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ABSTRACT

In this essay, I explore a metaphor in geometry for the debate between the unity and the

disunity of science, namely, the possibility of putting a global coordinate system (or a

chart) on a manifold.  I explain why the former is a good metaphor that shows what it
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means (and takes in principle) for science to be unified.  I then go through some of the

existing literature on the unity/disunity debate and show how the metaphor sheds light on

some of the views and arguments.

1 Introduction: the unity of science

By way of introduction, I shall explain in this section, in the simplest terms, what I

mean by a global unification in science.  To obtain precision, it is best to begin by way of

elimination.  I shall not consider unity of science as a political achievement, e.g. the

establishment of a global NASA; nor shall I consider it as a unification of a code of conduct

for scientific research; nor as a unified ideology: e.g. strict testability by experiments of

every hypothesis as the criterion for being scientific; nor as a purely methodological

unification, e.g. the fact that Hamiltonian differential equations are used both in physics

and economics does not imply that the two disciplines are unified; nor as a giant

conjunction of all true scientific theories; and so on.

I take the core concept of unity of science to be derived mainly from two sources:

the Carnapian (or logical positivist) reductionism: all scientific theories being reducible to a

theory of the observables; and physicalism: one theory for one physical world.  Surveying

the literature of the unity/disunity debate, which will be selectively examined in section 4,

one cannot fail to notice that the target notion of unity of science -- for a kind of explanatory

unification of scientific theories -- contains the following elements (cf. Oppenheim &

Putnam 1957).

[U1] A metaphysical postulate: the world -- at least the actual one --  is composed of a

limited number of kinds of constituents (including one kind).

[U2] A unified fundamental theory: a single theory that accounts for the behavior of the

fundamental constituents.
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[U3] Reductionism: a set of reductional statements (or bridge lawlike statements) that

connect statements of all other phenomena to the theory of the fundamental

constituents.

An example of [U1] would be that nature ultimately consists of particles and fields

(of a few kinds) and spacetime.  An example of [U2] consistent with the metaphysical

picture would be a set of terms describing all possible states of particles and fields in

spacetime -- i.e. their behavior -- and a set of lawlike statements in those terms expressing

laws that determine such behavior.  And an example of [U3] consistent with the above two

would be a finite set of statements that relate the theories for non-fundamental phenomena

to the theory of the fundamental constituents.  All phenomena are to be explained by the

fundamental laws via such reductional relations.  There are other possible images of unity

of science, such as the Carnapian notion to which I will return in section 4.  Suffice it to

say that mine, which is essentially derived from Oppenheim & Putnam's, rests on the belief

that if unification is to succeed, it will do so along or near the current trajectory of science.

It is also obvious -- judging from the current state of science -- that such a

unification can only be defended as a goal that science may reach in the distant future.  The

debate is essentially on the question of whether or not the above should be regarded as a

goal of science.  But whether we should regard something as such-and-such depends on

whether it can possibly be -- as a matter of metaphysics -- a such-and-such.  This paper

aims at providing an apt metaphor in geometry that illustrates the importance of the latter

question and the difficulty of answering it.

2 The coordination of a space

Ever since Descartes discovered the algebraic method of studying geometry, we

know that one needs to put a coordinate system on the geometric object one is studying

before one can subject it to any algebraic analysis.  Obviously, not all objects are suitable
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for coordination; and for the purpose of our metaphor, we begin with the topological

spaces, which, among other things, are connected and have well-defined open subsets.  A

topological space is a pair, <X, T>, where X is a set of points and T a subset of the power

set of X such that (i) the intersection of a finite number of members of T is also in T; (ii) the

union of an arbitrary number of elements in T is also in T; and (iii) both the null set and X

are in T.  A coordinate system, or a chart, of any open subset of X is a map (or function)

that sends every point in the subset to a unique tuple of numbers in Rn, where Rn = R × R

× ... × R, an n-fold Cartesian product of the real numbers.  This is how properties of

points -- i.e. geometric properties -- can be studied algebraically by relations among tuples

of numbers.  For instance, the chart for the 3-dimensional Euclidean space is the Cartesian

coordinate system, R3.

One may think that every manifold -- i.e. a topological space that can be covered by

charts -- can be covered by a single chart.  After all, if a manifold is coverable by a set of

charts, it may also be seen as coverable by a single chart, which is produced by extending

one chart to replace the rest.  This, however, is not true.  An illustrative example of the

failure of a single global chart is given by the case of coordinating an n-dimensional sphere,

Sn.  It can be proven that it is impossible to map Sn onto Rn with a single mapping

function.  I shall give the usual illustration of why it is the case (see Figure 1).  The easiest

way to see this is to imagine an (n+1)-dimensional space in which Sn lives, where in

Figure 1 the 2-dimensional surface of the page represents the (n+1)-dimensional space and

the 1-dimensional circle Sn.  We put Rn (R1 in Figure 1) at one point on Sn -- call it S -- as

its tangent space.  Then we pick the point on Sn directly opposite to this point, call it N, as

the vintage point from which we stereographically project every point on Sn to Rn.  Every

point of Sn can be so projected -- by φ -- onto a distinct point on Rn, except N, since the

projection line of N, if we can call it that, is parallel to Rn.

