under 

simple majority voting, given that x is the true state of the world, converges to 1 as n 

tends to infinity. Simple majority voting thus satisfies condition (T), given the 

assumptions of the classical Condorcet jury framework. 

 

Although probability (iii) is useful for assessing the epistemic properties of majority 

voting from a ‘global’ perspective, it is only of limited use for the epistemic problem we 

are faced with ‘locally’, for instance when we put ourselves into the perspective of a 
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court or doctor or when we compare situations A and B above. Probability (iii) is 

conditional on the state of the world, and that state of the world is precisely the 

unobserved parameter we typically want to estimate. What we can observe is whether a 

majority of jurors have voted for or against x (and how large that majority is). So what we 

are interested in from a ‘local’ perspective is not probability (iii) but the converse 

conditional probability, namely 

 

(iv) the probability that the state of the world is x, given that x is the verdict of a 

majority of jurors. 

 

The hypothesis that we want to test is that the state of the world is x, and the evidence is 

that a majority of jurors (or, specifically, h out of n jurors) have voted for x. In this 

language, (iii) is the probability of the evidence given that the hypothesis is true, whereas 

(iv) is the probability that the hypothesis is true given the evidence. Probabilities (i) and 

(ii) in section 1 are both instances of (iv), not of (iii). 

 

3 The significance of the absolute margin for the degree of belief we attach to the 

hypothesis given the evidence 

 

Our hypothesis H is that X=x. We attach the prior probability r:=P(X=x) to the truth of H, 

where 0 < r < 1. In the case of a jury decision, r might be the (typically low) probability 

that a randomly chosen member of the population is guilty of the relevant charge. We 

need to specify what evidence we use to test H. The posterior probability of H given the 

evidence depends on the informational content of the evidence. We might use evidence of 

the following kinds: 

 

E   :  A majority of precisely h out of n jurors have voted for x, i.e. Nx = h, where  

 h > n/2. 

E* :  A majority of jurors have voted for x, i.e. Nx > n/2. 
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Equations (a) and (b) in lemma 1 above give us P(E|H) and P(E*|H), respectively. Let 

¬H denote the negation of the hypothesis. By Bayes’s theorem, we have 

 

       P(H) P(E|H)                      P(H) P(E|H) 
P(H|E) =  =  , 

   P(E)          P(H) P(E|H) + P(¬H) P(E|¬H) 
 

and a similar result holds for P(H|E*). Using Bayes’s theorem, we can thus derive P(H|E) 

and P(H|E*) from equations (a) and (b) in lemma 1. The derivation of P(H|E*) (theorem 

2) is straightforward; the derivation of P(H|E) (theorem 3) is given formally in the 

appendix. 

 

Theorem 2. For each x∈{0, 1},  

 

                          n 

                            r ∑ (    ) ph(1-p)n-h 
 h>n/2    h 

P(H|E*) = P(X=x|Nx > n/2) = . 
                     n              n 

          r ∑ (   ) ph(1-p)n-h + (1-r)  ∑ (   ) (1-p)hpn-h 
           h>n/2   h           h>n/2   h 

 

An implication worth noting is the following. In the special case where n is odd and r = 

½, we have 

 

                       n 

P(X=x|Nx > n/2) = ∑  (    ) ph(1-p)n-h,  
       h>n/2    h 
 

i.e.  P(X=x|Nx > n/2) = P(Nx > n/2|X=x),  

 

and thus P(H|E*) = P(E*|H). 
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Theorem 3. Suppose h > n/2. For each x∈{0, 1},  

   

                               r pm               r 

 P(H|E) = P(X=x|Nx = h) =  = ,  
                    r pm + (1-r) (1-p)m      r + (1-r) (1/p - 1)m 

 

where m = 2h-n. 

 

Note that E contains more information than E*; E implies E*, whereas the converse does 

not hold. To test hypothesis H it is desirable to use as much evidence as we have, and 

hence we will now be concerned with evidence of the kind E rather than the kind E*.  

 

By theorem 3, if p > ½, P(H|E) = P(X=x|Nx = h) is an increasing function of m. Here m is 

precisely the absolute margin between the majority of jurors who have voted for x (h) and 

the minority who have voted against x (k:=n-h). Therefore, for any fixed prior probability 

r that the hypothesis H is true, the posterior probability that H is true given the evidence 

E depends only on the absolute margin between the majority (for x) and the minority 

(against x) and is an increasing function of that margin. Particularly, P(X=x|Nx = h) is 

invariant under any changes of n and h that preserve m. Condorcet’s own formula is a 

special case of the formula in theorem 3 for r = ½.  

 

The posterior probability P(H|E) captures the degree of belief we assign to the hypothesis 

H after seeing the evidence E. Of course, P(H|E) depends on the prior probability r=P(H) 

we assign to the hypothesis before seeing the evidence. However, with regard to the 

evidence E itself, all that matters is the absolute margin between the majority of jurors 

voting for x and the minority voting against x (and the competence parameter p). This 

confirms Condorcet’s basic insight. 
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4 The significance of the absolute margin for the degree of support the evidence 

gives to the hypothesis 

 

The main result of the previous section suggests that the absolute margin has a special 

significance for testing the hypothesis H on the basis of the evidence E. Is this result an 

artefact of our particular method of testing H by considering the degree of belief we 

assign to H given E? Or does a similar result hold if we use a different method of testing 

H on the basis of E? 

