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A double delayed hybrid stochastic prey-predator bioeconomic system with Lévy jumps is established and analyzed, where
commercial harvesting on prey and environmental stochasticity on population dynamics are considered. Two discrete time
delays are utilized to represent the maturation delay of prey and gestation delay of predator, respectively. For a
deterministic system, positivity of solutions and uniform persistence of system are discussed. Some sufficient conditions
associated with double time delays are derived to discuss asymptotic stability of interior equilibrium. For a stochastic
system, existence and uniqueness of a global positive solution are studied. By using the invariant measure theory and
singular boundary theory of diffusion process, existence of stochastic Hopf bifurcation and stochastic stability are
investigated. By constructing appropriate Lyapunov functions, asymptotic dynamic behavior of the proposed hybrid
stochastic system with double time delays and Lévy jumps is discussed. Numerical simulations are provided to show
consistency with theoretical analysis.

1. Introduction

It is well known that a harvest effort has a strong dynamical
impact on the prey-predator system [1–5], which plays a
significant role in bioeconomics management among various
species in a harvested prey-predator system [6–8]. Further-
more, it is more realistic to investigate the coexistence and
interaction mechanism of the harvested prey-predator
system by introducing time delays into a model system,
such as maturation delay and gestation delay of the
population [9–12]. In recent years, combined dynamic
effects of the harvest effort and time delay on the pop-
ulation dynamics of prey-predator systems have been
widely investigated in [13–18] and references therein,
where the asymptotic behavior of the model system
around equilibrium is analyzed and stability of bifurcated

periodic solutions is studied. Yuan et al. [18] incorporated
gestation delay τ > 0 as a negative feedback of predator
population density in the harvested prey-predator system,
which is as follows:

x1 t = x1 t r1 − b1x1 t −
a1x1 t x2 t
k + x1 t

−
qEx1 t

m1E +m2x1 t
,

x2 t = x2 t r2 −
a2x2 t − τ

k + x1 t − τ
,

1

where x1 t and x2 t represent the population density of
the prey and predator population, respectively. r1 and r2
stand for the birth rate of the prey and predator population,
respectively. b1 represents the intracompetition rate for the
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prey population, a1 is the maximum value of the per capita
reduction rate of the prey population due to predation, and
a2 has a similar interpretation to that of a1. k measures the
extent to which the surrounding environment provides
protection to each population. q denotes the catchability
coefficient, E is a constant parameter representing the
harvest effort on the prey population, and τ > 0 repre-
sents the gestation delay of the predator population. By
analyzing the dynamical behavior of interior equilibrium
and properties of bifurcation phenomena, it reveals that
sustainable development of the harvested prey-predator
system may be guaranteed by adopting an appropriate
harvest effort.

It should be noted that the dynamical behavior of the
commercially harvested bioeconomic system can be pre-
cisely predicted by using stochastic mathematical models
[19–23], which can provide an additional degree of
realistic reflection in the real world compared to its corre-
sponding deterministic counterpart. Many scholars have
incorporated stochastic perturbations into deterministic
mathematical models to discuss dynamic effects of envi-
ronmental noises on population dynamics of the harvested
bioeconomic system [19–21], which show that persistence
and extinction of population are relevant to time delay
and stochastic fluctuations. Combined dynamic effects of
time delay and Gaussian white noises on population
dynamics of the harvested bioeconomic system as well as
optimal harvest control problems are studied in [22, 23].
Recently, it is proved that Lévy jumps can efficiently depict
sudden and severe environmental perturbations arising in
the real world [24, 25], while these phenomena cannot be
described better by Brownian motion.

Based on the above analysis, some assumptions are
proposed as follows.

Assumption 1. In this paper, we will extend the work in
[18] by incorporating commercial harvesting on prey
into system (1). E t represents the commercial harvest-
ing effort on prey at time t, w represents the harvesting
reward coefficients, c represents the cost per unit harvest-
ing effort for the unit weight of prey, and v is the eco-
nomic interest of commercial harvesting on prey. Based
on the economic theory proposed in [26], an algebraic
equation is constructed to study the economic interest of
commercial harvesting:

Net economic revenue = total revenue TR − total cost TC
2

Based on system (1), TR and TC in (2), it is easy to show
that TR = wE t x1 t and TC = cE t .

