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Particle swarm optimization (PSO) is a population-based stochastic optimization technique in a smooth search space. However, in
a category of trajectory optimization problem with arbitrary final time and multiple control variables, the smoothness of variables
cannot be satisfied since the linear interpolation iswidely used. In the paper, a novel Legendre cooperative PSO (LCPSO) is proposed
by introducing Legendre orthogonal polynomials instead of the linear interpolation. An additional control variable is introduced
to transcribe the original optimal problem with arbitrary final time to the fixed one.Then, a practical fast one-dimensional interval
search algorithm is designed to optimize the additional control variable. Furthermore, to improve the convergence and prevent
explosion of the LCPSO, a theorem on how to determine the boundaries of the coefficient of polynomials is given and proven.
Finally, in the numeral simulations, compared with the ordinary PSO and other typical intelligent optimization algorithms GA
and DE, the proposed LCPSO has traits of lower dimension, faster speed of convergence, and higher accuracy, while providing
smoother control variables.

1. Introduction

Swarm intelligence is a collective dynamic behavior of dis-
tributed, self-organized systems, natural or artificial, em-
ployed in work on artificial intelligence. It introduces many
simple agents with very general rules to achieve an “intel-
ligent” global optimal behavior. Swarm intelligence-based
techniques can be used in a number of applications on
optimization. The US military is investigating the swarming
techniques to control unmanned vehicles. The European
Space Agency is thinking about an orbital swarm for self-
assembly and interferometry. NASA is investigating the use
of swarm technology for planetary mapping.

In particular, trajectory optimization problem is one of
the most important tasks in the preliminary design of the
next generation of high speed vehicles, such as NASA’s X-43
unmanned hypersonic vehicle (HV), and has a great effect on
the choice of conceptual design [1]. It is a daunting work to
get the solution of nonlinear optimal control problem with
the arbitrary final time and multiconstraints.

Trajectory optimization with multiconstraints has been
linked with some stochastic search algorithms. The typical
approaches include genetic algorithms (GA) [2], differential
evolution (DE) [3], and particle swarm optimization (PSO)
[4–6]. Besides, several novel bionic optimization algorithms
spring up in these years and show remarkable efficiency
in the industrial domain, such as the honeybee mating
optimization [7], harmony search algorithm [8], and ants
swarm optimization [9]; however, they are rarely used in the
aerospace field because of their excessive novelty. The PSO
algorithm, as an optimization algorithm based on swarm
intelligence, similar to GA and DE for their origination from
population-based heuristic search mechanisms, has recently
become more popular due to its simplicity and effectiveness.
It is widely used because of its simple principle, small
number of parameters to be adjusted, and easy realization.
Considering that the dynamic parameter optimization needs
to be transformed into the static format, it is validated to
evaluate the trajectory parameters optimization using a spline
function [10].
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Under the guidance of thought of the hybrid algorithm
[11], a novel method of trajectory optimization is proposed
to improve the global convergence ability in this paper, the
Legendre cooperative PSO (LCPSO) method, which is a kind
of cooperative PSO based on Legendre orthogonal poly-
nomials.

In LCPSO, the following improvements make it promis-
ing in solving complex problems. Firstly, the search space
is divided into certain subspaces and different swarms are
arranged to optimize the different parts of the search space. In
this way, the optimized scale for each swarm can be reduced
directly.The algorithm is suitable for the problemswith larger
scale and higher dimension.

Secondly, for the optimal control problem by PSO, the
discretization is necessary before solving the parameter opti-
mization problem. Herein, the Legendre orthogonal polyno-
mial approximation can achieve higher smoothness of con-
trol variables with lower dimensions. Additionally, a theorem
on how to find the precise range of optimal parameters is
given and proven, as well as how to find the boundaries of the
coefficient of polynomials.Therefore, the proposed LCPSO is
expected to realize the optimizationwith higher accuracy and
efficiency.

Thirdly, in order to solve the optimal control problems
with arbitrary final time rather than the fixed one, the
proposed Legendre orthogonal polynomial approximation
method introduces an additional control variable to tran-
scribe the original optimal problem to the one with fixed final
time. Then, a traditional one-dimensional search method
based on the interval analysis is proposed to optimize the
additional control variable. This way, the specific optimal
problem with single boundary can be solved.

Finally, we use two typical trajectory optimization prob-
lems to illustrate efficiency of the proposed LCPSO algo-
rithm. One is the ascent trajectory optimization of X-43
hypersonic vehicle, and the other one is the classic optimal
orbit transfer problem. The simulation results demonstrate
the advantages of the LCPSO in terms of solution accuracy
and convergence rate by comparing with some traditional
intelligent optimization algorithms.

The organization of the remainder of this paper is as
follows. Section 2 formulates the optimal control problem by
3-DOF mass point dynamics. Section 3 describes the algo-
rithm of novel Legendre cooperative PSO and some prop-
erties. Section 4 presents the numerical simulations on the
performance of the proposed optimal algorithms. Section 5
draws conclusions to the paper.

