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It is well known that most brain disorders are complex diseases, such as Alzheimer’s disease (AD) and schizophrenia (SCZ). In
general, brain regions and their interactions can bemodeled as complex brain network, which describe highly efficient information
transmission in a brain. Therefore, complex brain network analysis plays an important role in the study of complex brain diseases.
With the development of noninvasive neuroimaging and electrophysiological techniques, experimental data can be produced
for constructing complex brain networks. In recent years, researchers have found that brain networks constructed by using
neuroimaging data and electrophysiological data have many important topological properties, such as small-world property,
modularity, and rich club. More importantly, many brain disorders have been found to be associated with the abnormal topological
structures of brain networks. These findings provide not only a new perspective to explore the pathological mechanisms of brain
disorders, but also guidance for early diagnosis and treatment of brain disorders. The purpose of this survey is to provide a
comprehensive overview for complex brain network analysis and its applications to brain disorders.

1. Introduction

The consensus of the neuroscience community is that a
human brain contains about 100 billion (1011) neurons con-
nected by about 100 trillion (1014) synapses [1, 2], which
are anatomically organized over multiple space scales and
functionally interact over multiple time scales. Therefore,
exploring the brain and revealing the neural mechanism of
brain activities have been a challenging scientific problem [3–
5]. Now it is realized that brain functions are determined not
only by a single neuron or a single brain region indepen-
dently, but also by clusters of neurons, neural circuits within
a function block, or a group of interactions between brain
regions [6]. A brain can bemodeled as a complex network [7–
9], which enables highly efficient information transmission.
Currently, network neuroscience has become a research
hotspot [10–12].

Clinical disorders of human brain networks, such
as Alzheimer’s disease (AD), schizophrenia (SCZ), and

Parkinson’s disease (PD), are among the most disabling and
therapeutically intractable health problems. Therefore, it is
unsurprising that understanding brain network connectiv-
ity has long been a central goal of neuroscience and has
recently catalyzed an unprecedented era of large-scale ini-
tiatives and collaborative projects, such as BRAIN Initiative
(http://www.braininitiative.org/) (USA, 2013), Human Brain
Project (https://www.humanbrainproject.eu/) (Europe, 2013),
Brain/MINDS Project (http://brainminds.jp/) (Japan, 2014),
Australian Brain Alliance (http://www.cibf.edu.au/austral-
ian-brain-alliance) (Australia, 2016), and China Brain Project
(China, 2016) [13]. The goal of these projects is to revolution-
ize our understanding of the human brain. By accelerating the
development and application of innovative technologies, rev-
olutionary new accurate images of the brain can be produced
for more accurate understanding of brain functions.

Neuroimaging techniques provide a way for clinicians
and researchers to examine the structural and functional
changes in the brain disorders in vivo [14–26]. Commonly
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Figure 1: A general perspective for complex brain network analysis methods and its applications in brain disorders.

usedmodalities include structural magnetic resonance imag-
ing (sMRI, such as T1w MRI) [27], diffusion magnetic res-
onance imaging (dMRI, such as diffusion tensor imaging
(DTI)) [28], and functional magnetic resonance imaging
(fMRI, such as rs-fMRI) [29, 30]. Electroencephalography
(EEG) [31] and magnetoencephalography (MEG) [32] are
noninvasive electrophysiological techniques for recording
brain activities. EEG is used to measure voltage sensed by
an array of electrodes placed on the scalp. MEG is used to
measure the magnetic field outside the head using an array
of very sensitive magnetic field detectors (magnetometers).
The signals recorded byEEGandMEGdirectly reflect current
flows generated by neurons within a brain. EEG/MEG also
have been utilized for the studies of brain disorders [33–
36]. Network-based analysis has been widely used in various
fields, such as medical image analysis [37–40] and bioin-
formatics [41–44]. The two techniques (i.e., neuroimaging
and magnetoencephalography) have been used to construct
brain networks with multiple different scales, which have led
to the development of brain network studies [45–48]. The
construction of brain networks provides a necessary basis
for brain network analysis, which includes global efficiency,
local efficiency, modularity, and rich club [49, 50]. A graph
can effectively and visually present a brain as a complex
network whose topological structures can be quantified [51–
53]. Therefore, graph theory has become one of the most
important mathematical tools in the field of brain network
analysis [54–56].

In this article, we provide a comprehensive review regard-
ing complex brain network analysis and its applications to
brain disorders as shown in Figure 1. Firstly, we introduce
some basic concepts for constructing the brain networks
based on neuroimaging and electrophysiological data, which
include structural data and functional data. It is worth

mentioning that, in this article, structural data only consider
sMRI and dMRI and functional data only consider fMRI and
EEG/MEG. After summarizing methods for brain network
analysis based on graph theory, we present several applica-
tions of brain network analysis in brain disorders. Finally
some conclusions are drawn and the directions of futurework
are pointed out along with brain network analysis.

2. Brain Network Construction

A brain network is typically represented by a graph 𝐺 =(𝑉, 𝐸), where 𝑉 is the set of vertices (or nodes) and 𝐸 is the
set of edges (or links, also called connections) between pairs
of nodes. As nodes and edges are the basic elements of each
brain network, the accurate definition of the two elements
plays important roles in the brain network analysis [57].

2.1. Nodes. In order to construct a brain network, the first
step is to define nodes of the brain network.The nodes should
represent different, functionally uniform neurons (which are
grouped together to perform the same function) or brain
regions. However, since there is no gold standard for brain
parcellation, methods for defining nodes of brain networks
are varied as follows:

(i) The simplest method is to treat each measurement
point as a separate node. This method occurs before
the data acquisition. For example, different nodes
could correspond to separate voxels in MRI images,
different sensors in MEG, or different electrodes in
EEG. The advantage of this method is that no addi-
tional data processing or assumptions are required
to analyze the data at the original resolution or
to perform further averaging or aggregating. The
weaknesses of this method include the following: (1)
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Table 1: Some common atlas in brain network study.

Name Number of regions Links Reference
Brodmann area 104 http://www.fmriconsulting.com/brodmann/Interact.html [58]
Anatomical Automatic Labeling atlas 116 http://www.cyceron.fr/index.php/fr/plateforme/freeware [59]
Destrieux atlas 148 https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation [90, 91]
Desikan-Killiany atlas 68 https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation [92]
LPBA40 56 http://neuro.imm.dtu.dk/wiki/LPBA40 [93]
Brainnetome atlas 246 http://atlas.brainnetome.org/ [94]
HCP MMP1.0 360 https://balsa.wustl.edu/study/show/RVVG [69]

there is no guarantee that themeasurement points are
consistent with the boundaries of functional human
cell populations; (2) the boundaries of a specific,
functionally specialized human cell population may
go beyond the boundaries of a voxel. Thus, this
method is often used in EEG/MEG but is rarely used
in the other three types of data (i.e., sMRI, dMRI, and
fMRI).

(ii) Themost commonmethod is to register experimental
data to an a priori anatomical parcellation atlas, such
as Brodmann area [58] and Anatomical Automatic
Labeling (AAL) atlas [59]. For more atlases, please
see Table 1. The advantage of this method is that it
can easily parcellate a whole brain into many regions
(about 102) as nodes of a brain network.Theweakness
of this method is that the resulting regions can
show considerable variation in size, which affects any
subsequent brain network analysis.

(iii) Based on the problem of the size of the regions, the
alternative method is to treat each voxel as a separate
node. The only difference from the first method is
that thismethod occurs after the data acquisition.The
advantage of this method is that it can construct a
very large, high-resolution brain network (more than104 nodes) for each brain. The weaknesses of this
method include the following: (1) it could yield noise
and thus affect the subsequent brain network analysis;
(2) as the resulting brain network is large, it can cause
difficulties in brain network analysis, such as looking
for modularity.

(iv) The fourth method is to define nodes according to
some a priori criteria. For example, some researchers
havemapped activation patterns in a specific task and
defined activation regions as the nodes of brain net-
works of interest according to these mappings [60].
Meanwhile, some researchers have applied meta-
analysis methods to identify important brain regions
as the nodes of brain networks of interest [61]. The
advantage of this method is that the determination
of the nodes is based on the measurement of brain
functions, which can be adjusted according to spe-
cific hypotheses about brain networks of interest.
The weakness of this method is that the resulting
nodes may not be used in different modalities. For
example, in fMRI, the nodes can be defined by a

specific task and are usually included within the gray
matter. However, in dMRI, the resulting nodes may
make it difficult to track connections, since most
fiber tracking methods are difficult to reconstruct the
pathways of the axons within gray matter [62].

(v) The fifth method uses connectivity to define nodes.
The essence of this method is to measure the con-
nectivity of each voxel to all other voxels, and then
some voxels are clustered together as brain regions
with a specific function if these voxels have a similar
connectivity [63]. For example, Anwander et al. [64]
used an automatic clustering method to identify
cortical regions with internally coherent connectivity
in DTI and parcellate Broca’s area to three subregions,
which include BA44, BA45, and the deep frontal
operculum. The advantage of this methods is that it
can find brain regions with specific functions as the
nodes of brain networks of interest. The weakness of
this method is that since spatially separating brain
regions may have similar connectivity, there is no
guarantee that the resulting nodes are composed of
a number of voxels that are spatially continuous [65,
66]. To address the weakness of this method, some
methods with spatial constraints have been proposed
[67, 68].

(vi) The sixth method is to define nodes by combining
pieces ofmultimodal information, such as anatomical
homogeneity [69] and synchrony [65].The advantage
of this method is that it can obtain complementary
information from the multimodal data so that the
location of the nodes is more accurate. The weak-
nesses of this method include the following: (1) it
may have more noise than other methods with single
modality data and thus affect the location of the
nodes; (2) since it uses multimodal information, the
cost of computation is also very large.

Based on the discussion about the above fivemethods, the
definition of nodes is still a very challenging problem in order
to obtain accurate results from brain network analysis.

2.2. Edges. The edges of a brain network represent the con-
nectivity between two brain regions. Brain network connec-
tivity can be divided into three types: structural connectivity,
functional connectivity, and effective connectivity [39, 51, 70].
Structural connectivity contains two types: (1) the anatomical
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connections between neural elements, such as fiber bundles;
(2) the interregional covariation of specific morphometric
parameters, such as gray matter thickness. Functional con-
nectivity refers to a statistical dependence between neural
elementswith physiological recordings or neurophysiological
signals. The purpose of effective connectivity is to uncover
the direct, causal influences that neural elements exert over
each other’s activity. Since there are relatively few studies of
effective connectivity in brain networks, in this article we
mainly consider the studies of structural connectivity and
functional connectivity.

2.2.1. Edges Based on Structural Connectivity. In brain net-
work study, there are two common types of neuroimaging
techniques that are often used to define structural connec-
tivity. The two types of neuroimaging techniques are sMRI
and dMRI as shown in Figure 1. How to quantify structural
connectivity based on sMRI anddMRI is described as follows:

(i) In sMRI, structural connectivity is indirectly esti-
mated by calculating interregional correlation of spe-
cific morphometric parameters, such as gray mat-
ter volume or cortical thickness [71–73]. In this
method, a measure (such as gray matter volume,
cortical thickness, or other similar metrics) of each
brain region is extracted, and then correlations
between two brain regions are calculated as the
edges of the brain network of interest. Morpholog-
ical measurements of brain regions can be imple-
mented by some open source tools such as Free-
Surfer (http://www.freesurfer.net/) and SPM (http://
www.fil.ion.ucl.ac.uk/spm/). Pearson correlation and
partial correlation are two of themost commonmeth-
ods to compute structure connectivity from sMRI
images.

(ii) The most common technique for studying struc-
tural connectivity is dMRI [74–77]. In dMRI, the
trajectories (connectivity) of axonal fibers can be
reconstructed by using tractography, which includes
deterministic tractography [78, 79] and probabilistic
tractography [80].

