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The Probability of Inconsistencies in Complex Collective Decisions 
Christian List1 

Forthcoming in Social Choice and Welfare 
Abstract. Many groups make decisions over multiple interconnected propositions. The “doctrinal paradox” 
or “discursive dilemma” shows that propositionwise majority voting can generate inconsistent collective 
sets of judgments, even when individual sets of judgments are all consistent. I develop a simple model for 
determining the probability of the paradox, given various assumptions about the probability distribution of 
individual sets of judgments, including impartial culture and impartial anonymous culture assumptions. I 
prove several convergence results, identifying when the probability of the paradox converges to 1, and 
when it converges to 0, as the number of individuals increases. Drawing on the Condorcet jury theorem and 
work by Bovens and Rabinowicz (2001, 2003), I use the model to assess the “truth-tracking” performance 
of two decision procedures, the premise- and conclusion-based procedures. I compare the present results 
with existing results on the probability of Condorcet’s paradox. I suggest that the doctrinal paradox is likely 
to occur under plausible conditions. 

 
1 Introduction 
 
A new paradox of aggregation, the “doctrinal paradox” or “discursive dilemma”, has 
been the subject of a growing body of literature in law, economics and philosophy 
(Kornhauser and Sager 1986, 1993; Kornhauser 1992; Chapman 1998, 2001, 2002; 
Brennan 2001; Pettit 2001; List and Pettit 2002, 2003; Bovens and Rabinowicz 2001, 
2003; List 2003). An example illustrates the problem. A three-member court has to 
decide on whether a defendant is liable under a charge of breach of contract. Legal 
doctrine requires that the court should find that the defendant is liable (proposition R) if 
and only if it finds, first, that the defendant did some action X (proposition P), and, 
second, that the defendant had a contractual obligation not to do action X (proposition Q). 
Thus legal doctrine stipulates the connection rule (R↔(P∧Q)). Suppose the opinions of 
the three judges are as in Table 1. 
Table 1: The doctrinal paradox (conjunctive version) 

 P Q (R ↔ (P ∧ Q)) R 
Judge 1 Yes Yes Yes Yes 
Judge 2 Yes No Yes No 
Judge 3 No Yes Yes No 
Majority Yes Yes Yes No 

                                                           
1 The author wishes to express his gratitude to Luc Bovens, Matthew Braham, Steven Brams, Bruce 
Chapman, Philip Pettit, Wlodek Rabinowicz and two anonymous reviewers for helpful comments or 
discussion. A previous version of this paper was presented at the 2002 Annual Meeting of the European 
Public Choice Society, Belgirate, Lago Maggiore, Italy, April 2002, and at the Sixth International Meeting 
of the Society for Social Choice and Welfare, held at the California Institute of Technology, Pasadena, 
California, July 2002. Address for correspondence: SPT Program, Research School of Social Sciences, 
Australian National University, Canberra ACT 0200, Australia; and Department of Government, London 
School of Economics, London WC2A 2AE, U.K.; E-mail c.list@lse.ac.uk. 
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All judges accept the connection rule, (R↔(P∧Q)). Judge 1 accepts both P and Q 
and, by implication, R. Judges 2 and 3 each accept only one of P or Q and, by 
implication, they both reject R. If the court applies majority voting on each proposition 
(including (R↔(P∧Q))), it faces a paradoxical outcome. A majority accepts P, a majority 
accepts Q, a majority (unanimity) accepts (R↔(P∧Q)), and yet a majority rejects R. 
Propositionwise majority voting thus yields an inconsistent collective set of judgments, 
namely {P, Q, (R↔(P∧Q)), ¬R} (corresponding to the last row of Table 1). This set is 
inconsistent in the standard sense of propositional logic: there exists no assignment of 
truth-values to P, Q and R that makes all the propositions in the set simultaneously true. 
This outcome occurs even though the sets of judgments of individual judges 
(corresponding to the first three rows of Table 1) are all consistent. The doctrinal paradox 
is related to Anscombe’s paradox, or Ostrogorski’s paradox (Anscombe 1976; Kelly 
1989; Brams, Kilgour and Zwicker 1997). Like the doctrinal paradox, these paradoxes 
are concerned with aggregation over multiple propositions. Unlike the doctrinal paradox, 
they do not incorporate explicit logical connections between the propositions.   

Pettit (2001) has argued that the doctrinal paradox occurs not only in the aggregation 
of judgments according to legal doctrine, but that it poses a more general “discursive 
dilemma”, potentially facing any group that seeks to form collective judgments on the 
basis of reasons. Further, the paradox illustrates an impossibility theorem (List and Pettit 
2002, 2003): there exists no function for aggregating consistent individual sets of 
judgments over multiple interconnected propositions into consistent collective ones 
which satisfies some minimal conditions (unrestricted domain, anonymity, systematicity). 
The relation between the paradox and the impossibility theorem is somewhat analogous 
to the relation between Condorcet’s paradox and Arrow’s impossibility theorem.  

Aggregation problems over multiple interconnected propositions may arise, for 
example, when a committee makes a decision that involves the resolution of several 
premises; or when a political party or interest group chooses a policy package that 
consists of multiple interconnected components. Although we use the label “doctrinal 
paradox”, we should keep the more general nature of the problem in mind.   

How serious is the threat posed by this paradox? It is one thing to recognize that a 
given paradox of aggregation is logically possible. It is another to claim that the paradox 
is of practical significance. There are at least two possible reasons why a particular 
paradox might not (seem to) occur in practice. One is that many decision procedures that 
are used in practice do not explicitly reveal the paradox, even when individual views have 
the pattern that would give rise to the paradox. Two such decision procedures are 
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discussed below, the so-called premise-based and conclusion-based procedures. These 
procedures do not produce inconsistent collective sets of judgments, even when a pattern 
of individual views as in Table 1 occurs. But it will become evident that the question of 
how frequently such patterns occur is relevant for assessing the performance of the two 
procedures. A second possible reason why the paradox might not occur in practice is that 
the patterns of individual views that generate the paradox might themselves be rare.  

How likely is the occurrence of this paradox, or more precisely, how likely is the 
occurrence of patterns of individual views that generate the paradox? This paper seeks to 
give a theoretical answer to this question. Inevitably, many other important questions 
raised by the doctrinal paradox cannot be addressed here. In Section 2, I identify 
necessary and sufficient conditions for the occurrence of the paradox. In Section 3, I 
develop a model for determining the probability of its occurrence, given various 
assumptions about the probability distribution of individual sets of judgments, including 
the so-called impartial culture assumption. In Section 4, I determine the expected 
probability of the paradox under the assumption that all logically possible probability 
distributions of the form discussed in Section 3 are equally probable. That expected 
probability coincides with the probability of the paradox under the so-called impartial 
anonymous culture assumption. In Section 5, I discuss two escape-routes from the 
paradox, the premise- and conclusion-based decision procedures, and drawing on the 
Condorcet jury theorem and recent work by Bovens and Rabinowicz (2001, 2003), I 
assess their performance in terms of "tracking the truth". The present model yields 
alternative proofs and extensions of some of Bovens and Rabinowicz’s results. I show 
that, under certain conditions, if each individual is better than random, but not very good, 
at tracking the “truth” on each premise, then the probability of the doctrinal paradox (and 
of a discrepancy between the premise- and conclusion-based procedures) converges to 1 
as the number of individuals increases. In Section 6, I address generalizations of the 
present results. In Section 7, I briefly compare the present results with existing results on 
the probability of Condorcet’s paradox.  

We should address one objection. Many results of this paper concern the convergence 
of certain probabilities as the number of individuals increases. Since those groups that 
have to make decisions over multiple interconnected propositions are typically small, it is 
not obvious why such convergence results, or any results about large groups, are relevant. 
Examples of the groups in question are courts, committees, panels of experts, or 
parliaments, with between a handful and a few hundred members. In response, note four 
points. First, the present framework allows calculating the relevant probabilities for finite 
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(and thus small) numbers of individuals too. Second, the convergence behaviour of the 
probabilities of various voting outcomes has received attention since Condorcet’s 
classical work, and it is therefore interesting to address Condorcet’s classical questions in 
the new context of aggregation over multiple interconnected propositions. Third, as Table 
3 illustrates, convergence results may be relevant even to situations of a few dozen or a 
few hundred decision-makers, as the convergence speed is often high. Finally, the results 
may illuminate some questions in democratic theory, such as (i) whether it is desirable to 
introduce large-scale political participation on complex issues by running referenda over 
multiple propositions and (ii) what the optimal group size for complex decisions is. In 
Section 7, I cite some anecdotal evidence from referenda in California. 
 
2 Necessary and Sufficient Conditions for the Occurrence of the Paradox 
 

Let there be n individuals and three propositions, P, Q and R. We assume that all 
individuals accept the connection rule (R ↔ (P ∧ Q)). To avoid complications raised by 
majority ties, we assume that n is odd. We admit only consistent individual sets of 
judgments over P, Q and R. There are 4 such sets, as shown in Table 2. 
 