2. Problem Description

HV is one of the main workhorses for most of the nations of
the world for scientific studies and military and commercial
applications [1]. Efforts are ongoing in the 21st century to
enhance flexibility and reliability and reduce the overall
cost of such systems. Here, without loss of generality, we
provide the proposed algorithm to solve a trajectory optimal

problemofHV. Its 3-DOFdynamics over a spherical earth are
described by the following motion equations [12, 13]:

𝑅̇ = 𝑉 sin 𝛾,
̇𝜃 = 𝑉 cos 𝛾 sin𝜓

𝑅 cos𝜙 ,
̇𝜙 = 𝑉 cos 𝛾 cos𝜓

𝑅 ,
𝑉̇ = 𝑇 cos𝛼

𝑚 − 𝐷 − sin 𝛾
𝑅2 ,

̇𝛾 = 1
𝑉 [𝑇 sin𝛼

𝑚 + 𝐿 + (𝑉2 − 1
𝑅) cos 𝛾

𝑅 ] ,
𝑚̇ = 𝑓 (𝑀𝑎, 𝛼, 𝛿) .

(1)

The 3-DOF dynamics described in (1) are dimensionless
equations of motion with six state variables and two control
variables. The real variables are normalized as follows:

𝑅 = 𝑟
𝑟0 ,

𝑉 = V
√𝑔0𝑟0 ,

𝑔 = 𝑔0𝑟02𝑟2 ,

(2)

where 𝑟 is the radial distance from the earth’s center to
the vehicle, 𝜃 is the longitude, 𝜙 is the latitude, V is the
velocity of the vehicle, 𝛾 is the flight path angle, 𝜓 is the
velocity azimuth angle measured clockwise from the north,
the control variables are the angle of attack 𝛼 and the fuel
throttle opening 𝛿,𝑚 is the mass of the vehicle, and the terms𝐷 and 𝐿 are the aerodynamic drag and lift acceleration, which
are defined by

𝐷 = 1
2
𝜌V2𝐶𝐷𝑆𝑐𝑚𝑔0 ,

𝐿 = 1
2
𝜌V2𝐶𝐿𝑆𝑐𝑚𝑔0 .

(3)

Here, 𝑆𝑐 is the reference area of the vehicle. The terms of𝐶𝐷(𝛼,𝑀𝑎, 𝛿) and 𝐶𝐿(𝛼,𝑀𝑎, 𝛿) are the coefficients of drag
and lift, which are also functions of 𝛼 and 𝛿.

The control variables 𝛼 and 𝛿 are approximated by Legen-
dre orthogonal polynomial functions, respectively. Assuming𝐿𝑁(𝑥) is the Legendre polynomial of degree𝑁, the continu-
ous function 𝑢(𝑥) of variable 𝑥 can be approximated as

𝑢 (𝑥) = 𝑁∑
𝑛=0

𝑏𝑛𝐿𝑛 (𝑥) . (4)

This way, the dynamic parameter optimization problem
is transformed into a static one before the PSO algorithm
performed.

The evaluation of the performance index starts when the
scramjet is launched. The vehicle releases from the boost



Complexity 3

phase and then enters into the later ascent and cruise phase.
Here, we define the switching time as 𝑡𝑘. By analyzing the
dynamic characteristics of HV, the fuel throttle opening 𝛿
shall be minimized during the later ascent stage.

In this problem, the optimal time of ascent stage is free
but satisfying some constraints. Thus, an additional control
variable is introduced to transcribe the proposed problem to
a fixed final time problem.The switching step is available and
then the ascent trajectory can be divided into two phases.
In the first phase, only the fuel throttle opening needs to be
optimized to guarantee that it is a minimized constant value
at the beginning of the second phase. In order to simplify the
equations and problem, we give a reasonable assumption that
the switching step satisfies 𝑡𝑘 = 𝑘𝑡󸀠𝑓, 𝑘 ∈ [0, 1], with a fixed
time interval [𝑡0, 𝑡󸀠𝑓], and the system’s continuous state does
not jump at each switching point. Therefore, the arbitrary
terminal time optimal control problem is turned into a two-
point boundary value problem with the fixed terminal time.
The optimal time 𝑡𝑓 would be obtained as long as all the
terminal conditions are fulfilled.

The design space S of HV ascent trajectory optimization
using LCPSO can be defined by the following vector:

S = (𝑏𝛼1 , . . . , 𝑏𝛼𝑁, 󵄨󵄨󵄨󵄨󵄨𝑏𝛿1 , . . . , 𝑏𝛿𝑁󵄨󵄨󵄨󵄨󵄨 , 𝑘) . (5)

Here, the left two parts in the vector S represent the two
groups of coefficients of the orthogonal polynomials which
approximate the control variables 𝛼 and 𝛿, while the last
parameter 𝑘 represents the ratio between the switching step
and the supposed final time. Hence, the problem space can be
divided into three subspaces 𝑏𝛼, 𝑏𝛿, and 𝑘. Then, in LCPSO,
we provide two groups of particles to optimize the subspaces
𝑏𝛼 and 𝑏𝛿, respectively, and use a one-dimensional search
method based on interval analysis to optimize the variable 𝑘.