(a) The deterministic tractography is simple and
effective, and the satisfactory reconstruction can
be obtained in some brain disorders. However,
the weakness of this tractography is that an
initial seed (i.e., a specific voxel) does not
change during the reconstruction process. If
the seed changes, the reconstruction is likely to
produce a deviation. This tractography can be
implemented by some common open source
tools such as Diffusion Toolkit and Trackvis
(http://trackvis.org/), DTIStudio (https://www
.dtistudio.org/), and medInria (http://med.inria
.fr/).

(b) The advantage of the probabilistic tractography
is that the reconstruction results are more stable
to noise, and fiber cross problem can be im-
proved to some extent. The weakness of this

method is computationally intensive and time
consuming. This tractography can be also im-
plemented by some common open source
tools such as FSL (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki), MRItrix3 (http://www.mrtrix.org/),
andDSIStudio (http://dsi-studio.labsolver.org/).

For more details about the above two tractographies,
please see [81, 82]. After this step, structural connec-
tivity can be estimated by several different measures
of connectivity strength.The simplest measure is that
the number of axonal fibers (FN) connecting two
brain regions is used as connectivity strength,which is
the weight of the edge of the brain network of interest.
Another common measure of connectivity strength
is the average fractional anisotropy (FA) value of all
voxels over the reconstructed tract between two brain
regions.

Based on the above analysis, in both sMRI and dMRI,
the resulting edges are undirected and weighted. Thus, the
resulting connectivity matrix of each brain is symmetric and
generates a weighted undirected network. In some studies,
the weighted undirected resulting networks were converted
into binary undirected networks by a specific threshold [72,
83, 84].

2.2.2. Edges Based on Functional Connectivity. In brain
network study, functional connectivity is often defined by
using fMRI, EEG, and MEG as shown in Figure 1. As can
be seen from Figure 1, neurophysiological signals (such as
time series) can be extracted from fMRI and EEG/MEG.
EEG/MEGoffer high temporal resolution, which allows brain
activity to be sampled on the millisecond ranges that match
with the speed of neural signals. fMRI generally offers a
higher spatial resolution than EEG/MEG, but its temporal
resolution is relatively low.

Functional connectivity reflects the statistical correlation
between neurophysiological signals (such as time series)
recorded from each brain region. The correlation can be
measured by using various methods.Themain measurement
methods are divided into two categories: linear methods and
nonlinear methods. The common linear methods [85, 86]
mainly include Pearson correlation, partial correlation, and
partial coherence. The common nonlinear methods mainly
include synchronization likelihood [21, 34], mutual infor-
mation [87], and wavelet correlation [88, 89]. For example,
the Pearson correlation between brain regional activity time
series is calculated as the edges of the brain network of
interest, which are weighted and undirected.Thus, the result-
ing brain networks are also weighted undirected networks.
Similarly, such weighted undirected resulting networks can
also be converted into binary undirected networks by a
specific threshold [33, 85, 87].

3. Brain Network Analysis

In general, the topology of networks can be divided into
four types: binary undirected, binary directed, weighted
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Figure 2: An example of a simple binary undirected network
(graph).

undirected, and weighted directed. In this article, since
we only focus on structural connectivity and functional
connectivity, only two types of brain networks are taken into
consideration: weighted undirected and binary undirected.

3.1. Degree, Clustering Coefficient, and Shortest Path Length.
Node degree is one of the most elementary and important
measures for a brain network and is often denoted as 𝑘. The
degree of a node is the number of edges connecting the node
with all other nodes. In general, the greater the degree of
a node is, the more the nodes it connected to are and the
more important it may be in the brain network. In a binary
undirected network, the degree 𝑘𝑖 of a node 𝑖 is defined as

𝑘𝑖 = ∑
𝑗 ̸=𝑖

𝑎𝑖𝑗, (1)

where 𝑎𝑖𝑗 = 1 if the connection of node 𝑖 and node 𝑗 exists;
otherwise 𝑎𝑖𝑗 = 0. For example, the degree of node C in
Figure 2 is 7. The strength of a network is the average of the
degree across all of the nodes in the network. Thus, for a
binary undirected brain network, the network strength 𝑆 can
be calculated by

𝑆 = 1𝑁∑
𝑖∈𝑁

𝑘𝑖. (2)

Degree distribution 𝑃(𝑘) is also a basic topological
characterization and is defined as the fraction of nodes with
degree 𝑘 in the whole brain network in practical application.
For example, if there are totally 𝑁 nodes in a brain network
where there are𝑁𝑘 nodes with degree of 𝑘,

𝑃 (𝑘) = 𝑁𝑘𝑁 . (3)

For many brain networks, the degree distribution is char-
acterized by a fat tail that indicates the presence of central
position nodes. These central position nodes usually play a
vital role in the convergence and divergence of information
in the brain network [138]. In the field of brain networks, if
a node occupies a central position in the overall organization

of a brain network, the node can be called hub node [139].
For example, the green nodes (such as nodes B and C)
in Figure 2 are considered as hubs in the simple binary
undirected network.

A subgraph with 3 nodes and 3 edges is called a triangle
as shown in Figure 2 (pink). In a network, the number of
triangles 𝑡𝑖 around a node 𝑖 is defined as

𝑡𝑖 = 12 ∑
𝑖↔𝑗↔ℎ

𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ. (4)

The local clustering coefficient of a node measures the
possibility that any two neighbors of the node are also
connected. In this article, for convenience, the local clustering
coefficient is described by clustering coefficient. In a binary
undirected network, the clustering coefficient 𝐶(𝑖) of a node𝑖 is equal to the ratio of the number of the actual connected
edges between its adjacent nodes to the number of all possible
connection edges; that is,

𝐶 (𝑖) = 2𝑡𝑖𝑘𝑖 (𝑘𝑖 − 1) . (5)

The average clustering coefficient of all nodes in a network is
defined as the clustering coefficient of the network:

𝐶 = 1𝑁∑
𝑖

𝐶 (𝑖) = 1𝑁∑
𝑖

2𝑡𝑖𝑘𝑖 (𝑘𝑖 − 1) . (6)

The clustering coefficient is a measure of functional segrega-
tion, which is the ability for specialized processing to occur
within densely interconnected groups of brain regions [140].

The shortest path plays an important role in the infor-
mation transmission of a brain network, and it is a very
important measure to describe the internal structure of the
brain network. The shortest path can transmit the infor-
mation more quickly and reduce brain consumption. In a
binary undirected network, a path between nodes 𝑖 and 𝑗with
the minimum number of edges is called the shortest path
between these two nodes and its length 𝑙𝑖𝑗 is denoted as

𝑙𝑖𝑗 = ∑
𝑎𝑠𝑡∈𝑙𝑖↔𝑗

𝑎𝑠𝑡, (7)

where 𝑙𝑖→𝑗 is the shortest path between nodes 𝑖 and 𝑗. For
example, the shortest path length of nodes A and D in
Figure 2 is 3 (i.e., 𝑙AD = 3). The average shortest path length
between node 𝑖 and other all nodes is denoted as 𝑙𝑖:

𝑙𝑖 = 1(𝑁 − 1)∑𝑖 ̸=𝑗𝑙𝑖𝑗. (8)

The characteristic path length 𝐿 of a network is the average
shortest path length between all possible pairs of nodes in the
network and is defined as

𝐿 = 1𝑁∑
𝑖

𝑙𝑖. (9)

The characteristic path length is a measure of functional
integration, which is the ability to rapidly combine pieces of
specialized information from distributed brain regions [140].
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3.2. Centrality. Thecentrality is tomeasure the importance of
nodes in a brain network. The higher the centrality of a node
is, the more effective the node is in the information trans-
mission of the brain network. In the brain network analysis,
three measures of centrality are often used, including degree
centrality, closeness centrality, and betweenness centrality as
follows:

(i) Degree centrality is the most common measure of
centrality, which uses the degree of a node to describe
the importance of the node in the brain network. In
brain network analysis, the degree centrality of a brain
region measures the direct impact of the brain region
on other adjacent brain regions. Thus, in a binary
undirected network, the degree centrality 𝐶𝑑(𝑖) of a
node 𝑖 is equivalent to the degree of the node:

𝐶𝑑 (𝑖) = 𝑘𝑖 = ∑
𝑗 ̸=𝑖

𝑎𝑖𝑗. (10)

(ii) Closeness centrality [141] reflects the closeness be-
tween a node and other nodes in a brain network.
Thus, the closer a node is to all other nodes in the
brain network, the higher the centrality of the node is.
In brain network analysis, the closeness centrality of a
brain regionmeasures the indirect impact of the brain
region on other brain regions. For a binary undirected
network, the closeness centrality 𝐶𝑐(𝑖) of a node 𝑖 is
defined as the inverse of the average shortest path
length of the node to all other nodes:

𝐶𝑐 (𝑖) = 𝑁 − 1∑𝑗 ̸=𝑖 𝑙𝑖𝑗 . (11)

(iii) Betweenness centrality [142, 143] is a very popular
measure, which quantifies the number of times that a
node acts as a bridge along the shortest path between
two other nodes. In brain network analysis, the
betweenness centrality of a brain region measures the
impact of the brain region on the flow of information
across the brain network. In a binary undirected
network, the betweenness centrality 𝐶𝑏(𝑖) of a node 𝑖
is defined as the proportion of shortest paths between
nodes 𝑗 and ℎ that pass through 𝑖:

𝐶𝑏 (𝑖) = 2(𝑁 − 1) (𝑁 − 2) ∑
𝑗 ̸=ℎ ̸=𝑖

𝑛ℎ𝑗 (𝑖)𝑛ℎ𝑗 , (12)

where 𝑛ℎ𝑗(𝑖) is the number of shortest paths betweenℎ and 𝑗 that pass through 𝑖, 𝑛ℎ𝑗 is the number of all
shortest paths between ℎ and 𝑗, and (𝑁 − 1)(𝑁− 2)/2
is the number of node pairs that do not include node𝑖.

In brain network analysis, the above three centrality
measures are also often used to identify hub brain regions.
Firstly, the centrality values of all brain regions are ranked.
Then, a specific threshold (e.g., mean + square deviation) is
used to determine the hub nodes. That is, the brain regions
whose centrality values are larger than the specific threshold
are considered as hubs. For example, node B in Figure 2 is a
hub of the simple network in terms of degree centrality.

3.3. Efficiency. The efficiency of a network (such as brain
network) measures the ability of the network to exchange
information. The higher the efficiency of the network is, the
stronger the ability of information exchange is.The efficiency
of a network mainly considers global efficiency and local
efficiency.Theglobal efficiencymeasures the ability of parallel
information exchange across the whole network, while the
local efficiency measures the ability of fault tolerance of a
network [144].

Both global efficiency and local efficiency are closely
related to nodal efficiency. Nodal efficiency measures how
well a specific region is integrated within the network via its
shortest paths. In a binary undirected network, the efficiency𝐸nodal(𝑖) of a node 𝑖 is defined as the normalized sum of the
reciprocal of the shortest path lengths from the node to all
other nodes of the network:

𝐸nodal (𝑖) = 1𝑁 − 1∑
𝑖 ̸=𝑗

1𝑙𝑖𝑗 . (13)

Obviously, the shorter the shortest path lengths of a node is,
the higher the efficiency of the node is. The nodes with high
nodal efficiency play an important role in the information
integration and distribution [139]. It is worthmentioning that
the nodes with high nodal efficiency can also be seen as hubs
[130].

The global efficiency of a network [145] is the average
nodal efficiencies of all nodes in the network and is defined
as

𝐸glob = 1𝑁∑
𝑖

𝐸nodal (𝑖) = 1𝑁 (𝑁 − 1)∑𝑖 ̸=𝑗
1𝑙𝑖𝑗 . (14)

Since the brain is considered as a multiactivity parallel
system, it should have a high global efficiency in a brain
network [144].

