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Electromechanical actuators (EMAs) are more and more widely used as actuation devices in flight control system of aircrafts and
helicopters. The reliability of EMAs is vital because it will cause serious accidents if the malfunction of EMAs occurs, so it is
significant to detect and diagnose the fault of EMAs timely. However, EMAs often run under variable conditions in realistic
environment, and the vibration signals of EMAs are nonlinear and nonstationary, which make it difficult to effectively achieve
fault diagnosis. This paper proposed a fault diagnosis method of electromechanical actuators based on variational mode
decomposition (VMD) multifractal detrended fluctuation analysis (MFDFA) and probabilistic neural network (PNN). First, the
vibration signals were decomposed by VMD into a number of intrinsic mode functions (IMFs). Second, the multifractal features
hidden in IMFs were extracted by using MFDFA, and the generalized Hurst exponents were selected as the feature vectors. Then,
the principal component analysis (PCA) was introduced to realize dimension reduction of the extracted feature vectors. Finally,
the probabilistic neural network (PNN) was utilized to classify the fault modes. The experimental results show that this method
can effectively achieve the fault diagnosis of EMAs even under diffident working conditions. Simultaneously, the diagnosis

performance of the proposed method in this paper has an advantage over that of EMD-MFDFA method for feature extraction.

1. Introduction

Although most aircrafts and helicopters still adopt hydraulic
actuation systems, electromechanical actuators have increas-
ingly been applied as the key actuators for flight control
systems of advanced aircrafts and helicopters in recent years.
The main reason is that electromechanical actuator (EMA)
has more superiorities in terms of reliability, economy, and
other aspects than traditional hydraulic actuator. However,
aircrafts and helicopters often perform mission under vari-
able complex environments, and it will cause serious conse-
quences when the faults of EMAs appear. Therefore, fault
detection and diagnosis of EMAs in various working condi-
tions play a vital role in the normal operation of aircrafts
and helicopters. More and more researches have been done
about the function of EMAs, but few are about fault. Con-
sequently, it is very meaningful to carry out the research
on fault diagnosis algorithms of EMAs under variable
working conditions.

NASA Ames Research Center’s researchers conducted
failure mode and effect analysis of EMAs through extensive
literature investigation, and the main fault modes of EMAs
were obtained [1]. The researchers built the flyable electro-
mechanical actuator (FLEA) test-bed, so that the normal
data and fault data of EMA can be obtained through a large
number of experiments [2]. A method based on neural
network was proposed to realize the diagnosis for critical
failure modes of EMAs [3]. Narasimhan et al. implemented
the degeneration trend prognostics of EMAs by using the
Gaussian process regression algorithm [4]. A method based
on WPD-STFT time-frequency entropy and PNN was pre-
sented by Jing et al., which achieved the accurate diagnosis
of EMAs [5]. At present, there are relatively few researches
on fault diagnosis methods of EMAs under variable working
conditions at home and abroad.