However, we can put another Rn at N as its tangent space and then we have another

chart -- R2 in Figure 1 -- that coordinates every point of Sn except S; and if we could use
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these two charts together, we would have completely 'covered' Sn.  That we can use the

two charts together is guaranteed by their compatibility, namely, a transformation, say,

from R2 to R1 with respect to the same open subset of Sn does not introduce distortion in

the coordinate description of the subset.  Mathematically, this property is reflected in the

requirement that the two charts are C∞-related, namely, for any non-empty intersection of

two arbitrary open subsets of Sn,  φ oψ −1 and  ψ oφ −1 are infinitely differentiable

functions.  The two charts, R1 and R2, are obviously C∞-related because φ and ψ are C∞

and since they are 1-1 onto maps, φ−1 and ψ−1 are also C∞.1
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Figure 1: The coordination of an n-dimensional sphere in an (n+1)-
dimensional space.

3 The analogy

Let us now explore what, as a metaphor, the above case in geometry may tell us

about the unity of science.  One must note first that this is strictly a metaphor; it is not a

geometric analysis of the structure of scientific theories.  The merit of such a metaphor
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depends of course on the strength of the analogy between the coordination of a space and

the epistemic representation of the world.  There is obviously a sense in which constructing

scientific theories to describe the phenomenal world is like constructing charts to coordinate

a manifold.  However, one must be careful about how to pick out that sense under which

the analogy holds.  Most importantly, the world -- which is the counterpart of a manifold in

this analogy -- should not be thought of as the physical world that contains nothing but the

fundamental stuff in spacetime.  Because that would be presupposing the truth of

reductionism, about which the metaphor is supposed to shed light on rather than

presuppose.  It, instead, should be viewed as the totality of all the actual phenomena or sets

of actual states of affairs.  Thus, different open subsets on a manifold is analogous to

different phenomena or different kinds of states of affairs; and, for instance, mechanical

phenomena should, at least from the outset, be considered as a distinct area from

thermodynamic ones.  And the overlapping of open subsets on a manifold should

correspond to the overlapping of areas of phenomena: mechanical phenomena overlap with

biological or social ones in the sense that biological as well as social systems also exhibit

mechanical properties (or are also mechanical systems).

Charts of open subsets on a manifold are then comparable to theories of different

phenomena, and when phenomena overlap different theories give alternative descriptions of

the same states of affairs, just like different charts give alternative coordinates to the same

set of points on the manifold.  By the overlapping of phenomena I mean nothing more than

the co-instantiation of sets of different properties -- i.e. different phenomena -- on the same

objects.  Analogous to the geometric fact that the same points may belong to different open

subsets and, therefore, be coordinated by different charts, the same objects may exhibit

different phenomena and, therefore, be characterized by different theories.  For example,

let us suppose that biological phenomena obtain in systems belonging to B and economic

phenomena in systems belonging to E, where B and E are respectively all and the only

systems that exhibit biological and economic phenomena.  B and E certainly overlap; but it



8

is not true that one contains the other (I am assuming that robotic societies may have

economies).  The two kinds of phenomena overlap -- as I defined it above -- in at least

human societies.

With such analogies in place, let us imagine that a group of people are given the

task of coming up with charts to coordinate an unknown physical object that is larger than

their sizes by many magnitudes.  Suppose that these people are only interested in the purely

geometric properties of this object; so what they are doing differs from a similar task in

geometry as instanced in the previous section not in essence but only in degrees of

approximation.  They divide themselves into several teams and disperse into several equally

distant locations on the object and begin charting or mapping.  Suppose again that from

where each team starts, the surface looks flat.  So they all begin with the straightforward

Cartesian coordinate system for the respective tangent spaces.  But as they move towards

one another's neighborhood regions, they discover that the Cartesian coordinate system

which fits so well at their own home-bases can no longer be used.  Their first instinct is

probably to try out other types of charts and see if more territory can be covered by a single

chart.  Let us suppose again that they obtain some success in doing this and by keeping on

inventing new charts -- i.e. using new mapping functions, they keep combining more and

more previously incombinable regions into one under a single chart.  (Let us remember that

a chart is an arbitrary function from a geometric object to Rn, where n is the number of

dimensions of the object.  So with enough ingenuity one may be able to do a lot more than

what the simple example given in the previous section shows.)

To make the long story short, if the object happens to be one that is geometrically

possible to be coordinated by a global chart, these geometers have every reason to believe

that a global chart for the whole object will one day be discovered.  The task may be

difficult or requires a time longer than any of these people could possibly survive, if the

object is geometrically complex and/or of an immense size, but we would not say that their

push for a global chart is mistaken or wrong-headed.  But on the other hand, if the object is
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something like Sn in the previous section, the task is impossible even though most of these

people's effort will be rewarded.  Prima facie, the same is true, mutatis mutandis, with

scientists looking for theories to describe and explain the phenomenal world.  The

metaphysical questions is: what is the 'geometry' of the phenomenal world?

What lessons if any can we draw from this metaphor?

I. It is obvious that if the analogy holds, whether or not science can be unified -- or

whether or not it should be a goal of science -- is not up to scientists and philosophers.  It

is determined by some properties of the world and some general properties concerning our

capacities of theory construction.  The failure of a global chart for a manifold is caused both

by the geometry of the manifold and the limitation of mapping functions.  Something

analogous should be true if unification is to be impossible.  However, this does not mean

that one has to be a realist in order to use this metaphor.  The 'world' of which a unified

theory is considered could be a world of 'experiences' or 'sense-data', if you will, and the

question of unification may still be determined by the properties of this world and the

limitation of our resources of theory construction.  Therefore, being an empiricist cannot

shield one from the above implications of this metaphor, nor can being an instrumentalist of

scientific theories, because as long as theories are used as instruments to make predictions

that have to answer to the world, whether or not they can be unified should still be a matter

of the world and of the possibilities of the instruments.  One has to be a conventionalist or a

social constructivist in order to escape this conclusion.  If the real world or the experiential

world is like a sphere and we are like its geometers, our attempt to understand our world

can never reach a global unification.

