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We investigate the synchronization problem of fractional-order chaotic systems with input saturation and unknown external
disturbance by means of adaptive fuzzy control. An adaptive controller, accompanied with fractional adaptation law, is established,
fuzzy logic systems are used to approximate the unknown nonlinear functions, and the fractional Lyapunov stability theorem is
used to analyze the stability. This control method can realize the synchronization of two fractional-order chaotic or hyperchaotic
systems and the synchronization error tends to zero asymptotically. Finally, we show the effectiveness of the proposed method by

two simulation examples.

1. Introduction

Recent studies showed that a large number of physical phe-
nomena of nature and chemical processes, such as viscosity
systems, colored noise, electrolyte electrode polarization,
electromagnetic waves, and many actual systems can be
described by fractional-order differential equations, making
the slowly developed fractional calculus be a resurgence of
interest [1-10]. Today, fractional-order systems described by
fractional operators play a very important role in control
fields [11-13]. Using the traditional integer-order differential
equations as a method of describing dynamic system models
has great limitation in biological engineering, cell engineer-
ing, neural network engineering, and some other emerging
fields. However, the models established by fractional calculus
can often achieve more satistfying and unexpected results [9,
14, 15]. Actually, the physical models established by the theory
of fractional-order calculus are more concise and accurate
in presentation when describing the complex problems of
physics. In addition, the fractional controller not only can
expand the freedom of the controlled system but also is able to

obtain better control performance. Furthermore, the feature
that fractional calculus has the function of memory makes
the systems states in the future be related to the previous and
current states. Thus the memory and genetic characteristics
of certain processes and materials can be expressed more
accurately, which is conducive to improving the control effect
of the systems [16, 17].

It is well known that chaos has potential application
values and great prospect in secure communication and other
areas [18-22]. Recently, fractional-order chaotic systems and
hyperchaotic systems have been studied in a widespread
way and have been payed close attention with the deep-
ening of theoretical research of fractional-order systems
[23-26]. Many scholars have studied the synchronization
control problems for fractional-order chaotic systems. So
far, there are many control methods for fractional-order
nonlinear chaotic systems (such as drive-response method,
finite-time synchronization, nonlinear feedback method,
adaptive synchronization control method, nonlinear distur-
bance observer method, nonlinear coupling method, sliding
method, PC method, Lyapunov function activated method,
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and synchronization control method [27-33]). It is worth
noting that the above literatures which study the problem
of fractional-order chaotic systems synchronization have
a basic assumption that the controller does not have any
restrictions. However, almost all actuators in actual control
systems have full amplitude or amplitude constraint problem
(the amplitude of the output of the controller is limited
artificially for reliability [34]). In addition, the presence of
the input saturation of the control systems tends to attenuate
the good performance of the system and even leads to
instability of the closed-loop system. So many scholars have
conducted extensive research in integer-order systems with
input saturation in the recent years (literatures [35-37], etc.).
Little work has been done to study the synchronous control
of fractional-order nonlinear chaotic systems with input
saturation.

In this paper, the adaptive fuzzy synchronization of
uncertain fractional-order nonlinear systems with input satu-
ration and external disturbance is investigated on the basis of
the above discussions. Fuzzy logic systems are used to approx-
imate the fully unknown nonlinear functions of the systems.
A fractional adaptive fuzzy synchronization controller is
designed, and we prove the stability of the chaotic systems
according to the fractional Lyapunov stability criterion. The
main work of this paper can be concluded as follows: (1)
The synchronization of fractional-order chaotic systems with
input saturation and external disturbance is discussed in this
paper. (2) An adaptive fuzzy synchronization controller is
designed and fractional adaptive laws are designed to update
the values of the parameters online.

2. Preliminaries

2.1. Preliminaries of Fractional Calculus. With the history
of more than 300 years, there are many definitions of
fractional calculus. But the most commonly used definitions
are Griinwald-Letnikov, Caputo, and Riemann-Liouville defi-
nitions [11]. We choose Caputo’s derivative in this paper as its
Laplace transform requires the initial values of the classical
integer-order systems.
The ath fractional integral operator is defined as

FEf (1) =y DI (1) = ﬁ JO (=" Fydy, (1)

where I'(z) = j:o 7°7'e”"dr represents Euler's Gamma
function. The ath fractional derivative operator is given as

o _ 1 T _ el (n)
Qfm—ﬁ;ELw O by, ()

where n — 1 < a < nand #n is an integer. And the Laplace
transform of the formed formula (2) is

[e%s) n—1
J e Dif (r)dr = s"F(s) - Y s* 1 f90).  (3)
k=0

0

The following properties of fractional calculus hold.
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Property 1 (see [38]). Suppose that x(7) € Cl0,T], T > 0;
then

DI D%x (r) = D" x (1), (4)
where o), 0, > 0and oy + o, < 1.