The local efficiency of a node can be regarded as the
global efficiency of the subnetwork containing itself and its
all direct neighbors. In a binary undirected network, the local
efficiency 𝐸loc(𝑖) of a node 𝑖 can be defined as

𝐸loc (𝑖) = 1
𝑁𝐺𝑖 (𝑁𝐺𝑖 − 1) ∑

𝑗 ̸=ℎ∈𝐺𝑖

1𝑙𝑗ℎ , (15)

where 𝐺𝑖 is the subgraph that consists of node 𝑖 and its all
direct neighbors.

Similarly, the local efficiency of a network is the average
local efficiencies of all nodes in the network and is computed
by

𝐸loc = 1𝑁∑
𝑖

𝐸loc (𝑖) . (16)

It is worth mentioning that the difference between nodal
efficiency and local efficiency of a node is that the former
measures the ability of information exchange of the node
itself, while the latter measures the ability of information
exchange of the subnetwork consisting of itself and its all
direct neighbors.
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3.4. Modularity and Rich Club. A module is a group of
nodes with dense internal connections but sparse external
connections in a network as shown in Figure 2. The real
network often has a number of relatively independent and
interrelated modules that have different functions and evolve
independently without affecting other modules. At the same
time, the modular structure also provides more detailed
roles and properties of nodes. For example, some nodes are
important in their modules but are not necessarily important
for the entire network; these nodes are called provincial hubs;
while some other nodes though in their own modules are
limited, they are connected to different modules, maintain-
ing the connectivity of the entire network. Therefore these
nodes play an important role in information transmission
throughout the network and are called connector hubs. A
participation index [146] is used to determinewhether a node
is a provincial hub or a connector hub. The participation
index (𝑃𝑖) of node 𝑖 is computed by

𝑃𝑖 = 1 −
𝑁𝑚∑
𝑚=1

(𝑘𝑖𝑚𝑘𝑖 )
2 , (17)

where 𝑁𝑚 is the number of modules and 𝑘𝑖𝑚 is the number
of connections from node 𝑖 to module 𝑚. In general, if 𝑃𝑖 is
greater than a specific threshold, node 𝑖 is a connector hub,
and otherwise it is a provincial hub.

Biological networks, including human brains, exhibit a
high degree of modularity. In complex network analysis,
modularity is used to measure the quality of division of a
network into modules [147]. Currently, there are different
methods to calculate themodularity of a brain network [148].
Here, we introduce two common modularity measures in
brain network analysis. Given that a brain network is fully
subdivided into several nonoverlapping modules 𝑀, these
two common modularity measures are computed as follows:

(i)

𝑄 = ∑
𝑠∈𝑀

[𝑝𝑠𝑠 − (∑
𝑡∈𝑀

𝑝𝑠𝑡)] , (18)

where𝑝𝑠𝑠 is the proportion of existing links inmodule𝑠 and 𝑝𝑠𝑡 is the proportion of existing links between
modules 𝑠 and 𝑡.

(ii)

𝑄 = 12𝑁 (𝑁 − 1)∑𝑖𝑗 (𝑎𝑖𝑗 −
𝑘𝑖𝑘𝑗𝑁(𝑁 − 1)) 𝛿 (𝑚𝑖, 𝑚𝑗) , (19)

where 𝑚𝑖 and 𝑚𝑗 are the modules containing node 𝑖
and node 𝑗, respectively, and if nodes 𝑖 and 𝑗 are in the
same module, 𝛿(𝑚𝑖, 𝑚𝑗) = 1; otherwise, 𝛿(𝑚𝑖, 𝑚𝑗) =0.

The so-called “rich club” effect in complex networks is
that the hubs of a complex network tend to be more densely
connected among themselves than nodes of a lower degree
[149–151] as shown in Figure 2. In essence, nodes with a large

number of edges, which are usually called rich nodes, are
much more likely to form closely interconnected subgraphs
(also called clubs) than low-degree nodes. The normalized
rich club coefficient (𝜌rand(𝑘)) is used to quantify the rich club
effect of a complex network [149, 150] and is defined as

𝜌rand (𝑘) = 𝜙 (𝑘)𝜙rand (𝑘)
𝜙 (𝑘) = 2𝐸>𝑘𝑁>𝑘 (𝑁>𝑘 − 1) ,

(20)

where 𝑁>𝑘 is the number of nodes with degree larger than𝑘, 𝐸>𝑘 is the number of edges connecting these 𝑁>𝑘 nodes,𝑁>𝑘(𝑁>𝑘 − 1)/2 is the maximum possible number of edges
among these nodes 𝑁>𝑘, 𝜙(𝑘) is the rich club coefficient of
a given degree 𝑘, and 𝜙rand(𝑘) is the rich club coefficient
on a maximally randomized network with the same degree
distribution of the network under study.

The rich club effect of brain networks plays an important
role in global brain information transmission [152], which
provides important information on the higher-level topology
of brain networks. The rich club serves as an important
backbone for a number of coactivation patterns among
brain regions [153]. Thus, a rich club in a brain network
is also crucial for promoting and integrating various segre-
gated functions [148]. In brain network, a normalized rich
club coefficient increasing with the degree 𝑘 indicates the
dominance of a number of highly connected and mutually
communicating brain regions, as opposed to a set consisting
of many loosely connected and relatively independent brain
regions.

3.5. Small-World Network. The concept of small-world net-
works was first proposed by Watts and Strogatz [154]. The
small-world networks have both high clustering character-
istics similar to regular networks and shorter shortest path
lengths similar to random networks. In other words, The
small-world networks combine the respective topological
advantages of both regular networks and random networks
to ensure the efficiency of information transmission at both
local and global levels.

To determine whether a network is a small-world net-
work, the following three criteria are employed:

𝛾 = 𝐶𝐶rand

𝜆 = 𝐿𝐿 rand

𝜎 = 𝛾𝜆 ,
(21)

where 𝐶rand and 𝐿 rand are the average clustering coefficient
and characteristic path length of 𝑀 matched random net-
works that preserve the same number of nodes, edges, and
degree distribution as the real network, 𝛾 and 𝜆 are the nor-
malized clustering coefficient and normalized characteristic
path length of the network, and 𝜎 is the small-world index
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of the network [155]. A network with small-world property
needs to meet two conditions: 𝛾 ≫ 1 and 𝜆 ≈ 1. Thus, the
small-world index 𝜎 > 1.

The brain supports both segregated and integrated infor-
mation processing. Small-world topology comprises both
high clustering (compatible with segregated processing) and
short path length (compatible with integrated processing).
Therefore, for a given brain network, if the brain network
is found to have small-world property, it shows that the
brain has better information processing performance, at least
without great disruption.

In addition to the above important topological properties,
there are many other properties in graph theory to char-
acterize brain networks, such as hierarchy, motif, assorta-
tivity, and transitivity. For more details about brain network
analysis, please see [140, 148, 156]. The brain network anal-
ysis can be also implemented by some common open source
tools such as Brain Connectivity Toolbox (http://www.nitrc
.org/projects/bct/), GRETNA (https://www.nitrc.org/pro-
jects/gretna/), andBrainWave (http://home.kpn.nl/stam7883/
brainwave.html).

4. Applications of Brain Network Analysis

Brain network analysis becomes increasingly importantwhen
either studying pathophysiology or exploring the network-
based biomarkers of brain disorders. The studies of brain
network analysis with graph theoretical frameworks have
been extensively applied to identify detailed abnormalities of
network topologies associated with various brain disorders,
includingAD, SCZ, PD, andmultiple sclerosis. In this section,
we summarize the recent progress of structural and func-
tional brain networks with several brain disorders, focusing
on the changes in the topological organization of structural
and functional brain networks in terms of graph theoretical
frameworks.

4.1. Alzheimer’s Disease. Alzheimer’s disease (AD) is a degen-
erative brain disease and themost common type of dementia,
comprising 60–80% of all dementia cases. In theUS, there are
more than 5.2 million AD patients in 2014, and it is estimated
that 13.8 million Americans are AD patients by 2050 [157].
Thus, early diagnosis and treatment of AD, especially at its
prodromal stage such as MCI [158], have become a crucial
step to delay or even avoid dementia. The clinical symptoms
of AD are impairments of memory, language, and other
cognitive functions, which seriously affect the daily life of
patients and their families. Existing studies have demon-
strated that these impairments are associated with abnormal
structural and functional brain networks [83, 95, 103, 159].

4.1.1. Structural Brain Networks in AD. Structural brain net-
works of humanbeings can be constructed by using sMRI and
dMRI. In this section, we review recent progress in analyzing
the networks based on sMRI and dMRI in AD as shown in
Table 2.

(i) Using sMRI: He et al. [95] first used cortical thickness
measurement to investigate structural brain networks
of 92ADpatients and 97 healthy controls (HCs).They

found increased clustering coefficient and shortest
paths in AD, implying an abnormal small-world
property. In addition, they found reduced between-
ness centrality in the temporal and parietal het-
eromodal association cortex regions and increased
betweenness centrality in the occipital cortex regions.
Yao et al. [83] used gray matter volumes to con-
struct structural brain networks of 91 AD patients,
113 MCI patients, and 98 HCs. Among structural
brain networks of three groups, they found the
greatest clustering coefficient and the longest absolute
path length in AD. Their finding was similar to that
by He et al. [95]. In addition, they found the small-
world index of the MCI networks was between AD
and HC networks. Their finding showed that MCI is
a transitional stage between HC and AD. Compared
with the HCs, the MCI and AD patients retained
hub regions in the frontal lobe but lost hub regions
in the temporal lobe. Tijms et al. [96] investigated
the topology properties of single-subject gray matter
networks in AD and found decreased normalized
clustering coefficient and normalized path length.
Their finding is contrary to the previous two findings.
Moreover, they found decreased small-world index in
AD. Pereira et al. [97] constructed structural brain
networks of stable MCI (sMCI) patients, late MCI
converters (lMCIc), early MCI converters (eMCIc),
and AD patients to investigate topology structure
across groups. They found that, compared with the
HC group, all patient groups exhibited increased path
length, reduced transitivity, and increased modular-
ity, and the patient group showed decreased small-
world index. In addition, compared with the sMCI
group, other three patient groups showed decreased
path length and clustering coefficient.

(ii) Using dMRI: Lo et al. [98] used DTI to construct
structural brain networks of 25 AD patients and
30 HCs. They found that although the two groups
had a small-world property, the AD group showed
increased shortest path length compared with the
HC group. In addition, they found decreased global
efficiency and reduced nodal efficiency in the frontal
regions in AD. Bai et al. [99] considered two high
risk groups, remitted geriatric depression (RGD)
and amnestic MCI (aMCI), and constructed struc-
tural brain networks of the two groups using DTI
and deterministic tractography. They found reduced
network strength, reduced global efficiency, and
increased absolute path length for both the RGD
and aMCI patients compared with HCs, and there
were no significant differences in these global net-
work properties between the two high risk groups.
Compared with HCs, they found that the two high
risk groups had similar deficits of the regional and
connectivity characteristics in the frontal regions.
From comparison of RGD and aMCI, they found
that the nodal efficiency of networks in the two
groups was different in the posterior cingulate cortex

http://www.nitrc.org/projects/bct/
http://www.nitrc.org/projects/bct/
https://www.nitrc.org/projects/gretna/
https://www.nitrc.org/projects/gretna/
http://home.kpn.nl/stam7883/brainwave.html
http://home.kpn.nl/stam7883/brainwave.html


Complexity 9

Table 2: Overview of structural brain network studies in AD.