II. What happens if the geometric object is proven coordinatable by a global chart?

It does not follow at all that the global chart should always be used in the algebraic study of

the object, nor does it even follow that such a chart can always be found.  The mapping

function may be so complex that it is not practically discoverable or, even it is, not useful.

The analogous case for science should be obvious.  In fact, one may consider the
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following.  Suppose that physicalism is established by some metaphysical arguments and,

therefore, it is possible that the extended science of physics may have a single theory which

accounts and explains, token by token, the entire set of states of affairs that comprise the

phenomenal world.  Should all scientists give up whatever they are doing and begin the

pursuit and completion of such a unified theory?  Would such a theory be useful, or

necessarily superior to the current motley of special sciences, even if it can be formulated?

Hence, the geometric metaphor is more helpful with the notion of the impossibility rather

than that of the possibility of a unified science.

III. The difference in the geometric case between a chart and an atlas may dispel

some of the confusion in the debate on unification.  In geometry, there are spaces that are

not coverable by charts.  If a space is not a topological space, there is no guarantee that it

can be covered by a set of compatible charts.  Moreover, being covered by charts that are

not all compatible with one another is another possibility, but a mere possibility only, for it

borders on an abuse of the predicate, 'being covered'.  Using charts to cover a space is to

allow us to study every point and its neighborhood of the space by algebraic means; but if

there are points that are coordinated by two incompatible charts, such a study of them

would be impossible.  And finally, the difference between being covered by a set of

compatible charts -- an atlas -- and being covered by a single chart is precisely defined in

geometry.  The latter is the case when a single mapping function suffices to coordinate the

entire space, while for the former more than one function are needed, where the

transformations among the functions must be smooth, which means that they are

compatible.  The analogy with the case of science should lead us to three scenarios:

(a) a state of science in which one theory explains all (two senses of which will be

discussed later);

(b) a state of science in which different theories explain different domains of

phenomena while the theories are compatible (to be made precise later); and
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(c) a state of science in which different theories explain different domains of

phenomena while not all theories are compatible.

If the geometric metaphor stands, the controversy between unity and disunity of science

should be analogous to a choice between (a) and (b), while ruling out (c).

IV. In Figure 1, the two charts, φ and ψ, are almost global whether we use φ or ψ,

only one point in each, N or S respectively, being missed.  There presumably are many

such cases in geometry where a manifold is practically covered by a single chart except for

a few 'pathological' points or regions; and the different charts we use are usually those

each of which makes one of such pathological points or regions appears normal -- as S is

normal in φ and N in ψ.  The moral of this consideration is that even if a manifold is known

to be uncoverable by a global chart, it does not follow that we must give up constructing

and using a single chart for most of what we need to do.  When confronted with the case in

Figure 1, we may still have the freedom to choose either (i) to adopt one of the charts and

extend it all the way until it reaches the neighborhood of this singular point, N or S; or (ii)

to insist on using two distinct charts and do the transformations for the overlapping region,

which by the way is the entire sphere except the points N and S.

However, one crucial difference remains between choice (i) -- or rather its analogue

in science -- and choice III (a) above: a search for an 'almost' or 'approximately' unified

theory while a genuine one is impossible can only be justified on purely pragmatic

grounds.  If such a theory is neither simple nor useful, we then have no reason to make it a

goal of science.  Whereas the metaphysical possibility of a unified theory is itself the

justification for unity; the burden of justification is then on the shoulder of the anti-

unificationists.  Unless it can be shown that it is practically impossible to reach that unified

theory, the unificationists do not have to be moved by any other arguments.

V. If a manifold is coverable by a global chart, it by no means follow that only one

such chart exist for that manifold.  Therefore, we only talk about the existence of 'a' global
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chart, not 'the' global one.  Similarly, if science is unifiable, it does not follow that there is

only one theory which unifies science.  So, we should only talk about the possibility of 'a'

unified theory of science, not 'the' unified one.

4 The unity vs. the disunity

Now let us make some contact with the existing philosophical literature on the unity

of science.

For Carnap and the logical positivists (Carnap 1934, 1938; see also Neurath 1946;

Morris 1946), the notion of unification should not carry any metaphysical commitment,

namely, anything similar to [U1] would not make any sense.  Carnap considers the notion

of unity to consist of a unity of language and a unity of laws, but maintains that the former

is more pertinent to science and more likely to be realized than the latter.  Scientific theories

are roughly divided into those of the physical and those of the biological, in the broadest

senses of the two terms.  The unification of language is to be achieved via reduction,

though not of the biological to the physical (or vice versa), but rather of both to what he

calls the (physical) 'thing-language'.  The vision is an operationalist one in which all terms

used in either the physical or the biological sciences are to be rendered meaningful by a

specification of the conditions under which observations are obtainable that either confirm

or refute those sentences in which the terms figure.  Whatever is needed for describing the

conditions and the outcomes comprises Carnap's thing-language.