Property 2 (see [38]). The linearity of the Caputo fractional
operator is as follows:

DI (Ax (1) + wy (1)) = ADIx (1) + wDly (1),  (5)
where A and w are two real constants.

Remark 1. If ¢ is a constant, then its Caputo derivative is 0.
Namely, D¢ = 0. Particularly, we have D?O =0.

Property 3 (see [11]). Let x(7) € C'10,T] and 0 < « < 1; then

D*Dix (1) = x (1) —x(0),
(6)
DID*x (1) = x (7).

Note that the above properties hold if and only if 0 < & <
1. Consequently, only the case where 0 < « < 1 is involved in
the controller design and stability analysis. For convenience,
in the rest of this paper, we always assume that « € (0, 1).

2.2. Fuzzy Logic Systems. A fuzzy logic system (FLS) consists
of four parts (cf. [8, 9, 39-44]): the knowledge base, the
fuzzifier, the fuzzy inference engine working on the fuzzy
rules, and the defuzzifier. Usually, a fuzzy logic system is
modeled by

Yiegwj () (x (1))
Zje] Hj (x (1))

where ¥ (a Lipschitz continuous mapping from a compact
subset O € %" to the real line %) is called the output of
the fuzzy logic system, x = [x,... ,xn]T e C'[.7,0] (the
set of all continuous mappings from . = [0, +00) € X to Q
which have continuous derivatives) is called the input vector
which is defined by x(t) = [xl(t),...,xn(t)]T (Vt € ),
J = [1L, %, &, consists of N; fuzzy sets (1 < i < n), Hj
(a mapping from %" to the closed unit interval [0,1] € &)
is called the membership function of rule j (j € J), and w;
(a mapping from ¥ to ) is called the centroid of the jth
consequent set (j € J); we may identify J with {1,2,..., N} for
the sake of convenience. Write 7'(t) = [w,(t),... ,wN(t)]T
and @(x(t) = [q(x(®)), g (x(1)); ..., qn(x(E))]", where q;
(called the jth fuzzy basis function, j € J) is a continuous
mapping (and thus pQ — %" is continuous) defined by

y= @)

O P L ®)
BT S G @)
Then system (7) can be rewritten as
y=W"p(X). 9)
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In contrast to conventional control techniques, fuzzy
logic systems are best utilized in complex ill-defined pro-
cesses that can be controlled by a skilled human operator
without much knowledge of their underlying dynamics. The
basic idea behind fuzzy logic systems is to incorporate the
“expert experience” of a human operator in the design of
the controller in controlling a process whose input-output
relationship is described by a collection of fuzzy control
rules involving linguistic variables rather than a complicated
dynamic model.

The fuzzy logic system (9) is employed to approximate
the unknown nonlinear function f(y) in this paper. It can
be expressed as

F)=7"¢u)+e(), (10)

where e(u) is the ideal vector of the approximation error. 7"
is the ideal weight matrix which can be expressed as

W = argmin [sup |f (u) - £ ()] (1)
where f(u) is the estimation of f ().

3. Adaptive Fuzzy Synchronization Controller
Design and Stability Analysis

3.1. Problem Statement. Consider the following fractional-
order chaotic systems:

Dix(t) = Ax(t) + f (x (1)), (12)
Diy()=Cy(t)+g(y(t) +sat(u)+d(t), (13)

where x(t) = [x,(f),... ,xn(t)]T € R" is the state vector of
the drive system (12) and y(t) = [y,(f),... ,yn(t)]T € R"is
the state vector of the response system (13). f;(-) and g;(-),
i=1,2,...,n, are two unknown nonlinear functions, A and
C € R™" are two constant matrices, d(t) € R" is the external
disturbance, sat(u1) € R" represents the input saturation, and
u(t) € R" is the control input.

Remark 2. In theoretical analysis, one often hopes that the
input value and the output value can keep proportionally
synchronized change when the former is relatively small.
However, when the input value increases to a certain extent
due to the system limitation factor, the output value of the
actual conditions is no longer increasing but tends to or stays
at a certain value in practical systems. This is said to be
“saturation” phenomenon which is shown in Figure 1.