Assumption 2. In this paper, the maturity of the prey
population is assumed to be mediated by discrete time
delay τ1 > 0. Furthermore, the reproduction of the pred-
ator population after predating the prey population is
not instantaneous but will be mediated by some time
lag required for gestation of the predator population.
τ2 > 0 represents the gestation delay of the predator

population. Hence, we will extend the work in [18] by
incorporating two different discrete time delays into system
(1), and τ1 ≠ τ2.

Assumption 3. In this paper, the population growth of prey
and predator populations affected by environmental
stochastic fluctuations is assumed to be a stochastic
process. Gaussian white noises and Lévy jumps will be
incorporated into system (1) to describe stochastic sur-
rounding environmental factors. σjk j, k = 1, 2 are non-
negative constants, ξ1 t and ξ2 t denote multiplicative
stochastic excitation and external stochastic excitation
related to surrounding environment, respectively. ξj t j =
1, 2 represents independent Gaussian white noise such that
E ξj t = 0 j = 1, 2 . For any time, t1 ≠ t2, E ξj t1 ξj t2 =
δ t2 − t1 j = 1, 2 , and E ξj t1 ξk t2 = 0 j, k = 1, 2, j ≠ k ,
where δ denotes the Dirac delta function. xi t − repre-
sents the left limit of xi t , i = 1, 2 and γi u > −1, i = 1, 2.
N denotes a Poisson counting measure with characteristic
measure λ on a measurable subset Y with λ Y < +∞ and
λ is assumed to be a Lévy measure such that N dt, du =
N dt, du − λ du dt and Y denotes a measurable subset
of ℝ+. Throughout this paper, ξi t i = 1, 2 and N are
assumed to be independent.

In this paper, keeping all these Assumptions 1–3 in
mind, a double delayed hybrid stochastic prey-predator
bioeconomic system with Lévy jumps is established as
follows:

dx1 t = x1 t − τ1 r1 − b1x1 t − τ1 −
a1x1 t x2 t
k + x1 t

−
qE t x1 t

m1E t +m2x1 t
dt

+ σ11x1 t ξ1 t + σ12ξ2 t dt

+
Y

γ1 u x1 t − N dt, du ,

dx2 t = x2 t r2 −
a2x2 t − τ2
k + x1 t − τ2

dt

+ σ21x2 t ξ1 t + σ22ξ2 t dt

+
Y

γ2 u x2 t − N dt, du ,

0 = E t wx1 t − c − v,

3

where the initial conditions for system (3) take the
following form:

x1 θ ≥ 0,

x2 θ ≥ 0,

θ ∈ −max τ1, τ2 , 0 ,

E 0 ≥ 0

4
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System (3) can be rewritten in the matrix form as follows:

Remark 1. Since the algebraic equation in (3) includes no
differentiated variables, the third row in matrix

Ξ t =

1 0 0

0 1 0

0 0 0

6

has a corresponding zero row.

Recently, some hybrid bioeconomic systems with time
delay and stochastic fluctuations are established in [27–30]
to investigate the combined dynamic effects of stochastic
fluctuation and commercial harvesting on population
dynamics. These proposed systems in [27–30] are also con-
structed by several differential equations with stochastic fluc-
tuations and an algebraic equation. Compared with the
previously bioeconomic systems proposed in [19–23, 31]
and the references therein, such delayed bioeconomic sys-
tems [27–30] can not only discuss coexistence and interac-
tion mechanism of a delayed bioeconomic system under
stochastic environmental fluctuations but also investigate
population dynamics due to variations of economic interest
of commercial harvesting. However, biological characteris-
tics among interacting populations are not considered in
[27–29]; time delays such as gestation delay and maturation
delay for interacting populations in [27–29] are assumed to
be the same discrete value, which contradicts to reality in
the real world. Asymptotical stability of interior equilibrium
and dynamic effects of Lévy jumps on population dynamics
are not discussed in [27–29]. It is proved that Lévy jumps
can efficiently depict sudden and severe environmental
perturbations arising in the real world [24, 25], while these
phenomena can not be described better by Brownian
motion. Although the dynamic effects of double time
delays have been investigated in [30], the combined
dynamic effects of multiple time delays and Lévy jumps
on population dynamics have not been investigated in
[30]. Dynamic effects of multiple time delays on the
hybrid bioeconomic prey-predator system are investigated

in [15, 32]. However, the dynamic effect of Lévy jumps
and asymptotical stability of solutions of the stochastic
system are not studied in [15, 32].