There is a clear and simple sense in which the Carnapian conception of unity is very

similar to our case in geometry.  Is not the thing-language similar to a global chart?  With a

set of more or less homogeneous terms and a few rather simple rules of application, the

thing-language, if capable of reducing all other terms in science, can in principle

descriptively 'covers' the entire phenomenal world.  Even the reduction from other

languages to the thing-language finds its analogy in the geometric case, where different

local charts can be transformed to the global chart so that all geometric properties are
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preserved under the transformations.  One might say that for Carnap and the logical

positivists, the 'manifold' -- the object of science -- is not the world or phenomena but the

set of all possible experiences, which they claim is 'coverable' by a single thing-language.

As for unity of laws (or of theories), it should be viewed as 'an aim for the future

development of science.  This aim cannot be shown to be unattainable.  But we do not, of

course, know whether it will ever be reached. (Carnap 1938, 61)'

The difference between the language and the laws with respect to the certainty of

unification (or the lack of it) seems to be one of whether or not a plausible general scheme

is available by which reductions can in principle be carried out.  In the case of the thing-

language, a scheme was thought to be in hand while in the case of laws, no scheme of such

specificity was nearly in sight.  If the analogy with the geometric case works, it should be

clear that whether or not the thing-language can unify science, in terms of having a single

language for science, depends almost entirely on the nature and structure of our experience,

about which nothing less than a full-fledged metaphysical investigation can help us to find

out.  The positivist approach which shuns metaphysics and champions the logic of science

-- the syntax and the semantics of scientific languages -- is clearly not an adequate

approach.  This version of the unity of science was justifiably given up, together with the

whole doctrine of logical positivism/empiricism.  I have no intention to rehearse the

reasons, but it is gratifying to see that the geometric metaphor actually points to the right

reasons for which the Carnapian notion of unification must fail.  The possibility of a

unified description of our experience is not merely a matter of language, just as it is not a

matter of choosing the right mapping function that determines whether a manifold is

globally coverable.

My earlier scheme of unification, [U1] - [U3], is obviously modeled after the

Oppenheim and Putnam proposal (Oppenheim & Putnam 1958) (see also Margenau 1941),

which hypothesizes a six level hierarchy for science and emphasizes successive



14

microreduction from higher to the lower levels, which ultimately ends with the physics of

elementary particles.  Unlike Carnap, the notion of reduction carries both metaphysical and

epistemic obligations: not only theories at a higher level are reduced to those of a lower

level in accordance with the standard account of Kemeny and Oppenheim (1956), but

microreductions of one level of phenomena to another also imply compositional and

structural (asymmetrical) relations between the reduced and the reducing.  By such an

image, the explanatory function of scientific theories -- which goes in the opposite direction

of reduction -- becomes one of the key attributes of a unified science (which is exactly what

scientists are after in a unification), and the reductional scheme roughly matches the one

that the actual practice of science displays.  Causey's version (Causey 1977) of unification

is similar to Oppenheim & Putnam's, except it is a far more elaborate theory that goes

beyond a simple and general hypothesis.   It stipulates a logical structure for scientific

theories, namely, it consists of fundamental laws, derivative laws, and identity relations

(apart from logical terms), where the last item is mostly responsible for the

microreductional relations; and because of this structure, it is able to offer a set of explicit

conditions that a unified theory must satisfy (Causey 1977, 114-121).  Such a vision of the

unity of science was further enhanced by Friedman's theory of scientific explanation (or

understanding) (Friedman 1974), in which convincing arguments are made at least for the

case of local unifications.  It also put in an extra dimension into the argument for

unification, namely, scientific understanding of phenomena is mostly achieved only

through reductive unification: we would not truly understand a set of unrelated phenomena

until we see how they share the same underlying compositional elements and causal

mechanism.

The geometric metaphor obviously works for this notion of unification.  Just as in

the case of coordinating a space, whether or not science can in principle be unified must be

ultimately determined by the properties of the world and the limitation of our resources of

theory construction.  Oppenheim and Putnam dismissed a trivial version of unification --
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science as a single conjunction of all theories -- and avoided addressing the issue of a

unified fundamental discipline (Oppenheim & Putnam 1958, 4).  The geometric metaphor

may help us see what exact their position is, given these two moves.  I shall discuss them

in turn.

1. If the single conjunction of all theories accounts for everything and is true, it

means that the theories are consistent with one another, especially when they deal with

overlapping phenomena (whose meaning is given in the first paragraph of section 3).  By

dismissing this possibility, Oppenheim and Putnam is rejecting options III (b) and (c) in

section 3.  Hence, they are committed to III (a) which resembles the demand for a global

chart.  This is a significant point about the Oppenheim-Putnam position which may not be

realized without the geometric metaphor.  A successful reduction of two theories which

cover two overlapping sets of phenomena, either in the form of one reducing to the other or

the two being reduced to a third, is quite similar to the merging of two maps of two

overlapping open subsets of a manifold, which can also happen in either of two ways: one

map may be completely replaced by the other -- if one function can map the union of the

two subsets in question -- or a third map is introduced to replace the two.  And the break-

down of a reduction is therefore also similar to the break-down of a single chart in Figure

1: when neither the extension of the stereographic chart from N can cover point N (or S

mutatis mutandis) nor a third chart can cover both S and N, we know that an atlas is

required.

Luckily, there is a simple case of an apparent break-down of reduction in science

that I may mention briefly for an illustration (see Liu 1999 for more details).