Definition 3 (see [45, 46]). A mapping from R" to R"sat :
v — sat(v) is called a saturator, where v = [v,,7,,..., vn]T €
R" and sat(v) = [sat(v,), sat(v,), ..., sat(vn)]T. The definition
of sat(u) is as follows:

u,, u(t)=>u,
sat(u(t))=qu(t), uy<u(t)<u, (14)
up, u(t) <u.

sat(u;(t))

Umin

o)

FIGURE 1: The phenomenon of saturation.

Suppose that the part that exceeds the saturation limiter is
referred to as (t); then one has

u.—u(t), u(t)>u,
6(t) =140, u <u(t) <u, (15)
w—u(t), u()<u,

where v, and u; are called saturated amplitude satisfying u; <
Oandu, > 0.

Assumption 4. The external disturbance d;(-) is a bounded
continuous function. Namely, there exists an unknown con-
stant p; > 0 such that

|d; )| <pp ((=12,...,n). (16)

Remark 5. It should be pointed out that Assumption 4 is
reasonable. We just need the boundaries of the external
disturbances, and their exact values are not needed in the
process of designing the controller.

The objective of our work is to design an appropriate
adaptive fuzzy controller such that the synchronization error
e(t) = y(t) — x(t) tends to zero asymptotically (namely,
lim, . le(H)]l = 0).

3.2. Controller Design. The dynamical equation of the syn-
chronization error can be described as

Die(t) =Ce(t)+(C-A)x () +g(y () — f (x (1))
+ sat (u) + d (t).

Based on the definition of sat(u), we can obtain that
sat (u) =u(t)+ 6 (t). (18)
Then (17) can be rewritten as

Dle(t)=Ce(t) +(C-A) x(®)+g(y®) - f(x (1)
tu®)+8M) +d ().



Consider
h(x(t),y(®)=h(t)
=(C-AxO+g(y®) - fx®) (20)
+(t).

Nothing that the nonlinear function h(t) is unknown, it
can be approximated, through the fuzzy logic system (9), as

hi () =W (8) g; (x), (1)

where 7] = arg min%(t)[sup |hy(t) — ﬁi(t, W (1))|]. Let the
unknown constant estimation error of the fuzzy logic systems
and the approximation error, respectively, be

W.(t)=U;t)-W7,
~ (22)
e =hO)-hEV;).
The following assumption is needed in the controller
design.

Assumption 6. Suppose that the estimation error ¢;(t) is
*

bounded; namely, |¢;| < ", where ¢," > 0 is an unknown
constant (i = 1,2,...,1).

Then the estimated error of unknown nonlinear function
h(t) can be written as

ht,W)-h(t)=h(t,W)-h(t, W) +h(t, W)

- h(t)

- - (23)
=h(t,W)-h(t, W) —-€(t)

=T
=W H)ex)-e(t),
where 7" = (W3, U5,.... W)
Based on the above discussion, the synchronization con-
troller u(t) can be designed as

u(t) = —Ke (t) - 7" (t) ¢ (x) - H sign (e (t))
(24)
— p sign(e(t)),

where K = diaglk;,k,,...,k,]
is the designed parameter. H =

€ R™ and k; >
diaglef,...,€,], p

o

diag[p,, p,» ... p,] € R”", and p; is the estimation of p; (i =

1,2,...,n). The fuzzy parameters and p,(t) are, respectively,
updated by

D{wW; (t) = we; (t) ¢; (x), (25)

Dip; (1) = v le; ()] (26)

where p;, y; > 0 are positive design parameters.

Remark 7. The above fractional adaptive laws are used to
update the adjustable parameters. Notice that (26) can also
be written as the following equation:

PO =50+ s [ -0 e @l @)
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Definition 8 (see [11]). Mittag-Leffler functions (M-L func-
tions) with one parameter and two parameters are, respec-
tively, defined as

00 k
t
E (t)= ) ———,
« () k;)l"(ock+l) (28)
00 fk
Eugt)= ) ————, (29)
P ,;)r (ak + )
where a, 8 > 0. The Laplace transform of (29) is expressed as
a-p
B-1 « _ S 1/«
Z (B () = o (Re(9) > ™), (0)

wheret >0and A € R.

Lemma 9 (fractional Lyapunov second method [11]). Let the
origin be the equilibrium point of the following system:

Dix() = f (tx (), (31)

where x(t) € R" is the system variable and f(t,x(t)) €
R" is nonlinear function that satisfies the local Lipschitz
condition. If there exists Lyapunov function 7 (t,x(t)) and
positive parameters hy, h,, and hy such that

hyllx (O < 77 (&, x (1) < by Ix (O], )
D7 (t,x (1)) < —hy lx D],

then system (31) is asymptotically stable.