Table 2: All logically possible consistent sets of judgments over P, Q and R, given (R ↔ (P ∧ Q)) 

Label Judgment on P Judgment on Q Judgment on R 
TT Yes Yes Yes 
TF Yes No No 
FT No Yes No 
FF No No No 

 
I make no claims as to whether it is empirically plausible to assume that individuals 

hold consistent sets of judgments. Admitting only consistent individual sets seems to 
make collective inconsistencies less rather than more likely. If we can still show that 
collective inconsistencies are plausible, the argument will have been strengthened rather 
than weakened by the exclusion of inconsistent individual sets of judgments. 

Let nTT, nTF, nFT, nFF be the numbers of individuals holding the sets of judgments TT, 
TF, FT, FF, respectively. A vector <nTT, nTF, nFT, nFF> is called an anonymous profile. 
Then N := {<nTT, nTF, nFT, nFF> :  nTT, nTF, nFT, nFF≥0 and nTT+nTF+nFT+nFF = n} is the set 
of all logically possible anonymous profiles. 

If (R ↔ (P ∧ Q)) is unanimously accepted, a collective inconsistency (a “doctrinal 
paradox”) occurs if and only if there are majorities for each of P and Q, and there is a 
majority against R. 
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Proposition 1. Given the connection rule (R ↔ (P ∧ Q)), there is a collective 
inconsistency under propositionwise majority voting if and only if (nTT + nTF > n/2) and 
(nTT + nFT > n/2) and (nTT < n/2). 
 

Define  
 
N* := {<nTT, nTF, nFT, nFF>∈N : (nTT+nTF>n/2) and (nTT+nFT>n/2) and (nTT <n/2)}.  

 
Then N* is the set of all anonymous profiles for which propositionwise majority voting 
generates a collective inconsistency. 
 
3 A Probability-Theoretic Framework 
 

We assume that (i) each individual has probabilities pTT, pTF, pFT, pFF of holding the 
sets of judgments TT, TF, FT, FF, respectively (where pTT+pTF+pFT+pFF = 1); and (ii) the 
judgments of different individuals are independent from each other. 

The simplifications of these assumptions follow the classical Condorcet jury theorem. 
Specifically, we assume (i) identical probabilities for different individuals, and (ii) 
independence between different individuals. It is known in the literature on the Condorcet 
jury theorem that the types of convergence mechanisms based on the law of large 
numbers invoked here apply, with certain modifications, also when probabilities vary 
across individuals or when there are certain dependencies between individuals (Grofman, 
Owen and Feld 1983; Boland 1989; Berg 1993; Ladha 1995).  

Let XTT, XTF, XFT, XFF be the random variables whose values are the numbers of 
individuals holding the sets of judgments TT, TF, FT, FF, respectively. The joint 
distribution of the Xs is a multinomial distribution with the probability function 
           
               n! 
P(XTT=nTT, XTF=nTF, XFT=nFT, XFF=nFF) =   pTT

nTT  pTF
nTF pFT

nFT pFF
nFF. 

                  nTT! nTF! nFT! nFF!    
 

Let P*
n denote the probability of a collective inconsistency under propositionwise 

majority voting, where the connection rule is (R ↔ (P ∧ Q)) and where there are n 
individuals. Using proposition 1, we see that  
 

P*
n := P((XTT + XTF > n/2) and (XTT + XFT > n/2) and (XTT < n/2)). 

 
We can easily infer the following proposition, recalling that n is odd. 
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Proposition 2.  
                      n! 

P*
n :=           ∑              pTT

nTT  pTF
nTF pFT

nFT pFF
nFF. 

          <nTT, nTF, nFT, nFF>∈N*      nTT! nTF! nFT! nFF! 
 
         (n-1)/2  (n-1)/2            n-nTT-nTF                    n! 
       = ∑       ∑            ∑          pTT

nTT  pTF
nTF pFT

nFT pFF
nFF. 

          nTT=1  nTF=(n+1)/2-nTT  nFT=(n+1)/2-nTT    nTT! nTF! nFT! nFF! 
 

The probabilities of other logically possible combinations of majorities for or against 
P, Q and R can be calculated analogously. An impartial culture is the situation in which 
pTT=pTF=pFT=pFF. An impartial culture is to be distinguished from an impartial 
anonymous culture, as defined in Section 4. Table 3 shows some sample calculations of 
P*

n for various values of n, pTT, pTF, pFT, pFF.  
 
Table 3: P*

n (probability of a collective inconsistency under propositionwise majority voting, given  
(R ↔ (P ∧ Q))), for various scenarios  
 Scenario 1  

pTT = 0.25 
pTF = 0.25 
pFT = 0.25 
pFF = 0.25 

Scenario 2 
pTT = 0.26 
pTF = 0.25 
pFT = 0.25 
pFF = 0.24 

Scenario 3  
pTT = 0.3 
pTF = 0.25 
pFT = 0.25 
pFF = 0.2 

Scenario 4 
pTT = 0.24 
pTF = 0.27 
pFT = 0.25 
pFF = 0.24 

Scenario 5  
pTT = 0.49 
pTF = 0.2 
pFT = 0.2 
pFF = 0.11 

Scenario 6  
pTT = 0.51 
pTF = 0.2 
pFT = 0.2 
pFF = 0.09 

Scenario 7 
pTT = 0.55 
pTF = 0.2 
pFT = 0.2 
pFF = 0.05 

Scenario 8 
pTT = 0.33 
pTF = 0.33 
pFT = 0.33 
pFF = 0.01 

n = 3 0.0938 0.0975 0.1125 0.0972 0.1176 0.1224 0.1320 0.2156 
n = 11 0.2157 0.2365 0.3211 0.2144 0.3570 0.3432 0.2990 0.6188 
n = 31 0.2487 0.2946 0.4979 0.2409 0.5183 0.4420 0.2842 0.9104 
n = 51 0.2499 0.3101 0.5815 0.2405 0.5525 0.4414 0.2358 0.9757 
n = 71 ≈ 0.2500 0.3216 0.6417 0.2393 0.5663 0.4327 0.1983 0.9930 
n = 101 ≈ 0.2500 0.3362 0.7113 0.2375 0.5798 0.4201 0.1562 0.9989 
n = 201 ≈ 0.2500 0.3742 0.8511 0.2317 0.6118 0.3882 0.0774 ≈ 1.0000 
n = 501 ≈ 0.2500 0.4527  0.9754 0.2149 0.6729 0.3271 0.0124 ≈ 1.0000 
n = 1001 ≈ 0.2500 0.5426 0.9985 0.1897 0.7366 0.2634 0.0008 ≈ 1.0000 
n = 1501 ≈ 0.2500 0.6097 0.9999 0.1676 0.7808 0.2192 0.0001 ≈ 1.0000 

 
Small differences in pTT, pTF, pFT, pFF correspond to substantial differences in P*

n. 
Under an impartial culture (Scenario 1), P*

n converges to 0.25 as n increases. Small 
deviations from an impartial culture lead to a completely different convergence pattern. 
This is confirmed by the following proposition, proved in Appendix 2. 
 
Proposition 3. 
(a) If (pTT + pTF > 1/2) and (pTT + pFT > 1/2) and (pTT < 1/2), then P*

n → 1 as n → ∞. 
(b) If (pTT + pTF < 1/2) or (pTT + pFT < 1/2) or (pTT > 1/2), then P*

n → 0 as n → ∞. 
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Table 3 illustrates the convergence results of Proposition 3. Scenarios 2, 3, 5 and 8 
satisfy the conditions of 3a, and Scenarios 4, 6 and 7 satisfy the conditions of 3b. The 
convergence results follow from the law of large numbers. If each individual holds the 
sets of judgments TT, TF, FT, FF with probabilities pTT, pTF, pFT, pFF, respectively, then 
npTT, npTF, npFT, npFF are the expected numbers of these sets of judgments across n 
individuals, and pTT, pTF, pFT, pFF are the expected frequencies (i.e. the expected numbers 
divided by n). If n is small, the actual frequencies may differ substantially from the 
expected ones, but as n increases, the actual frequencies will approximate the expected 
ones increasingly closely. If the probabilities pTT, pTF, pFT, pFF satisfy a set of strict 
inequalities, the actual frequencies (and by implication the actual numbers) are 
increasingly likely to satisfy a matching set of strict inequalities. Therefore, if these 
inequalities correspond to the occurrence or absence of a collective inconsistency 
(compare Proposition 1), the probability of the occurrence or absence of such an 
inconsistency will converge to 1. This mechanism is also used to prove other 
convergence results below. Lemma 1 in Appendix 2 captures the mechanism formally. 

The present results are also relevant to the impossibility theorem on the aggregation 
of judgments over multiple propositions (List and Pettit 2002). The impossibility result 
uses an unrestricted domain condition. The present results allow us to determine, under 
various assumptions, how likely it is that a profile of sets of judgments across individuals 
falls into a problematic domain (where propositionwise majority voting generates 
inconsistencies), and how likely it is that it falls into an unproblematic one (where 
propositionwise majority voting generates consistent outcomes).  
 