 

Recent work in Bayesian confirmation theory has advocated the use of the likelihood 

ratio8 as a measure of the degree of support some evidence E gives to some hypothesis H 

(Royall [1997]; Fitelson [2001]). The likelihood ratio is defined as  

  

          P(E|H) 
 l(H, E) :=  . 
        P(E|¬H) 
 

Unlike the probability P(H|E) discussed in section 3, the likelihood ratio does not depend 

on the prior probability we assign to the hypothesis H, nor does it refer to the degree of 

belief we attach to H given the evidence E. Nonetheless, the likelihood ratio has some 

implications for how the prior and posterior probabilities of H are related. It has the 

following property: 

 
   > 1  if P(H|E) > P(H) 

l(H, E) = { = 1 if P(H|E) = P(H) 
  < 1 if P(H|E) < P(H). 

 

In other words, the likelihood ratio is greater than 1 if observing the evidence E would 

increase our degree of belief in H, it equals 1 if observing E would leave our degree of 

belief in H unchanged, and it is less than 1 if observing E would decrease our degree of 

belief in H – regardless of what degree of belief we actually attach to H. Moreover, let 

R(H) := P(H)/P(¬H) be the ratio of our degree of belief in H to our degree of belief in the 
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negation of H before observing E, and let R(H|E) := P(H|E)/P(¬H|E) be the 

corresponding ratio after observing E. Then the likelihood ratio satisfies  

 

 R(H) l(H, E) = R(H|E). 

 

In other words, the likelihood ratio can be interpreted as the factor by which observing 

the evidence E would change the ratio of our degree of belief in H to our degree of belief 

in the negation of H – regardless of what that ratio is. Further, by Bayes’s theorem, the 

likelihood ratio also satisfies 

 

                   P(H)  
P(H|E) =  . 
       P(H) + P(¬H) 1/l(H, E) 

 

Fitelson ([2001]) has shown that the (logarithm of the) likelihood ratio has some other 

properties that make it particularly suitable as a measure of incremental support some 

evidence gives to some hypothesis.9 

 

So, in terms of the likelihood ratio, let us ask what degree of support the evidence E in 

our model (i.e. a majority of precisely h out of n jurors have voted for x) gives to the 

hypothesis H (i.e. the true state of the world is x). The following theorem is proved in the 

appendix: 

 

Theorem 4. Suppose h > n/2. Then  

   

                     p      m 

 l(H, E) = ()   ,     
                               1-p           
 

where m = 2h-n. 

 



 13

Theorem 4 shows that, like the posterior probability P(H|E), the likelihood ratio l(H, E) is 

an increasing function of m, where m is the absolute margin between the majority of 

jurors who have voted for x (h) and the minority who have voted against x (k:=n-h).10 In 

particular, like P(H|E), l(H, E) is invariant under any changes of n and h that preserve m. 

So, if we determine the degree of support the evidence E gives to the hypothesis H, again 

all that matters is the absolute margin between the majority of jurors voting for x and the 

minority voting against x.11 This further supports the claim that in the classical Condorcet 

jury model the absolute margin between the majority and the minority has a special 

significance for testing the hypothesis H on the basis of the evidence E. In theorem 10 in 

the appendix, it is shown that a similar result holds for two other methods of measuring 

the degree of support E gives to H, namely for the so-called difference and ratio 

measures. 

 

5 An implication for the definition of special majority voting 

 

Let us fix x (where x=1 or x=0), and consider again the hypothesis H that X=x (e.g. the 

defendant is guilty; the patient has condition C). Suppose the aim is to make a positive 

decision (e.g. to convict the defendant, or to treat the patient) if and only if H is true. 

There are two possible types of error:  

 

• False positives: a positive decision is made even though H is false. 

• False negatives: a negative decision is made even though H is true. 

 

In many decision problems, there is an asymmetry between false positives and false 

negatives. Often one type of error is considered worse than the other. In a jury decision, 

false positives are usually considered worse than false negatives: it is considered worse to 

convict the innocent than to acquit the guilty. In a medical context, by contrast, false 

negatives are sometimes worse than false positives: it may be worse to fail to treat an ill 

person than to mistakenly treat a healthy one (provided that the treatment has no negative 

side-effects). 
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We may therefore look for a decision procedure that respects that asymmetry, and that 

makes the “weightier” decision (that decision with respect to which an error is worse)  

if and only if the correctness of the decision is beyond any reasonable doubt. Many 

decision making bodies use the method of special (as opposed to simple) majority voting 

for this purpose.12 Special majority voting is usually defined in terms of the proportion of 

the jury – e.g. 2/3 or 5/6 – that is required for a positive decision, where that proportion is 

strictly greater than ½. The formal definition is the following: 

  

A proportion rule with parameter qmin. For any n, a positive decision is made if and 

only if the number of votes for a positive decision divided by the total number n exceeds 

(alternatively: is at least) qmin.  

 

The limiting case qmin = 1/2 is the case of simple majority rule. A proportion rule where 

the parameter qmin is strictly greater than ½ makes it harder to reach a positive decision 

(e.g. to convict) than a negative one (e.g. to acquit). In a minimal sense, the rule therefore 

appears to respect the asymmetry between the two possible types of error. But I will also 

consider an alternative definition of special majority voting. The alternative definition 

focuses not on the proportion of the majority in the jury, but rather on the absolute 

margin between the majority and the minority. 