The vibration signal of rotating machinery contains
abundant information about the running state of the equip-
ment. And extracting the fault feature which represents the
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fault information of the equipment is the most important
step in fault diagnosis. However, vibration signal generally
has the characteristics of nonlinear and nonstationary, and
there are external disturbances such as noise, so that extract-
ing features from vibration signal is the key problem for
researchers. The commonly used methods for processing
vibration signal to extract fault features include short-time
Fourier transform (STFT), wavelet transform (WT), empiri-
cal mode decomposition (EMD), and local mean decomposi-
tion (LMD). STFT can depict signal in both time domain and
frequency domain at the same time and can reflect the time-
varying characteristics of the signal frequency spectrum. But
the window function of STFT is fixed, so it is not suitable to
analyze strong time-varying and nonstationary signal [6].
WT can realize the multiresolution analysis of signal, but its
resolution in the frequency domain is not adjustable at the
same scale, and it needs to preselect the basis function
according to the characteristic of the signal [7]. EMD decom-
poses the signal into a finite number of single-component
signals which are called intrinsic mode functions (IMFs). It
has great potential for analyzing the nonlinear and nonsta-
tionary signal. However, EMD has a series of problems such
as end effects, modal confusion, over-envelope and under-
envelope, negative frequency, and lacking theoretical basis
[8]. LMD is an adaptive time-frequency analysis method
which is proposed on the basis of EMD. It can decompose
the complex signal into several product functions (PFs).
However, LMD also has the problem of end effects, modal
confusion, and large amounts of calculation [9]. In addition,
fault diagnosis methods based on various multidisciplinary
algorithms have been studied in recent years. A rotating
machinery fault diagnosis method combining bispectrum
and image processing algorithm was proposed, and its
validity was proved by experiments of hydraulic pump and
centrifugal pump [10]. A method based on narrowband
demodulation with frequency shift and spectrum edit was
used to achieve the fault diagnosis of gears [11]. Variational
mode decomposition (VMD) is a new signal processing
method which has a different theoretical framework with
EMD [12]. VMD transforms signal decomposition into non-
recursive and variational mode decomposition problem
which has theoretical foundation. It shows better noise robust-
ness and can reduce the sampling effect and modal confusion.

Different from time-frequency analysis, fractal analysis
can be used to reveal the fractal features of the signal, while
fractal features can characterize the different operating states
of a complex system. Therefore, fractal features can be
utilized as fault features for fault diagnosis. Multifractal anal-
ysis can extract fractal features of different local scales, and
researchers have applied classical multifractal theory to fea-
ture extraction of fault diagnosis in recent years. A method
based on wavelet analysis and multifractal spectrum was
applied to extract the fault features of hydropower unit
[13]. And the multifractal spectrum was combined with
PSO-SVM to achieve the fault diagnosis of gearbox [14].
However, the traditional multifractal theory can be easily
disturbed by the trend of signal fluctuation and cannot
reveal the multifractal characteristics hidden in nonstation-
ary signal accurately. Thus, Liu et al. proposed a method
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called multifractal detrended fluctuation analysis (MFDFA)
combining multifractal (MF) with detrended fluctuation
analysis (DFA), which can eliminate the influence of signal
fluctuation and can further effectively extract the multifractal
characteristics of nonstationary signal. MFDFA has been
applied to the field of fault diagnosis for complex system. A
method based on MFDFA and local characteristic-scale
decomposition-Teager energy operator was proposed to real-
ize the fault diagnosis of rolling bearing [15]. Tang et al.
applied MFDFA into the fault diagnosis of nonlinear analog
circuit [16].

A fault diagnosis method for EMA based on VMD-
MFDFA and PNN is proposed in this paper. Firstly, the
vibration signal of the accelerometer is collected. After pre-
processing the vibration signal, a series of IMFs are obtained
by using the VMD. Then, the multifractal features of IMFs
are calculated by MFDFA, and the fault feature vectors are
acquired by reducing the dimension with PCA. Finally,
PNN model is trained to classify the fault modes.

2. Feature Extraction Method Based on VMD
and MFDFA

The vibration signal of the EMA has the characteristics of
nonlinear, nonstationary, and strong time-varying. In this
paper, the vibration signal is decomposed by VMD, and the
feature vectors are extracted by MFDFA to characterize the
operating state of the EMA.

2.1. A Description of Variational Mode Decomposition
(VMD). The VMD algorithm can obtain the optimal solution
of the constrained variational problem and determine differ-
ent central frequencies and bandwidths through iteration.
The intrinsic mode functions (IMFs) of different frequencies
are obtained by nonrecursive decomposition [17]. The
implementation of VMD is divided into two parts: the
construction of variational problem and the solution of
variational problem [18].

The first part is the construction of variational problem.
This time-frequency analysis method assumes that the multi-
component signal f consisted of k intrinsic mode functions
u;, with limited bandwidth, and the central frequency of each
intrinsic mode function corresponds to w;.