4 The Expected Probability of the Paradox and the Impartial Anonymous Culture2 
 

The results of Section 3 concern the probability of a collective inconsistency for a 
specific vector <pTT, pTF, pFT, pFF>. An impartial culture, where pTT=pTF=pFT=pFF, is a 
benchmark case of such a probability vector. An alternative approach is to assume that all 
logically possible vectors of the form <pTT, pTF, pFT, pFF> are equally likely to occur (see 
Gehrlein 1981 on this approach in the context of Condorcet’s paradox). Let E(P*

n) denote 
the expected value of P*

n under this assumption. This can be interpreted as the expected 
probability of a collective inconsistency if we have no information about the “correct” 
vector <pTT, pTF, pFT, pFF> and assign equal probability to every possible such vector. 
                                                           
2 I am greatly indebted to an anonymous reviewer for most helpful suggestions that led to the results of this 
section. 



 8

Let f(pTT, pTF, pFT, pFF) denote the probability density function corresponding to this 
equiprobability assumption. Define pFF := 1-pTT-pTF-pFT. Then  

             1    1-pTT   1-pTT-pTF 

E(P*
n) =  ∫    ∫      ∫     P*

n f(pTT, pTF, pFT, pFF)dpFT dpTF dpTT. 
       pTT=0  pTF=0  pFT=0 

 
To determine f(pTT, pTF, pFT, pFF), note that  
 

1    1-pTT   1-pTT-pTF 

∫    ∫      ∫     1 dpFT dpTF dpTT = 1/6;  
    pTT=0  pTF=0  pFT=0 
 
thus the equiprobability assumption implies f(pTT, pTF, pFT, pFF) = 6. Following the logic 
in Gehrlein (1981), it can then be shown (for odd n) that  
 

               1    1-pTT   1-pTT-pTF 

E(P*
n) = 6 ∫    ∫      ∫     P*

n dpFT dpTF dpTT. 
          pTT=0  pTF=0  pFT=0 

 
     =         ∑           (6/((n+3)(n+2)(n+1))) 
          <nTT, nTF, nFT, nFF>∈N*       

 
         (n-1)/2  (n-1)/2            n-nTT-nTF       

= ( ∑       ∑            ∑       1) (6/((n+3)(n+2)(n+1)))  
          nTT=1  nTF=(n+1)/2-nTT  nFT=(n+1)/2-nTT      

     = (1/48(n-1)(n+1)(n+3)) (6/((n+3)(n+2)(n+1))) 
  

           n-1 
    =  . 
        8(n+2) 
 

An impartial culture was defined as the situation in which every logically possible 
individual set of judgments is equally likely to be held by an individual, i.e. 
pTT=pTF=pFT=pFF. An impartial anonymous culture is the situation in which every 
logically possible anonymous profile <nTT, nTF, nFT, nFF> is equally likely to occur; i.e. 
every such anonymous profile occurs with probability 1/|N|. Since N* is the set of all 
anonymous profiles for which there is a collective inconsistency, the probability of a 
collective inconsistency under an impartial anonymous culture is therefore |N*|/|N|. Now  

|N*| =     ∑   1         = 1/48(n-1)(n+1)(n+3),  and 
   <nTT, nTF, nFT, nFF>∈N*       
  
          n  n-nTT   n-nTF-nFT            
|N| =  ∑    ∑    ∑  1 = (n+3)(n+2)(n+1)/6; hence 

              nTT=0   nTF=0   nFT=0       
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             n-1 
|N*|/|N| = (1/48(n-1)(n+1)(n+3)) / ((n+3)(n+2)(n+1)/6) =  . 

                    8(n+2) 
 

So the probability of a collective inconsistency under an impartial anonymous culture 
is equal to E(P*

n), the expected value of P*
n under the assumption that all logically 

possible probability vectors of the form <pTT, pTF, pFT, pFF> are equally likely to occur. 
This corresponds to Gehrlein’s analogous result on the Condorcet paradox (1981), as 
discussed in Section 7 below (see also Gehrlein and Fishburn 1976a). Note that E(P*

n) = 
|N*|/|N| converges to 1/8 as n tends to infinity. 
 
5 Voting for the Premises Versus Voting for the Conclusion 
 

Premise- and conclusion-based decision procedures have been proposed as escape-
routes from the doctrinal paradox (e.g. Pettit 2001). According to the premise-based 
procedure (hereafter PBP), the group applies majority voting on P and Q, the “premises”, 
but not on R, the “conclusion”, and lets the connection rule, (R↔(P∧Q)), dictate the 
collective judgment on R, ignoring the majority verdict on R. In the example of Table 1, 
the PBP leads to the acceptance of P and Q and, by implication, R. According to the 
conclusion-based procedure (hereafter CPB), the group applies majority voting only on 
R, but not on P and Q, ignoring the majority verdicts on P and Q. In Table 1, the CBP 
leads to the rejection of R. Thus the PBP and CBP may produce divergent outcomes. 

Pettit (2001) and Chapman (2002) have argued that the PBP is particularly attractive 
from the perspective of deliberative democracy: it prioritises, and “collectivises”, the 
reasons underlying a given collective decision. A key concern of deliberative democracy 
is to make collective decisions based on publicly defensible reasons. The CBP, by 
contrast, focuses solely on the conclusions that individuals privately reach, ignoring 
individual views on the premises. The CBP thus fails to make the underlying reasons for 
a decision explicit at the collective level. 

Pettit’s and Chapman’s arguments are concerned mainly with the procedural merits 
of the PBP and CBP. Bovens and Rabinowicz (2001, 2003) (hereafter B&R) have 
compared the PBP and CBP from an epistemic perspective, drawing on the Condorcet 
jury theorem (see also Pettit and Rabinowicz 2001; on procedural versus epistemic 
conceptions of democracy, see List and Goodin 2001). Assuming an independent fact on 
the truth-values of P, Q and R, B&R determine the probability that the PBP and CBP 
reach the correct decision on R. I here connect the B&R framework with the present 
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framework and discuss the implications of the Condorcet jury assumptions for the 
probability of collective inconsistencies. In Section 6, I generalize the results to a 
disjunctive version of the doctrinal paradox and to cases of more than two premises. 

We assume that there are four possible states of the world: both P and Q are true (TT), 
P is true and Q is false (TF), P is false and Q is true (FT), both P and Q are false (FF). 
Given the connection rule (R ↔ (P ∧ Q)), each state of the world determines the truth-
value of R. In the spirit of the Condorcet jury theorem, we assume the following: 
(i) Each individual has probabilities (“competence”) p and q of making correct 

judgments on P and Q, respectively, where p, q > 0.5; i.e. for each individual,  
• the probability that the individual judges P to be true, given that P is true, 

equals p; 
• the probability that the individual judges P to be false, given that P is false, 

equals p; and likewise for Q.3 
(ii) Each individual’s judgment on P and the same individual’s judgment on Q are 

independent from each other, conditional on the state of the world. 
(iii) The judgments of different individuals are independent from each other, 

conditional on the state of the world.4  
Below we briefly address dependencies between the same individual's judgments on 

P and on Q, i.e. a relaxation of assumption (ii).  
For each state of the world, the values of p and q induce corresponding values of pTT, 

pTF, pFT, pFF, as shown in Table 4; i.e. from the probabilities corresponding to each 
individual's judgments on P and Q under a given state of the world, we can infer the 
probabilities corresponding to each individual's holding each of the sets of judgments TT, 
TF, FT, FF.  
 
Table 4: pTT, pTF, pFT, pFF as induced by p and q, for different states of the world 
State of the world pTT pTF pFT pFF 

TT pq p(1-q) (1-p)q (1-p)(1-q) 
TF p(1-q) pq (1-p)(1-q) (1-p)q 
FT (1-p)q (1-p)(1-q) pq p(1-q) 
FF (1-p)(1-q) (1-p)q p(1-q) pq 

                                                           
3 We assume that all individuals have the same pair of competence parameters p and q. If different 
individuals have different pairs of competence parameters, say pi and qi for individual i, then assuming [for 
all i, pi, qi > 0.5] is not in general sufficient for a Condorcet jury result on each of P and Q. Paroush (1998, 
Section 2) provides a counterexample. Following Paroush, we must then assume that there exist ε1,ε2>0 
such that, for all individuals i,  pi ≥ 0.5+ε1 and qi ≥ 0.5+ε2. 
4 The independence requirement given by (ii) and (iii) can be stated more precisely as follows. For any 
individual-proposition pair <i, P>, let ViP denote the judgment of individual i on proposition P. Then the 
requirement is that all distinct ViPs should be independent from each other, conditional on the state of the 
world. 
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Proposition 4. Suppose that p, q > 0.5. 
(a) Suppose both P and Q are true. 

• If pq < 0.5, then P*
n → 1 as n → ∞. 

• If pq > 0.5, then P*
n → 0 as n → ∞. 

(b) Suppose not both P and Q are true. Then P*
n → 0 as n → ∞. 