 

An absolute margin rule with parameter mmin. For any n, a positive decision is made if 

and only if the difference between the number of votes for a positive decision and the 

number of votes against a positive decision exceeds (alternatively: is at least) mmin.  

 

The limiting case mmin = 0 is the case of simple majority rule. For any fixed number of 

jurors n, the two definitions of special majority voting can be made equivalent by setting 

qmin := 1/2(mmin/n + 1). What distinguishes the two definitions is that each definition holds 

its relevant parameter (qmin for the proportion rule and mmin for the absolute margin rule) 

fixed for all values of n. The condition for a positive decision under the proportion rule is 

that a proportion exceeding (or at least) qmin (e.g. 2/3) of the jury should support a 

positive decision, regardless of whether this corresponds to 8 out of 12 jurors or to 667 
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out of 1000. The condition for a positive decision under the absolute margin rule, by 

contrast, is that the difference between the number of votes for a positive decision and the 

number of votes for a negative decision should be greater than (or at least) mmin (e.g. 12), 

regardless of whether this corresponds to 12 out of 12 jurors or to 506 out of 1000.  

 

Now the crucial question is this: Which of the two types of special majority rules is more 

suitable for respecting the asymmetry between false positives and false negatives, and for 

making decisions that track the truth in the limit? In subsection 5.1 we address the 

question about respecting the asymmetry, and in subsection 5.2 we address the one about 

truth-tracking in the limit. 

 

5.1 Making positive decisions if and only if the truth of the hypothesis is beyond any 

reasonable doubt 

 

As before, x is fixed (where x=1 or x=0), and H is the hypothesis that X=x. We also fix 

the parameters r and p. Suppose our goal is to avoid false decisions in favour of x as 

much as we can. Then we may want to find a decision procedure which satisfies the 

following condition. Let us choose a certain threshold c, where 0 < c < 1, typically close 

to 1, e.g. c = 0.95.   

 

No reasonable doubt (D). In any given situation (where precisely h jurors have voted for 

x and n-h jurors against x), a positive decision is made if and only if our degree of belief 

in H is greater than or equal to the threshold c. 

 

Suppose the threshold c is so close to 1 that we consider any proposition with a 

probability greater than or equal to c to be true beyond any reasonable doubt. Then 

condition (D) can be interpreted as the requirement that a positive decision should be 

made if and only if we believe H to be true beyond any reasonable doubt. Is it possible to 

specify a single fixed parameter qmin (for a proportion rule) or a single fixed parameter 

mmin (for an absolute margin rule) such that condition (D) is satisfied for any number of 

jurors n? 
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Suppose we have observed the evidence E that precisely h out of n jurors have voted for 

x. Condition (D) requires us to make a positive decision if and only if P(H|E) equals or 

exceeds c. When does P(H|E) (i.e. P(X=x|Nx=h)) equal or exceed c? The following 

theorem answers that question.  

 

Theorem 5.13 Let c be a fixed threshold such that 0 < c < 1. For each x∈{0, 1}, 

 

(i)  P(X=x|Nx=h) ≥ (>) c  

 

if and only if 

 

            r-cr 

              log() 
            c-cr  
(ii) m ≥ (>)   (=: mmin), 
               log(1/p - 1) 
 

where m = 2h-n. 

 

A proof is given in the appendix. By theorem 5, to implement condition (D), we have to 

make a positive decision if and only if the absolute margin between the number of jurors 

who have voted for x and the number of jurors who have voted against x is greater than or 

equal to the fixed parameter mmin. The parameter mmin is a function of c, r and p. In 

particular, mmin is invariant under changes of n, the size of the jury. Thus we can 

implement condition (D) simply by using an absolute margin rule with parameter mmin. 

Table 1 reports some sample calculations of the required values of mmin, for different 

values of p, r and c.  
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Table 1. Values of mmin corresponding to different values of p, r and c (rounded up to 

the nearest integer) 
 r = 0.001 r = 0.01 r = 0.25 r = 0.4 r = 0.5 r = 0.6 r = 0.75 
p = 0.51  c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

173 
201 
288 
346 

115 
143 
230 
288 

28 
55 

143 
201 

11 
38 
125 
183 

0 
28 

115 
173 

0 
18 

105 
163 

0 
0 

88 
146 

p = 0.55  c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

35 
40 
58 
69 

23 
29 
46 
58 

6 
11 
29 
40 

3 
8 

25 
37 

0 
6 

23 
35 

0 
4 

21 
33 

0 
0 

18 
29 

p = 0.6    c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

18 
20 
29 
35 

12 
15 
23 
29 

3 
6 

15 
20 

1 
4 

13 
19 

0 
3 

12 
18 

0 
2 

11 
17 

0 
0 
9 

15 
p = 0.75  c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

7 
8 

11 
13 

5 
6 
9 

11 

1 
2 
6 
8 

1 
2 
5 
7 

0 
1 
5 
7 

0 
1 
4 
6 

0 
0 
4 
6 

p = 0.9    c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

4 
4 
6 
7 

3 
3 
5 
6 

1 
1 
3 
4 

1 
1 
3 
4 

0 
1 
3 
4 

0 
1 
2 
3 

0 
0 
2 
3 

 

From table 1, we can read off the value of mmin that we need to choose in an absolute 

margin rule in order to implement condition (D), given the values of  p, r and c. For 

example, suppose juror competence is p = 0.6, our prior probability that the defendant is 

guilty is r = 0.001, and we require a degree-of-belief threshold of c = 0.99 for conviction. 