Study Modality Subjects Node definition Edge
definition

Network type Main findings

He et al., 2008
[95] sMRI 92 AD

97 HC
54 regions in

ANIMAL package

Partial
correlation
based on
cortical
thickness

Binary

(1) Increased clustering coefficient and
shortest paths in AD.
(2) Reduced betweenness centrality in
the temporal and parietal regions and
increased betweenness centrality in the
occipital regions.

Yao et al., 2010
[83] sMRI

91 AD
113 MCI
98 HC

90 regions in AAL
atlas

Pearson
correlation
based on

gray matter
volume

Binary

(1) The greatest clustering coefficient
and the longest absolute path length in
AD.
(2) The small-world index of the MCI
network was between AD and HC
networks.
(3) Compared with the HCs, the MCI
and AD patients retained hub regions
in the frontal lobe but lost hub regions
in the temporal lobe.

Tijms et al.,
2013 [96] sMRI 38 AD

38 HC 8683 ± 545 cubes Intracortical
similarity

Binary
(1) Decreased normalized clustering
coefficient and normalized path length
in AD.
(2) Decreased small-world index in AD.

Pereira et al.,
2016 [97] sMRI

282 AD
110 sMCI
71 lMCIc
87 eMCIc
301 HC

82 regions in
FreeSurfer

Pearson
correlation

Binary

(1) Increased characteristic path length
in sMCI, lMCIc, eMCIc, and AD
compared with HC.
(2) Decreased clustering coefficient in
lMCIc, eMCIc, and AD compared with
HC.
(3) Decreased transitivity and increased
modularity in patients compared with
HCs.
(4) Decreased small-world index in
patients compared with HCs.
(5) Decreased characteristic path length
and clustering coefficient in lMCIc,
eMCIc, and AD compared with sMCI.

Lo et al., 2010
[98] DTI 25 AD

30 HC
78 regions in AAL

atlas FN × FA Weighted

(1) Increased shortest path length in
AD.
(2) Decreased global efficiency and
reduced nodal efficiency in the frontal
regions in AD.

Bai et al., 2012
[99] DTI

35 RGD
38 aMRI
30 HC

90 regions in AAL
atlas FN Weighted

(1) Reduced network strength, reduced
global efficiency, and increased absolute
path length in RGD and aMCI.
(2) Similar deficits of the regional and
connectivity characteristics in the
frontal brain regions in RGD and aMCI.
(3) Different nodal efficiency in the
posterior cingulate cortex and several
prefrontal brain regions between RGD
and aMCI.

Daianu et al.,
2015 [100] DTI

42 AD
110 MCI
50 HC

68 regions in
FreeSurfer FN Binary

(1) AD affected the low degree brain
regions, rather than the rich club
comprising the high degree brain
regions.
(2) Global connectivity of AD was
disrupted.
(3) Detecting network differences of
MCI/HC and AD/HC using the
normalized rich club coefficient.
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Table 2: Continued.

Study Modality Subjects Node definition Edge
definition Network type Main findings

Wang et al.,
2016 [101] DTI 26 AD

16 HC
90 regions in AAL

atlas FN Binary

(1) Higher small-world index in AD.
(2) Decreased global efficiency and
local efficiency in AD.
(3) Increased normalized shortest path
length and normalized clustering
coefficient in AD.

and several prefrontal regions. Daianu et al. [100]
constructed structural brain networks of 42 patients,
110 MCI patients, and 50 HCs and investigated the
rich club organization of networks of the three groups.
They found that AD affected the low-degree brain
regions, rather than the rich club comprising the
high degree brain regions; global connectivity of AD
was disrupted; the normalized rich club coefficient
could be used to detect brain network differences of
MCI/HC and AD/HC. To detect abnormal topolog-
ical organization of structural brain networks of AD
patients, Wang et al. [101] used DTI data to construct
structural brain networks of 26 AD patients and 16
HCs. They found that although both groups showed
small-world property, the AD group exhibited higher
small-world index than theHCgroup. In addition, the
AD group displayed decreased global efficiency and
local efficiency and increased normalized shortest
path length and normalized clustering coefficient.

4.1.2. Functional Brain Networks in AD. Functional brain
networks of human beings can be constructed using fMRI
and EEG/MEG. In this section, we review recent progress in
analyzing the networks based on fMRI and EEG/MEG in AD
as shown in Table 3.

(i) Using fMRI: Supekar et al. [88] constructed func-
tional brain networks of 21 AD patients and 18 HCs
using task-free fMRI. They found that, in the low
frequency band, 0.01–0.05Hz, the AD group had
lower clustering coefficient than HCs, which cause
loss of small-world property in AD. Specifically, they
found that clustering coefficients in the left and right
hippocampus in AD were lower than HC while in
the left and right precentral gyrus they were not
significantly different. To investigate whether aMCI
patients disrupt the topological structure of brain
networks, Wang et al. [89] constructed functional
brain networks of aMCI patients. Compared with
HCs, they found decreased functional connectivity
and increased path length in the frequency bands,
0.031–0.063Hz, in aMCI. Brier et al. [85] used path
length, clustering coefficient, and modularity to
investigate the topology properties of functional brain
networks of AD patients (Clinical Dementia Rating
(CDR) = 1). They constructed different functional
brain networks for participants with CDR = 0, partic-
ipants with CDR= 0.5, and participants with CDR= 1.

They found decreased clustering coefficient andmod-
ularity with increasing CDR, but path length was not
significantly different. Golbabaei et al. [86] used the
local and global measures to assess functional brain
networks of AD patients. They found decreased clus-
tering coefficient and global efficiency and increased
characteristic path length in AD compared with HC.
In addition, AD patients exhibited decreased node
strength, local clustering coefficient, and local effi-
ciency and increased local characteristic path length
in olfactory, hippocampus, parahippocampal, amyg-
dala, and superior parietal gyrus.

(ii) Using EEG/MEG: Buldú et al. [34] constructed func-
tional brain networks of MCI patients by using
MEG data during a memory task in five frequency
bands: 𝛼1 (8–11Hz), 𝛼2 (11–14Hz), 𝛽1 (14–25Hz),𝛽2 (25–35Hz), and 𝛾 (35–45Hz). They found that
the MCI group exhibited an enhancement of the
connection strength, which demonstrated that mem-
ory processing of MCI patients needs higher energy.
In particular, the MCI group also showed lower
normalized clustering coefficient and characteristic
path length. de Haan et al. [21] used MEG data to
explore functional brain network integrity in AD,
focusing on network connectivity, synchronizability,
and node centrality. They found a loss of network
connectivity and altered synchronizability in most
frequency bands and demonstrated a low centrality
of the left temporal region in the theta band in
AD. To clarify these two problems, how functional
connectivity is affected in AD subgroups of disease
severity and how network hubs change, Engels et al.
[103] used EEG data to investigate functional brain
networks of three subgroups of AD patients based
on disease severity: mild AD (mi-AD), moderate AD
(mo-AD), and severe AD (se-AD). They had three
main findings: decreased functional connectivitywith
increasing AD severity in the alpha band; increased
betweenness centrality with increasing AD sever-
ity in all regions (except for posterior); decreased
hub regions in posterior regions and increased hub
regions in most anterior regions with increasing AD
severity. To investigate the underlying alteration of
the high-level visual (HLV) networks in AD patients,
late MCI (LMCI) patients, and early MCI (EMCI)
patients, Deng et al. [104] constructed HLV networks
of “where” visions across groups. In their study, the
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Table 3: Overview of functional brain network studies in AD.

Study Modality Subjects Node
definition Edge definition Network

type Main findings

Supekar et al.,
2008 [88] fMRI 21 AD

18 HC
90 regions in
AAL atlas

Wavelet
correlation Weighted

(1) Compared with HC, the loss of
small-world property characterized by a
lower clustering coefficient in AD in low
frequency band: 0.01–0.05Hz.
(2) Lower clustering coefficients in the left
and right hippocampus in AD.

Wang et al.,
2013 [89] fMRI 37 aMCI

47 HC

1024 regions
in H-1024
[102]

Wavelet
correlation Weighted

(1) Decreased functional connectivity in the
frequency band, 0.031–0.063Hz, in aMCI.
(2) Increased path length in aMCI.

Brier et al., 2014
[85] fMRI

31
CDR 1
90

CDR 0.5
205

CDR 0

160 regions
[61]

Pearson
correlation Binary

(1) Reduced clustering coefficient and
modularity with increasing CDR.
(2) No significant differences in path length
among participants with different CDR.

Golbabaei et
al., 2016 [86] fMRI 21 AD

21 HC
90 regions in
AAL atlas

Pearson
correlation Weighted

(1) Decreased clustering coefficient and
global efficiency and increased
characteristic path length in AD.
(2) Decreased node strength, local
clustering coefficient, and local efficiency
and increased local characteristic path
length in olfactory, hippocampus,
parahippocampal, amygdala, and superior
parietal gyrus in AD.

Buldú et al.,
2011 [34] MEG 19 AD

19 HC 148 sensors Synchronization
likelihood Weighted

(1) Higher connection strength in MCI.
(2) Lower normalized clustering coefficient
and characteristic path length in MCI.

de Haan et al.,
2012 [21] MEG 18 AD

18 HC 149 channels Synchronization
likelihood Weighted

(1) Loss of network connectivity and
altered synchronizability in most frequency
bands in AD.
(2) Low centrality of the left temporal
region in the theta band in AD.

Engels et al.,
2015 [103] EEG

117
se-AD
96

mo-AD
105

mi-AD
133 HC

21 channels Phase lag index Weighted

(1) Decreased functional connectivity with
increasing AD severity in the alpha band.
(2) Increased betweenness centrality with
increasing AD severity in all regions
(except for posterior).
(3) Decreased hub regions in posterior
regions and increased hub regions in most
anterior regions with increasing AD
severity.

Deng et al.,
2016 [104] EEG

30 AD
35 LMCI
52 EMCI
44 HC

25 regions Wavelet
correlation Binary

(1) Increased clustering coefficient and
longer characteristic path length in AD
compared with HC.
(2) No significant difference of clustering
coefficient and characteristic path length
between EMCI and HC and between LMCI
and HC.

ADgroup showed increased clustering coefficient and
longer characteristic path length than the HC group.
In addition, compared with the HC group, the LMCI
and EMCI groups had no significant difference in
terms of clustering coefficient and characteristic path
length.

4.2. Schizophrenia. Schizophrenia (https://www.nimh.nih
.gov/health/publications/schizophrenia-booklet/index.shtml)
(SCZ) is a chronic and severe psychiatric disorder charac-
terized by hallucinations, delusions, and loss of initiative
and cognitive dysfunction. Patients with SCZ may seem like
losing touch with reality. Families and society are affected by

https://www.nimh.nih.gov/health/publications/schizophrenia-booklet/index.shtml
https://www.nimh.nih.gov/health/publications/schizophrenia-booklet/index.shtml


12 Complexity

SCZ, too. Many patients with SCZ have difficulty in doing a
job or caring for themselves, so they rely on others for help.
Approximately 8 out of 1,000 individuals have SCZ in their
lifetime. In principle, exploring the pathological mechanism
of SCZ is a key step in the diagnosis and treatment of
SCZ. Some existing studies have demonstrated that the
pathological mechanism of SCZ is related to abnormal
structural and functional brain networks [47, 160–162].

4.2.1. Structural Brain Networks in SCZ. Structural neu-
roimaging data, such as sMRI and dMRI, have been widely
used in the structural brain network study of SCZ. In this
section, we review recent progress in analyzing the structural
brain networks based on sMRI and dMRI in SCZ as shown in
Table 4.