 
See Appendix 2 for a proof. By Proposition 4, P*

n converges to 1 as n tends to infinity 
when all premises are true and individual competence is better than random but not high, 
e.g. when 0.5 < p, q < √(0.5); P*

n converges to 0 when either at least one premise is false 
or individual competence is high, e.g. when p, q > √(0.5). As the PBP and CBP produce 
divergent outcomes precisely when a collective inconsistency occurs, Proposition 4 
implies that, when all premises are true and individual competence is low (but better than 
random), the probability of a discrepancy between the two procedures converges to 1 as n 
tends to infinity. If cases of true premises and low competence are frequent, discrepancies 
between the two procedures may also be frequent. Which of the two procedures should 
we use if our aim is to make a correct decision? 

B&R distinguish between reaching the truth for the right reasons, and reaching it 
regardless of reasons. Reaching the truth for the right reasons requires deducing a correct 
judgment on the conclusion from correct judgments on each premise. Reaching the truth 
regardless of reasons includes the possibility of reaching the correct judgment on the 
conclusion accidentally, while making a wrong judgment on at least one premise. Which 
of the two criteria we consider more compelling depends on our view on democracy. 
Deliberative democrats or lawyers in the common law tradition stress the importance of 
giving public reasons for collective decisions (Pettit 2001 and Chapman 2002), and may 
therefore endorse the criterion of reaching the truth for the right reasons. Pure epistemic 
democrats or pure consequentialists focus primarily on reaching correct outcomes 
reliably, irrespective of the underlying reasoning process, and may therefore endorse the 
criterion of reaching the truth regardless of reasons. 

Table 5 shows the conditions under which the PBP and CBP reach the correct 
decision on R (i) regardless of reasons and (ii) for the right reasons, for different states of 
the world. B&R show that the PBP is always better at reaching the truth on R for the right 
reasons, while the CBP is sometimes better at reaching it regardless of reasons. Some of 
these results can be derived from Table 5.  
• Reaching the correct decision on R for the right reasons: To compare the PBP and 

CBP, we need to compare the relevant conditions corresponding to the four possible 
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states of the world. In Table 5, (2) implies (1); (8) implies (4); (9) implies (5); and 
(10) implies (6). Hence the PBP is always at least as good as the CBP. 

• Reaching the correct decision on R regardless of reasons: We distinguish two cases. 
o P and Q are both true: Since (2) implies (1), the PBP is always at least as good as 

the CBP. 
o Not both P and Q are true: Since (3) implies (7), the CBP is always at least as 

good as the PBP. 
These results are consistent with a result by Grofman (1985): when a group decision 

on a conjunctive composite proposition can be disaggregated into separate group 
decisions on each conjunct, disaggregation is superior in terms of reaching the correct 
decision (regardless of reasons) for true propositions, but not for false propositions.  
 
Table 5: Conditions under which the PBP and CBP reach the correct decision on R (given (R ↔ (P ∧ Q))) 
(i) regardless of reasons and (ii) for the right reasons, for different states of the world 

PBP reaches a correct decision on R CBP reaches a correct decision on R State of 
the world 

regardless of reasons 
if and only if … 

for the right reasons 
if and only if … 

regardless of reasons 
if and only if … 

for the right reasons 
if and only if … 

TT there are majorities for each of P and Q: 
(nTT + nTF > n/2) and (nTT + nFT > n/2)          (1) 

there is a single majority supporting both P 
and Q: nTT > n/2                                           (2) 

TF there is a majority for 
P and a majority 
against Q:   
(nTT + nTF > n/2) and 
(nTF + nFF > n/2)    (4) 

there is a single 
majority supporting 
P and rejecting Q: 
nTF > n/2 

(8) 
FT there is a majority 

against P and a 
majority for Q: 
(nFT + nFF > n/2) and 
(nTT + nFT > n/2)    (5) 

there is a single 
majority rejecting P 
and supporting Q: 
nFT > n/2                 
                              (9) 

FF 

there are not 
majorities for each of 
P and Q: 
(nTT + nTF < n/2) or 
(nTT + nFT < n/2) 
 
 
 
 
 
 
 
 
 

(3) 

there are majorities 
against each of P and 
Q:  
(nFT+nFF >n/2) and 
(nTF + nFF > n/2)    (6) 

there is not a single 
majority supporting 
both P and Q: 
nTT < n/2 
 
 
 
 
 
 
 
 
 
 

(7) 

there is a single 
majority rejecting 
both P and Q:  
nFF > n/2 

(10) 

 
Appendix 1 shows how to calculate, for a given n and a given state of the world, the 

probabilities that the PBP and the CBP reach the correct decision on R (i) regardless of 
reasons and (ii) for the right reasons.  

The B&R results imply several convergence results. The present framework provides 
alternative proofs of some of these results, given in Appendix 2. Recall that p, q > 0.5. 
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Proposition 5. Let the connection rule be (R ↔ (P ∧ Q)). The probabilities, as n tends to 
infinity, that the PBP and CPB reach a correct decision on R (i) regardless of reasons 
and (ii) for the right reasons, under various scenarios, are as shown in Table 6. 
 
Table 6: Probability, as n tends to infinity, of a correct decision on R (given (R ↔ (P ∧ Q))) under the PBP 
and CBP (i) regardless of reasons and (ii) for the right reasons, under various scenarios 

PBP: 
Probability, as n tends to infinity, of … 

CBP: 
Probability, as n tends to infinity, of … 

State 
of the 
world 

Competence 

a correct decision 
on R regardless of 
reasons 

a correct decision 
on R for the right 
reasons 

a correct decision 
on R regardless of 
reasons 

a correct decision 
on R for the right 
reasons 

pq < 0.5 0 
(b) 

TT 
 
 pq > 0.5 1 

  (e) 
pq < 0.5 1 

(c) 
0 

(d) 
TF, 
FT, 

or FF pq > 0.5 

 
 
 

1 
 
 
 

(a) 
1 

(e) 
 

For many conditions, the performance of the CBP is poor. Unless individual 
competence is high (pq > 0.5), the probability that the CBP reaches the truth on R for the 
right reasons converges to 0 as n tends to infinity; and the probability that the CPB 
reaches the truth regardless of reasons converges to 0 unless at least one premise is false. 
By contrast, the probability that the PBP reaches the truth, both for the right reasons and 
regardless of reasons, converges to 1 whenever p, q > 0.5. But, when P and Q are not 
both true, then the probability that the CBP reaches the correct decision regardless of 
reasons converges to 1 faster than the corresponding probability for the PBP. This 
follows from the fact (remarked above) that condition (3) in Table 5 implies condition 
(7), whereas the converse implication does not hold. 

The results of this section require that each individual’s judgment on P and the same 
individual’s judgment on Q are independent from each other. If there is a high 
dependency, the probability of a collective inconsistency (and of a discrepancy between 
the PBP and CBP) is drastically reduced. In the limiting case, if each individual makes a 
correct judgment on P if and only if they make a correct judgment on Q, the individual’s 
competence on R equals their competence on each of P and Q. Then, if p, q>0.5, by the 
classical Condorcet jury theorem, the probability of a correct decision under the CBP 
converges to 1 as n tends to infinity. In this case of perfect dependency, the PBP and CBP 
will always coincide and there will be no collective inconsistencies. 
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6 Extensions and Generalizations 
 

So far we have addressed only the conjunctive version of the doctrinal paradox. 
Generalizations have been discussed, such as disjunctive versions and extensions to more 
than two premises (e.g. Chapman 1998 and Pettit 2001). This section applies the present 
probability-theoretic framework to some of these generalizations.  
 
6.1 The Disjunctive Version of the Doctrinal Paradox 
 

Consider a tenure decision in an academic department. A candidate is assessed in 
terms of teaching and research.5 We assume that the candidate is good, but not 
necessarily outstanding, in both teaching and research. The relevant propositions are P 
(“the candidate is outstanding in teaching”) and Q (“the candidate is outstanding in 
research”). According to the department’s constitution, the candidate should be given 
tenure (R) if and only if he is outstanding in at least one of teaching or research 
(assuming that he is at least good in both); i.e. the propositions are connected by 
(R↔(P∨Q)).  
 

Table 7: The doctrinal paradox (disjunctive version) 
 P Q (R ↔ (P ∨ Q)) R 

Individual 1 Yes No Yes Yes 
Individual 2 No Yes Yes Yes 
Individual 3 No No Yes No 

Majority No No Yes Yes 
 
Given the individual judgments in Table 7, majorities reject each of P and Q, a 

majority (unanimity) accepts (R↔(P∨Q)), and yet a majority accepts R. A majority holds 
that the candidate is not outstanding in teaching; a majority holds that he is not 
outstanding in research, and yet a majority holds that he should be given tenure. 

Again, let nTT, nTF, nFT, nFF be the numbers of individuals holding the 4 possible sets 
of judgments, as shown in Table 8, and pTT, pTF, pFT, pFF the corresponding probabilities. 
 