Then a margin of at least 29 is required for conviction.14 

 

Can we implement condition (D) in terms of a proportion rule as well? In answer to this 

question, first note that, once we fix the values of p, r and c, a certain minimal jury size is 

required to enable a positive decision in accordance with condition (D). In the present 

example (p = 0.6, r = 0.001 and c = 0.99), if the total number of jurors is n = 29, 

unanimous support is required to secure the required margin of 29. If the total number of 

jurors is less than 29, a positive decision is never possible for the given values of p, r and 

c. If the total number of jurors is n = 600, on the other hand, 315 out of 600 votes are 

sufficient to secure the required margin of 29 between the majority and the minority. This 

corresponds to a 52.5% majority.  
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More generally, as noted above, given a jury of size n, a margin mmin between the 

majority and the minority is equivalent to a proportion qmin = 1/2(mmin/n + 1) of the jury. 

However, for any fixed values of p, r and c, the value of qmin (unlike the value of mmin) 

depends on n and tends to 1/2 as the number of individuals n tends to infinity. To 

illustrate, if n is greater than 17300, the value of qmin will be less than 51% for all values 

of mmin shown in table 1. The next theorem follows immediately: 

 

Theorem 6.15 Let c be a fixed threshold such that 0 < c < 1. For each x∈{0, 1}, 

 

(i)  P(X=x|Nx=h) ≥ (>) c  

 

if and only if 

 

                   r-cr 
                     log() 

                   c-cr  
(ii) q ≥ (>) 1/2 (  + 1)  (:= qmin), 
                     n log(1/p - 1) 
 

where q = h/n. 

 

Table 2 reports some sample calculations of qmin, for different values of p, n and c, but 

with a fixed r = 0.001. 

 



 19

Table 2. Values of qmin corresponding to different values of p, n and c, with r = 0.001 

(rounded up to the nearest number with one decimal place) 
 n = 12 n = 50 n = 100  n = 300 n = 500 n = 1000 n = 10000 
p = 0.51  c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

n/a 
n/a 
n/a 
n/a 

n/a 
n/a 
n/a 
n/a 

n/a 
n/a 
n/a 
n/a 

78.9% 
83.5% 
98% 
n/a 

67.3% 
70.1% 
78.8% 
84.6% 

58.7% 
60.1% 
64.4% 
67.3% 

50.9% 
51.1% 
51.5% 
51.8% 

p = 0.55  c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

n/a 
n/a 
n/a 
n/a 

85% 
90% 
n/a 
n/a 

67.5% 
70% 
79% 

84.5% 

55.9% 
56.7% 
59.7% 
61.5% 

53.5% 
54% 

55.8% 
56.9% 

51.75% 
52% 

52.9% 
53.5% 

50.2% 
50.2% 
50.3% 
50.4% 

p = 0.6    c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

n/a 
n/a 
n/a 
n/a 

68% 
70% 
79% 
85% 

59% 
60% 

64.5% 
67.5% 

53% 
53.4% 
54.9% 
55.9% 

51.8% 
52% 

52.9% 
53.5% 

50.9% 
51% 

51.5% 
51.8% 

50.1% 
50.1% 
50.2% 
50.2% 

p = 0.75  c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

79.2% 
83.4% 
95.9% 

n/a 

57% 
58% 
61% 
63% 

53.5% 
54% 

55.5% 
56.5% 

51.2% 
51.4% 
51.9% 
52.2% 

50.7% 
50.8% 
51.1% 
51.3% 

50.4% 
50.4% 
50.6% 
50.7% 

50.1% 
50.1% 
50.1% 
50.1% 

p = 0.9    c = 0.5 
               c = 0.75 
               c = 0.99 
               c = 0.999 

66.7% 
66.7% 
75% 

79.2% 

54% 
54% 
56% 
57% 

52% 
52% 
53% 

53.5% 

50.7% 
50.7% 
51% 

51.2% 

50.4% 
50.4% 
50.6% 
50.7% 

50.2% 
50.2% 
50.3% 
50.4% 

50.1% 
50.1% 
50.1% 
50.1% 

 

Theorem 6 implies that, even when we fix p, r and c, there exists no single fixed 

parameter qmin for a proportion rule such that condition (D) is satisfied for all numbers of 

jurors n. The value of qmin required to implement condition (D) depends on the size of the 

jury and converges to 1/2 as that size tends to infinity. In a sufficiently large jury, qmin thus 

approximates 1/2. From the perspective of condition (D), the epistemic justifiability of a 

proportion rule, particularly with a parameter qmin significantly greater than 1/2, is 

therefore questionable.  
 

5.2 Tracking the truth in the limit 
 

We now turn to the perspective of the Condorcet jury theorem again. For both the 

proportion rule and the absolute margin rule, we will consider the probability that x is 

chosen, given that the state of the world is x. This is the probability that we described as 

relevant for assessing the epistemic properties of a decision procedure from a ‘global’ 

perspective. We will see that the use of a proportion rule (as opposed to an absolute 

margin rule) may be even counterproductive from that perspective: While an absolute 

margin rule always tracks the truth in the limit (i.e. it satisfies condition (T))16, a 
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proportion rule may fail to track the truth even in the limit (i.e. it may violate condition 

(T)). 