The analytic signal of each intrinsic mode function
is obtained by Hilbert demodulation as the following
formula:

(6(1‘) + %) u(t). (1)

A central frequency is estimated as e /“+ for each analytic
signal, and the frequency spectrum of each IMF is modulated
to the fundamental frequency band:

Ka(t) + é) uk(t)} et 2)

The square norm L? of the above analytic signal gradient
is calculated, and the bandwidth of each IMF is estimated.
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Then, the constrained variational problem is obtained as the
following formula:

2 }

’ (3)

. ] —jwit
{MI:}I‘%B)(} {; 0, {(8(1‘) + m‘) uk(t)} e
s.t. Zuk(t) =f,
k

where {u;} ={u;,...,u.} represents one of the k intrinsic
mode functions obtained by decomposition and {w,} =
{w, ..., w,} represents the central frequency of each intrin-
sic mode function.

The second part is the solution of variational prob-
lem. In order to obtain the optimal solution of the vari-
ational model, Lagrange multiplication operator A(¢) and
quadratic penalty factor « need to be introduced to
change the constrained variational problem into noncon-
strained variational problem. The transformed Lagrange

expression is
o,|(0(t) + J w(t) [e7
t ot )k ,

+ </\(t) - ;uk(t)>.
(4)

The saddle point of formula (4) is obtained through iter-
atively updating u/*!, 0!, and A"*' by using the alternate
direction method of multipliers (ADMM).

The update method of u}*! is

£) = ¥ pet(@) + Mw)2)

1+ 20(w - wy)®

2

L({we} {wi}s A) = ag

+

f(1) _;”k

' (w) =

(5)

The update method of w{*! is

v _ [Pl do.
I ) P

(6)

The update method of A"*! is

A w) =2"(w) + 7 [f (w) = Y ug™! (w)] : (7)
k

The real part after the Fourier transform of {u}*"'(w)}
combining formula (5) and formula (6) is the intrinsic mode
functions {u(w)}.

The specific steps of VMD can be described as follows
[19]:

(1) Initialize {u}}, {w}}, {A'}, and .
(2) Set n=n+ 1 and begin the circulation.

(3) Update u;, and w, according to formula (5) and
formula (6).

(4) Set K=K + 1, and repeat step (3) until K =k.

(5) Update A according to formula (7).
(6) Repeat step (3) to step (5), until iteration stop condi-

n+1

tion Y [|uf*! - uZHZ/HuZH; < e is reached.

In the process of decomposition by VMD, the central fre-
quency and bandwidth of each IMF are constantly updated to
realize the adaptive decomposition of signal.

2.2. A Description of Multifractal Detrended Fluctuation
Analysis (MFDFA). Multifractal detrended fluctuation analy-
sis can effectively eliminate the effect of signal fluctuation
trend and can accurately extract the implied multifractal
teatures of nonlinear signal [20].

The steps of MFDFA can be described as follows [21]:

(1) For time series x;, construct cumulative deviation Y
(i) of the sequence to the mean:

Y(i)= Y |x— (x)], i=1,...,N,
k=1

N
k=1

W=y

(2) The new sequence Y (i) is divided into nonoverlap-
ping m subsequences with a fixed scale s:

m=int (g) . (9)

Then, the sequence is divided into m segments by the
same scale from the reverse direction of the sequence, and 2
m subsequences can be obtained.

(3) Fit the polynomial trend of each subsequence by

using the least square method, and calculate the
variance as follows:

(10)

where y, (i) is the fitting polynomial of the v subsequence.

(4) Calculate the mean value of the g-order fluctuation
function:

om 1/q
Fq(s)z{%z [Fz(s,v)]qlz} , (11)
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The input layer The pattern layer The summation layer The output layer

FIGURE 1: Basic structure of probabilistic neural network.
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FIGURE 2: The fault diagnosis procedure of EMA.

where different values of g represent different degrees (6) F,(s) is the function of the length of the subsequence
of fluctuation. And when g=2, MFDFA degenerates s and the fractal order q and has the following power-
to DFA. law relation with the scale s:

(5) Change the length of the subsequence s and repeat H
steps (2) to (4). Fq(s) ~ 1), (12)
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FiGUure 3: The FLEA test-bed.

where F,_(s) is the mean value of g-order fluctuation function
and H_ is the generalized Hurst exponent.