Table 8: All logically possible consistent sets of judgments over P, Q and R, given (R ↔ (P ∨ Q)) 

Label Judgment on P Judgment on Q Judgment on R 
TT Yes Yes Yes 
TF Yes No Yes 
FT No Yes Yes 
FF No No No 

                                                           
5 I am indebted to Bruce Chapman for this example. 
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As (R↔(P∨Q)) is logically equivalent to (¬R↔(¬P∧¬Q)), our results on the 
conjunctive version of the paradox have direct corollaries for the disjunctive version. We 
can simply swap T and F in all the propositions and proofs. If (R↔(P∨Q)) is 
unanimously accepted, a collective inconsistency occurs if and only if (nFF+nFT > n/2) 
and (nFF+nTF > n/2) and (nFF < n/2). This corresponds to the majority acceptance of the 
(inconsistent) set of propositions {¬P, ¬Q, (R ↔ (P ∨ Q)), R}. Let Q*

n denote the 
probability of a collective inconsistency under propositionwise majority voting, where 
the connection rule is (R ↔ (P ∨ Q)) and where there are n individuals.  

 
Proposition 6.  
(a) If (pFF + pFT > 1/2) and (pFF + pTF > 1/2) and (pFF < 1/2), then Q*

n → 1 as n → ∞. 
(b) If (pFF + pFT < 1/2) or (pFF + pTF < 1/2) or (pFF > 1/2), then Q*

n → 0 as n → ∞. 
 
Table 9: Scenarios corresponding to Q*

n (probability of a collective inconsistency under propositionwise 
majority voting, given R ↔ (P ∨ Q))) 
Scenario 1*  
pTT = 0.25 
pTF = 0.25 
pFT = 0.25 
pFF = 0.25 

Scenario 2* 
pTT = 0.24 
pTF = 0.25 
pFT = 0.25 
pFF = 0.26 

Scenario 3*  
pTT = 0.2 
pTF = 0.25 
pFT = 0.25 
pFF = 0.3 

Scenario 4* 
pTT = 0.24 
pTF = 0.25 
pFT = 0.27 
pFF = 0.24 

Scenario 5*  
pTT = 0.11 
pTF= 0.2 
pFT = 0.2 
pFF = 0.49 

Scenario 6*  
pTT = 0.09 
pTF = 0.2 
pFT = 0.2 
pFF = 0.51 

Scenario 7* 
pTT = 0.05 
pTF = 0.2 
pFT = 0.2 
pFF = 0.55 

Scenario 8* 
pTT = 0.01 
pTF = 0.33 
pFT = 0.33 
pFF = 0.33 

 
If Scenarios 1 to 8 in Table 3 are replaced with Scenarios 1* to 8* in Table 9, Q*

n can 
be read off from Table 3. The conditions of 6a hold in 2*, 3*, 5* and 8*; the conditions 
of 6b hold in 4*, 6* and 7*. We use the Condorcet jury framework of Section 5 again. 
 
Proposition 7. Suppose that p, q > 0.5. 
(a) Suppose both P and Q are false. 

• If pq < 0.5, then Q*
n → 1 as n → ∞. 

• If pq > 0.5, then Q*
n → 0 as n → ∞. 

(b)Suppose not both P and Q are false. Then Q*
n → 0 as n → ∞. 

 
The PBP and CBP provide escape-routes from the disjunctive version of the paradox 

too. A discrepancy between the PBP and CBP occurs precisely when the paradox occurs. 
By proposition 7, the probability of such a discrepancy therefore converges to 1 (as n 
tends to infinity) when both premises are false and individual competence is better than 
random, but not high, e.g. when 0.5 < p, q < √(0.5). Which procedure is better at reaching 
correct decisions? As before, we distinguish between reaching the truth for the right 
reasons and reaching the truth regardless of reasons, as detailed in Table 10. 
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Table 10: Conditions under which the PBP and CBP reach the correct decision on R (given (R ↔ (P ∨ Q))) 
(i) regardless of reasons and (ii) for the right reasons, for different states of the world 

PBP reaches a correct decision on R CBP reaches a correct decision on R State of 
the world 

regardless of reasons 
if and only if … 

for the right reasons 
if and only if … 

regardless of reasons 
if and only if … 

for the right reasons 
if and only if … 

TT there are majorities 
for each of P and Q: 
(nTT + nTF > n/2) and 
(nTT + nFT > n/2)    (6) 

there is a single 
majority supporting 
both P and Q: 
nTT > n/2             (10) 

TF there is a majority for 
P and a majority 
against Q: 
(nTT + nTF > n/2) and 
(nFF + nTF > n/2)    (4) 

there is a single 
majority supporting 
P and rejecting Q: 
nTF > n/2  

(8) 
FT 

there is a majority for 
at least one of P or 
Q: 
(nTT + nTF > n/2) or 
(nTT + nFT > n/2) 
 
 
 
 
 
 
 
 

(3) 

there is a majority 
against P and a 
majority for Q: 
(nFT + nFF > n/2) and 
(nFT + nTT > n/2)    (5) 

there is not a single 
majority against both 
P and Q: 
nFF < n/2 
 
 
 
 
 
 
 
 
 

(7) 

there is a single 
majority rejecting P 
and supporting Q: 
nFT > n/2  

(9) 
FF there are majorities against each of P and Q: 

(nFF + nFT > n/2) and (nFF + nTF > n/2)         (1) 
there is a single majority rejecting both P and 
Q: nFF > n/2                                                 (2) 

 
In analogy with Table 5, Table 10 allows us to deduce the following: 

• Reaching the correct decision on R for the right reasons: The PBP is always at least 
as good as the CBP. 

• Reaching the correct decision on R regardless of reasons: We distinguish two cases:  
o P and Q are both false: The PBP is always at least as good as the CBP. 
o At least one of P or Q is true: The CBP is always at least as good as the PBP. 

These results are also consistent with Grofman’s results (1985): when a group decision 
on a disjunctive composite proposition can be disaggregated into separate group 
decisions on each disjuncts, disaggregation is superior in terms of reaching the correct 
decision (regardless of reasons) for false propositions, but not for true propositions. 
 
Proposition 8. Let the connection rule be (R ↔ (P ∨ Q)). The probabilities, as n tends to 
infinity, that the PBP and CPB reach a correct decision on R (i) regardless of reasons 
and (ii) for the right reasons, under various scenarios, are as shown in Table 11. 
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Table 11: Probability, as n tends to infinity, of a correct decision on R (given (R ↔ (P ∨ Q))) under the 
PBP and CBP (i) regardless of reasons and (ii) for the right reasons, under various scenarios 

PBP: 
Probability, as n tends to infinity, of … 

CBP: 
Probability, as n tends to infinity, of … 

State 
of the 
world 

Competence 

a correct decision 
on R regardless of 
reasons 

a correct decision 
on R for the right 
reasons 

a correct decision 
on R regardless of 
reasons 

a correct decision 
on R for the right 
reasons 

pq < 0.5 1 
(c) 

0 
(d) 

TT, 
TF, 

or FT pq > 0.5  1 
(e) 

pq < 0.5 0 
(b) 

FF 

pq > 0.5 

 
 
 

1 
 
 

(a) 1 
(e) 

 
As in the conjunctive case, the CBP performs poorly for many conditions, particularly 

at reaching the truth on R for the right reasons. Unlike in the conjunctive case, the 
probability that the CBP reaches the truth regardless of reasons converges to 1 if at least 
one premise is true. When P and Q are not both false, the probability that the CBP 
reaches the correct decision on R regardless of reasons converges to 1 faster than the 
corresponding probability for the PBP. Condition (3) in Table 10 implies condition (7), 
but not vice-versa (compare the remarks on the conjunctive case in Section 5). 
 
6.2 The Conjunctive Version of the Doctrinal Paradox with More than Two Premises 
 

We first generalize Propositions 1 and 3 to the case of three premises. We then 
generalize Propositions 4 and 5 to the case of k premises. 
 
Table 12: The doctrinal paradox (conjunctive version) with three premises 

 P Q R 
 

(S ↔  
(P ∧ Q ∧ R)) 

S 

Individual 1 Yes Yes No Yes No 
Individual 2 No Yes Yes Yes No 
Individual 3 Yes No Yes Yes No 

Majority Yes Yes Yes Yes No 

 
If the individual judgments are as in Table 12, there are majorities for each of P, Q 

and R; the connection rule, (S↔(P∧Q∧R)), is unanimously accepted; and yet S is 
unanimously rejected. Let nTTT, nTTF, nTFT, nTFF, nFTT, nFTF, nFFT, nFFF be the numbers of 
individuals holding the 8 possible sets of judgments, as shown in Table 13, and let pTTT, 
pTTF, pTFT, pTFF, pFTT, pFTF, pFFT, pFFF be the corresponding probabilities.  
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Table 13: All logically possible consistent sets of judgments over P, Q, R and S, given (S ↔ (P ∧ Q ∧ R)) 
 P Q R S 

TTT Yes Yes Yes Yes 
TTF Yes Yes No No 
TFT Yes No Yes No 
TFF Yes No No No 
FTT No Yes Yes No 
FTF No Yes No No 
FFT No No Yes No 
FFF No No No No 

 
If (S↔(P∧Q∧R)) is unanimously accepted, a collective inconsistency occurs if and 

only if (nTTT+nTTF+nTFT+nTFF > n/2) and (nTTT+nTTF+nFTT+nFTF > n/2) and (nTTT+nTFT 
+nFTT+nFFT > n/2) and (nTTT < n/2). This corresponds to the majority acceptance of the 
(inconsistent) set of propositions {P, Q, R, (S↔(P∧Q∧R)), ¬S}. Let P**

n denote the 
probability of a collective inconsistency under propositionwise majority voting, where 
the connection rule is (S↔(P∧Q∧R)) and where there are n individuals.  
 