(i) Using sMRI: Bassett et al. [71] used interregional
covariation of gray matter volume as structural con-
nectivity to construct structural brain networks of 259
HCs and 203 SCZ patients. In their study, the cortical
cortex was divided into multimodal, unimodal, and
transmodal. They found that, in the HC group, the
three cortical divisions had small-world property, the
multimodal network was hierarchy characterized by
frontal hubs with low clustering coefficient, and the
transmodal network was assortative. In addition, in
the SCZ group, abnormal multimodal network orga-
nization showed reduced hierarchy, the loss of frontal
and the emergence of nonfrontal hubs, and increased
connection distance. Zhang et al. [72] hypothesized
that the core symptoms of SCZ originate from the
inability to integrate information transmission segre-
gated across different brain regions. To demonstrate
this hypothesis, they constructed structural brain
networks of SCZ patients using the cortical thickness
measurement and found increased characteristic path
length and clustering coefficient in the SCZ group
compared with the HC group. Moreover, they found
reduced nodal centrality in several regions of the
default network and increased nodal centrality in
primary cortex and paralimbic cortex regions in SCZ.
To investigate whether developmental abnormalities
associated with SCZ occur in the neonatal stage, Shi
et al. [105] constructedmorphological brain networks
of 26 neonates who were at genetic risk for SCZ and
found that although the SCZ group exhibited small-
world topology, the SCZ group had lower global
efficiency, longer connection distance, and fewer
number of hub nodes with higher betweenness. Tijms
et al. [106] constructed more refined structural brain
networks of high risk SCZ (HR-SCZ) by using a 6 ×6 × 6mm3 cube as a node. They found lower path
length in the bilateral inferior frontal gyri, left pos-
terior cingulate region, and superior temporal gyrus
and lower clustering coefficient in the right medial
superior frontal gyrus, right insula, right fusiform
gyrus, left occipital gyrus, and right temporal regions
in HR-SCZ compared with HC.

(ii) Using dMRI: Zalesky et al. [107] used corticocortical
anatomical connectivity at the scale of axonal fiber
bundles to construct structural brain networks of 74
SCZ patients and 32 HCs. They found that although
the SCZ group exhibited small-world topology, the
SCZ group had lower global efficiency. In addition,
they found lower node degree in medial frontal,
parietal/occipital, and the left temporal lobe. To
test whether connectivity disturbances are associated
with familial vulnerability for SCZ, Collin et al.
[108] constructed structural brain networks of 40
SCZ patients, 54 unaffected siblings of SCZ patients,
and 51 HCs using DTI data. They found reduced
connectivity between rich club hubs across groups,
which was lowest in the SCZ group, intermediate
in the SCZ siblings group, and highest in the HC
group. Moreover, in the SCZ group, they found that
lower levels of rich club connectivity were associated
with longer duration of illness and worse overall
functioning. To investigate alterations in hemispheric
white matter (WM) topology in SCZ, Sun et al. [109]
constructed weighted hemispheric brain anatomical
networks of SCZ patients and HCs. They found that
although the hemispheric networks showed small-
world property, the hemispheric-independent deficit
of global integration was significantly different in
SCZ. Furthermore, compared with the HC group,
the SCZ group had longer characteristic path length,
lower global efficiency, and reduced asymmetric
nodal efficiency in several frontal regions and the
hippocampus. Later, Sun et al. [109] continued to
investigate alterations in the topological structure
of brain anatomical networks using DTI data in
SCZ. They constructed weighted brain anatomical
networks of 31 SCZ patients and 28 HCs using
deterministic tractography and found similar results
to the previous study that the SCZ group had small-
world property and that, compared with HCs, the
SCZ group had longer characteristic path length and
lower global efficiency and was significantly different
in the independent deficit of global integration.

4.2.2. Functional Brain Networks in SCZ. fMRI and EEG/
MEG have been widely used in the functional brain network
study of SCZ. In this section, we review recent progress in
analyzing the functional brain networks based on fMRI and
EEG/MEG in SCZ as shown in Table 5.

(i) Using fMRI: Lynall et al. [111] measured aspects of
both functional connectivity and functional network
topology of SCZ patients to test whether SCZ is a dis-
order of connectivity. They found decreased strength
of functional connectivity and increased diversity of
functional connections in SCZ patients. Specifically,
they found reduced clustering coefficient and small-
world index, reduced probability of high degree
hubs, and increased robustness in the SCZ group.
Furthermore, the SCZ group had reduced degree and
clustering coefficient inmedial parietal, premotor and
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Table 4: Overview of structural brain network studies in SCZ.

Study Modality Subjects Node
definition Edge definition Network type Main findings

Bassett et al.,
2008 [71] sMRI 203 SCZ

259 HC
104 regions in
Pick atlas

Partial correlation
based on gray
matter volume

Binary

(1) The multimodal network was
hierarchy and the transmodal network
was assortative in HC.
(2) Abnormal multimodal network
organization showed reduced
hierarchy, the loss of frontal and the
emergence of nonfrontal hubs, and
increased connection distance in SCZ.

Zhang et al.,
2012 [72] sMRI 101 SCZ

101 HC
78 regions in
AAL atlas

Partial correlation
based on cortical

thicknesses
Binary

(1) Increased characteristic path
length and clustering coefficient in
SCZ.
(2) Reduced nodal centrality in several
regions of the default network in SCZ.
(3) Increased nodal centrality in
primary cortex and paralimbic cortex
regions in SCZ.

Shi et al., 2012
[105] sMRI 26 SCZ

26 HC
90 regions in
AAL atlas

Pearson
correlation based
on gray matter

volume

Binary

(1) Lower global efficiency in SCZ.
(2) Longer connection distance in
SCZ.
(3) Fewer number of hub nodes with
higher betweenness in SCZ.

Tijms et al.,
2015 [106] sMRI

144
HR-SCZ
36 HC

6 × 6 ×
6mm3 cubes

The similarity of
grey matter
structure

Binary

(1) Lower path length in the bilateral
inferior frontal gyri, left posterior
cingulate region, and superior
temporal gyrus in HR-SCZ.
(2) Lower clustering coefficient in the
right medial superior frontal gyrus,
right insula, right fusiform gyrus, left
occipital gyrus, and right temporal
regions in HR-SCZ.

Zalesky et al.,
2011 [107] DTI 74 SCZ

32 HC
82 regions in
AAL atlas FN Binary

(1) Lower global efficiency in SCZ.
(2) Lower node degree in medial
frontal, parietal/occipital, and the left
temporal lobe in SCZ.

Collin et al.,
2014 [108] DTI

40 SCZ
54 SCZ
siblings
51 HC

68 regions in
FreeSurfer FN Weighted

(1) Reduced connectivity between rich
club hubs (i.e., lowest in SCZ,
intermediate in SCZ siblings, and
highest in HC).
(2) Lower levels of rich club
connectivity related to longer duration
of illness and worse overall
functioning.

Sun et al.,
2015 [109] DTI 116 SCZ

66 HC
90 regions in
AAL atlas FN Weighted

(1) Significantly different in the
hemispheric-independent deficit of
global integration in SCZ.
(2) Longer characteristic path length
and lower global efficiency in SCZ.
(3) Reduced asymmetric nodal
efficiency in several frontal regions
and the hippocampus in SCZ
compared with HC.

Sun et al.,
2016 [110] DTI 31 SCZ

28 HC
90 regions in
AAL atlas FN × FA Weighted

(1) Significantly different in the
independent deficit of global
integration in SCZ compared with
HC.
(2) Longer characteristic path length
and lower global efficiency in SCZ.



14 Complexity

Table 5: Overview of functional brain network studies in SCZ.

Study Modality Subjects Node
definition Edge definition Network type Main findings

Lynall et al.,
2010 [111] fMRI 12 SCZ

15 HC
72 regions in
AAL atlas Wavelet correlation Binary

(1) Reduced clustering coefficient and
small-world index, reduced probability of
high degree hubs, and increased
robustness in SCZ.
(2) Reduced degree and clustering
coefficient in medial parietal, premotor
and cingulate, and right orbitofrontal
cortical regions in SCZ.

Su et al., 2015
[112] fMRI 49 SCZ

28 HC
90 regions in
AAL atlas Pearson correlation Weighted

(1) Lower global efficiency in SCZ.
(2) The severity of psychopathology,
negative symptoms, and depression and
anxiety symptoms were related to global
efficiency in SCZ.

Hadley et al.,
2016 [113] fMRI 32 SCZ

32 HC
278 regions

[114] Wavelet correlation Binary

(1) Reduced global efficiency and
increased clustering coefficients in SCZ.
(2) Aberrant functional integration and
segregation in SCZ.

Ganella et al.,
2017 [115] fMRI

42
TR-SCZ
42 HC

116 regions in
AAL atlas Pearson correlation Binary

(1) Reduced global brain functional
connectivity and reduced strength in
frontotemporal, frontooccipital, and
temporooccipital connections in TR-SCZ.
(2) Reduced global efficiency and
increased local efficiency in TR-SCZ.

Jhung et al.,
2013 [116] EEG

12 SCZ
13 UHR
13 HC

64 channels Synchronization
likelihood Binary

(1) Reduced small-world property in the
theta band during the working memory
task in SCZ compared with HC.
(2) The small-world index of the UHR
was intermediate value among SCZ,
UHR, and HC during the working
memory task.

Shim et al.,
2014 [35] EEG 34 SCZ

34 HC
314 dipole
sources

Phase locking
value Weighted

(1) Reduced clustering coefficients and
increased path lengths in SCZ.
(2) The severity of SCZ symptoms was
negatively correlated with the clustering
coefficient and positively correlated with
path length.

Yin et al.,
2017 [87] EEG

14
P-SCZ
14

N-SCZ
14 HC

32 electrodes Mutual
information Binary

(1) Smaller clustering coefficient, larger
average characteristic path length, lower
global efficiency, lower local efficiency,
and smaller degrees in SCZ.
(2) SCZ patients had fewer information
interactions than HCs, and P-SCZ had
more information interactions than
N-SCZ.

cingulate, and right orbitofrontal cortical regions. To
clarify the correlation between brain network effi-
ciency and SCZ symptoms, Su et al. [112] constructed
functional brain networks of 49 SCZ patients and 28
HCs and found that the SCZ group had lower global
efficiency than the HC group. Moreover, they also
found that the severity of psychopathology, negative
symptoms, depression, and anxiety symptoms were
related to global efficiency in SCZ. To test whether
the balance between functional integration and segre-
gation of brain networks is impaired in SCZ, Hadley
et al. [113] constructed functional brain networks of

32 SCZ patients and 32 HCs. They found reduced
global efficiency and increased clustering coefficients
in SCZ. Since the global efficiency is a measure of
functional integration and the clustering coefficient
is a measure of functional segregation, their findings
demonstrated aberrant functional integration and
segregation in SCZ. To explore disruptions in func-
tional connectivity and altered efficiency of functional
brain networks in “treatment-resistant” SCZ (TR-
SCZ), Ganella et al. [115] constructed functional brain
networks of 42 TR-SCZ patients and 42 HCs. They
found reduced global brain functional connectivity
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and reduced strength in frontotemporal, frontooccip-
ital, and temporooccipital connections in TR-SCZ. In
addition, they found reduced global efficiency and
increased local efficiency in TR-SCZ.

(ii) Using EEG/MEG: Jhung et al. [116] constructed func-
tional brain networks of 13 individuals at ultrahigh
risk (UHR) for psychosis, 12 SCZ patients, and 13HCs
to investigate the small-world functional networks
across groups. They found that, compared with HCs,
SCZ patients had reduced small-world property in
the theta band during a working memory task. Fur-
thermore, they found that the small-world index of
the UHR during the working memory task showed
intermediate value between those of HC and SCZ.
Subsequently, Shim et al. [35] investigated small-
world functional networks during auditory oddball
tasks and their relationswith the severity of symptoms
in SCZ. They found reduced clustering coefficients
and increased path lengths in SCZ. This finding
showed disrupted small-world functional network in
SCZ. In addition, the severity of SCZ symptoms was
negatively correlated with the clustering coefficient
and positively correlated with path length. To test
whether positive SCZ (P-SCZ) had more information
interaction and negative SCZ (N-SCZ) had less infor-
mation interaction between brain regions compared
with HC, Yin et al. [87] used EEG data to constructed
functional brain networks of P-SCZ patients, N-SCZ
patients, and HCs. They found smaller clustering
coefficient, larger average characteristic path length,
lower global efficiency, lower local efficiency, and
smaller degrees in SCZ and concluded that SCZ
patients had fewer information interactions than
HCs, and P-SCZ had more information interactions
than N-SCZ.