If x; is a monofractal time series, H, is a constant, and if
x; is a multifractal time series, H, is the function of order 4.

The different order corresponds to the different generalized
Hurst exponent.

The generalized Hurst exponent can describe the influ-
ence of the past time series on the present and the later time
series, and the influences are different under different states
of system.

Therefore, the generalized Hurst exponent can be used as
the feature vector to describe the multifractal characteristics
of the system and can characterize the different states of
the system.

3. Fault Classification Based on PNN

The theoretical basis of probabilistic neural network (PNN)
is Bayesian minimum risk criterion. PNN directly considers
the probability characteristics of the sample space and takes
the typical samples of the sample space as the nodes of the
hidden layer. There is no need for training anymore once
PNN is determined, and it is only necessary to append
samples according to actual problems [22]. PNN has the
advantages of short training time and global optimization
and has great performance for classification.

The network structure of PNN is shown in Figure 1,
which consists of the input layer, the pattern layer, the sum-
mation layer, and the output layer [23].

The input layer receives the values from the training
data and transmits feature vectors to the network, and
the number of neurons is equal to the dimension of the
sample vectors.

The pattern layer calculates the matching regulation
between the feature vectors and the different modes of the
training data, and the number of neurons is equal to the

5
. Test actuators
/ Load actuator
7 Nut accelerometers
Coupling magnets
Rigid bar on
guide rails
F1GURE 4: The model of FLEA test-bed.
FiGure 5: The EMA in the FLEA test-bed.
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F1GURE 6: Clustering result of the fault features under condition 1.

sum of the training samples. The output of each unit of this
layer is

(X- W) (X-W)

f(X,W;)=exp |- 1, (13)
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TaBLE 1: The description of five working conditions.
Condition Position Load profile =~ Max. velocity
Parameters L Comments
name profile (load is in lbs) (m/s)
Condition 1  Sine sweep 80 mm, 0.0625 Hz, 0.5 Hz Constant at 0 0.08 Paramfet.ers represent amphtu.de
and initial and final frequencies

Condition 2 Trapezoidal 40 mm, 22's (1 + 1-second motion, ~ Constant at —10 0.04
Condition 3 Trapezoidal 10 + 10-second hold) Constant at 0 0.04 Parameters represent amplitude and
Condition 4 Trapezoidal 40 mm, 21s (0.5 + 0.5-second motion, ~Constant at 0 0.08 time period of trapezoidal wave
Condition 5 Trapezoidal 10 + 10-second hold) Constant at 10 0.08
where W, is the weight of the input layer to the pattern layer
and § is the smoothing factor.

The summation layer adds the probability that each e
group of neurons belongs to a pattern and calculates the esti- R S
mated probability density function of this pattern. A fault L4 L S .
mode has only one summation layer neuron. 124 ¥ B

The output layer puts the mode with the greatest proba- 14 # ¥ R
bility in the summation layer as the output. The output of a o 084 T e T
neuron with maximum probability is 1, and the output of -né 0.6 : T
other neurons is 0. The number of neurons in the output © 04 * - ﬁ L
layer is equal to the number of the modes. 0.2 - el

0 -
1.5

4. Fault Diagnosis Scheme of EMA Based on
VMD-MFDFA and PNN

This paper presents a fault diagnosis method based on VMD-
MFDFA and PNN for EMA, and the procedure of diagnosis
scheme is shown in Figure 2.

(1) Decompose the vibration signals of EMA into a series
of IMFs by utilizing VMD.

(2) Calculate the generalized Hurst exponents of IMFs as
feature vectors by using MFDFA.