Thermodynamics of equilibrium had been considered quite successfully reduced to

statistical mechanics in that all thermodynamical phenomena in equilibrium are accounted

for by the theory of statistical mechanics via a general reductional scheme that also reflects

the compositional structures of thermo-systems.  However, it was then realized that certain

phenomena, such as phase transitions (a transition, for instance, of water from liquid to
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steam when boiling) and critical phenomena (e.g. opalescence), cannot be accounted for by

the statistical mechanics of finite systems.  Eventually, it was realized that one has to go the

length of modeling the systems in which such phenomena occur as infinite systems before

this 'hole' in the reductional scheme is plugged.  When one expands to infinity -- with

certain restrictions -- the size and number of particles of the system which is undergoing a

phrase transition, what is said in thermodynamics about such a transition is rigorously

reduced to what is said about it in statistical mechanics.  Otherwise, a simple 'no-go'

theorem proves the impossibility of such a reduction.  This case is so similar to the case in

Figure 1, it is almost uncanny.  The stereographic chart from N, φ, is capable of covering

the entire sphere except for the point N.  One may be tempted to think that we may extend

Rn to include the 'point of infinity' so that N can be mapped onto that point.  After all, is it

not true that two parallel line on a plane meets at the point of infinity?2

This case also presents an acute difficulty for the realists.  Whenever, as in the

above case, a reductional relation can only be rescued with certain maneuvres that appears

to be purely formalistic, what should we believe about our world?  Are the properties of

phase transitions and critical phenomena as described by thermodynamics genuine

properties or mere mathematical fluff?  Either reduction fails -- so fails unity of science -- if

they are mathematical fluff or it holds but we have to admit that some ordinary systems,

such a kettle of boiling water, are systems of infinite physical dimension.

2. Shelving the question of whether physics -- or the fundamental science -- is itself

unified is in fact not as harmless as it seems.  If one thinks that science is unified as long as

everything else is proven reducible to physics, while physics itself may comprise different

theories for different phenomena, one is quite mistaken.  It might be thought that if

everything else in the world is made of particles and every other theory is reducible to some

or all of the theories of their behavior, science is adequately unified even if those theories of

the particles are not.  However, such a picture of physics is too simple-minded, which does

not do justice to what physics does and could do.  Physics is not just a science for
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elementary particles and fields; it is also a science for ordinary objects, such as plants and

people, and for collections or groups of such.  If we have a unified theory of physics, we

then may have a clear idea -- a set of criteria, perhaps -- of which properties of such objects

or groups of them belong to physics and which to other special sciences, such as biology

and psychology.  But if we don't -- which means all kinds phenomena which are not

currently included in physics may eventually be included -- then science may be unified

quite trivially: work out all the reductions to physics that can be worked out among theories

for different types of phenomena, and then take the remainder -- which includes the non-

reducible theories or theory parts -- to be the domain of physics (or the fundamental

science).  Science is therefore unified.  For instance, if there is a part of the mental whose

theory is apparently not reducible to the science of physics as we now understand, we can

just extend physics to include the theory.  And if that is the only part in the whole enterprise

of science that is not apparently reducible to the current physics, science is thus unified.  It

is only when we say that the physical must also be accounted for by a single theory, that

such trivial cases of unification is ruled out.  And this is why the drive within the

community of physics for a unified theory is not a superfluous effort, (and also why I put

[U2] in my scheme above).  For what it means for physics to be unified and why it should

be unified, see Erhard Scheibe's two-volume work on the 'Einheit der Physik' (Scheibe

1997/9).

In connection to the unification within physics, Morrison (1994) points out an

interesting possibility that the theory seems unified while the things -- particles and/or fields

-- are still 'disparate'.  The actual unifications -- such as the unification of the electric and

the weak interactions -- seem to give us nothing more than some formal or mathematical

uniformities and/or similarities among the 'unified' entities; they do not tell us anything

about their causal or substantival unity.  It looks as if, to put this line of argument to its

extreme, what I have dismissed in the beginning as one of the non-starters for unification,

i.e. finding both physical and economical phenomena describable by Hamiltonian
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differential equations shows nothing about their unification, applies to physics as well.  In

sharp contrast, Einstein's original dream of reducing all natural forces to the 'geometry' of

spacetime is a true unification in every ounce of its meaning.

Between the article of Oppenheim and Putnam and Causey's book, many

discussions of the unity of science and, especially, of the possibility of reducing the mental

or the social to the physical (which in principle affects the issue of unity of science) have

appeared in the literature (some of which are cited and discussed in Causey's book), but

none seems more significant than Fodor 1974, which threatens to shatter the dream of a

reductional unification.  It opened the floor gate for anti-reductionism arguments, especially

regarding the reduction of biology (cf. Kitcher 1984, Rosenberg 1985, Kincaid 1990).

One must acknowledge, after Fodor, that for any upper-level property in science, if it is

multiply realizable at the level it is supposed to be reduced, reduction is seriously

threatened3.  With the realization that token-token identity does not imply type-type

identity, one must see that metaphysical unity of the world no longer implies the unity of

science via reduction.  It might be true that all phenomena supervene on processes of the

fundamental stuff of the world and that there exists a theory of that stuff that is capable of

explaining the rest; but by these alone we cannot conclude that theories of upper-level

phenomena will eventually be reduced to that theory.

It is important to note that Fodor's arguments are not necessarily against

unification, but they are against reductional unification.  Fodor alluded to his version of

non-reductional physicalism as a revised or alternative version of unity of science (cf.