To seek the solutions of both the continuous input 𝑢(𝑡)
and the switching step 𝑡𝑘 according to the given initial state𝑥(𝑡0) = 𝑥0, we define a performance function as follows:

𝐽 = Φ (𝑥 (𝑡𝑓)) + ∫𝑡𝑘
𝑡0

𝐿 (𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

+ ∫𝑡𝑓
𝑡𝑘

𝐿󸀠 (𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡.
(6)

In this case, the above nonlinear optimal problem can be des-
cribed as a basic optimal control problem of nonlinear Bolza
type.

Considering that the performance function here is
selected tominimize the fuel expendable ratio (FER) through
the control variables 𝛼 and 𝛿, normally, we use the following
relationship to describe it directly:

𝐽 = −∫𝑡𝑓
𝑡0

𝑚̇ 𝑑𝑡 = 𝑚0 − 𝑚𝑓. (7)

Furthermore, the ascent trajectory terminate conditions
can be represented by the following inequalities:

𝑟𝑓 − Δ𝑟down ≤ 𝑟 (𝑡𝑓) ,
V𝑓 − ΔVdown ≤ V (𝑡𝑓) ,

𝛾𝑓 − Δ𝛾down ≤ 𝛾 (𝑡𝑓) ≤ 𝛾𝑓 + Δ𝛾up,
(8)

where 𝑟(𝑡𝑓), V(𝑡𝑓), and 𝛾(𝑡𝑓) are three state variables of
the terminal point, while the tolerance is given by the
upper bound Δ𝛾up and the lower boundsΔ𝑟down, ΔVdown, andΔ𝛾down.

The terminal conditions are added to the performance
function to ensure that all the constraints are satisfied. Then,
the performance function of LCPSO is defined as follows:

𝐽 (𝛼, 𝛿) = 𝐽 + 𝑘1𝑒(𝑟𝑓−𝑟(𝑡𝑓)) + 𝑘2𝑒(V𝑓−V(𝑡𝑓)) + 𝑘3𝛾2 (𝑡𝑓) . (9)

Here, in (9), the first part 𝐽 represents the optimal
index of minimum FER described in (7). The three terms𝑘1𝑒(𝑟𝑓−𝑟(𝑡𝑓)), 𝑘2𝑒(V𝑓−V(𝑡𝑓)), and 𝑘3𝛾2(𝑡𝑓) represent the terminal
constraints index. 𝑟(𝑡𝑓) is the radial distance from the center
of the earth to the vehicle and V(𝑡𝑓) represents the velocity at
the final time, while the flight path angle index is 𝛾(𝑡𝑓).

Considering that the proposed LCPSO provides two
groups of particles based on Legendre orthogonal polynomial
approximation, the assumption of the fixed time interval[𝑡0, 𝑡󸀠𝑓] can be transformed into a closed interval [−1, 1]
of Legendre orthogonal polynomials to facilitate subsequent
processing. Meanwhile, the additional switching step 𝑡𝑘 can
make the optimal interval of 𝛿 more accurate. After that,
the PSO algorithm is employed to solve the optimal control
problem about 𝛿 in the fixed interval [𝑡0, 𝑡󸀠𝑓] and the next
interval [𝑡𝑘, 𝑡𝑓]. Furthermore, the 4th-order Runge-Kutta
numeric integration is employed to evaluate the performance
function, while the optimal time 𝑡𝑓 can be obtained as long
as all the terminal conditions are satisfied.

3. Algorithm Formulation

3.1. LCPSO. The proposed LCPSO is designed as a double
iteration scheme: the inner iteration of dual cooperative PSO
(CPSO) [14] and the outer iteration of interval analysis. The
mathematical formulation of the CPSO algorithm is rede-
signed in (10) and (11).

𝑥𝑟𝑙𝑖𝑑 (𝑡 + 1) = 𝑥𝑟𝑙𝑖𝑑 (𝑡) + V𝑟𝑙𝑖𝑑 (𝑡 + 1) , (10)

with 𝑑 ∈ {1, . . . , 𝑁}, 𝑙 ∈ {1, . . . , 𝑆}, 𝑡 < 𝑇max, 𝑟 ∈ {1, 2, . . . ,𝑅max},
V𝑟𝑙𝑖𝑑 (𝑡 + 1) = 𝑤1 × V𝑟𝑙𝑖𝑑 (𝑡) + 𝑐1 × rand ( )

× (𝑝𝑟𝑙𝑙𝑑 (𝑡) − 𝑥𝑟𝑙𝑖𝑑 (𝑡)) + 𝑐2 × rand ( )
× (𝑝𝑟𝑙𝑔𝑑 (𝑡) − 𝑥𝑟𝑙𝑖𝑑 (𝑡)) ,

𝑤1 = 𝑤min + (𝑤max − 𝑤min) × (𝑁iter − 𝑡)
𝑁iter

,

(11)

where 𝑥𝑟𝑙𝑖𝑑(𝑡) is the coordinate of particle 𝑖 in dimension 𝑑 at
time 𝑡 as subinterval 𝑙 at interval iteration step 𝑟.