4.3. Parkinson’s Disease. Parkinson’s disease (PD) is the sec-
ond most common progressive neurodegenerative disorder,
trailing only AD [163, 164]. Advances in neuroimaging
techniques and electrophysiological techniques are rapidly
expanding the complexity of neurophysiologic understand-
ing of PD. These techniques help to better understand the
neurophysiologic mechanisms of PD and its treatments.

4.3.1. Structural Brain Networks in PD. The study of struc-
tural brain networks provides another perspective for PD. In
this section, we review recent progress in analyzing the
structural brain networks based on sMRI and dMRI in PD
as shown in Table 6.

(i) Using sMRI: to investigate the topological organiza-
tion of PD patients, Zhang et al. [117] constructed
morphological brain networks of PD patients. In their
study, PD patients showed increased global efficiency
and local efficiency, increased nodal local efficiency
in several regions, decreased local nodal efficiency in
several regions, and increased global nodal efficiency
in several regions. Pereira et al. [118] used global
measures and regional measures to investigate the

topology structure of structural brain networks of 123
PDpatients and 56HCs. In their study, to test whether
MCI is associated with disruption in structural brain
networks, 123 PD patients were classified into 33 PD
patients with MCI (PD-MCI) and 90 PD patients
with HC (PD-HC) using the Movement Disorders
Society Task Force criteria. They found that, com-
pared with the HC group, the PD-MCI group had
reduced connectivity strength between cortical and
subcortical regions. In addition, they found that,
compared with PD-HC patients and HCs, PD-MCI
patients had longer characteristic path length and
reduced global efficiency and lower regional effi-
ciency in frontal and parietal regions. Specifically,
both PD-MCI and PD-HC had a reorganization of
the highly connected regions in the brain networks.
To investigate the topological differences of male PD
(PD-M) patients and female PD (PD-F) patients,
Yadav et al. [119] constructed structural brain network
across groups by using cortical thickness. In their
study, compared with PD-F patients, PD-M patients
showed lower connectivity strength and clustering
coefficients and longer path length. In addition, com-
pared with PD-F patients, PD-M patients exhibited
lower nodal betweenness in left caudalmiddle frontal,
left rostralmiddle frontal, and right parahippocampal
regions. Moreover, hubs of the PD-M group were
right fusiform and right isthmus cingulate region
and left inferior temporal and left rostral anterior
cingulate, while hubs of the PD-F group were right
parahippocampal, right superior temporal, and left
rostral middle frontal regions.

(ii) Using dMRI: to reveal topological changes in struc-
tural brain networks in PD patients, Li et al. [120]
used DTI data to construct structural brain net-
works of 35 PD patients and 26 HCs by using
deterministic tractography. They found that, com-
pared with HCs, PD patients had lower connec-
tivity strength in the feeder and local connections.
Furthermore, they found that, in the two modules,
the limbic/paralimbic/subcortical module and the
cognitive control/attention module, the PD group
had decreased connections compared with the HC
group. In addition, they found increased shortest path
length and decreased global efficiency in PD. To assess
whether structural topological brain network changes
are detectable in PD patients, Nigro et al. [121] used
centrality, segregation, and integration measures to
assess structural brain networks of PD patients. They
found decreased network strength, global efficiency,
and global clustering coefficient in PD patients com-
pared with HCs. In addition, both groups had 18 hub
regions, of which 14 are the same while the other 4 are
different.

4.3.2. Functional Brain Networks in PD. The study of func-
tional brain networks provides another perspective for PD.
In this section, we review recent progress in analyzing the



16 Complexity

Table 6: Overview of structural brain network studies in PD.

Study Modality Subjects Node
definition

Edge
definition Network type Main findings

Zhang et al.,
2015 [117] sMRI 16 PD

20 HC
264 regions
in [65]

Intracortical
similarity Binary

(1) Increased global efficiency and local
efficiency in PD.
(2) Increased nodal local efficiency in the
right inferior frontal gyrus (orbital part) and
precentral gyrus, left insula and post
cingulated cortex, and cerebellum in PD.
(3) Decreased local nodal efficiency in the
right Heschl’s gyrus and precuneus gyrus,
and bilateral medial superior frontal gyrus
in PD.
(4) Increased global nodal efficiency in the
right inferior occipital cortex, inferior
frontal gyrus (orbital part), precentral gyrus,
and Heschl’s gyrus in PD.

Pereira et al.,
2015 [118] sMRI

33
PD-MCI

90
PD-HC
56 HC

162 regions in
FreeSurfer

Pearson
correlation Binary

(1) Reduced connectivity strength between
cortical and subcortical regions in PD-MCI
compared to HC.
(2) Larger characteristic path length and
reduced global efficiency and lower regional
efficiency in frontal and parietal regions in
the PD-MCI group compared with other
two groups.
(3) A reorganization of the highly connected
regions in both PD-MCI and PD-HC.

Yadav et al.,
2016 [119] sMRI

43 PD-M
21 PD-F
46 HC

68 regions in
FreeSurfer

Pearson
correlation Binary

(1) Lower connectivity strength and
clustering coefficients and higher path
length in PD-M compared with PD-F.
(2) Lower nodal betweenness in left caudal
middle frontal, left rostral middle frontal,
and right parahippocampal regions in
PD-M compared with PD-F.
(3) Hubs were right fusiform and right
isthmus cingulate region and left inferior
temporal and left rostral anterior cingulate
in PD-M.
(4) Hubs were right parahippocampal, right
superior temporal, and left rostral middle
frontal regions in PD-F.

Li et al., 2017
[120] DTI 35 PD

26 HC
90 regions in
AAL atlas FA Weighted

(1) Lower connectivity strength in the feeder
and local connections in PD.
(2) Decreased connections in the two
modules: the limbic/paralimbic/subcortical
module and the cognitive control/attention
module in PD.
(3) Increased shortest path length and
decreased global efficiency in PD.

Nigro et al.,
2016 [121] DTI 21 PD

30 HC
90 regions in
AAL atlas FA × FN Weighted

(1) Decreased network strength, global
efficiency, and global clustering coefficient
in PD.
(2) 14 same hub regions and 4 different hub
regions between PD and HC.

functional brain networks based on fMRI and EEG/MEG in
PD as shown in Table 7.

(i) Using fMRI: to investigate the efficiency of func-
tional brain networks of PD patients, Skidmore et al.
[122] constructed functional brain networks of 14

PD patients and 15 HCs. They found decreased
global efficiency and decreased nodal efficiency in
the left supplementary motor cortex, contiguous
precentral regions, the calcarine cortices, secondary
visual regions, and the certain regions within the
cerebellum in PDpatients. Later, to investigate altered
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Table 7: Overview of functional brain network studies in PD.

Study Modality Subjects Node
definition

Edge
definition Network type Main findings

Skidmore et
al., 2011 [122] fMRI 14 PD

15 HC
116 regions in
AAL atlas

Wavelet
correlation Weighted

(1) Decreased global efficiency in PD.
(2) Decreased nodal efficiency the left
supplementary motor cortex, contiguous
precentral regions, the calcarine cortices,
secondary visual regions, and the certain
regions within the cerebellum in PD.

Göttlich et
al., 2013 [123] fMRI 37 PD

20 HC 343 regions
Zero-lag
Pearson

correlation
Binary

(1) Lower global efficiency in PD in PD.
(2) Increased connectivity within the
sensorimotor network and decreased
interaction of the visual network with
other brain modules in PD.
(3) Lower connectivity between the
cuneus and the ventral caudate, medial
orbitofrontal cortex, and the temporal
lobe.
(4) Decreased degree in the occipital lobe
and increased degree in the superior
parietal cortex, posterior cingulate gyrus,
supramarginal gyrus, and supplementary
motor area.

Luo et al.,
2015 [124] fMRI 47 PD

47 HC
200 regions
in [67]

Pearson
correlation Binary

(1) Lower clustering coefficient and local
efficiency in PD.
(2) Reduced node centralities and
connectivity strength in
temporal-occipital and sensorimotor
regions in PD.

Koshimori et
al., 2016 [125] fMRI 42 PD

23 HC
120 regions in

[61]
Pearson

correlation Binary

(1) Higher nodal degree in the right and
left dorsolateral prefrontal cortex in PD.
(2) Reduced local efficiency the right
mid-insula in PD.
(3) Reduced nodal betweenness centrality
in the right presupplementary motor area
in PD.

Olde
Dubbelink et
al., 2014 [126]

MEG 70 PD
21 HC

78 regions in
AAL atlas

Phase lag
index Weighted

(1) Lower local clustering coefficient with
preserved path length in the delta
frequency band in PD.
(2) Decreased local clustering coefficient
in multiple frequency bands with
decreased path length in the alpha2
frequency band in PD.

Utianski et
al., 2016 [127] EEG

18
PD-D
57

PD-HC
57 HC

8 epochs Phase lag
index Weighted

(1) Higher connectivity strength in the
theta band in PD-HC compared with HC.
(2) higher gamma, lambda, and
modularity in PD-HC compared with
HC.
(3) lower functional connectivity in the
alpha1 band in PD-D compared with
PD-HC.
(4) Lower gamma and lambda in the
alpha1 band and higher modularity in
both alpha bands in PD-D compared
with PD-HC.

brain functional connectivity of PD patients, Göttlich
et al. [123] constructed functional brain networks
of 37 PD patients and 20 HCs. They found lower
global efficiency in PD. Moreover, by analyzing brain

network modules, they found out only increased
connectivity within the sensorimotor network and
decreased interaction of the visual network with
other brain modules but also lower connectivity
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between the cuneus and the ventral caudate, medial
orbitofrontal cortex, and the temporal lobe in PD. In
addition, they found decreased degree in the occipital
lobe and increased degree in the superior parietal cor-
tex, posterior cingulate gyrus, supramarginal gyrus,
and supplementary motor area in PD. Subsequently,
Luo et al. [124] continued to investigate the topo-
logical organization of functional brain networks of
PD patients. They found lower clustering coefficient
and local efficiency in PD patients compared with
HCs. Moreover, they found reduced node centrality
and connectivity strength in temporal-occipital and
sensorimotor regions in PD patients. To investigate
functional changes in cognitive and sensorimotor
networks in PD patients, Koshimori et al. [125] used
nodal degree, local efficiency, and betweenness cen-
trality measures to assess functional brain networks
of PD patients. They found that, compared with HCs,
PD patients showed higher nodal degree in the right
and left dorsolateral prefrontal cortex, reduced local
efficiency the right mid-insula, and reduced nodal
betweenness centrality in the right presupplementary
motor area.

(ii) Using EEG/MEG: to explore the spatial organiza-
tion of alterations in functional connectivity between
brain regions, Olde Dubbelink et al. [126] used clus-
tering coefficient and shortest path length to measure
functional brain networks of 70 PD patients and 21
HCs. They found lower local clustering coefficient
with preserved path length in the delta frequency
band. Moreover, they found decreased local clus-
tering coefficient in multiple frequency bands with
decreased path length in the alpha2 frequency band.
To determine the differences between PD patients
who are healthy control (PD-HC) and HCs and
between PD-HC and PD dementia (PD-D), Utianski
et al. [127] used EEG data to construct functional
brain networks across groups. In their study, com-
pared with HCs, PD-HC patients showed higher con-
nectivity strength in the theta band but no differences
in other frequency bands. Moreover, PD-HC patients
exhibited higher gamma, lambda, and modularity
than HCs. Compared with the PD-HC group, the
PD-D group showed lower functional connectivity,
gamma, and lambda in the alpha1 band and higher
modularity in both alpha bands.