 

We consider the probability P(Nx/n≥ qmin|X=x) that x will be supported by a proportion of 

at least qmin of a jury of size n, given that x is the true state of the world. 

 

Theorem 7.17  

(a) If 1/2 < p < qmin, then P(Nx/n≥ qmin|X=x) converges to 0 as n tends to infinity. 

(b) If p > qmin, then P(Nx/n≥ qmin|X=x) converges to 1 as n tends to infinity. 

 

A proof is given in the appendix. Let us call a decision in favour of x=1 a positive 

decision. If we use a proportion rule with parameter qmin, theorem 7 immediately implies 

the following: 

 

If 1/2 < p < qmin, then 

• P(1 is chosen|X=1) converges to 0 as n tends to infinity, and 

• P(0 is chosen|X=0) converges to 1 as n tends to infinity. 

 

If p > qmin, then 

• P(1 is chosen|X=1) converges to 1 as n tends to infinity, and 

• P(0 is chosen|X=0) converges to 1 as n tends to infinity. 

 

Therefore a proportion rule with parameter qmin > ½ satisfies condition (T) if and only if 

p>qmin. This implies that, if 1/2 < p < qmin, the rule violates condition (T). 

 

By contrast, we will now see that an absolute margin rule with any parameter mmin 

satisfies condition (T). We consider the probability P(Nx-N1-x≥mmin|X=x) that x will be 

supported by a majority with a margin of at least mmin between the majority and the 

minority, given that x is the true state of the world. 
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Theorem 8. For any mmin > 0, if p > 1/2, then P(Nx-N1-x≥mmin|X=x) converges to 1 as n 

tends to infinity. 

 

A proof is also given in the appendix. Suppose we use an absolute margin rule with 

parameter mmin. Then theorem 8 immediately implies the following: 

 

For any p > ½ and any mmin > 0, 

• P(1 is chosen|X=1) converges to 1 as n tends to infinity, and 

• P(0 is chosen|X=0) converges to 1 as n tends to infinity. 

 

Therefore an absolute margin rule satisfies condition (T) for all p > ½ and for any value 

of mmin. The results of this section show that absolute margin rules track the truth in the 

limit as soon as each individual is better than random at tracking the truth, whereas 

proportion rules may fail to track the truth unless individual competence is very high (i.e. 

p > qmin) or the required proportion equals only ½. 

 

5.3 Summary 

 

Absolute margin rules are more ‘epistemically sound’ than proportion rules in the 

following sense: 

 

• When we fix p, r and c, there exists a single fixed parameter mmin such that a 

corresponding absolute margin rule satisfies condition (D) for all values of n. 

• An absolute margin rule satisfies condition (T) for any p > ½ and any mmin > 0. 

 

By contrast: 

• Even when we fix p, r and c, there exists no single fixed parameter qmin such that a 

corresponding proportion rule satisfies condition (D) for all values of n. Rather, to 

implement condition (D), the definition of a proportion rule would have to be 

modified to allow the use of different values of qmin for different values of n. 
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• A proportion rule violates condition (T) if 1/2 < p < qmin, and satisfies condition (T) if 

and only if p > qmin. 

 

From the perspective of the classical Condorcet jury model, we should therefore advocate 

the definition of special majority voting in terms of the required absolute margin rather 

than the required proportion. If we want to resist this conclusion, we have two 

alternatives. Either we defend the use of a proportion rule for reasons other than 

‘epistemic’ ones, or we reject the classical Condorcet jury model and find an alternative 

model that avoids the present results on the significance of the absolute margin. 

 

A ‘non-epistemic’ defence of a decision procedure would be one that appeals not to the 

claim that the procedure tracks the truth, but rather to the claim that the procedure has 

certain procedural properties. There may be different views on what the desirable 

procedural properties are. The relevant properties in the case of proportion rules might be 

giving veto power (and thus special protection) to minorities, or securing the legitimacy 

of a decision by ensuring the endorsement of that decision by a large proportion of the 

jury or electorate. In some contexts, especially ones where it unclear whether there exists 

a relevant state of the world that the decision is supposed to track, such considerations 

might provide perfectly good reasons for the use of proportion rules rather than absolute 

margin rules. 

 

But even from an epistemic perspective, it might still be possible to resist (some of) the 

conclusions of the present section: we would simply need to find a plausible alternative to 

the classical Condorcet jury model in which Condorcet’s insight about the significance of 

the absolute margin does not hold.18 

 

6 The jury model without the assumption of symmetrical competence 

 

In the classical Condorcet jury model, it is assumed that each juror’s probability of voting 

for x, given that the state of the world is x, is the same for x = 1 and x = 0. This 

assumption of symmetrical competence is rather demanding. It is plausible to assume that 
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in many contexts a juror’s probability of making a correct decision may depend on what 

the state of the world is. For example, detecting innocence given that the defendant is 

truly innocent might be easier than detecting guilt given that the defendant is truly guilty. 

In the medical case, it might sometimes be easier to diagnose a certain medical condition 

than to rule it out. Or it might even be desirable to design a diagnostic test for which the 

probability of a positive verdict, given that the patient has condition C, is greater than the 

probability of a negative verdict, given that the patient does not have condition C. Many 

diagnostic tests have this property. 

 

It is therefore interesting to ask whether the present results on the significance of the 

absolute margin are robust to a relaxation of the assumption of symmetrical competence. 