Lemma10 (see [47]). Suppose that x(t) € R" is a continuously
differentiable function; then one has

1

ED‘;‘xT (t) x (t) < x" (t) DEx (t). (33)

Lemma 11 (fractional monotonic principle [47]). If Dy x(t) >
0, then x(t) is monotonically increasing in [0, +00). If D} x(t) <
0, then x(t) is monotonically decreasing in [0, +00].

Lemma 12 (see [9, 47]). Let V,(t) = (1/2)x*(t) + (1/2)y*(¢);

x(t) and y(t) € R are two continuous functions. If there exists
a positive constant k satisfying

DYV, () < —kx* (1), (34)
then one has the following inequality:
x° (t) < 2V, (0) E,, (—2kt*). (35)

Lemma 13. Suppose that V(t) = 1/2)xT(O)x(t) +
(1/2)yT(t)y(t), where x(t), y(t) € R" have continuous
derivative. If there exists a constant h > 0 such that

DIV (t) < -hx" (1) x (1), (36)

then ||x(¢)|| and ||y(t)| are bounded for all t > 0, and x(t)
converges to zero asymptotically.
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x,(t)

-5 )
0] -10-4 @

FIGURE 2: Fractional-order Arneodo system.
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FIGURE 3: The chaotic behavior of fractional-order Arneodo system
in x,-x, plane.
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FIGURE 4: Fractional-order Lorenz system.

Proof. From (36), we have
DYV, (£) < ~hx" (£) x () < 0. (37)

Based on Lemma 11, we know that V,(f) is monotonically
decreasing in [0, +00]. Then

Vy () <V, (0). (38)

Thus, [x()]l < V2V,(0) and [ y(t)]| < 2V;(0); namely, [|x(2)]|
and || y(t)|| are bounded. Next we will prove that x(t) tends to
0 asymptotically. Taking ath integral on both sides of (37), we
have

V, (£) =V, (0) < —hD;*x" (t) x (t). (39)

30

20 +

10 +

()
[=}

FIGURE 5: The chaotic behavior of fractional-order Lorenz system in
¥1-¥, plane.

Noting that V,(£) = (1/2)x” (t)x(t) + (1/2)y" (£) y(t), we have
xT(£)x(t) < 2V,(t). Consequently,
x"(£) x (£) < 2V, (0) = 2hD*x" (t) x (t).  (40)
Thus, we can find a nonnegative function Z(t) such that
xT () x () + Z(t) = 2V, (0) - 2hD;*x" (1) x (). (41)
Taking Laplace transform on both sides of (41), we have

sa—l sa

_ 42
s*+2h s“+2hZ(S)' (42)

X" (s) X (s) = 2V, (0)
According to (30), the solution of (42) is

x"(£) x () = 2V, (0) Ey o (-2ht%) = Z (t)
(43)
s [t Eyg (-2nt%)],

where * is convolution. Because t~' and E,,(-2ht®) are
nonnegative functions, it follows from Lemma 12 that x(t)
converges to zero asymptotically. This completes the proof of
Lemma 13. O

Remark 14. If x"(t)x(t) < 2V,(0)E,(—2ht"), we know that
x(t) will tend to 0 asymptotically according to the results in
[48]. Namely, lim,_, [[x(t)|| = 0.

3.3. Stability Analysis

Theorem 15. Ifd(t) = 0, we can realize the synchronization of
system (12) and (13) under the effect of the adaptive controller
(24) and the fractional-order adaptive law (25). And all the
variables in the closed-loop system remain bounded.
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FIGURE 6: Synchronization results: (a) x, (t) (solid line) and y, (t) (dashed-dotted line); (b) x,(t) (solid line) and y,(t) (dashed-dotted line);
and (c) x5(t) (solid line) and y;(¢) (dashed-dotted line). (d) Synchronization errors: e, (t) (dashed line), e, (t) (dashed-dotted line), and e,(t)

(solid line).