4.4. Multiple Sclerosis. Multiple sclerosis (MS) is an inflam-
matory and degenerative disease of the central nervous
system (CNS). It is characterized by multiple lesions mainly
affecting the WM, accompanying structural and functional
disconnection between various regions in the CNS, resulting
in kinds of signs and symptoms.

4.4.1. Structural Brain Networks in MS. The study of struc-
tural brain networks provides another perspective for MS.
In this section, we review recent progress in analyzing the

structural brain networks based on sMRI and dMRI in MS
as shown in Table 8.

(i) Using sMRI: to investigate the correlation between
the WM lesion load and the topological efficiency of
structural brain networks in MS patients, He et al.
[128] divided all MS patients into six subgroups based
on corresponding total WM lesion loads (TWMLL)
and constructed structural brain networks across
groups. They found decreased integrated absolute
local and global efficiency and decreased integrated
relative local efficiency with increasing TWMLL in
MS. Tewarie et al. [129] constructed structural brain
networks based on cortical thicknesses to investigate
the topological differences of MS patients and HCs.
They found higher normalized clustering coefficient
and higher normalized shortest path length in MS.

(ii) Using dMRI: to investigate the alterations in the
topological organization of the WM structural net-
works, Shu et al. [130] used DTI and deterministic
tractography to constructed the WM structural net-
works of 39 MS patients and 39 HCs. They found
that the MS patients and the HCs showed efficient
small-world property in their WM structural net-
works. Moreover, compared with HCs, MS patients
had decreased global efficiency and decreased local
efficiency in the sensorimotor, visual, default-mode,
and language regions. Later, Shu et al. [132] continued
to investigate the topological alterations of structural
networks in 41 clinically isolated syndrome (CIS)
patients, 32 MS patients, and 35 HCs. They found
that, compared with HCs, both CIS and MS patients
showed decreased network strength, global and local
efficiency, and clustering coefficient and increased
shortest path length. Moreover, compared with the
HCs, the MS patients exhibited increased gamma
and sigma, and, compared with the CIS patients, the
MS patients exhibited reduced network strength and
global and local efficiency and increased shortest path
length, gamma, and sigma. To explore the underlying
brain mechanisms of major depressionMS (MD-MS)
patients and nondepressed MS (ND-MS) patients,
Nigro et al. [131] usedDTI data to construct structural
brain networks across groups. In their study, both
MS patient groups showed small-world property. In
addition, MS patients exhibited increased path length
compared with HCs, and MD-MS patients showed
increased local path length in the right hippocampus
and right amygdala compared with ND-MS patients
and HCs. To investigate changes in structural con-
nectivity in MS, Llufriu et al. [133] used FA values
as connectivity strength between brain regions to
construct structural brain networks of 72MS patients
and 38 HCs. In their study, compared with HCs,
MS patients showed decreased transitivity and global
efficiency and increased path length. Moreover, MS
patients displayed decreased nodal strength in 26 of
84 gray matter regions and increased betweenness
centrality in right pallidum and left insula.
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Table 8: Overview of structural brain network studies in MS.

Study Modality Subjects Node
definition Edge definition Network type Main findings

He et al.,
2009 [128] sMRI 102 MS

42 HC 54 regions

Pearson
correlation
based on
cortical

thicknesses

Binary

(1) Decreased integrated absolute local
and global efficiency with increasing
TWMLL in MS.
(2) Decreased integrated relative local
efficiency with increasing TWMLL inMS.

Tewarie et al.,
2014 [129] sMRI 102 MS

42 HC
78 regions in
AAL atlas

Pearson
correlation
based on
cortical

thicknesses

Weighted

(1) Higher normalized clustering
coefficient in MS.
(2) Higher normalized shortest path
length in MS.

Shu et al.,
2011 [130] DTI 39 MS

39 HC
90 regions in
AAL atlas FN Weighted

(1) Decreased global efficiency in MS.
(2) Decreased local efficiency in the
sensorimotor, visual, default-mode, and
language areas in MS.

Nigro et al.,
2015 [131] DTI

20
MD-MS

22
ND-MS
16 HC

90 regions in
AAL atlas FN Weighted

(1) Increased path length in MS patients
compared with HCs.
(2) Increased local path length in the
right hippocampus and right amygdala in
MD-MS compared with ND-MS and HC.

Shu et al.,
2016 [132] DTI

41 CIS
32 MS
35 HC

90 regions in
AAL atlas FN Weighted

(1) Decreased network strength, global
and local efficiency, and clustering
coefficient and increased shortest path
length in both CIS and MS.
(2) Increased gamma and sigma in MS
compared with HC.
(3) Reduced network strength and global
and local efficiency and increased
shortest path length, gamma, and sigma
in MS compared with CIS.

Llufriu et al.,
2017 [133] DTI 72 MS

38 HC
84 regions in
FreeSurfer FA Weighted

(1) Decreased transitivity and global
efficiency and increased path length in
MS.
(2) Increased betweenness centrality in
right pallidum and left insula in MS.
(3) Decreased nodal strength in 26 of the
84 brain regions in MS.

4.4.2. Functional Brain Networks in MS. The study of func-
tional brain networks provides another perspective for MS.
In this section, we review recent progress in analyzing the
functional brain networks based on fMRI and EEG/MEG in
MS as shown in Table 9.

(i) Using fMRI: to investigate the modularity of MS
patients, Gamboa et al. [134] constructed functional
brain networks of MS patients and found increased
modularity in MS patients compared with HCs. To
explore the topological organization of functional
brain network connectivity, Rocca et al. [135] con-
structed functional brain networks of 246MSpatients
and 55 HCs. They found that, compared with HCs,
MS patients lost hubs in the superior frontal gyrus
and precuneus and anterior cingulum in the left
hemisphere and showed new hubs in the left temporal
pole and cerebellum, located at different hemisphere
for basal ganglia hubs. Furthermore, MS patients
exhibited decreased nodal degree in the bilateral

caudate nucleus and right cerebellum. Shu et al.
[132] constructed functional networks inCIS patients,
MS patients, and HCs to investigate the topological
alterations across groups. They found that, compared
with the HCs, the MS patients showed decreased
local efficiency and clustering coefficient. Moreover,
they found that the CIS group had no significant
differences with the other two groups in any global
metrics. Later, Liu et al. [136] continued to investigate
the topological organization of CIS patients and
MS patients. They found that CIS patients showed
intermediate global efficiency between MS patients
and HCs, and global efficiency of MS patients was the
lowest. In addition, MS patients exhibited lower local
efficiency than HCs.

(ii) Using EEG/MEG: to investigate functional connec-
tivity changes in MS, Schoonheim et al. [137] used
MEG data to construct functional brain networks of
MS patients. In their study, compared with HCs, MS
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Table 9: Overview of functional brain network studies in MS.

Study Modality Subjects Node
definition Edge definition Network type Main findings

Gamboa et
al., 2014 [134] fMRI 16 MS

20 HC
116 regions in
AAL atlas

Pearson
correlation Binary (1) Increased modularity in MS.

Rocca et al.,
2016 [135] fMRI 246 MS

55 HC
116 regions in
AAL atlas

Pearson
correlation Binary

(1) Lost hubs in superior frontal gyrus,
precuneus, and anterior cingulum in the
left hemisphere in MS.
(2) New hubs in the left temporal pole
and cerebellum in MS.
(3) Different hemisphere for basal ganglia
hubs in MS.
(4) Decreased nodal degree in the
bilateral caudate nucleus and right
cerebellum in MS.

Shu et al.,
2016 [132] fMRI

41 CIS
32 MS
35 HC

90 regions in
AAL atlas

Pearson
correlation Weighted

(1) Decreased local efficiency and
clustering coefficient in MS compared
with HC.
(2) No significant differences with the
other two groups in any global metrics in
the CIS group.

Liu et al.,
2017 [136] fMRI

35 CIS
37 MS
36 HC

90 regions in
AAL atlas

Pearson
correlation Weighted

(1) CIS showed intermediate global
efficiency between MS and HC.
(2) Lower global efficiency and local
efficiency in MS compared with HC.

Schoonheim
et al., 2013
[137]

MEG 34 MS
28 HC 137 channels Synchronization

likelihood Weighted

(1) Increased connectivity strength in
theta, lower alpha, and beta bands in MS.
(2) Decreased connectivity strength in
the upper alpha band in MS.
(3) Increased path length and clustering
coefficient in the lower alpha band in MS.

Tewarie et al.,
2014 [129] MEG 102 MS

42 HC
78 regions in
AAL atlas Phase lag index Weighted

(1) Higher normalized path length in the
theta band in MS.
(2) Lower normalized clustering
coefficient in the alpha2 band in MS.

patients showed increased functional connectivity
strength in theta, lower alpha, and beta bands and
decreased functional connectivity strength in the
upper alpha band. Furthermore, MS patients exhib-
ited increased path length and clustering coefficient
in the lower alpha band compared with HCs. Later,
Tewarie et al. [129] constructed functional brain
networks of MS patients and HCs to investigate the
topological differences across groups. They found
higher normalized path length in the theta band and
lower normalized clustering coefficient in the alpha2
band in MS.

In addition to the above four brain disorders, brain net-
work analysis has also been applied to other brain disorders,
such as attention deficit/hyperactivity (ADHD) [165–167],
epilepsy [168–170], and autism [171–173].

5. Conclusions and Outlook

In summary, the development of noninvasive neuroimaging
and electrophysiological techniques (such as sMRI, dMRI,
fMRI, and EEG/MEG) has enabled us to construct human

brain structural and functional connectivity networks, while
the complex network analysis has revealed a number of
important topological properties hidden in the human brain
structural and functional networks, such as small-world
property, modularity, hubs, and rich club. The study of
complex brain networks will not only promote the con-
struction of the human brain connectome but also deepen
our understanding of the important issues such as the
information processing mode of the brain and the working
mechanism of various cognitive functions. Moreover, to
explore the brain network topology caused by brain disorder
abnormal changes, the methods with brain network analysis
have been applied to different brain disorder studies, such
as the above-mentioned four brain disorders in Section 4.
Brain network analysis not only provides a new perspective
for revealing the pathophysiologic mechanisms of brain
disorders at the system level, but also establishes some brain
network neuroimaging and electrophysiological markers to
describe different brain disorders. For example, for the above-
mentioned four brain disorders in Section 4, most findings
indicate that, compared with the HC group, the disorder
group exhibited decreased small-world index and decreased
global efficiency at the global level, while, at the local level, the
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disorder group showed the loss of hub nodes and decreased
local efficiency compared with the HC group. Therefore,
brain network analysis can provide important auxiliary guid-
ance for early diagnosis and treatment of brain disorders.

As can be seen from Section 4, although many findings
are obtained for a specific brain disorder after using brain
network analysis, parts of findings obtained by different
studies are not consistent or even opposite. For example,
Tijms et al. [96] found that, compared with the HC group,
the AD group exhibited decreased small-world index, while
Wang et al. [101] found that the AD group showed higher
small-world index compared with the HC group; Lynall
et al. [111] found that, compared with the HC group, the
SCZ group exhibited decreased clustering coefficient, while
Hadley et al. [113] found that the SCZ group showed increased
clustering coefficient compared with the HC group. One of
the main causes of the above similar opposite results is that
the experimental data is too small. However, although the
results of the different studies are opposite, a single property
cannot be used to determine whether there is a difference
between the disorder group and the HC group in the field
of brain network analysis. In general, in order to determine
the difference between the disorder group and the HC group,
multiple properties must be used to complete it. Hence, in
order to obtain more accurate brain network analysis results,
there aremany problems and challenges to be solved urgently
as follows:

(i) How to construct a brain network that conforms to
the working mechanism of the brain is a primary
problem in brain network analysis. In Section 2, we
introduce two basic elements of the brain network,
nodes and edges, and present a variety of their
common definitions, such as node definitions based
on different brain atlas and edge definitions based on
different correlations between two nodes.The various
existing node definitions in constructing brain net-
works can only reflect one aspect of the brain regions
themselves, such as cortical thickness and time series.
Similarly, a specific edge definition can also only
reflect one aspect of the connectivity between the
brain regions, such as the number of fibers and
Pearson correlation.Thus, how to evaluate the impact
of different nodes and edges on the brain network and
determine the most reasonable definition of nodes
and edges is a key problem, as well as an important
challenge in constructing the brain network.