To the authors’ best knowledge, population dynamics of
the hybrid bioeconomic system with double time delays
and Lévy jumps have not been investigated. The rest sec-
tions of this paper are organized as follows: in the second
section, qualitative analysis of the deterministic system is
investigated. Positivity of solutions and uniform persis-
tence of the deterministic system are studied. Asymptotic
stability of interior equilibrium of the deterministic system
is discussed due to variations of double time delays. In
the third section, qualitative analysis of the stochastic sys-
tem is investigated. Existence and uniqueness of global
positive solution are studied. In the absence of double
time delays and Lévy jumps, the existence of stochastic
Hopf bifurcation and stochastic stability is investigated.
In the presence of double time delays and Lévy jumps,
by constructing appropriate Lyapunov functions, the asymp-
totic dynamic behavior of the proposed hybrid stochastic
system with double time delays and Lévy jumps is discussed.
In the fourth section, numerical simulations are provided
to support theoretical findings. Finally, this paper ends
with a conclusion.

2. Qualitative Analysis of Deterministic System

In the absence of stochastic fluctuations, positivity of
solutions and uniform persistence of system (3) with initial
conditions (4) will be studied in Lemmas 1 and 2.

Lemma 1. When σjk = 0 j, k = 1, 2 and γi u = 0 i = 1, 2 ,
all solutions of system (3) with initial conditions (4) are
positive for all t ≥ 0.

Proof 1.When σjk = 0 j, k = 1, 2 and γi u = 0 i = 1, 2 , it is
easy to show that Fi ℝ3+1

+ →ℝ3 is locally Lipschitz and
satisfy the condition, Fi > 0, where Fi i = 1,2,3 can be found
in (5).

Ξ t

dx1 t

dx2 t

0

=

F1 x1, x2, E

F2 x1, x2, E

F3 x1, x2, E

=

x1 t − τ1 r1 − b1x1 t − τ1 −
a1x1 t x2 t
k + x1 t

−
qE t x1 t

m1E t +m2x1 t
dt + σ11x1 t ξ1 t + σ12ξ2 t dt +

Y

γ1 u x1 t − N dt, du

x2 t r2 −
a2x2 t − τ2
k + x1 t − τ2

dt + σ21x2 t ξ1 t + σ22ξ2 t dt +
Y

γ2 u x2 t − N dt, du

E t wx1 t − c − v

5
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Due to lemma in [33] and Theorem A.4 in [34],
all solutions of system (3) with initial conditions (4)
exist uniquely and each component of the solution
remains within the interval 0,U0 for some U0 > 0.
Standard and simple arguments show that any solution

of system (3) with initial conditions (4) always exist
and stay positive.

Lemma 2.When σjk = 0 j, k = 1, 2 and γi u = 0 i = 1, 2 , if
v > 0 and τ1 are bounded and satisfy the following inequality:

then all solutions of system (3) with initial conditions (4) are
uniformly persistent.

Proof 2. When σjk = 0 j, k = 1, 2 and γi u = 0 i = 1, 2 , by
using Taylor series expansion [35], for x1 t , x2 t , τ1 > 0,
and τ2 > 0, it is easy to show that

x1 t − τ1 = x1 t − τ1
d
dt

x1 t − τ1x1 t +⋯ ,

x2 t − τ2 = x2 t − τ2
d
dt

x2 t − τ2x2 t +⋯
8

Hence, it follows that there exists T1 > 0 such that

x1 t − τ1 ≤ x1 t ,

x2 t − τ2 ≤ x2 t
9

According to Lemma 1, (9), and the first equation
of system (3), it follows from simple computations that
x1 t < r1x1 t − τ1 ≤ r1x1 t , which derives that

x1 t ≤ x1 t − τ1 er1τ1 10

holds for t > T2 ≔ T1 + τ1.
For t > T2, it follows from (10) and the first equation of

system (3) that

x1 t < x1 t r1 − b1x1 t − τ1 < x1 t r1 − b1x1 t e−2r1τ1 ,
11

which gives that

lim sup
t→+∞

x1 t ≤
r1e

2r1τ1

b1
≔ P1 12

If τ1 is bounded, then P1 is bounded for t > T2.
Based on Lemma 1 and the second equation of system