As defined above, let p1:=P(Vi=1|X=1)>½ and p0:=P(Vi=0|X=0)>½. We keep the 

assumptions of competence and independence, but not the assumption of symmetrical 

competence. Theorem 1 does not require the assumption of symmetrical competence and 

therefore continues to hold. Theorems 3 and 4, however, no longer hold. Instead, we 

have: 

 

Theorem 9. Suppose h > n/2. Let H be the hypothesis that X=1, and E the evidence that 

N1 = h. Then  

   

                         r p1
m            r  

(a) P(H|E) = P(X=1|N1 = h) =   =  ;  
          r p1

m + (1-r) (1-p0)m αk        r + (1-r) (1-p0/p1)
m αk 

    

     p1
h(1-p1)n-h          p1        

m 

(b) l(H, E) =  = () (1/α)k,     
     (1-p0)hp0

n-h        1-p0           
  

                   (1-p0)p0 
where m = 2h-n, k = n-h, and α =  . 

                   (1-p1)p1 
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The proof of theorem 9 is given in the appendix. Parts (a) and (b) of theorem 9 

correspond to theorems 3 and 4, and are equivalent to these theorems for the special case 

p0 = p1. When k = 0, equations (a) and (b) are very similar to these earlier results, as αk = 

1. The smaller the difference between p0 and p1, the more closely will the equations in 

theorems 3 and 4 approximate equations (a) and (b) in theorem 9, particularly for small 

values of k.  

 

Assuming that p0, p1 > ½, note that p0 < p1 implies α > 1, p0 = p1 implies α = 1, and  

p0 > p1 implies α < 1.19 This means that, when p0 ≠ p1, P(H|E) and l(H, E) depend not 

only on m (in addition to the standard parameters), but also on k (and thereby on n and h), 

where k is the number of jurors in the minority. In particular, suppose we hold the 

standard parameters (r, p1, p0) and the absolute margin m fixed. Then we have: 

 

• If p0 > p1, P(H|E) and l(H, E) are strictly increasing functions of k (and thereby of n); 

P(H|E) converges to 1 and l(H, E) tends to infinity as n (and thereby k) tends to 

infinity. Both functions assume their minimum in the case of unanimity (i.e. when 

h=m and k=0) and increase as the proportion h/n converges to ½.  

• If p1 > p0, P(H|E) and l(H, E) are strictly decreasing functions of k (and thereby of n); 

they both converge to 0 as n (and thereby k) tends to infinity. Both functions assume 

their maximum in the case of unanimity (i.e. when h=m and k=0) and decrease as the 

proportion h/n converges to ½.20 

 

This shows that, if competence is asymmetrical, the absolute margin is no longer 

significant by itself. In two different situations with the same absolute margin h-k but 

with a different proportion h/n, the values of P(H|E) and l(H, E) can be very different. Let 

m be any absolute margin, no matter how large or small. If p0 > p1, the value of P(H|E) is 

smaller if the margin m is achieved by unanimity than if the same margin m is achieved 

by a proportion close to ½. This means that in the present case, all other things being 

equal (particularly m), a larger proportion is worse than a smaller proportion. If p1 > p0, 

by contrast, the value of P(H|E) is larger if the margin m is achieved by unanimity than if 
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the same margin m is achieved by a proportion close to ½. Here, all other things being 

equal, a larger proportion is better than a smaller proportion. 

 

In the case of asymmetrical competence, both the absolute margin and the proportion 

required for implementing condition (D) depend on n. Hence there exists neither a single 

fixed parameter mmin nor a single fixed parameter qmin such that a corresponding absolute 

margin or proportion rule satisfies condition (D) for all numbers of jurors n. Irrespective 

of whether we prefer to define a voting rule in terms of a required proportion or in terms 

of a required absolute margin, the parameter of that rule will be a function of n. 

 

7 Concluding Remarks 

 

Condorcet’s insight on the significance of the absolute margin is no less striking today 

than it must have been when it was first discovered by Condorcet. Within the classical 

Condorcet jury model, the insight is valid irrespective of whether we are concerned with 

the degree of belief we assign to the truth of the hypothesis given the jurors’ verdicts, or 

with the degree of support the jurors’ verdicts give to the truth of the hypothesis. An 

important implication is that, if we accept the classical Condorcet jury model and we 

want to make decisions by special majority voting, then absolute margin rules are the 

appropriate types of special majority rules, while proportion rules are questionable from 

an epistemic perspective. However, all these results depend crucially on the assumption 

of symmetrical competence. The absolute margin between the majority and the minority 

is the uniquely significant epistemic criterion if and only if juror competence is 

symmetrical. 

 

Appendix 

 

Proof of theorem 3. Suppose h > n/2. By Bayes’s law,  

 

         P(X=x) P(Nx=h|X=x) 
P(X=x|Nx = h)  =  

 P(Nx=h) 
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            P(X=x) P(Nx=h|X=x) 
   =  . 
       P(X=x) P(Nx=h|X=x) + P(X≠x) P(Nx=h|X≠x) 
 

By equation (a) in lemma 1,  
 
           n 

P(X=x) P(Nx=h|X=x) = r (  ) ph(1-p)n-h. 
            h 
 
By the assumption of symmetrical competence, 
 
                 n 

P(X≠x) P(Nx=h|X≠x) = (1-r) (  ) (1-p)hpn-h. 
                  h 
 
So  
 
                       n 

             r (  ) ph(1-p)n-h 
                       h 
P(X=x|Nx = h)  =  

             n            n 

                             r (  ) ph(1-p)n-h + (1-r) (  ) (1-p)hpn-h 
             h            h 

 

    r p2h-n 

   =   
       r p2h-n + (1-r) (1-p)2h-n 

 

   r pm        r 

=  =  , 
     r pm + (1-r) (1-p)m     r + (1-r) (1/p - 1)m 

 

where m = 2h-n.  
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Proof of theorem 4. Suppose h > n/2.  
      