Proposition 9.  
(a) If (pTTT+pTTF+pTFT+pTFF > n/2) and (pTTT+pTTF+pFTT+pFTF > n/2) and (pTTT+pTFT 

+pFTT+pFFT > n/2), P**
n → 1 as n → ∞. 

(b) If (pTTT+pTTF+pTFT+pTFF < n/2) or (pTTT+pTTF+pFTT+pFTF < n/2) or (pTTT+pTFT 
+pFTT+pFFT < n/2), then P**

n → 0 as n → ∞. 
 

A proof is given in Appendix 2. To illustrate, the conditions of 9a hold when the 
vector <pTTT, pTTF, pTFT, pTFF, pFTT, pFTF, pFFT, pFFF> equals <0.126, 0.125, …, 0.125, 
0.124> or <0.49, 0.08, …, 0.08, 0.03>. The conditions of 9b hold for <0.124, 0.125, …, 
0.125, 0.126> or <0.51, 0.08, …, 0.08, 0.01>. This confirms that small changes in the 
probabilities can correspond to large changes in the corresponding convergence pattern. 

Now consider a decision problem with k premises, P1, P2, ..., Pk, and a conclusion, R, 
where the connection rule is (R↔(P1∧P2∧…∧Pk)). We assume that there are 2k possible 
states of the world: each of P1, P2, ..., Pk can be either true or false. Given the connection 
rule (R↔(P1∧P2∧…∧Pk)), each state of the world determines the truth-value of R. We 
assume that each individual has probabilities p1, p2, …, pk of making correct judgments 
on P1, P2, ..., Pk, respectively. Our assumptions on the individual judgments on P1, P2, ..., 
Pk are perfectly analogous to assumptions (i), (ii) and (iii) in Section 5. Let P***

n denote 
the probability of a collective inconsistency under propositionwise majority voting, with 
the connection rule (R↔(P1∧P2∧…∧Pk)) and for n individuals. Propositions 10 and 11 



 19

can be proved analogously to Propositions 3 and 4. The probability that an individual 
holds a correct judgment on every proposition is p1 p2 ... pk. If p1, p2, ..., pk < k√(0.5), then 
p1 p2 ... pk < 0.5. If p1, p2, ..., pk > k√(0.5), then p1 p2 ... pk > 0.5. 

 
Proposition 10. Suppose that p1, p2, ..., pk > 0.5. 
(a) Suppose both P1, P2, ..., Pk are all true. 

• If p1 p2 ... pk < 0.5, then P***
n → 1 as n → ∞. 

• If p1 p2 ... pk > 0.5, then P***
n → 0 as n → ∞. 

(b) Suppose not all of P1, P2, ..., Pk are true. Then P***
n → 0 as n → ∞. 

 
Proposition 11. Let the connection rule be (R↔(P1∧P2∧…∧Pk)). The probabilities, as n 
tends to infinity, that the PBP and CBP reach a correct decision on R (i) regardless of 
reasons and (ii) for the right reasons, under various scenarios, are as shown in Table 14. 
 
Table 14: Probability, as n tends to infinity, of a correct decision on R (given (R↔(P1∧P2∧…∧Pk))) under 
the PBP and CBP (i) regardless of reasons and (ii) for the right reasons, under various scenarios 

PBP: 
Probability, as n tends to infinity, of … 

CBP: 
Probability, as n tends to infinity, of … 

State 
of the 
world 

Competence 

a correct decision 
on R regardless of 
reasons 

a correct decision 
on R for the right 
reasons 

a correct decision 
on R regardless of 
reasons 

a correct decision 
on R for the right 
reasons 

p1 p2 ... pk < 
0.5 

0 
(b) 

all Pi 
true 

 p1 p2 ... pk > 
0.5 

1 
  (e) 

p1 p2 ... pk < 
0.5 

1 
(c) 

0 
(d) 

not all 
Pi true 

p1 p2 ... pk > 
0.5 

 
 
 

1 
 
 
 

(a) 
1 

(e) 

 
When k is large and all premises are true, a high level of individual competence is 

required for avoiding collective inconsistencies, namely p1p2…pk > 0.5. If p1=p2=…=pk, 
the required lower bound on each of p1, p2, ..., pk is k√(0.5), which converges to 1 as k 
tends to infinity. If individual competence is below that bound, the CBP performs poorly 
in terms of reaching a correct decision for the right reasons. The CBP also performs 
poorly in terms of reaching a correct decision regardless of reasons, unless competence is 
high or at least one premise is false. The PBP, by contrast, reaches a correct decision 
more reliably, both for the right reasons and regardless of reasons (a caveat on the speed 
of convergence applies as in Section 5). Again, the results depend on the mutual 
independence of each individual’s judgments on different premises.  
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7 The Probability of the Doctrinal Paradox compared with the Probability of 
Condorcet’s Paradox 
 

The doctrinal paradox invites comparison with Condorcet’s paradox (on the parallels 
between the two paradoxes see List and Pettit 2003). Condorcet’s paradox concerns the 
aggregation of preferences over multiple alternatives rather than the aggregation of sets 
of judgments over multiple propositions. Suppose there are three individuals, where one 
prefers alternative x1 to alternative x2 to alternative x3, the second prefers x2 to x3 to x1, 
and the third prefers x3 to x1 to x2. Then there is a majority for x1 against x2, a majority for 
x2 against x3, and a majority for x3 against x1, a cycle. The probability of Condorcet's 
paradox has been studied under various assumptions (e.g. Niemi 1969; Gehrlein and 
Fishburn 1976a, 1976b; Gehrlein 1981, 1983, 1997). While earlier work focussed 
primarily on impartial culture or impartial anonymous culture conditions, several recent 
papers have addressed deviations from such conditions (e.g. Tangian 2000; Tsetlin, 
Regenwetter and Grofman 2003; List and Goodin 2001; Gehrlein 2002).  

I now compare the present results on the doctrinal paradox with existing results on 
Condorcet’s paradox. The paradoxes under comparison are the conjunctive version of the 
doctrinal paradox with two premises (as discussed in Sections 1-5) and Condorcet’s 
paradox over three alternatives. I compare the probability of the two paradoxes under (i) 
an impartial culture, (ii) systematic deviations from an impartial culture, (iii) an impartial 
anonymous culture, and (iv) Condorcet jury assumptions. 

We begin with some definitions. Let there be n individuals, and three alternatives, x1, 
x2 and x3. Let n123, n132, n213, n231, n312, n321 be the numbers of individuals holding the 6 
logically possible strict preference orderings shown in Table 15, respectively.  
 
Table 15: All logically possible strict preference orderings over three options 

Label 1st preference 2nd preference 3rd preference 
123 x1 x2 x3 
132 x1 x3 x2 
213 x2 x1 x3 
231 x2 x3 x1 
312 x3 x1 x2 
321 x3 x2 x1 

A vector <n123, n132, n213, n231, n312, n321> is an anonymous profile. Let p123, p132, p213, 
p231, p312, p321 be the probabilities that an individual holds each of the 6 orderings (p123+ 
p132+p213+p231+p312+p321=1). An impartial culture is the situation in which p123=p132= 
p213=p231=p312=p321. An impartial anonymous culture is the situation in which every 
logically possible anonymous profile <n123, n132, n213, n231, n312, n321> is equally probable. 
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There is a cyclical collective preference ordering under pairwise majority voting if 
and only if [more than n/2 individuals prefer x1 to x2, more than n/2 prefer x2 to x3, and 
more than n/2 prefer x3 to x1] or [more than n/2 prefer x3 to x2, more than n/2 prefer x2 to x1, 
and more than n/2 prefer x1 to x3], formally if and only if  

 
((n123 > n321 and n312 > n213 and n231 > n132) or (n321 > n123 and n213 > n312 and n132 > n231)) 

and |n123-n321|<n’/2 and |n231-n132|<n’/2 and |n312-n213|<n’/2, 
 
where n’:=|n123-n321|+|n231-n132|+|n312-n213| (for a simple proof see Elsholtz and List 2002).  

Let PC
n be the probability of a cyclical collective preference ordering under pairwise 

majority voting, for n individuals. Recall that P*
n is the probability of a collective 

inconsistency under propositionwise majority voting with connection rule (R↔(P∧Q)), 
for n individuals. 

Impartial culture. Under an impartial culture, both PC
n and P*

n increase as n 
increases, and they both converge to a value strictly between 0 and 1: PC

n → 0.08774  
and P*

n → 0.25 as n → ∞ (see Gehrlein 1983). 
Systematic deviations from an impartial culture. We have seen that, under systematic, 

however small, deviations from an impartial culture, P*
n converges to either 0 or 1 as n 

tends to infinity, depending on the nature of the deviation. A similar result holds for PC
n 

(see Tangian 2000; Tsetlin, Regenwetter and Grofman 2003; List 2001). 
 