Fodor 1974, 97ff) and Causey (1977, 142ff) -- calling it 'Tokenism' -- emphasized that it

is such.  The difference may be illustrated by an actual example in science.  In the case of

'reducing' thermodynamics to statistical mechanics I discussed above, it is not only

possible but almost certain that all thermo-phenomena in equilibrium -- including phase

transitions and critical phenomena -- supervene on states of molecules,  which are
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accounted for by statistical mechanics of finite systems.  And yet thermodynamics as a

upper-level theory of thermo-phenomena is not reducible to statistical mechanics of finite

systems for the aforementioned reasons.  Phase transitions and critical phenomena as

described in thermodynamic terms are only reducible to statistical mechanics of infinite

systems, which does not seem to be reduction at all.

The lesson from the geometric metaphor for Fodor's token version of unity of

science, if the metaphor is apt, is simply this.  Physicalism without reduction still does not

imply the unity of science.  (Therefore, it is perhaps too quick for Causey to grant Fodor's

Tokenism as a genuine alternative conception of unity of science.)  It is quite possible that

everything else is token identical with the physical and yet the physical cannot be accounted

for by a unified theory.  Physics is not yet unified and may never be unified.  Let me take

some time to explain this point in connection with our geometric metaphor.  The rationale

for proposing reductive unification is that some things are obviously composed of other

things as their parts.  In the same way, the rationale for wanting to find a single theory that

explain all fundamental physical processes is that they clearly show signs of being the

instantiations of properties that belong to a single kind of stuff.  But, again, if the metaphor

is apt, we must say that even if they are such instantiations, there is no guarantee that a

single theory exists to account for all of them.  The fact that all points belong to a single

geometric object -- all topological spaces are connected -- and each point and its

neighborhood can be mapped with a single chart onto Rn evidently does not guarantee that

the whole object can be mapped onto Rn with a global chart.  Similarly, the inference from

everything is physical and each token physical even is nothing but a set of happenings at

certain spatial and temporal locations, which seems to have already a definite description in

physics, to there exists a globally unified science of physics is not valid.  Whether

physicalism, even if it is true, leads to the unity of science still depends on the 'contour' of

the physical, not just on the describability of parts of it.
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Furthermore, even if the physical is accounted for by a unified theory -- i.e. we

have physicalism with the possibility of a single theory for everything, it may still be a long

way from having the grand unification as a goal of science.  Unlike a reductionist scheme,

where the actual local higher-level explanations can still be done by the special sciences --

knowing that such explanations can in principle be delivered from the bottom, the

physicalist theory which has to reach higher-levels token by token for each actual

explanation may have no practical plausibility.  It may well take the whole machinery of

science an unreasonable amount of time and resources to explain a 'simple' higher-level

phenomenon, so that the theory is virtually of no use.  One of the lessons from Fodor's

article is that even if science is already proven unifiable via the 'token route', it would not

help at all, because it would still be much better to go about one's business with the special

sciences -- i.e. to explain phenomena of different levels with theories at, or close to, those

levels.  In this sense, Quine (1969) is probably wrong in arguing that as science develops,

more and more natural kind terms -- we may substitute 'natural kind terms' with 'kind

terms suitable and used by special sciences' -- will be rendered useless and given up and

replaced by explanations of a more homogeneous kind, such as by an account of the

structures and functions of the ultimate constituents.

The geometric metaphor may also be useful in analyzing other proposals for the

unity or the disunity of science.  At the same year when Causey's book appeared in print,

two articles, one by N. Maull (1977) and the other by L. Darden and N. Maull (1977),

came out, proposing a notion of unification 'without reduction', namely, unification via

what they call 'interfield theories'.  The idea is roughly this: between any two levels of

phenomena, there are always phenomena which do not belong to either.  The theory at each

level however does reach down (or up) into them and can provide descriptions or

explanations which, though compatible, are not the same.  In such situations, an interfield

theory -- they regard levels of special sciences as consisting of 'fields' rather than 'theories'
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-- is usually required and constructable.  These interfield theories, rather than reductions,

are the cement that join different fields of science and make it a unified whole.

Suppose, now, that we have two overlapping open subsets on a manifold, each of

which has its own chart.  Since the manifold is covered by an atlas, the two charts are

compatible at the overlapping regions.  This is analogous to the claim that in science all

theories among traditional levels are at least consistent -- i.e. if two claims from theories at

two distinct levels are made about the same phenomenon at an overlapping region between

levels, they should not contradict each other.  None of the charts may well  coordinate the

overlapping region, while a third chart exists which best coordinates it.  If the manifold is

not singlely chartable, it is quite possible that none of the three charts are replaceable by

another.  This, I believe, is an exact analogy of the situation that Darden and Maull

considered.  So, the kind of unification they propose is a unification of an 'atlas'.  Note

that their 'unity by interfield-theory connection without reduction' is analogous to a

complete covering by an atlas without the possibility of a global chart.

From our previous discussion, I believe that such a unification of science is a

unification in name only.  No one can prevent me from calling an atlas of a manifold a

'global chart', but ....  Moreover, an unpleasant possibility appears for this notion of unity

via interfield theories.  Given reductionism or the physicalist unity via the 'token route',

there is no need to be concerned about unification within a level of phenomena -- except at

the fundamental level.  Even if biology or psychology is not unified within itself, science

can still be unified when every piece in biology and psychology is reduced to a unified

theory of physics (if reductionism is true) or when they can be discarded (if the token route

works).  But if the unity must be achieve by linking up the peripherals of each level of

phenomena, it is no good if pieces inside some level are not 'connected' -- i.e. unified in

some sense.  Whatever a unified science may turn out to be, a single piece of rag would not

do.
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The most recent advocates of the disunity of science, here I mention Dupré and

Cartwright among others, are champions of metaphysical pluralism.  Since their target is

actually much broader than unificationism -- fundamentalism (or foundationalism)

(Cartwright 1999) and imperialism (Dupré 1994), inter alia, are also within the range of

their aim, I can only lightly touch on the parts to which our metaphor may be of some use.