Proof. Substituting the synchronization controllers (24) and
(23) into the error dynamical equation (19), we have

Dle(t) = Ce(t) + h(t) - Ke(t) - 7" ¢ (x)
— H sign (e (t))
= (K-C)et) +e(t)-T ¢(x) (44)
— H sign (e (1))

= Pe(t)+e(t) - T ¢(x)- H sign(e()),

where P = K — C. We can choose an appropriate gain matrix
K such that P is a positive definite matrix. Multiplying e’ (£)
on both sides of (44) yields

e’ (t) DY (t) = —e" (t) Pe(t) + €' (t)e(t)

~ T OT 9 )

— e’ (t) H sign (e ()

< ' (t) Pe(t) + Z le; ()] € (1)
i=1

e, 9 )

i=1

- Z le; ()] € (t)
i=1

< —e' (1) Pe(t) - i@i () %iT‘Pi (x).
-1
(45)

Consider the following Lyapunov function:

V=T wew 1y L7,

i=1 i

(46)

Because the ath Caputo derivative of a constant is 0, we
have DfW, = DfW,. Taking ath derivative of V(t) based on
Lemma 10 gives
T u 1 T
DV (t)<e () Dfe(t)+ Y —W,DiW;.  (47)

i=10"1
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Substituting (45) and (25) into (47), we have

DXV (t) < " (t) Pe () - iei O, ¢; (x)
i=1
"l __r
~W D,
2

WPty Yo 0T ) W

i=1
+ ie,. O T, ¢, (x) < —€" () Pe (t)

i=1
e (B e(t),

where A ;.. is the minimum eigenvalue of matrix P. From (48)
and Lemma 13, we know that the synchronization error e(t)
tends to 0 asymptotically; namely, lim,_, [le(t)] = 0. O

Theorem 16. We can realize the synchronization of system (12)
and (13) under the effect of the adaptive controller (24) and
the fractional-order adaptive laws (see (25) and (26)). And

all variables in the closed-loop system remain bounded when
d(t) # 0.

Proof. Substituting (23) and (24) into the error dynamical
equation (19), we obtain

D (t) = Ce(t) + h(t) +d (t) — Ke (t) - W ¢ (x)

— H sign (e (t)) — p sign (e ()

- (K-Cle)+d ) +et) - T ¢(x)

(49)
— H sign (e (t)) — p sign (e (t))
—Pe(t) +e(t) - %Tcp (x) — Hsign (e (1))
—p sign(e(t)),
where P = K — C is a positive matrix.
5, () = 5, (1) - i (50)
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Multiplying e” (t) on both sides of (50) gives
" (t) Dle (t) = —e” (t) Pe(t) +e" (t)e(t)
~ DT 9(x)
—e' (t) H sign (e (t))
e’ (1)p sign (e (1))

el () Pe(t) + Z le; ()] €] (£)
i=1

Z O, ¢, x)—Ze (t) |e; (t)|

i=1 i=1

- Zﬁi ® |e; )]
i=1

—eT (t) Pe(t) - ie,. O, ¢ (x)

i=1

— 2B @) ]e; )]

i=1

Consider the following Lyapunov function:

V() = —e T@We) + - Z 7/7/

111 111

P,(t) (52)

Taking arth derivative of V(t) based on Lemma 10, we have

n
1 —
DAV (1) < ' (1) Dee () + Y 7, DI,
i=10%
(53)

+Z pz(t)Dtpl(t)

zll

Substituting (45), (25), and (26) into (53), we have

—e” (t) Pe (t) - ie,- OT, ¢ (x)

i=1

D}V (t) <

21
|+Z— DW,-

=1 Hi

- Zﬁi () le; (¢
i=1

+ Z lﬁi ) D pi (1)

i=1 /i
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< —e" (t) Pe () - iei O, ¢; (x)

i=1

- YA e 0]+ Y O ¢,

i=1 i=1
+ 2P () ]e; ()] < —e" () Pe(t)
i=1

< _AmineT (t) e (t) >
(54)

where A, is the minimum eigenvalue of matrix P. From (54)
and Lemma 13, we know that the synchronization error e(t)
tends to 0 asymptotically; namely, lim,_, [le(¢)] = 0. ]

4. Simulation Studies

In this section, two fractional-order chaotic systems and two
fractional-order hyperchaotic systems will be synchronized
to show the validity of the above method.

4.1. Example 1. Choose the frequently used fractional-order
Arneodo system [49] in literature as the drive system:

Di'x, (t) = x, (t)

Di'x, (t) = x5 (t) (55)

Di'x; (t) = ax, (t) — bx, (t) — cx; (t) +dx; (1)
When a = -55,b = 35 ¢ = 04,d = -1, and
a = 0.9, the fractional-order Arneodo system shows chaotic
phenomenon, which is indicated in Figures 2 and 3.