(ii) Studies have shown that the brain structural and
functional network topology of most brain disorders
have abnormal changes, but there is still no unified
conclusion on the trends and amplitudes of the
brain network topology properties of various brain
disorders. For example, Shu et al. [132] used DTI
and fMRI to investigate the brain network topology
properties of MS, and the results are inconsistent
as shown in Table 5. Thus, it is urgent to solve the
problem of how to integrate multimodal data to
analyze and understand the pathophysiologic mech-
anisms of brain disorders, and establish reliable and

effective neuroimaging and electrophysiological diag-
nostic markers in brain network research.

(iii) The structure and function of a brain are insepara-
ble; the structure is the basis of function and the
function is the representation of the structure. It has
been shown that the structure and function of the
human brains are closely related [174, 175]. Thus,
it is challenging to combine the structure network
and function network of a brain for evaluating the
similarity and specificity of brain structure-function
network comprehensively and understanding the
effect of structural network organization on brain
function formation and brain function shaping on
brain structure.

(iv) The functional activity of a brain is a dynamic process,
and most existing functional networks only describe
the topological properties of brain function activity
in a certain period of time. Thus, how to construct a
dynamic brain function network to find the regularity
of the brain function topology properties with time
changes in a smaller time scale is one of the directions
of future brain network research. It can further
explore the mechanisms of brain real-time functional
activities.

(v) Because of their simplicity, many researchers focused
on the undirected brain networks. However, the
information transmission of each activity of a brain
is directional, and the undirected network analysis
is unable to obtain the results with the direction of
information flow. As the undirected network analysis
cannot reveal the direction of information transmis-
sion hidden in the brain structural and functional
networks, it cannot really reflect the real brain activ-
ities. In order to reflect the real brain activities and
for more in-depth understanding of the regularity
of the brain structural organization patterns and
functional activities, it is necessary to construct the
directional structural and functional brain networks
to understand the brain activities and to further reveal
how to transmit information in the brain activities.
How to construct effective directed brain networks
and how to carry out effective directed brain network
analysis are two important problems and challenges
for researchers.

(vi) As can be seen from several tables (Tables 2–9),
the sample sizes of most existing brain network
researches are too small, most of which are not more
than 100. Therefore, the results of brain network
analysis may be incomplete, or even wrong, which
to some extent restricts the development of brain
network analysis. Thus, in order to make the results
of brain network analysis closer to reality, the sample
size of the experimental data should be urgently
expanded.

(vii) Most brain network studies are based on a single
layer network. More recently, the multilayer network
studies [176–178] have also been proposed. Since
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multilayer networks can integrate different anatom-
ical/functional types of links or different frequency
bands, the multilayer network studies are likely to
become one of the most promising future research
directions.

Study of brain networks is a part of brain science, which
incorporates a wide range of disciplines such as neuroscience
and graph theory. It is reasonable to expect that brain network
analysis would bring more remarkable achievements in the
near future.
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and U. M. Krämer, “Altered resting state brain networks in
Parkinson’s disease,” PLoSONE, vol. 8, no. 10, Article ID e77336,
2013.

[124] C. Y. Luo, X. Y. Guo, W. Song et al., “Functional connectome
assessed using graph theory in drug-naive Parkinson’s disease,”
Journal of Neurology, vol. 262, no. 6, pp. 1557–1567, 2015.

[125] Y. Koshimori, S.-S. Cho, M. Criaud et al., “Disrupted nodal
and hub organization account for brain network abnormalities
in Parkinson’s disease,” Frontiers in Aging Neuroscience, vol. 8,
article no. 259, 2016.

[126] K. T. E. Olde Dubbelink, A. Hillebrand, D. Stoffers et al., “Dis-
rupted brain network topology in Parkinson’s disease: a longitu-
dinal magnetoencephalography study,” Brain, vol. 137, no. 1, pp.
197–207, 2014.

[127] R. L. Utianski, J. N. Caviness, E. C.W. van Straaten et al., “Graph
theory network function in parkinson’s disease assessed with
electroencephalography,” Clinical Neurophysiology, vol. 127, no.
5, pp. 2228–2236, 2016.

[128] Y. He, A. Dagher, Z. Chen et al., “Impaired small-world
efficiency in structural cortical networks in multiple sclerosis
associated with white matter lesion load,” Brain, vol. 132, no. 12,
pp. 3366–3379, 2009.

[129] P. Tewarie, M. D. Steenwijk, B. M. Tijms et al., “Disruption of
structural and functional networks in long-standing multiple
sclerosis,”Human BrainMapping, vol. 35, no. 12, pp. 5946–5961,
2014.

[130] N. Shu, Y. Liu, K. Li et al., “Diffusion tensor tractography reveals
disrupted topological efficiency in white matter structural
networks in multiple sclerosis,” Cerebral Cortex, vol. 21, no. 11,
pp. 2565–2577, 2011.

[131] S. Nigro, L. Passamonti, R. Riccelli et al., “Structural ’connec-
tomic’ alterations in the limbic system of multiple sclerosis



26 Complexity

patients with major depression,” Multiple Sclerosis Journal, vol.
21, no. 8, pp. 1003–1012, 2015.

[132] N. Shu, Y. Duan, M. Xia et al., “Disrupted topological organiza-
tion of structural and functional brain connectomes in clinically
isolated syndrome andmultiple sclerosis,” Scientific Reports, vol.
6, Article ID 29383, 2016.

[133] S. Llufriu, E. Martinez-Heras, E. Solana et al., “Structural
networks involved in attention and executive functions in
multiple sclerosis,” NeuroImage: Clinical, vol. 13, pp. 288–296,
2017.

[134] O. L. Gamboa, E. Tagliazucchi, F. von Wegner et al., “Working
memory performance of early MS patients correlates inversely
with modularity increases in resting state functional connectiv-
ity networks,” NeuroImage, vol. 94, pp. 385–395, 2014.

[135] M. A. Rocca, P. Valsasina, A. Meani, A. Falini, G. Comi, and M.
Filippi, “Impaired functional integration in multiple sclerosis: a
graph theory study,” Brain Structure and Function, vol. 221, no.
1, pp. 115–131, 2016.

[136] Y. Liu, H.Wang, Y. Duan et al., “Functional brain network alter-
ations in clinically isolated syndrome and multiple sclerosis: A
graph-based connectome study,” Radiology, vol. 282, no. 2, pp.
534–541, 2017.

[137] M. M. Schoonheim, J. J. G. Geurts, D. Landi et al., “Functional
connectivity changes in multiple sclerosis patients: A graph
analytical study of MEG resting state data,” Human Brain
Mapping, vol. 34, no. 1, pp. 52–61, 2013.

[138] N. A. Crossley, A. Mechelli, J. Scott et al., “The hubs of the
human connectome are generally implicated in the anatomy of
brain disorders,” Brain, vol. 137, no. 8, pp. 2382–2395, 2015.

[139] M. P. van den Heuvel and O. Sporns, “Network hubs in the
human brain,” Trends in Cognitive Sciences, vol. 17, no. 12, pp.
683–696, 2013.

[140] M. Rubinov and O. Sporns, “Complex network measures of
brain connectivity: Uses and interpretations,” NeuroImage, vol.
52, no. 3, pp. 1059–1069, 2010.

[141] M. A. Beauchamp, “An improved index of centrality,” Behav-
ioural Science, vol. 10, pp. 161–163, 1965.

[142] J. M. Anthonisse, “The rush in a directed graph,” Stichting
Mathematisch Centrum. Mathematische Besliskunde, no. BN
9/71, pp. 1–10, 1971.

[143] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[144] S. Achard and E. Bullmore, “Efficiency and cost of economical
brain functional networks,” PLoS Computational Biology, vol. 3,
no. 2, p. e17, 2007.

[145] V. Latora and M. Marchiori, “Efficient behavior of small-world
networks,” Physical Review Letters, vol. 87, no. 19, Article ID
198701, 2001.

[146] O. Sporns, C. J. Honey, and R. Kötter, “Identification and
classification of hubs in brain networks,” PLoS ONE, vol. 2, no.
10, Article ID e1049, 2007.

[147] M. E. J. Newman andM. Girvan, “Finding and evaluating com-
munity structure in networks,” Physical Review E: Statistical,
Nonlinear, and Soft Matter Physics, vol. 69, no. 2, Article ID
026113, pp. 1–26113, 2004.

[148] A. Fornito, A. Zalesky, and E. Bullmore, Fundamentals of Brain
Network Analysis, Academic Press, 2016.

[149] S. Zhou and R. J. Mondragón, “The rich-club phenomenon in
the internet topology,” IEEE Communications Letters, vol. 8, no.
3, pp. 180–182, 2004.

[150] V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani,
“Detecting rich-club ordering in complex networks,” Nature
Physics, vol. 2, no. 2, pp. 110–115, 2006.

[151] M. Kocher, E. Gleichgerrcht, T. Nesland et al., “Individual
variability in the anatomical distribution of nodes participating
in rich club structural networks,” Frontiers in Neural Circuits,
vol. 9, article no. 16, 2015.

[152] M. P. van den Heuvel and O. Sporns, “Rich-club organization
of the human connectome,”The Journal of Neuroscience, vol. 31,
no. 44, pp. 15775–15786, 2011.

[153] M. Senden, G. Deco, M. A. De Reus, R. Goebel, and M. P. Van
Den Heuvel, “Rich club organization supports a diverse set of
functional network configurations,” NeuroImage, vol. 96, pp.
174–182, 2014.

[154] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-
world” networks,”Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[155] M. D. Humphries, K. Gurney, and T. J. Prescott, “The brainstem
reticular formation is a small-world, not scale-free, network,”
Proceedings of the Royal Society of London B: Biological, vol. 273,
no. 1585, pp. 503–511, 2006.

[156] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.
Hwang, “Complex networks: structure and dynamics,” Physics
Reports, vol. 424, no. 4-5, pp. 175–308, 2006.

[157] A. Association, “2014 Alzheimers Disease Facts and Figures,”
Alzheimers & Dementia, vol. 10, no. 2, pp. e47–e92, 2014.

[158] R. C. Petersen, “Mild cognitive impairment as a diagnostic
entity,” Journal of Internal Medicine, vol. 256, no. 3, pp. 183–194,
2004.

[159] B.M. Tijms, A.M.Wink,W. deHaan et al., “Alzheimer’s disease:
connecting findings from graph theoretical studies of brain
networks,” Neurobiology of Aging, vol. 34, no. 8, pp. 2023–2036,
2013.

[160] M. P. Van Den Heuvel and A. Fornito, “Brain networks in
schizophrenia,” Neuropsychology Review, vol. 24, no. 1, pp. 32–
48, 2014.

[161] A. L. Wheeler and A. N. Voineskos, “A review of structural
neuroimaging in schizophrenia: From connectivity to connec-
tomics,” Frontiers in Human Neuroscience, vol. 8, article no. 653,
2014.

[162] R. Zhang, Q. Wei, Z. Kang et al., “Disrupted brain anatomical
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