(3) Reduce the dimension of the feature vectors to obtain
the final fault features by utilizing PCA.

(4) Classify the fault modes by using PNN.

5. Case Study

In order to verify the effectiveness of the fault diagnosis
method proposed in this paper, we have conducted experi-
ments by using the data from the FLEA test-bed of NASA
database. The FLEA test-bed is shown in Figures 3 and 4,
and the EMA in the test-bed is shown in Figure 5. The fault
diagnosis experiments have been carried out in the following
five states: the normal state, ball screw return channel jam,
screw surface spall, motor failure, and position sensor failure.
The vibration signals were acquired from the FLEA test-bed
with a sampling frequency of 20kHz for 30 seconds. And
the data of each state has been divided into 29 groups
(20,000 sampling points per group) to analyze conveniently.
Moreover, for the sake of validating the adaptability to vari-
able working conditions of the proposed method, the exper-
iments have been carried out under five different conditions.

1
0.5

2nd PC
-05 0

1st PC

o Position sensor failure
x Motor failure

Nominal
¢ Ball screw return channel m
# Screw surface spall

FiGure 7: Clustering result of the fault features under condition 2.

5.1. Fault Feature Extraction Based on VMD and MFDFA.
First, the collected raw vibration signals are preprocessed
by normalizing.

Second, the preprocessed signals are decomposed by
VMD. The VMD method needs to predetermine the number
of modes k before decomposing signal. However, there will
be modes with the same central frequency when the num-
ber of decomposition mode is more than 3. Therefore, the
preprocessed signals are decomposed into three IMFs by
using VMD in this paper.

Then, the MFDFA is applied to extract the multifractal
features of decomposed IMFs. The generalized Hurst
exponents are selected as fault features with the order
q=1[-5,0,5]. And in order to improve the accuracy of fault
diagnosis, the 9-dimensional generalized Hurst exponents
are reduced to 3-dimensional fault feature vectors by using
PCA.

The clustering result of the final fault feature vectors is
shown in Figure 6, which shows that the feature vectors
acquired by the proposed method in this paper can charac-
terize the state of EMA.

5.1.1. Fault Feature Extraction under Different Conditions. In
practical application, EMA usually runs under variable work-
ing conditions, so it is of great significance to diagnose
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F1GURE 8: Clustering result of the fault features under condition 3.
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F1Gure 9: Clustering result of the fault features under condition 4.

accurately under different conditions. In order to prove the
adaptability of the method to working conditions, the exper-
iments are conducted under five different conditions as
shown in Table 1.

The vibration signals of EMA are collected under the five
working conditions, and the fault features are extracted by
utilizing VMD-MFDFA-PCA method. Figures 7-10 show
the clustering results of fault feature vectors under four con-
ditions except condition 1.

It can be seen from the figures that the proposed method
can accurately extract the fault features of EMA under differ-
ent conditions and can adapt to the variable working condi-
tions in the practical environment.

5.1.2. Comparison between the Proposed Method with EMD-
MFDFA for Feature Extraction. In order to verify the excel-
lent performance of the feature extraction method proposed

1.2

3rd PC

andpC 03 5
0 0 ’ 1st PC

o Position sensor failure
¢ Ball screw return channel jam x Motor failure
# Screw surface spall

Nominal

F1GuRre 10: Clustering result of the fault features under condition 5.
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F1urke 11: Clustering result of the fault features with EMD-MFDFA
under condition 1.

in this paper, the method based on EMD-MFDFA is applied
to extract the fault feature vectors of EMA for comparison.
This method combines the widely used empirical mode
decomposition time-frequency analysis method with the
MFDFA to extract the fault features of EMA.