Dupré (1983, 1993) explicitly complained about the ineffectiveness of many previous anti-

reductionist arguments because they only argue for epistemic or pragmatic impossibility of

unification.  For Dupré, if reality is metaphysically disordered or pluralistic, those

arguments become superfluous.  Here the geometric metaphor is useful again: if a manifold

turns out to be one that is not coverable by a global chart, whatever other arguments

concerning the power (or the lack of it) of some type of mapping functions would be

superfluous.  Many people, including the ones whose works we have so far examined,

believe that it is ultimately an empirical question as to whether reality can be captured by a

unified science, which is fundamentally different from the case in geometry, where the

possibility of a global chart is determined a priori.  Dupré, if I understood him correctly,

apparently thinks otherwise.  Metaphysical pluralism is certainly not a thesis to be verified

or falsified by empirical investigations.  There are good reasons to think that if knowability

of the world is a matter of metaphysics -- how knowledge of any kind is possible -- it is

also a matter of metaphysics whether the world is knowable ultimately through a unified

theory.  Of course I do not suggest that there is any direct analogy between geometrically

determining whether a manifold is coverable by a global chart and metaphysically

determining whether the phenomenal world is describable and explainable by a single

unified theory.

Also relevant is the difference between a non-coverable space -- in the sense of no

cover by atlas -- and a coverable space which is not coverable by a global chart.  Dupré

does not always seem to be clear which counterparts of these alternatives he is arguing for.

A metaphysically plural world could be either, but his arguments against Determinism --
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which move towards an image of the world as causally incomplete -- seems to indicate that

he is inclined towards the former -- the analogue of an uncoverable space.

For Cartwright (1994, 1999), whatever resembles a global chart for a manifold is

out of the question for science.  She clearly supports anti-reductionism and equal rights for

special sciences, and her arguments mostly derive from a deep appreciation of the central

role of models in science.  From the apparently impossibility of constructing a mechanical -

- more accurately, a compositional-mechanical model -- for a thousand dollar bills blown

apart by a gust of wind, she concludes that mechanical laws do not apply to the situation;

but since a hydrodynamic model is still possible for it, the laws of hydrodynamics may

apply.  From that, she infers that hydrodynamics is not reducible to mechanics -- more

accurately, it is not micro-reducible to the mechanics of the constituents of the

hydrodynamic systems in question.  (Note, there is no metaphysical question about

whether the system of the wind-blown bills is composed of a thousand dollar bills.)  The

same move also seems to block a unification via the token route, for according to

Cartwright, no models, no laws, and hence no explanations by laws.  A more urgent

question is whether Cartwright, like Dupré, also does not care for the analogue of an atlas

for science.  Sometimes, her image of Nature -- '[who] has a rich, and diverse, tolerant

imagination (1994, 361)' -- seems to indicate that Nature resembles more of a space not

coverable by an atlas.

However, Cartwright has a move, especially in her discussion of the relationship

between classical and quantum mechanics, that seems to deprive the geometric metaphor of

its relevance.  Whenever there seems to be an inconsistency in assigning a quantum and a

classical state to the same physical state of a system, given we are fully justified in doing

so, we can deny that they are about the same state, and the contradiction disappears.

'There are both quantum and classical states and the same system can have both without

contradiction. (Cartwright 1994, 362)'  There is no analogue of this in our case of

coordinating a space: if there are two open subsets on a manifold whose charts are not
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compatible at the overlapping regions, we cannot appeal to any relevant differences of the

two subsets to make the charts compatible again.  There must be tough cases in which

making such a move may cause difficulties.  For instance, what if according to a 'true'

classical description the age of the universe is A, and according to a 'true' quantum

description it is B, and A ≠ B.  Whether the answer is positive or negative determines

whether or not Cartwright subscribes to the analogue of an atlas in science.

5 Conclusion

If the geometric metaphor is adequate, physicalism does not imply the possibility of

unification; nor does it imply reductionism.  For the latter one does not need the metaphor

(because of Fodor 1974) but for the former one does.  If the world is unifiable, the

geometric metaphor further tells us the following.  Metaphysically speaking, there are two

possible alternatives for unifying science: one is to have a horizontally unified fundamental

theory -- e.g. physics -- and then to have every other phenomenon explained token-by-

token; the other is to have special sciences for different levels of phenomena and achieve

the unity by complete reductions to the (self-unified) theory at the fundamental level.  The

latter implies the former but not vice versa.  However, epistemically speaking, the former is

almost impossible while the latter is not.  Unless our current conception of physics of

elementary particles and fields are fundamentally mistaken, it is almost ridiculous to think

of a direct explanation of, say, French Revolution, by laws and initial/boundary conditions

of the elementary particles and fields involved.