The pseudocode of CPSO algorithm is reported in Pseu-
docode 1.
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(1) Input 𝑃 (number of cooperation iteration),(2) 𝐾 (number of cooperation iteration),(3) 𝑁max (subswarm size),(4) 𝑘, 𝑙 and 𝑟 (the parameters of interval analysis) are given from outer iteration.
(5) Initialize (𝑏𝛼01, . . . , 𝑏𝛼0𝑁) and (𝑏𝛿01, . . . , 𝑏𝛿0𝑁)(6) For cooperation iteration 𝑗 ∈ [1, . . . , 𝑃](7) For each subswarm iteration 𝑡 ∈ [1, . . . , 𝑇max](8) For each particle 𝑖 ∈ [1, . . . , 𝑁max](9) If (𝑗mod 2 > 0) {𝑥𝑟𝑙𝑖𝑑(0) = (𝑏𝛼𝑗1, . . . , 𝑏𝛼𝑗𝑁)}(10) Else {𝑥𝑟𝑙𝑖𝑑(0) = (𝑏𝛿𝑗1, . . . , 𝑏𝛿𝑗𝑁)}(11) End If(12) To run Runge-Kutta numeric integration and evaluate performance function by using Equ. (9).
(13) If (𝐽(𝑥𝑟𝑙𝑖 (𝑡) < pbestval))
(14) {pbest = 𝑥𝑟𝑙𝑖 (𝑡), pbestval = 𝐽(𝑥𝑟𝑙𝑖 (𝑡))}(15) Else If (𝐽(𝑥𝑟𝑙𝑖 (𝑡) < gbestval))
(16) {gbest = 𝑥𝑟𝑙𝑖 (𝑡), gbestval = 𝐽(𝑥𝑟𝑙𝑖 (𝑡))}(17) End If(18) To update the particle by using Equ. (10), Equ. (11).(19) End For 𝑖(20) End For 𝑡(21) If (𝑗mod 2 > 0)(22) {To update (𝑏𝛼𝑗1, . . . , 𝑏𝛼𝑗𝑁) = gbest}
(23) Else {To update (𝑏𝛿𝑗1, . . . , 𝑏𝛿𝑗𝑁) = gbest}(24) End If(25) End For 𝑗

Pseudocode 1: Pseudocode of CPSO.

The mathematical formulation of the one-dimensional
search method based on interval analysis is designed as

𝑘𝑟𝑙 = 𝑘𝑟−1 + (𝑙 − 0.5 (𝑆 + 1)) 𝑤 (𝑘𝑟−1) ,
with 𝑙 ∈ {1, . . . , 𝑆} , 𝑟 ∈ {1, 2, . . . , 𝑅max} ,

𝑤 (𝑘𝑟) = 𝑤 (𝑘𝑟−1)
𝑆 .

(12)

The one-dimensional search algorithm based on the
interval analysis is reported in Pseudocode 2.

The midpoint and the initial width of the switching step
interval are defined as

𝑘0 = 𝑡0𝑘𝑇𝑓 −
(1 − 𝑡0𝑘/𝑇𝑓) 𝑆

2 , (13)

𝑤(𝑘0) = 𝑆(1 − 𝑡0𝑘𝑇𝑓) , (14)

where 𝑘𝑟𝑙 is the ratio between the switching step and the
assumption final time in the interval iteration 𝑟 and the
subinterval 𝑙. The switch step interval is divided into 𝑆
subintervals at each interval iteration step 𝑟.

The method starts with the initial switch step interval,
which is split intomultiple subdivisions.Then, those subdivi-
sions are either sent to the solution list which are considered
later, or removed from further test list by certain cut-off
condition. The above process is repeated by choosing a new

switch step interval until no switch step could be considered
or a global optimal point is found.

3.2. Theorem of Boundaries Selection of LCPSO. The Legen-
dre orthogonal polynomials can be generated using Gram-
Schmidt orthonormalization [15] in the interval [−1, 1] with
the function of the weight 𝜌(𝑥) = 1. 𝐿𝑁(𝑥) represents a
Legendre polynomial with degree𝑁. We provide the follow-
ing transformation in (15) of the independent variable 𝜏 of 3-
DOF dynamics when 𝜏 ∈ [𝜏0, 𝜏𝑓] to guarantee that −1 ≤ 𝑥 ≤1:

𝑥 = 2𝜏 − (𝜏𝑓 + 𝜏0)
(𝜏𝑓 − 𝜏0) . (15)

This way, the continuous function 𝑢(𝑥) of variable 𝑥 can be
approximated as

𝑢 (𝑥) = 𝑁∑
𝑛=0

𝑏𝑛𝐿𝑛 (𝑥) . (16)

Then, using Legendre polynomial approximation, the
original optimal control problem can be transformed into a
parameter optimization problem: to find the optimal coeffi-
cients b = (𝑏0, 𝑏1, . . . , 𝑏𝑁) so as to minimize the fitness in (9)
and satisfy the terminal constraints in (8).