Proposition 12 (List 2001). Let p’ := |p123-p321| + |p231-p132| + |p312-p213|. 
(a) If ((p123>p321 and p312>p213 and p231>p132) or (p321>p123 and p213>p312 and p132>p231)) 

and |p123-p321|<p’/2 and |p231-p132|<p’/2 and |p312-p213|<p’/2, then PC
n → 1 as n → ∞. 

(b) If ((p123<p321 or p312<p213 or p231<p132) and (p321<p123 or p213<p312 or p132<p231)) or 
|p123-p321|>p’/2 or |p231-p132|>p’/2 or |p312-p213|>p’/2, then PC

n → 0 as n → ∞. 
 

Parts (a) and (b) of Proposition 12 corresponds to parts (a) and (b) of Proposition 3, 
respectively. Propositions 3 and 12 show that, in any ε-neighbourhood of an impartial 
culture (under the appropriate definition), there exist probability vectors <pTT, pTF, pFT, 
pFF> and <p123, p132, p213, p231, p312, p321> for which P*

n and PC
n each converge to 0, and 

ones for which they each converge to 1, as n tends to infinity. Which kinds of deviations 
from an impartial culture are more ‘typical’? In the case of Condorcet’s paradox, Tangian 
(2000) and Tsetlin, Regenwetter and Grofman (2003) have offered arguments that the 
deviations for which PC

n converges to 0 are the more typical ones, and consequently that 
cycles are improbable in a large electorate. List and Goodin (2001) have investigated 
deviations from an impartial culture that result when the individuals satisfy the minimal 
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competence assumptions of a Condorcet jury framework and shown that, under such 
deviations, PC

n converges to 0 as n tends to infinity. Below we compare PC
n and P*

n from 
the perspective of such deviations from an impartial culture. 

Impartial anonymous culture. As shown in Section 4, under an impartial anonymous 
culture, the probability of a collective inconsistency equals (n-1)/(8(n+2)), where there 
are n individuals. This probability is equal to E(P*

n), the expected value of P*
n under the 

assumption that all logically possible <pTT, pTF, pFT, pFF> vectors are equally probable. 
Thus E(P*

n) converges to 1/8 as n tends to infinity. Gehrlein and Fishburn (1976a) have 
shown that, under an impartial anonymous culture, the probability of Condorcet’s 
paradox over three alternatives equals (1/16)(n+7)(n-1)/((n+2)(n+4)). Further, this 
probability is equal to E(PC

n), the expected value of PC
n under the assumption that all 

logically possible <p123, p132, p213, p231, p312, p321> vectors are equally probable (Gehrlein 
1981). Thus E(PC

n) converges to 1/16 as n tends to infinity. Graph 1 shows E(PC
n) and 

E(P*
n). The numbers are meaningful only when n is odd. 

 
Graph 1: The probabilities of Condorcet’s paradox (Curve 1) and the doctrinal paradox (Curve 2) under an 
impartial anonymous culture 

 
Condorcet jury assumptions. Both under an impartial culture and under an impartial 

anonymous culture the doctrinal paradox is more likely to occur than Condorcet’s 
paradox. For systematic deviations from an impartial culture, we have found a parallel 
between the two paradoxes: in any ε-neighbourhood of an impartial culture, there exist 
probability vectors for which P*

n and PC
n each converge to 0, and ones for which they 
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each converge to 1, as n tends to infinity. We now consider deviations from an impartial 
culture that result when the individuals satisfy the minimal “competence” assumptions of 
a Condorcet jury framework. In decisions over multiple interconnected propositions, our 
minimal competence assumption follows from our discussion in Section 5. 
  
Minimal Competence Assumption C1: Each individual has probabilities p and q of 
making a correct judgment on P and Q, respectively, where 0.5 < p, q < √(0.5).  
 

As we have seen in Section 5, for each state of the world, the values of p and q induce 
values of pTT, pTF, pFF, pFF, and we can compute the corresponding value of P*

n for any n. 
By assumption C1, the probability distribution over all logically possible individual sets 
of judgments is skewed, however slightly, in favour of the “correct” judgment on each 
premise; C1 is "minimal" in that there exist probability vectors in any ε-neighbourhood of 
an impartial culture that satisfy C1. 

In the framework of preference orderings, we can state the minimal competence 
assumption as follows. We assume that each individual has probabilities p1, p2, p3 of 
choosing x1, x2, x3 as their first choice, respectively; and that the first choice preferences 
of different individuals are independent from each other. We assume that there are three 
possible states of the world: the “correct” alternative is either x1 or x2 or x3. 

 
Minimal Competence Assumption C2: If xi is the "correct" alternative, then, for all 
alternatives j≠i, pi > pj.  
 

We can give a simple definition by which, for each state of the world, the values of 
p1, p2 and p3 determine corresponding values of p123, p132, p213, p231, p312, p321: i.e. from 
the probabilities corresponding to each individual's first choice under a given state of the 
world, we calculate probabilities corresponding to each individual's holding each of the 
orderings shown in Table 15. We define the probability for the strict ordering xh > xi > xj 
(where h, i, j ∈ {1, 2, 3}) to be ph(pi/(pi+pj)) (see List and Goodin 2001). This 
corresponds to the way in which, for each state of the world, the values of  p and q induce 
values of pTT, pTF, pFF, pFF. Given p1, p2, p3, we can then compute the corresponding 
value of PC

n for any n. By assumption C2, the probability distribution over all logically 
possible preference orderings is skewed, however slightly, in favour of a preference for 
the “correct” alternative; C2 is also "minimal" in that there exist probability vectors in 
any ε-neighbourhood of an impartial culture that satisfy C2. 

What are the implications of C1 and C2? By Proposition 4, if the state of the world is 
TT, C1 implies that P*

n converges to 1 as n tends to infinity. By contrast, for any state of 
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the world, C2 implies that the probability that the “correct” alternative will beat all other 
alternatives in pairwise majority voting converges to 1, and thus that PC

n converges to 0, 
as n tends to infinity (List and Goodin 2001). While the probability of Condorcet’s 
paradox always converges to 0 under C2 (which can be satisfied in any ε-neighbourhood 
of an impartial culture), no such general result holds for the doctrinal paradox under C1. 
We require pq > 0.5 to get general convergence of P*

n to 0.  
We may expect this effect to be even greater in conjunctive decision tasks with more 

than two premises. If there are k premises (supposing, for our argument, all are true), any 
individual competence above 0.5 but below k√(0.5) implies that P***

n – the probability of 
a collective inconsistency – converges to 1 as the n tends to infinity. 

These considerations suggest that there exist plausible conditions under which the 
doctrinal paradox is more probable than Condorcet’s paradox. This hypothesized 
discrepancy between the probability of cycles and the probability of inconsistent 
collective sets of judgments is consistent with two pieces of anecdotal evidence. The 
predicted low probability of cycles in a large electorate (so long as we are not in an 
impartial culture) is consistent with the striking lack of empirical evidence for cycles (see 
Mackie 2000 for a critique of several purported empirical examples of cycles). The 
predicted higher probability of doctrinal paradoxes in a large electorate (even when we 
are not in an impartial culture) is consistent with the findings of an empirical study of 
voting on referenda (Brams, Kilgour and Zwicker 1997). The study showed that, for three 
related propositions on the environment in a 1990 referendum in California, less than 6% 
of the (sampled) electorate individually endorsed the particular combination of these 
three propositions (acceptance of two, rejection of the third) that won under 
propositionwise majority voting. Of course, there were no explicit logical connections in 
the referendum. However, if the winning combination of propositions had been used as a 
jointly necessary and sufficient condition for some further conclusion, or if a separate 
vote had been taken on the particular winning combination as a single proposition (which 
would have presumably failed to get majority support), we would have had an instance of 
an inconsistent collective set of judgments. 
 
8 Concluding Remarks 
 

We have developed a model for determining the probability of collective 
inconsistencies under propositionwise majority voting, and applied the model to 
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conjunctive and disjunctive versions of the doctrinal paradox with two premises, and also 
to the conjunctive version of the paradox with more than two premises.  

We have identified conditions under which the probability of a collective 
inconsistency converges to 1 and ones under which it converges to 0. Both sets of 
conditions can occur in plausible circumstances. In the case of the conjunctive version of 
the doctrinal paradox, convergence of the probability of the paradox to 1 is implied by 
standard competence assumptions in a Condorcet jury framework when all premises are 
true and individual competence is low (but better than random). Convergence of the 
probability of the paradox to 0 occurs when either at least one of the premises is false or 
individual competence is high. In the disjunctive case, convergence of the probability of 
the paradox to 1 occurs when all premises are false and individual competence is low. 
Convergence of the probability of the paradox to 0 occurs when either at least one of the 
premises is true or individual competence is high.  

Since decision problems with medium individual competence seem empirically 
plausible, the occurrence of the doctrinal paradox may be quite likely. This reinforces the 
importance of identifying escape-routes from the paradox and of asking what methods 
groups can and do employ to avoid the paradox (see also List and Pettit 2002).  