      P(E|H) 
l(H, E) =   . 

       P(E|¬H) 
  
By equation (a) in lemma 1, 
 
             n 

P(E|H) = (    ) ph(1-p)n-h. 
         h 
 
By the assumption of symmetrical competence, 
 
                n 

P(E|¬H) = (   ) (1-p)hpn-h. 
            h 
 
Hence 

 
         n 

      (   ) ph(1-p)n-h 
           h 

l(H, E) =    
           n 

   (  ) (1-p)hpn-h 
           h 
 

         p      2h-m 

= ()         
                   1-p           

 

         p      m 

= ()   ,     
                   1-p           

 

where m = 2h-n.  
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Proof of theorem 5. By theorem 3, we know that 
 

  r 

  P(X=x|Nx=h) =  , 
 r + (1-r) (1/p - 1)m 

 
where m = 2h-n. Hence we have  
 

P(X=x|Nx=h) ≥ (>) c  
 

  r 

if and only if   ≥ (>) c 
r + (1-r) (1/p - 1)m 

 

   r-cr 
if and only if  ≥ (>) (1/p - 1)m 
   c-cr  

 

                         r-cr 
                log() 

                        c-cr  
if and only if m ≥ (>)  , 
                 log(1/p - 1) 

 

as required.  

 

Definition. A condition φ on the probability p is consistent if there exists a value of 

p∈[0,1] satisfying φ. A condition φ on p is strict if, for every value of p satisfying φ, there 

exists an ε > 0 such that, whenever |p*-p|<ε, then p* also satisfies φ (where p*∈[0,1]).21  

 

An example of a consistent strict condition on p is p > 1/2. The condition p = 1/2 is 

consistent, but not strict. The condition p < 0 is not consistent (a condition for p to be a 

probability is that 0 ≤ p ≤ 1). 

 

Lemma (Convergence Lemma). Suppose p satisfies the consistent strict condition 

φ. Then P(Nx/n satisfies φ | X=x) converges to 1 as n tends to infinity. 

 



 29

The lemma can be derived from the weak law of large numbers. 

 

Proof of theorem 7. Let qmin > 1/2. 

• Suppose p satisfies 1/2 < p < qmin.  As this condition is consistent and strict, the 

convergence lemma above implies that P(1/2 < Nx/n < qmin|X=x) converges to 1 as n 

tends to infinity. The result follows. 

• Suppose p satisfies p > qmin. As this condition is consistent and strict, the convergence 

lemma above implies that P(Nx/n > qmin|X=x) converges to 1 as n increases. The result 

follows.  

 

Proof of theorem 8. Suppose that p > 1/2. Let mmin > 0. Then 2p > 1, and 2p-1 > 0. In 

particular, there exists ε > 0 such that 2p-1 > ε. As this condition is consistent and strict, 

the convergence lemma above implies that P(2Nx-n>nε|X=x)=P(2Nx/n-1>ε|X=x) 

converges to 1 as n tends to infinity. But, when n > mmin/ε, we have nε > mmin. Therefore 

P(2Nx-n>mmin|X=x) also converges to 1 as n tends to infinity. But 2Nx-n = Nx-N1-x is 

precisely the margin between the majority and the minority. The result follows.  

 

Proof of theorem 9. Let H be the hypothesis that X=1, and E the evidence that N1 = h. 

We first prove part (b). By the definition of l(H, E) and the binomial distributions of N1 

and N0, we have 

 
               n 

   (    ) p1
h(1-p1)n-h 

            h       p1
h(1-p1)n-h              p1        

m 

 l(H, E) =  =  = () (1/α)k, 
               n      (1-p0)hp0

n-h         1-p0 

   (    ) (1-p0)hp0
n-h 

            h 
 

                   (1-p0)p0 
where m = 2h-n, k = n-h, and α =  . 

                   (1-p1)p1 
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Now part (a) can be derived straightforwardly from  
 
                   P(H)  

P(H|E) =  .  
       P(H) + P(¬H) 1/l(H, E) 

 
Definition. The difference measure is defined as 
 

d(H, E) := P(H|E)-P(H), 
 
and the ratio measure is defined as 
  
        P(H|E) 
 r(H, E) :=  . 
         P(H) 
 
For a detailed discussion of these measures, see Fitelson ([2001]).22 
 

Theorem 10. Suppose h > n/2. Then  
 

     r  

 d(H, E) =  - r, 
      r + (1-r) (1/p - 1)m 

 
    1 

and r(H, E) =  , 
      r + (1-r) (1/p - 1)m 

   
where m = 2h-n. 
 

Proof of theorem 10. The theorem follows immediately from theorem 3 and the 

definitions of d and r.  