(3), there exists T3 > T2 and it follows from simple computa-
tions that x2 t > r2x2 t 1 − a2x2 t /kr2 holds for t > T3.
By using standard comparison arguments, it gives that

lim inf
t→+∞

x2 t ≥
kr2
a2

≔Q2 13

According to biological interpretations, (12) and the
first equation of system (3), it derives that there exists
T4 > T3 and r1x1 t − b1e

−2r1τ1x21 t − a1x1 t x2 t / k +
r1/b1 e2r1τ1 > 0 holds for t > T4. Furthermore, it follows
from Lemma 1 that a1x2 t < r1 k + r1/b1 e2r1τ1 and

lim sup
t→+∞

x2 t ≤
r1
a1

k +
r1
b1

e2r1τ1 ≔ P2 14

If τ1 is bounded, then P2 is bounded for t > T4.
By using the first equation of system (3) and (14), it can

be obtained that there exists T5 > T4 such that

x1 t > r1e
−r1τ1x1 t − b1x

2
1 t −

a1P2x1 t
k

−
qx1 t
m1

15

holds for t > T5 and

lim inf
t→+∞

x1 t ≥
m1kr

2
1e

−2r1τ1

4b1 a1m1P2 + qk
≔Q1 16

Furthermore, by using simple computations, it follows
from (12) and (16) and the third algebraic equation of system
(3) that

lim inf t→+∞E t ≥
v

wP1 − c
≔Q3,

lim supt→+∞E t ≤
v

wQ1 − c
≔ P3

17

If τ1 < 1/2r1 ln cb1/wr1 , then it is easy to show that
Q3 > 0 and Q3 is bounded.

If τ1 < 1/2r1 ln b1ck mr1 + q 2 + cwkm2
1r

4
1 − b1ck

mr1 + q /8cm1r
2
1 , then it is easy to show that P3 > 0 and

P3 are bounded.
Based on the above analysis, if v > 0 and τ1 are bounded

and satisfy the following inequality

τ1 < min
1
2r1

ln
cb1
wr1

,
1
2r1

ln
b1ck mr1 + q 2 + cwkm2

1r
4
1 − b1ck mr1 + q

8cm1r
2
1

, 7
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then all solutions of system (3) with initial conditions (4) are
uniformly persistent.

Remark 2. From the practical and physical perspective of
viewpoints, positivity of the solution of the proposed hybrid
delayed stochastic bioeconomic system refers to each popula-
tion survival for a long duration under combined dynamic
effects of commercial harvesting, time delay, and stochastic
fluctuations. Since natural resources for each population
survival are relatively limited within a closed environment,
permanence of the hybrid delayed stochastic bioeconomic
system interprets that there exist positive finite upper bounds
and lower bounds for each population density, which may
avoid overpopulation and extinction of each interacting
populations. Furthermore, in order to maintain sustainable
development of commercially harvested population, com-
mercial harvesting should be constrained within a certain
range. It practically interprets there exist positive finite upper
bounds and lower bounds for commercial harvesting amount
on the predator population.

When economic interest v > 0, σ jk = 0 j, k = 1, 2 , and
γi u = 0 i = 1, 2 , the interior equilibrium of system (3)

can be obtained as follows: M∗ x∗1 , x∗2 , E∗ = x∗1 , r2k/a2 −
r2 , v/wx∗1 − c and x∗1 satisfies the following equation:

x∗41 + A1x
∗3
1 + A2x

∗2
1 + A3x

∗
1 + A4 = 0, 19

where Ai, i = 1,2,3,4 are defined as follows:

A1 =
m2 a2 − r2 w b1k − r1 − cb1

wm2b1 a2 − r2
,

A2 =
wm2k a1r2 − r1 a2 − r2 + a2 − r2 b1m1v − cm2 b1k − r1

wm2b1 a2 − r2
,

A3 =
cm2 kr1 a2 − r2 − a1r2k + v a2 − r2 q +m1 b1k − r1

wm2b1 a2 − r2
,

A4 =
a1r2m1v − q a2 − r2 q +m1r1

wm2b1 a2 − r2

20

According to Routh-Hurwitz criterion [35], a suffi-
cient condition for (19) has at least one positive root
which is A4 < 0. Furthermore, M∗ exists provided that
x∗2 = r2k/a2 − r2 > 0 and E∗ = v/wx∗1 − c > 0. Based on
the above analysis, if τ1, τ2, v ∈H1, then there exists at least
one positive root for (19), and H1 is defined as follows:

In the following part, some sufficient conditions associ-
ated with double time delays are derived to investigate the
local asymptotic stability of the system (3) around M∗. By
using the third algebraic equation E t = v/ wx1 t − c , the
system (3) can be rewritten as follows:

x1 t = x1 t − τ1 r1 − b1x1 t − τ1 −
a1x1 t x2 t
k + x1 t

−
qvx1 t

m1v +m2x1 t wx1 t − c
,

x2 t = x2 t r2 −
a2x2 t − τ2
k + x1 t − τ2

22

For mathematical convenience, some transformations
x1 t = x∗1 e

y1 t and x2 t = x∗2 e
y2 t are made and system

(22) is rewritten as follows:

y1 t = −
b1x

∗
1 e

y1 t−τ1

ey1 t
ey1 t−τ1 − 1

+ a1x
∗
2

ey1 t−τ1

ey1 t

1
k + x∗1

−
ey2 t

k + x1 t

+ qv
ey1 t−τ1

ey1 t

1
m1v +m2x

∗
1 wx∗1 − c

−
1

m1v +m2x1 t wx1 t − c
,

y2 t =
a2x

∗
2 x∗1 ey1 t−τ2 − 1 − k + x∗1 ey2 t−τ2 − 1

k + x∗1 k + x∗1 e
y1 t−τ2

23

By utilizing the following mathematical relations:

τ1 < min
1
2r1

ln
cb1
wr1

,
1
2r1

ln
b1ck mr1 + q 2 + cwkm2

1r
4
1 − b1ck mr1 + q

8cm1r
2
1

, 18

H1 = τ1, τ2, v τ1 ≥ 0, τ2 ≥ 0, 0 < v <min
q a2 − r2 q +m1r1

a1r2m1
,
1
2r1

ln
cb1
wr1

,
1
2r1

ln
b1ck mr1 + q 2 + cwkm2

1r
4
1 − b1ck mr1 + q

8cm1r
2
1

21
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ey1 t−τ1 = ey1 t −
t

t−τ1
ey1 s dy1

ds
ds,

ey1 t−τ2 = ey1 t −
t

t−τ2
ey1 s dy1

ds
ds,

ey2 t−τ1 = ey2 t −
t

t−τ1
ey2 s dy2

ds
ds,

ey2 t−τ2 = ey2 t −
t

t−τ2

ey2 s dy2
ds

ds,

24

system (23) can be rewritten as follows:

Some sufficient conditions for local asymptotical stability
of system (3) around the interior equilibrium M∗ can be
concluded as follows.

Theorem 1. When σ jk = 0 j, k = 1, 2 and γi u = 0 i = 1, 2 ,
if τ1, τ2, v ∈H1 ∩H2, then system (3) is asymptotically stable
around interior equilibriumM∗, whereH2 is defined in (A.10).

Proof 3. The proof of Theorem 1 can be found in Appendix A
of this paper.

3. Qualitative Analysis of Stochastic System

If τ1, τ2, v ∈H1 ∩H2, then it follows from the third
algebraic equation of system (3) that E t = v/ wx1 t − c .
Consequently, system (3) is transformed as follows:

dx1 t = x1 t − τ1 r1 − b1x1 t − τ1 −
a1x1 t x2 t
k + x1 t

−
qvx1 t

m1v +m2x1 t wx1 t − c
dt

+ σ11x1 t ξ1 t + σ12ξ2 t dt

+
Y

γ1 u x1 t − N dt, du ,

dx2 t = x2 t r2 −
a2x2 t − τ2
k + x1 t − τ2

dt

+ σ21x2 t ξ1 t + σ22ξ2 t dt

+
Y

γ2 u x2 t − N dt, du

26

In the following part, existence and uniqueness of the
global positive solution of system (26) are discussed in
Theorem 2.