Firstly, the original vibration signal is preprocessed and
then decomposed by EMD into a series of IMFs with fre-
quencies from high to low. Secondly, the first three IMFs
containing the main fault information are selected. Then,
the 9-dimensional generalized Hurst exponents are extracted
by using MFDFA with the parameter g =[5, 0, 5]. Finally,
the PCA is applied to reduce the dimension of the
9-dimensional features to obtain a 3-dimensional generalized
Hurst exponents as the ultimate fault feature vectors. The
clustering result is shown in Figures 11-15.
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It can be seen that scatter points of fault feature
vectors by using feature extraction method based on
EMD-MEFDFA are relatively close, so that it is hard to
clearly classify the fault modes. And it can also be proved
that the method proposed in this paper has better perfor-
mance for fault feature extraction.

5.2. Fault Classification Based on PNN. The PNN classifier
model is trained to identify the fault modes of EMA under
different working conditions. In each working condition,
the 3-dimensional fault feature vectors of each fault mode
are taken as the input of PNN, and the fault category labels
are taken as the output of PNN. The first 15 sets of data of
each fault mode are used as training data, and the training
data is used to train the PNN classifier. Then, the fault labels

Complexity

0.6
0.4
0.2

3rd PC

-0.2

-0.4
0.4

e, 0.6

ondpCc 02 —
n ~0.4 —0.8 00

1st PC

Nominal o Position sensor failure
¢ Balls crew return channel jam = Motor failure

« Screw surface spall
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F1Gure 15: Clustering result of the fault features with EMD-MFDFA
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of the last 14 sets of testing data are identified by the trained
PNN classifier, and the final fault diagnosis result is obtained.

In the trained PNN classification model, 3 nodes in the
input layer are determined according to the dimension of
the feature vectors, 75 nodes in the pattern layer are deter-
mined according to the number of training samples, and 5
nodes in the summation layer and the output layer are deter-
mined according to the number of categories of the fault
modes. And the smoothing factor of PNN is set to 1.0. The
failure modes of the test samples correspond to the normal
state, ball screw return channel jam, screw surface spall, posi-
tion sensor failure, and motor failure, respectively, when the
output of PNN is 1, 2, 3, 4, and 5.

The test results under five conditions are shown in
Figures 16-20.

It can be seen from the figures that the diagnostic fault
labels of the test samples are in high agreement with the
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FiGure 17: Classification result under condition 2.

actual fault labels. The diagnosis accuracy of condition 1 is
100%, the diagnosis accuracy of condition 2 is 100%, the
diagnosis accuracy of condition 3 is 98.67%, the diagnosis
accuracy of condition 4 is 100%, and the diagnosis accuracy
of condition 5 is 100%. The diagnosis results indicate that
the method proposed in this paper can accurately diagnose
EMA and has great diagnostic performance.

6. Conclusion

EMA is more and more widely applied in the flight control
system of aircrafts and helicopters, and it is of great impor-
tance to diagnose the fault of EMA in time for the safety of
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FiGure 18: Classification result under condition 3.
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aircrafts and helicopters. Thus, it is very meaningful to
research the fault diagnosis of EMA. A fault diagnosis
method based on VMD-MFDFA-PNN for EMA is presented
in this study. Firstly, VMD is applied to decompose the vibra-
tion signal of EMA into the IMFs which contain the fault
information. Secondly, the generalized Hurst exponents of
IMFs are calculated as the fault features by MFDFA. Then,
the PCA is utilized to reduce the dimension of the general-
ized Hurst exponents. Finally, the PNN model is trained to
classify the fault modes. The results show that the method
proposed in this paper can extract the features sensitive to
the fault of EMA and can conduct accurate fault diagnosis
under different working conditions. The great performance
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of the proposed method is further validated by comparing
with EMD-MFDFA-PCA.

However, the computational complexity of the proposed
algorithm is relatively large. Therefore, in the case of limited
computer resources, the calculation speed will be slightly
slower. Future work will concentrate on two aspects. The first
one is the study on improving the computational efficiency of
the method proposed in this paper for the occasions with
high real-time requirements. The second one is the study
on health assessment and degeneration trend prognostics
of EMA.
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