With regard to possible escape-routes, following Bovens and Rabinowicz (2001, 
2003), we have seen that, for a large class of cases, the PBP is superior to the CBP in 
terms of reaching correct decisions (where there is an independent standard of 
“correctness”), especially when we care about the underlying reasons. This suggests a 
happy coincidence between epistemic and procedural perspectives on the PBP and CBP. 
While the arguments offered by Pettit (2001) and Chapman (2002) are mainly procedural 
arguments in favour of the PBP, we have here seen that, in a large class of cases, the PBP 
will also be preferred on epistemic grounds. Finally, we have compared the present 
results with existing results on the probability of Condorcet's paradox.  

The results of this paper are initial results, not the final word, on the probability of 
collective inconsistencies under propositionwise majority voting. More sophisticated 
probability-theoretic models could be constructed, for instance allowing different 
probabilities corresponding to different individuals, and certain dependencies between the 
judgments of different individuals or between the same individual's judgments on 
different propositions (compare the discussion at the end of Section 5). But even the 
present results support one conclusion. The occurrence of the doctrinal paradox is not 
implausible, and the paradox deserves attention. 
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Appendix 1: Calculating the Probability of the Various Scenarios in Table 5 
 

For each of the 10 scenarios in Table 5, let M be the set of all <nTT, nTF, nFT, nFF>∈N 
for which the condition of the given scenario is satisfied. Using the probability function 
for the joint distribution of XTT, XTF, XFT, XFF (see Section 3), the desired probability is 

 
                       n! 

            ∑             pTT
nTT  pTF

nTF pFT
nFT pFF

nFF. 
          <nTT, nTF, nFT, nFF>∈M       nTT! nTF! nFT! nFF! 
 
For example, if the state of the world is FF and we are interested in the probability that 
the CBP reaches the correct decision on R for the right reasons (Scenario 10), then we put 
M := {<nTT, nTF, nFT, nFF>∈N : (nFF > n/2)}.  
 
Appendix 2: Proofs 
 

A condition φ on a set of k probabilities, p1, p2, …, pk, is a mapping whose domain is 
the set of all logically possible assignments of probabilities to p1, p2, …, pk and whose co-
domain is the set {true, false}. Whenever φ(p1, p2, …, pk) = true, we say that the 
probabilities p1, p2, …, pk satisfy φ; and whenever φ(p1, p2, …, pk) = false, we say the 
probabilities p1, p2, …, pk violate φ. Examples of conditions φ for pTT, pTF, pFT, pFF are  
(i) (pTT + pTF > 1/2) and (pTT + pFT > 1/2) and (pTT < 1/2); 
(ii) (pTT  ≥ 1/2); 
(iii)(pTT  > 1/2) and (pTF > 1/2). 

A condition φ is consistent if there exists at least one logically possible assignment of 
probabilities to p1, p2, …, pk satisfying φ. A condition φ is strict if, for every assignment 
of probabilities p1, p2, …, pk satisfying φ, there exists an ε > 0 such that, if the 
probabilities p*1, p*2, …, p*k lie inside a sphere in Rk with centre p1, p2, …, pk and radius 
ε, then the probabilities p*1, p*2, …, p*k also satisfy φ. It is easily seen that the condition 
in example (i) is both consistent and strict; the condition in (ii) is consistent, but not 
strict; and the condition in (iii) is not consistent. 

Let X1, X2, …, Xk be a set of k random variables whose joint distribution is a 
multinomial distribution with the following probability function: 
 
                   n! 
 P(X1=n1, X2=n2, …, Xk=nk) =   p1

n1  p2
n2 … pk

nk,  
                             n1! n2! … nk!     
where n1+n2+…+nk = n. The weak law of large numbers implies the following lemma. 
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Lemma 1 (Convergence lemma). Let φ be any consistent strict condition on  
a set of k probabilities. Suppose the probabilities p1, p2, …, pk satisfy φ. Then  
P(X1/n, X2/n, …, Xk/n satisfy φ) → 1 as n → ∞. 
 
Proof of Proposition 3.  
(a) (pTT + pTF > 1/2) and (pTT + pFT > 1/2) and (pTT < 1/2) is a consistent strict condition. 

By Lemma 1, P((XTT+XTF>n/2) and (XTT+XFT>n/2) and (XTT <n/2)) → 1 as n → ∞. 
The result then follows from Proposition 1. 

(b) The result follows from Lemma 1 and Proposition 1 analogously. Note that (pTT + pTF 

< 1/2) or (pTT + pFT < 1/2) or (pTT > 1/2) is a consistent strict condition.  
 
Proof of Proposition 4.  
(a) The state of the world is TT. 

For the first part, it is sufficient to show that pTT, pTF, pFT, pFF (as defined in Table 4) 
satisfy the conditions of Proposition 3a. Suppose p, q > 0.5 and pq < 0.5. Then 

 pTT + pTF = pq + p(1-q) = p > 0.5;  
pTT + pFT = pq + (1-p)q = q > 0.5; 
pTT = pq < 0.5, as required. 

For the second part, it is sufficient to show that pTT, pTF, pFT, pFF satisfy the conditions 
of Proposition 3b. If pq > 0.5, then pTT = pq > 0.5, as required.  

(b) The state of the world is TF, FT or FF.  
It is sufficient to show that pTT, pTF, pFT, pFF (as defined in Table 4) satisfy the 
conditions of Proposition 3b. Suppose p, q > 0.5.  
Under TF, pTT + pFT = p(1-q) + (1-p)(1-q) = 1-q < 1/2, as required. 
Under FT, pTT + pTF = (1-p)q + (1-p)(1-q) = 1-p < 1/2, as required. 
Under FF, pTT + pTF = (1-p)(1-q) + (1-p)q = 1-p < 1/2, as required.  

 
Proof of Proposition 5.  
There are four possible states of the world: TT, TF, FT, or FF. The probabilities pTT, pTF, 
pFT, pFF are defined as shown in Table 4. Suppose p, q > 0.5. 
(a) It is sufficient to show that the probability that the PBP reaches a correct decision on 

R for the right reasons (implying also that it reaches a correct decision regardless of 
reasons) converges to 1 as n tends to infinity.  
Under TT: pTT+pTF=pq+p(1-q)=p > 0.5 and pTT+pFT=pq+(1-p)q = q > 0.5, a consistent 

strict condition. By Lemma 1, P((XTT+XTF > n/2) and (XTT+XFT > n/2)) → 1 
as n → ∞. Now compare condition (1) in Table 5. The result follows. 
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All other cases are analogous. In each case, we identify the relevant consistent strict 
condition, and the result follows from Lemma 1. 
Under TF: pTT+pTF=p(1-q)+pq=p>0.5 and pTF+pFF=pq+(1-p)q=q>0.5. P((XTT+XTF > 

n/2) and (XTF+XFF > n/2)) → 1 as n → ∞. See condition (4) in Table 5. 
 Under FT: pFT+pFF=pq+p(1-q)=p>0.5 and pTT+pFT=(1-p)q+pq=q>0.5. P((XFT+XFF > 

n/2) and (XTT +XFT >n/2)) → 1 as n → ∞. See condition (5) in Table 5. 
Under FF: pFT+pFF=p(1-q)+pq=p>0.5 and pTF+pFF=(1-p)q+pq=q>0.5. P((XFT+XFF > 

n/2) and (XTF+XFF > n/2)) → 1 as n → ∞. See condition (6) in Table 5. 
(b) Suppose pq < 0.5, and we have TT. Then pTT=pq<0.5. P(XTT<n/2) → 1 as n → ∞. See 

condition (2) in Table 5.  
(c) Suppose pq < 0.5, and we have TF, FT, or FF. By part (a), the probability that there 

are not majorities for P and for Q converges to 1 as n tends to infinity. This implies 
that P(XTT < n/2) → 1 as n → ∞. See condition (7) in Table 5. 

(d) Suppose pq < 0.5.  
Under TF: pTF  = pq < 0.5. P(XTF < n/2) → 1 as n → ∞. See condition (8) in Table 5. 
Under FT: pFT = pq < 0.5. P(XFT < n/2) → 1 as n → ∞. See condition (9) in Table 5. 
Under FF: pFF = pq < 0.5. P(XFF < n/2) → 1 as n → ∞. See condition (10) in Table 5. 

(e) Suppose pq > 0.5. It is sufficient to show that the probability that the CBP reaches a 
correct decision on R for the right reasons (implying also that it reaches a correct 
decision regardless of reasons) converges to 1 as n tends to infinity.  
Under TT: pTT  = pq > 0.5. P(XTT > n/2) → 1 as n → ∞. See condition (2) in Table 5. 
Under TF:  pTF  = pq > 0.5. P(XTF > n/2) → 1 as n → ∞. See condition (8) in Table 5. 
Under FT: pFT = pq > 0.5. P(XFT > n/2) → 1 as n → ∞. See condition (9) in Table 5. 
Under FF: pFF = pq > 0.5. P(XFF > n/2) → 1 as n → ∞. See condition (10) in Table 5.  

 
Proof of Proposition 9.  
The conditions in (a) and (b) are consistent and strict. The results then follow from 
Lemma 1 and the necessary and sufficient condition for the doctrinal paradox 
(conjunctive version) with three premises stated in Section 6.2. 
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