Obviously, the appropriate ranges of the coefficients b
can improve the convergence of the optimization procedure
and prevent explosion. In our formal studies, a theorem
to determine the coefficient of the Legendre orthogonal
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(1) Input 𝑇𝑓, S, R, 𝑡𝑘0,(2) Initialize 𝑡𝑘0 and 𝑤(𝑘0) by using Equ. (12),(3) For interval analysis iteration 𝑟 ∈ [1, . . . , 𝑅](4) For each subinterval 𝑙 ∈ [1, . . . , 𝑆](5) To update the switch instant by using Equ. (11).
(6) To perform CPSO and update 𝐽(𝑘𝑟𝑙)(7)End For 𝑙
(8) To update 𝑘𝑟 = {𝑘𝑟𝑙 | 𝑙 : min(𝑗(𝑘𝑟𝑙))}(9) To update 𝑡𝑟𝑘 = 𝑘𝑟𝑇𝑓.(10) End For r(11) To obtain the best position and the best fitness.

Pseudocode 2: Pseudocode of interval analysis.

polynomial is proposed in [16]. However, the statement and
proof of the theorem were incomplete and less rigorous. The
complete expression of the theorem of how to determine the
boundaries of the coefficients of the orthogonal polynomials
is proposed and proven.

Theorem 1. Assume that 𝐿𝑁(𝑥) represents an 𝑁th degree
Legendre polynomial.The continuous function 𝑢(𝑥) of variable𝑥 can be approximated as in (16). And the range of 𝑢(𝑥) belongs
to the interval [𝑈min, 𝑈max] with the variable 𝑥 presented in
(15).Then, the ranges of optimal coefficients b = (𝑏0, 𝑏1, . . . , 𝑏𝑁)
can be calculated by

𝑏𝑛 ∈ [𝑈min, 𝑈max] , 𝑛 = 0,
𝑏𝑛 ∈ [−(𝑛 + 1

2) (𝑈max − 𝑈min) ∫
1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥, (𝑛 + 1

2)

⋅ (𝑈max − 𝑈min) ∫
1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥] , 𝑛 ≥ 1,

(17)

or

𝑏𝑛 ∈ [𝑈min, 𝑈max] , 𝑛 = 0,
𝑏𝑛 ∈ [(𝑛 + 1

2) (𝑈max − 𝑈min) ∫
1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥,

− (𝑛 + 1
2) (𝑈max − 𝑈min) ∫

1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥] , 𝑛 ≥ 1,

(18)

where

𝐿𝑛 (𝑥) =
{{{{{
1, 𝑛 = 0
1

2𝑛𝑛!
𝑑𝑛
𝑑𝑥𝑛 (𝑥2 − 1)𝑛 , 𝑛 = 1, 2, . . . , (19)

𝐿+𝑛 (𝑥) = {{{
𝐿𝑛 (𝑥) , 𝐿𝑛 (𝑥) ≥ 0,
0, otherwise, (20)

𝐿−𝑛 (𝑥) = {{{
𝐿𝑛 (𝑥) , 𝐿𝑛 (𝑥) < 0,
0, otherwise. (21)

Proof. According to the assumption, we have the following
equations:

∫1
−1

𝐿𝑘 (𝑥) 𝑢 (𝑥) 𝑑𝑥 = ∫1
−1

𝐿𝑘 (𝑥)
𝑁∑
𝑛=0

𝑏𝑛𝐿𝑛 (𝑥) 𝑑𝑥

= 𝑏𝑘 ∫
1

−1
𝐿𝑘 (𝑥) 𝐿𝑘 (𝑥) 𝑑𝑥

+ 𝑁∑
𝑛=0,𝑛 ̸=𝑘

𝑏𝑛 ∫
1

−1
𝐿𝑘 (𝑥) 𝐿𝑛 (𝑥) 𝑑𝑥.

(22)

According to the orthogonal relationship of the Legendre
polynomials, we have

∫1
−1

𝐿𝑘 (𝑥) 𝐿𝑛 (𝑥) 𝑑𝑥 = 2
2𝑘 + 1𝛿𝑛𝑘 (23)

in which 𝛿𝑛𝑘 is called Kronecker Delta and satisfies

𝛿𝑛𝑘 = {{{
1, 𝑛 = 𝑘
0, otherwise. (24)

Substituting (23) and (24) into (22), we have

𝑏𝑘 = (𝑘 + 1
2)∫1
−1

𝑢 (𝑥) 𝐿𝑘 (𝑥) 𝑑𝑥, with 𝑘 ∈ [0,𝑁] . (25)

Assume that 𝑓(𝑥) and 𝑔(𝑥) are continuous in [𝑎, 𝑏] and
satisfy 𝑓(𝑥) ≤ 𝑔(𝑥); then, we have

∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑥 ≤ ∫𝑏

𝑎
𝑔 (𝑥) 𝑑𝑥 (26)

except the finite numbers of points.
Since the range of 𝑢(𝑥) is [𝑈min, 𝑈max] and from (20) and

(21), we have

𝐿𝑛 (𝑥) = 𝐿+𝑛 (𝑥) + 𝐿−𝑛 (𝑥) . (27)

Then, the following inequations should be achieved:

𝑈min𝐿+𝑛 (𝑥) ≤ 𝐿+𝑛 (𝑥) 𝑢 (𝑥) ≤ 𝑈max𝐿+𝑛 (𝑥) ,
𝑈max𝐿−𝑛 (𝑥) ≤ 𝐿−𝑛 (𝑥) 𝑢 (𝑥) ≤ 𝑈min𝐿−𝑛 (𝑥) .

(28)
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Hence,

𝑈max𝐿−𝑛 (𝑥) + 𝑈min𝐿+𝑛 (𝑥) ≤ (𝐿+𝑛 (𝑥) + 𝐿−𝑛 (𝑥)) 𝑢 (𝑥) ,
(𝐿+𝑛 (𝑥) + 𝐿−𝑛 (𝑥)) 𝑢 (𝑥) ≤ 𝑈max𝐿+𝑛 (𝑥) + 𝑈min𝐿−𝑛 (𝑥) .

(29)

According to (26), (27), and (29), we can obtain

∫1
−1

𝐿𝑛 (𝑥) 𝑢 (𝑥) 𝑑𝑥 ≥ 𝑈max ∫
1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥

+ 𝑈min ∫
1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥,

∫1
−1

𝐿𝑛 (𝑥) 𝑢 (𝑥) 𝑑𝑥 ≤ 𝑈max ∫
1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥

+ 𝑈min ∫
1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥.

(30)

Moreover, according to (25) and (30), we have the
effective range of 𝑏𝑛:
𝑏𝑛 ∈ [2𝑛 + 1

2 (𝑈min ∫
1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥

+ 𝑈max ∫
1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥) , 2𝑛 + 1

2 (𝑈max ∫
1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥

+ 𝑈min ∫
1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥)] .

(31)

Therefore, the upper bound and lower bound of coefficients𝑏𝑛 can be defined:

𝑏𝑛max = 2𝑛 + 1
2 (𝑈max ∫

1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥

+ 𝑈min ∫
1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥) ,

𝑏𝑛min = 2𝑛 + 1
2 (𝑈min ∫

1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥

+ 𝑈max ∫
1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥) ,

(32)

with 𝑛 = 0, 1, 2, . . ..
The closed form for the orthogonal polynomials is given

in (19). Assume that

𝑔 (𝑥) = (𝑥2 − 1)𝑛 , 𝑛 = 1, 2, . . . . (33)

Then,

∫1
−1

𝐿𝑛 (𝑥) 𝑑𝑥 = ∫1
−1

𝐿+𝑛 (𝑥) 𝑑𝑥 + ∫1
−1

𝐿−𝑛 (𝑥) 𝑑𝑥

= ∫1
−1

1
2𝑛𝑛!𝑔(𝑛) (𝑥) 𝑑𝑥 = 1

2𝑛𝑛! (𝑥)
󵄨󵄨󵄨󵄨󵄨1−1

= 0.

(34)

Therefore,

∫1
−1

𝐿+𝑛 (𝑥) 𝑑𝑥 = −∫1
−1

𝐿−𝑛 (𝑥) 𝑑𝑥, 𝑛 = 1, 2, . . . . (35)

Substituting (35) into (32), we have

𝑏𝑛max = 2𝑛 + 1
2 (𝑈max − 𝑈min) ∫

1

−1
𝐿+𝑛 (𝑥) 𝑑𝑥,

𝑏𝑛min = −𝑏𝑛max,
𝑛 ≥ 1,

(36)

or

𝑏𝑛max = −2𝑛 + 1
2 (𝑈max − 𝑈min) ∫

1

−1
𝐿−𝑛 (𝑥) 𝑑𝑥,

𝑏𝑛min = −𝑏𝑛max,
𝑛 ≥ 1.

(37)

When 𝑛 = 0, importing 𝐿0(𝑥) = 1 and −1 ≤ 𝑥 ≤ 1 into (32),
we have

𝑈min ≤ 𝑏0 ≤ 𝑈max. (38)

The proof is achieved.

Consider that the control value 𝑢(𝑥) always works in a
symmetric feasible interval. Assuming that 𝑈max > 0 and𝑈min = −𝑈max, to simplify the results in practical application,
we can obtain

𝑛 = 0, 𝑏0 ∈ [𝑈min, 𝑈max] ;
𝑛 = 1, 𝑏1 ∈ [1.5𝑈min, 1.5𝑈max] ;
𝑛 = 2, 𝑏2 ∈ [1.9245𝑈min, 1.9245𝑈max] ;
𝑛 = 3, 𝑏3 ∈ [2.275𝑈min, 2.275𝑈max] ;
𝑛 = 4, 𝑏4 ∈ [2.5793𝑈min, 2.5793𝑈max] ;
𝑛 = 5, 𝑏5 ∈ [3.8895𝑈min, 3.8895𝑈max] .