But on the other hand, what constitutes a break-down of reduction?  The toughest

kind of questions that philosophers have to face regarding judgments on reduction is the

kind instanced in the reduction of thermodynamics to statistical mechanics that we

examined earlier.  When in the end mathematical physicists proved that thermodynamics is

only reducible to statistical mechanics of infinite systems, what should we say?  Ceteris

paribus, is reality unifiable or not?  In our geometric case, if one can find a systematic way
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of extending the map of a manifold to its pathological points or regions, there seems to be

no reason why the extended map cannot be taken as a global chart for the manifold.  The

same, mutatis mutandis, seems applicable to the scientific cases, at least to the case in

question, where finite statistico-mechanical systems (and laws and types of conditions that

go with them) are extended to infinite such systems so that the whole realm of thermo-

phenomena, at least, is adequately 'covered' -- via reduction -- by statistical mechanics.

But if no such extension is available, we probably should call it quits.  For a fascinating

discussion on how techniques of taking thermodynamic systems to infinity suggests a

solution to the problem of multiple realizability, see Batterman 2000.

References

Batterman, R. (2000). "Multiple Realizability and Universality."    British Journal for
Philosophy of Science   . 51: 115-145.

Carnap, R. (1938/1955). "Logical Foundations of the Unity of Science." Eds. O. Neurath,
R. Carnap, and C. Morris,   International Encyclopedia of Unified Science: Volume
1    . Chicago, Chicago University Press, 1955, pp. 42-62.

Carnap, R. (1934/1995).    The Unity of Science  . Bristol, Thoemmes Press (reprinted
1995).

Cartwright, N. (1994). "The Metaphysics of the Disunified World."     PSA 94    , vol. 2, New
Orleans, PSA, pp. 357-364.

Cartwright (1999).     The Dappled World: A Study of the Boundaries of Science  .
Cambridge, Cambridge University Press.

Causey, R.L.  (1976). "Unified Theories and Unified Science."    PSA 74    , Dordrecht,
Reidel, pp. 3-13.

Causey, R. L. (1977).      Unity of Science  . Dordrecht, Reidel.

Darden, L. and N. L. Maull, (1977). "Interfield Theories."    Philosophy of Science   44: 43-
64.

Dupré, J. (1983). "The Disunity of Science."      Mind     92: 321-346.

Dupré, J. (1993).     The Disorder of Things: Metaphysical Foundations of the Disunity of
Science  . Cambridge, MA, Harvard University Press.

Dupré, J. (1994). "Against Scientific Imperialism."     PSA 94    , vol. 2, New Orleans, PSA,
pp. 374-381.



26

Fodor, J. (1974). “Special Sciences (Or: the Disunity of Science as a Working
Hypothesis).”    Synthese    28: 97-115.

Friedman, M. (1974). "Explanation and Scientific Understanding."    The Journal of
Philosophy     LXXI: 5-19.

Isham, C. J. (1989).      Modern Differential Geometry: For Physicists   . Singapore, World
Scientific.

Kemeny, J. G. and P. Oppenheim, (1956). "On Reduction."    Philosophical Studies    7: 6-
19.

Kincaid, H. (1990). “Molecular Biology and the Unity of Science.”     Philosophy of Science   
57: 575-593.

Kitcher, P. (1984). "1953 and All That: A Tale of Two Sciences."     Philosophical Review     
93: 335-376.

Liu, C. (1999). "Explaining the Emergence of Cooperative Phenomena."     Philosophy of
Science   66(S): 92-106

Margenau, H. A. (1941). “Foundations of the Unity of Science.”    Philosophical Review    
50: 431-438.

Maull, N. L. (1977). "Unifying Science without Reduction."     Studies in the History and
Philosophy of Science    8: 143-162.

Morris, C. (1946). “The Significance of the Unity of Science Movement.”     Philosophical
and Phenomenological Research    6: 508-514.

Morrison, M. (1994). "Unified Theories and Disparate Things."     PSA 94    , vol. 2, New
Orleans, PSA, pp. 365-373.

Neurath, O. (1946). “The Orchestration of the Sciences by the Encyclopedism of Logical
Empiricism.”     Philosophical and Phenomenological Research    6: 496-507.

Oppenheim, P. and H. Putnam, (1958). "The Unity of Science as a Working Hypothesis."
Minnesota Studies in the Philosophy of Science  . vol. 2. Eds. H. Feigl et al.
Minneapolis, University of Minnesota Press.

Quine, W. V. (1969). "Natural Kinds." in W. V. Quine,    Ontological Relativity and Other
Essays   New York, Columbia University Press, 114-138.

Rosenberg, A. (1985).    The Structure of Biological Science  . Cambridge, Cambridge
University Press.

Scheibe, E. (1997 & 1999).     Die Reduktion physikalischer Theorien: Ein Beitrag zur
Einheit der Physik   . Teilen I & II. Berlin, Springer-Verlag.

                                                
1 The actual proof that   φ oψ −1 and  ψ oφ −1 are infinitely differentiable goes something as follows.  First

we inbed the stereographic maps into the higher dimensional space so that a normal Cartesian coordinate
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system can be given to them.  Then we can prove that φ and ψ and their inverses as functions in such

Cartesian coordinates are infinitely differentiable functions.  For an example of such proofs, see Isham

1989, 3-4.

2 The difficulty of such extension is that the result is underdetermined.  Should the N in Figure 1 be

mapped by the extended φ to +∞ or -∞, since both 'points' equally qualify, but not both together (for then φ

is no longer a function).  We may choose one of the two, but on what grounds?

3 One may be tempted to say that reduction then fails, but this may be too strong, see Batterman 2000.