 

The theorem implies that d(H, E) and r(H, E) both depend only on the parameters p, r and 

m and are increasing functions of each of these.23 
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1 The assumption that the value of p is the same for x=0 and x=1 is a strong simplification 

here. As discussed in more detail below, there are situations in which it is plausible to 

assume that p depends on x. 
2 Provided that p > ½. 
3 For a discussion of epistemic and procedural justifications of decision procedures, see, 

among others, Cohen ([1986]); Dahl ([1979]); Coleman and Ferejohn ([1986]); Estlund 

([1993], [1997]); List and Goodin ([2001]). 
4 Holding the competence parameters p0 and p1 and the prior probability r fixed. 
5 In the same model, if p < 1/2, the probability that a majority of jurors will vote for x, 

given the state of the world x, converges to 0 as the number of jurors tends to infinity. 
6 This result is robust to certain relaxations of the assumptions. A version of it still holds 

in certain cases where different jurors have different competence levels, but where the 

average competence is greater than ½ (e.g. Grofman, Owen and Feld [1983]; Borland 

[1989]), and in cases where there are certain dependencies between different jurors’ votes 

(ibid.; Ladha [1992]; Estlund [1994]; but see Dietrich and List [2002]). See also 

Hawthorne ([2001]). We see below that the Condorcet jury theorem itself does not 

require the assumption of symmetrical competence, whereas Condorcet’s formula on the 

significance of the absolute margin does. 
7 This definition of truth-tracking is motivated by Nozicks definition of knowledge in 

terms of truth-tracking (Nozick [1981]).  
8 Or the logarithm of the likelihood ratio. 



 34

                                                                                                                                                                             
9 Specifically, Fitelson ([2001]) shows that the logarithm of the likelihood ratio satisfies 

the Peirceian additivity condition, the negation symmetry condition and the urn 

condition. 
10 So long as p > ½. 
11 And the competence parameter p. 
12 Although there is a vast literature on the Condorcet jury theorem, not much of that 

literature addresses special majority voting. The technical results most closely related to 

the present ones are Nitzan and Paroush ([1984]) and Ben-Yashar and Nitzan ([1997]). 

Fey ([2003]) provides an extension of these results. All of these papers are concerned 

with determining the ‘optimal’ size of a special majority, given various specifications of a 

Condorcet jury framework. However, they do not explore the possibility of defining 

special majority voting in terms of a required absolute margin. Feddersen and 

Pesendorfer ([1998]), Coughlan ([2000]), Gerardi ([2000]), and Guarnaschelli, McKelvey 

and Palfrey ([2000]) all discuss the Condorcet jury theorem in relation to unanimous jury 

verdicts. Kanazawa ([1998]) provides a Condorcet jury theorem for special majority 

voting with high individual competence. 
13 For a related result, see the ‘convincing majorities theorem’ in Hawthorne ([2001]). 

Hawthorne also shows that the proportion of the electorate required to obtain a 

‘convincing majority’ converges to ½ as the number of individuals increases and proves a 

Condorcet jury theorem on the likelihood of obtaining a ‘convincing majority’. At the 

cost of more complicated mathematics, Hawthorne’s framework, unlike the classical 

Condorcet jury framework, allows different competence levels for different individuals 

and dependencies between the choices of different individuals. In another related paper, 

Goodin ([2002]) addresses the question of when a majority can convince an agent of the 

negation of a proposition, where the agent initially assigns a high prior probability to the 

truth of that proposition. 
14 Whenever mmin = 0 in table 1, this means that, given the competence parameter p and 

the prior probability r, any majority from 50% onwards (including a tie) will already be 

sufficient to ensure that the posterior probability of the correctness of a positive decision 

equals or exceeds c. 
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15 Theorem 6 can be interpreted as a slightly more general variant of a theorem by Nitzan 

and Paroush ([1984]). Nitzan and Paroush's result concerns the special case c = 1/2. Their 

result, however, focuses entirely on the definition of special majority voting in terms of 

proportions rather than absolute margins.  
16 So long as p>½. 
17 For a result related to the second part of this proposition, see Kanazawa ([1998]). 
18 Note, however, that if the absolute margin ceases to be significant under certain 

conditions, this does not in general imply that the proportion will be significant under 

those conditions. 
19 This can be shown by setting p0 = ½ + ε0 and p1 = ½ + ε1. Then ((1-p0)p0)/((1-p1)p1) = 

((½-ε0)(½+ε0))/((½-ε1)(½+ε1))=(1/4-ε0
2)/(1/4-ε1

2). If ε0<ε1, then (1/4-ε0
2)>(1/4-ε1

2); if 

ε0=ε1, then (1/4-ε0
2)=(1/4-ε1

2); if ε0>ε1, then (1/4-ε0
2)<(1/4-ε1

2). 
20 Crucially, where m is held fixed. 
21 Extensionally, we might represent a condition φ as a subset S ⊆ [0,1] (not necessarily 

proper, not necessarily non-empty) and say that p satisfies φ if p∈S. Then φ is consistent 

if S is non-empty; and φ is strict if S is an open set. 
22 Fitelson  ([2001])  discusses  another  measure, the so-called normalized difference 

measure, defined by s(H, E) := P(H|E) - P(H|¬E). However, he shows that the measure 

violates several attractive conditions and argues that it is not a plausible measure of the 

notion of degree of support. It turns out that, under the normalized difference measure, 

the absolute margin loses its special significance. But given the measure’s lack of 

plausibility, it is unclear how to interpret this finding. 
23 So long as p > ½. 