(39)

4. Simulation Results

4.1. Ascent Trajectory Optimization of the X-43 Vehicle.
Firstly, we use the model of the X-43 vehicle [13] as the
test case. Particularly, the vector of the initial states is[𝑟0, 𝜃0, 𝜑0, V0, 𝛾0, 𝑚0] = [6398000, 120, 0, 1200, 0, 1000], while
the terminal states are [𝑟𝑓, V𝑓, 𝛾𝑓] = [6408000, 1820, 0].
The tolerance of state variables in the terminal point is[Δ𝑟, ΔV, Δ𝛾] = [±1000, ±50, ±1.5]. Some other experiment
parameters are as follows: the number of LCPSO iterations
that occurred 𝑇 = 35, the population size of a single particle
swarm 𝑁 = 40, the dimension of the particle 𝐷 = 6,
the number of swarm iterations of the cooperated particle𝑃 = 4, the acceleration coefficients 𝑐1 = 𝑐2 = 2, and the
range of the inertia weight 𝑤max = 0.9 and 𝑤min = 0.4.
In addition, the weights of the performance function are
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Table 1: Results after 1 time numerical simulation.

Iteration time 𝑡 Switching step ratio 𝑘 Corresponding step 𝑡𝑘 Optimal cost 𝐽
1 0.450 90.0 320.849
1 0.550 110.0 314.069
1 0.650 130.0 291.451
1 0.750 150.0 433.650
1 0.850 170.0 491.392
2 0.610 122.0 293.675
2 0.630 126.0 254.625
2 0.650 130.0 275.729
2 0.670 134.0 294.822
2 0.690 138.0 348.983
3 0.622 124.4 285.098
3 0.626 125.2 259.907
3 0.630 126.0 254.625
3 0.634 126.8 262.411
3 0.638 127.6 278.003
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Figure 1: The profile of opening of fuel valve.

[𝑘1, 𝑘2, 𝑘3] = [109, 104, 103], and the parameters of interval
analysis iteration are [𝑡󸀠𝑓, 𝑡𝑘, 𝑆, 𝑅] = [1, 0.9, 5, 3].

InTable 1, during the optimal processing, five subintervals
are introduced and the optimal costs vary with the switch
steps in each iteration step of interval analysis, and the
results converged at the global optimal point only through
three steps of iteration. It takes about 580 seconds under
the hardware environment of Intel Core i3 3220 CPU and
DDR4G 1600MHz memory and the software environment
of Windows 7 operating system with VC++ 6.0 compiling
environment.

The optimal flight path angle profile is shown in Figure 1,
with the corresponding optimal control variables profile in
Figures 2 and 3.

In Table 2, according to the ratios of the feasible results,
the best and the mean results of 200 times simulations using
interval analysis of LCPSO with different coefficients’ ranges
are presented. Apparently, the proposed method with the
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Figure 2: The profile of the angle of attack.
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Figure 3: The profile of the angle of flight path.
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Table 2: Coefficient range selection results.

Standard range 0.5 times range 2 times range 5 times range
Ratio of feasible results 72.0 59.1 63.5 24.5
Least consumption of fuel 51.8% 55.9% 53.6% 56.4%
Mean consumption of fuel 63.0% 61.1% 64.5% 70.5%

Standard swarm
Half-range swarm
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Figure 4: Result distribution with standard and half times range.
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Figure 5: Result distribution with standard, double times, and five
times range.

coefficients’ ranges selection has the best performance, while
all state variables meet the state terminal constraints with
higher precision. Furthermore, the feasible results distribu-
tion with standard range and half-range selection is shown
in Figure 4, while the feasible results distributions with

standard, two, and five times range selection are displayed
in Figure 5. From the comparison, we can find that if the
optimal solutions existed in this reductive area, the reduction
of the search range to its half will probably decrease the search
complexity. However, if the performance index function
corresponding to the reductive area is of bad quality, the
optimized solution is likely to be lost. On the other hand, the
multifold coefficient will provide the unwanted search space,
which will increase the complexity and reduce efficiency of
the optimization.

4.2. Earth-Mars Transfer Problem. Theorbit transfer problem
is another kind of hotspot issues on trajectory optimization
research [17]. Here, we use the proposed LCPSO method
to solve the Earth-Mars trajectory transfer problem and
compare it with the traditional DE and GA method.