Let the response system be the following fractional-order
Lorenz system [50]:

Dfy, (t) =0 (y,(t) = », (1))
Dy, (t) =y, (t) (p = y3(£)) = 5 (¢) (56)
Diys(t) =y, (t) y, (1) — Bys (t).

When o = 10, p = 28, 8 = 8/3, and a = 0.99, the chaotic
behavior of system (56) is included in Figures 4 and 5.
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It follows from (55) and (56) that

00 O
A=(0 0 1
a -b —c
(57)
-0 o 0
C=| p -1 0
0 0 -p

Firstly, we consider the synchronization of system (55)
and system (56) in the absence of external disturbance
(namely, d(t) = 0). In the simulation, we choose o = 0.8,
a = 096, and k; = k, = k; = 3. The initial condition of
system (55) is x(0) = [-3,3.4, —4]T, and the initial condition

of system (56) is y(0) = [8, -6, 9]7. With respect to the fuzzy
logic system, we define 6 Gaussian membership functions
uniformly distributed on [-20 20]. The initial condition of
the fuzzy parameter is chosen as zero vector. The input
saturation limiter 4, = —u; = 5. The simulation results are
depicted in Figures 6 and 7.

Then we study the synchronization of system (55) and
system (56) with the external disturbance. In simulation, we
select o0 = 0.8, « = 0.96, and k, = k, = k; = 3. The initial
conditions are x(0) = [-3,3.4, —4]T and y(0) = [8,-6, 9]T.
Let d(t) = [0.15sin(t),0.05 cos(t), 0.1 cos(t)]” and let the
input saturation limiter be u, = —u; = 5. The simulation
results are as shown in Figures 8 and 9.

4.2. Example 2. Choose the fractional-order hyperchaotic
Lorenz system [50] as the drive system:
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Dix, (£) = a(x, () = x, (1)) + x4 (t)

D;xxz (£) = cx; (1) — x5 (£) = 2 (2) x5 (F)

58)
Dy x; (t) = x, (£) x, () — bxs (£)

Di'xy (t) = —x; (£) x5 (1) + yx, (1) .

Whena = 10,b = 8/3,c = 28,y = -1, and « = 0.93, the
fractional-order hyperchaotic Lorenz system (58) has chaotic
attractors, as shown in Figure 10.

The response system is the following fractional-order
hyperchaotic system:

Dy, (t) = a(y, (t) - » (1)
Dy, (t) = dy, (t) = 3, () y5 (t) + ¢y, (t) = y4 (t)
Dfys (1) =y, (t) y, (t) — by; (t)

Dy, (t) = y, (t) + k.

When a = 36.01, b = 3.00, ¢ = 28.00, d = —16.00, k = 0.50,
and « = 0.95, the chaotic behavior of system (59) is given in
Figure 11.

Firstly, we consider the synchronization of system (58)
and system (59) when d(f) = 0. In the simulation, we
choose the control parameters as ¢ = 0.8, « = 0.95, and
ky, = k, = ks = k, = 3. The initial conditions are
x(0) = [6,2.4,—4,-6]" and y(0) = [9.6,-6,9,5]". The input
saturation limiter u,, = —u; = 12 and u,; = —u; = 14,
i = 2,3,4. The simulation results are presented in Figures
12-15.

Then, we consider the synchronization of system (58) and
system (59) with external disturbance. In the simulation, let
o =08 a = 09,k =k, = k; = k, = 3, and
d(t) = [0.15sin(¢), 0.05 cos(t), 0.1 cos(t), 0.5 sin(t) cos(£)]”.
The initial conditions are x(0) = [-3, 3.4, —4, —6]T and y(0) =
[9.6,—6,9,5]". The input saturation limiter is U, =—uy =12
and u,; = —uy; = 14,1 = 2,3,4. The simulation results are
depicted in Figures 16-19.

5. Conclusions

In this paper, we investigate the synchronization for two
uncertain fractional-order nonlinear chaotic systems with
saturated input and external disturbances in accordance with
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the fractional Lyapunov stability theory and adaptive fuzzy
control method. A fractional-order adaptive controller that
can guarantee that the synchronization error tends to a small
region of origin and fractional parameters adaptive laws are
designed. Based on the proposed method, we can achieve
synchronization of many fractional-order chaotic systems
and hyperchaotic systems. It should be mentioned that the
proposed controller can guarantee that the synchronization
errors converge to a small region of the origin eventually.
How to design an adaptive fuzzy controller such that the
dynamical system is asymptotic stable is one of our future
research directions.
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