The Earth-Mars transfer orbit can be divided into three
stages: geocentric escape section, heliocentric transition
section, and areosynchronous capture section. Each seg-
ment has different constraints. In the geocentric escape
section, the initial state constraints are [𝑟0, V𝑟0, V𝜃0] =[6.6107𝑅𝐸, 0, 0.38893𝑅𝐸/𝑇𝑈𝐸] and the terminal state con-
straint is 𝑟𝑓 = 145𝑅𝐸. On the other hand, the constraints
required in the third segment are the terminal radius 𝜌𝑓 and
the terminal speeds V𝜌𝑓 and V𝛿𝑓, which satisfy [𝜌𝑓, V𝜌𝑓, V𝛿𝑓] =[6.0236𝑅𝑀, 0, 0.40745𝑅𝑀/𝑇𝑈𝑀]. And the initial radius is the
radius of the sphere of influence for Mars, 𝜌0 = 170𝑅𝑀.

The LCPSO algorithm parameters are set as follows: the
population size 𝑚 = 20 and the maximum number of
iterations 𝑛 = 200. Meanwhile, the parameters of DE and
GA algorithm are set as follows: the population size 𝑚 =20, the maximum number of iterations 𝑛 = 200, the cross
probability 𝑝𝑐 = 0.4, and the mutation probability 𝑝𝑚 = 0.6.
The optimization variables contain the thrust angle of the
aircraft, the initial and terminal orbital angles, and the time
of the whole three-segment orbits flight. Currently, the range
of the thrust angle and the initial/terminal orbital angles of
the vehicle is set in [0, 𝜋]. The problem is to transfer the orbit
within the shortest time to minimize the fuel consumption,
so the fitness function can be described as 𝐽 = 𝑡1 + 𝑡2 + 𝑡3,
where 𝑡1, 𝑡2, and 𝑡3 are the transfer periods of three sections,
respectively. Figure 6 shows the best fitness process using
LCPSO, DE, and GA algorithms. It is shown that the LCPSO
has a faster speed of convergence and higher accuracy than
DE and GA algorithms.

The final resulting candidate solutions by LCPSO, DE,
and GA are shown in Figures 7–9. Because the intelligent
algorithm obtains the feasible solution to meet the accuracy
requirements, the state curves of any two algorithms are not
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Figure 6: Convergence processes of the fitness functions.

Table 3: Final times for the geocentric, heliocentric, and areocentric
segments.

Segment Final time (days)
LCPSO GA DE

1 (geocentric) 37.1 34.6 34.5
2 (heliocentric) 171.4 182.4 174.7
3 (areocentric) 19.3 20.3 19.6
Whole flight time 227.8 237.3 228.8

necessarily completely consistent. But both of them satisfy
the constraints and accuracy requirements. For instance,
as shown in Figure 7, although the final radius of the
geocentric orbit is about 145𝑅𝐸 by LCPSO, 145.1𝑅𝐸 by GA,
and 143𝑅𝐸 by DE, the orbital radius and the velocity are all
within the permitted constrained ranges. And in this case,
the optimization result of the final geocentric orbital radius
by LCPSO is closer to the constraint requirements. Hence,
the LCPSO exhibits better efficiencies on the constraints
requirements than the other two algorithms. Moreover, the
results of the whole transfer time by different optimization
algorithms are shown in Table 3. It can be found that, in
the case of satisfying constraints, the optimal trajectory by
LCPSO will spend the shortest flight time among the three
algorithms, which has the best performance.

5. Conclusion

In this paper, a novel interval analysis based Legendre
cooperative PSO algorithm is proposed and applied to solve
the trajectory optimization problems. The Legendre orthog-
onal polynomial approximation is synthesized with the dual
cooperative particle swarms to transfer the arbitrary final
time optimal problem into a two-point boundary value prob-
lem with fixed terminal one. Then, a fast one-dimensional
interval search method is provided in each selected interval
to reduce the search space of the particles in the iterations.
Furthermore, a theorem that determines the range of the

parameters of the Legendre polynomial is investigated, and
the problem can be solved to get closer to the global optimal
solution.

Lastly, in numeral simulation, the results demonstrate
that the LCPSO algorithm can solve the unsmooth trajec-
tory optimization problem of X-43 effectively and obtain
a smooth control variable. And the appropriate range of
parameter values will significantly reduce the complexity of
the optimization search.Moreover, in the solution to the orbit
transfer problem, the comparisons with the existing GA and
DE algorithms represent the notion that the proposed LCPSO
method has better performance in the speed of convergence,
final accuracy, and constraints satisfaction.

The flaw of the proposed LCPSO algorithms is that
the parameters of the Legendre polynomial are sensitive
in adjustment. Nevertheless, in the trajectory optimization
problem of HV, the variety of parameters is a relatively
gentle process because of the dynamic characters of HV,
and the parameters are adjusted less frequently in iterations.
Normally, the parameters will remain the same after they are
adjusted once before. The optimization between parameter
sensitivity and optimal solution will be studied to make the
method more practical in engineering in our future work.

Nomenclature and Abbreviations

CPSO: Cooperative particle swarm optimization
DE: Differential evolution
DOF: Degree of freedom
FER: Fuel expendable ratio
HV: Hypersonic vehicle
GA: Genetic algorithm
LCPSO: Legendre cooperative particle swarm

optimization
PSO: Particle swarm optimization.
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Figure 7: State variables in geocentric segment.
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Figure 9: State variables in areocentric segment.
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