Theorem 2. If
Y
γi u − ln 1 + γi u λdu ≤ γi i = 1, 2 and

γi are positive constants and σjk > 0 j, k = 1, 2 is sufficiently
small, then system (26) has a unique global positive solution
for all t > 0 and the solution x1 t , x2 t ∈ℝ2

+ for t > 0
almost surely.

Proof 4. The proof of Theorem 2 can be found in Appendix B
of this paper.

3.1. Case I: System (3) without Double Time Delays and Lévy
Jumps. In this subsection, when τ1 = τ2 = 0 and γi u = 0
i = 1, 2 , it follows from simple computations that the line-
arized form of system (26) around x∗1 , x∗2 is as follows:

x1 t = α11x1 t + α12x2 t + σ11x1 t ξ1 t + σ12ξ2 t ,

x2 t = α21x1 t + α22x2 t + σ21x2 t ξ1 t + σ22ξ2 t ,
27

where α11 = r1 − 2b1x∗1 − a1kx
∗
2 / k + x∗1

2 − qm1v
2/ m1v +

w1x
∗
1 − c m2x

∗
1

2 , α12 = − a1x
∗
1 / k + x∗1 , α21 = a2x

∗2
2 /

k + x∗1
2 , and α22 = r2 − a2x

∗
2 / k + x∗2

2 .
By using Khasminskii transformations, x1 t = ω cos θ,

x2 t = ω sin θ, and system (27) are rewritten as follows:

ω t = ω α11 cos2θ + α11 + α21 sin θ cos θ + α22 sin2θ
+ ω σ11 cos2θ + σ21 sin2θ ξ1 t

+ σ12 cos θ + σ22 sin θ ξ2 t ,

θ t = α21 cos2θ − α12 sin2θ + α22 − α11 cos θ sin θ

+ σ21 − σ11 sin θ cos θξ1 t

+
σ22 cos θ − σ12 sin θ

ω
ξ2 t

28

y1 t = −
b1x

∗
1 e

y1 t−τ1 ey1 t − 1
ey1 t

−
a1kx

∗
2 ey2 t − 1

k + x1 t k + x∗1
+

qvm2x
∗
1 wx∗1 − c ey1 t − 1

m1v +m2x
∗
1 wx∗1 − c m1v +m2x1 t wx∗1 − c

+
b1x

∗
1 e

y1 t−τ1 − a1x
∗
2

ey1 t
−

qv

ey1 t m1v +m2x
∗
1 wx∗1 − c

t

t−τ1
ey1 s dy1

ds
ds,

y2 t =
a2x

∗
1x

∗
2 ey1 t − 1

k + x∗1 k + x1 t − τ2
−
a2x

∗
2 ey2 t − 1

k + x1 t − τ2
−

a2x
∗
1x

∗
2

k + x∗1 k + x1 t − τ2

t

t−τ2
ey1 s dy1

ds
ds +

a2x
∗
2

k + x1 t − τ2

t

t−τ2
ey2 s dy2

ds
ds

25
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According to Khasminskii limit theorem [36, 37], if
τ1 = τ2 = 0, γi u = 0 i = 1, 2 , and σjk > 0 j, k = 1, 2 are
sufficiently small, then ω t , θ t weakly converges to
the two-dimensional Markov diffusion process. Based on
the stochastic averaging method, the Itô stochastic differen-
tial equation can be obtained as follows:

dω = f ωdt + β11dWω + β12dWθ,

dθ = f θdt + β21dWω + β22dWθ,
29

where Wω and Wθ represent standard and independent
Wiener processes,

f ω =
ω α11 − α22

2
+
5ω σ211 + σ221

8
−
ωσ11σ21

4

+
σ2
11 + σ2

12 + σ2
21 + σ2

22
2ω

,

f θ = −
α12
2

,

β2
11 =

3ω2 σ211 + σ221
8

+
σ211 + σ212 + σ221 + σ222

2
+
ω2σ11σ21

4
,

β12 = 0,
β21 = 0,

β2
22 =

σ21 − σ11
2

8
+
σ211 + σ212 + σ221 + σ2

22
2ω2

30

Furthermore, some parameter transformations are
provided as follows:

ϵ1 =
α11 + α21

2
,

ϵ2 = 5 σ211 + σ221 − 2σ11σ21,

ϵ3 =
σ211x

∗2
1 + σ221x

∗2
2 + σ212 + σ222
2

,

ϵ4 = 3 σ211 + σ221 + 2σ11σ21,

ϵ5 =
α11 + α21

4
,

ϵ6 = σ11 − σ21
2

31

According to β12 = β21 = 0 and (31), system (29) can be
rewritten as follows:

dω =
ω2 8ϵ1 + ϵ2 + 8ϵ3

8ω
dt +

8ϵ3 + ϵ4ω2

8
dWω + ϵ5ωdWθ,

dθ = ϵ5ωdWω +
16ϵ3 + ϵ6ω2

4ω
dWθ

32

It follows from the above analysis and β12 = β21 = 0 that
averaging amplitude ω t refers to the one-dimensional
Markov diffusion process, which derives that

dω =
ω2 8ϵ1 + ϵ2 + 8ϵ3

8ω
dt +

8ϵ3 + ϵ4ω2

8
dWω

33

Theorem 3. When τ1 = τ2 = 0 and γi u = 0 i = 1, 2 ,
stochastic stability of system (26) is discussed due to the
variation of stability of averaging amplitude ω t in terms
of probability.

(i) ω = 0 is unstable, and system (26) is unstable around
x∗1 , x∗2 in terms of probability.

(ii) If 2 8ϵ1 + ϵ2 − ϵ4 > 0, then ω = +∞ is attractively
natural and system (26) is unstable around x∗1 , x∗2
in terms of probability; system (26) does not undergo
stochastic Hopf bifurcation around x∗1 , x∗2 .

(iii) If 2 8ϵ1 + ϵ2 − ϵ4 = 0, then ω = +∞ is strictly
natural.

(iv) If 2 8ϵ1 + ϵ2 − ϵ4 < 0, then ω = +∞ is exclusively
natural and system (26) is unstable around x∗1 , x∗2
in terms of probability.

Proof 5. It follows from the formulation of ϵ3 that ϵ3 > 0 and
β11 ≠ 0, which derives that ω = 0 is a regular boundary of
system (29) (reachable) and ω = 0 is unstable. Hence, system
(26) is unstable around x∗1 , x∗2 , which is not relevant to the
local stability of the deterministic system around x∗1 , x∗2 . On
the other hand, if ω = +∞, then f ω =∞, which derives that
ω = +∞ is the second singular boundary of system (29).
Based on the singular boundary theory [36, 37], it is easy to
show that diffusion exponent ρ1, drifting exponent ρ2, and
characteristic value ρ3 of boundary ω = +∞ are computed
as follows:

ρ1 = 2,
ρ2 = 1,

ρ3 = −limω→+∞
2f ωωρ1−ρ2

β2
11

= −limω→+∞
2 8ϵ3 + ω2 8ϵ1 + ϵ2

8ϵ3 + ω2ϵ4
= −

2 8ϵ1 + ϵ2
ϵ4

34

If 2 8ϵ1 + ϵ2 − ϵ4 > 0, then ω = +∞ is attractively
natural and system (26) is unstable around x∗1 , x∗2 ;
system (26) does not undergo stochastic Hopf bifurcation
around x∗1 , x∗2 .

If 2 8ϵ1 + ϵ2 − ϵ4 = 0, then ω = +∞ is strictly natural,
which is just the line of stochastic stability demarcation.

If 2 8ϵ1 + ϵ2 − ϵ4 < 0, then ω = +∞ is exclusively
natural and system (26) is unstable around x∗1 , x∗2 in terms
of probability.

In the following part, existence of stochastic Hopf
bifurcation will be investigated as ω = +∞ is exclusively
natural. By using Itô stochastic equation of amplitude of
ω t , Fokker-Planck equation can be obtained as follows:
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∂p
∂t

= −
∂
∂ω

8ϵ1 + ϵ2 ω2 + 8ϵ3 p

8ω
+

∂2

∂ω2
8ϵ3 + ω2ϵ4 p

16
,

35

with the initial value condition

p ω, t ∣ ω0, t0 ⟶ δ ω − ω0 , t⟶ t0, 36

where p ω, t ∣ ω0, t0 denotes the transition probability
density of the diffusion process ω t .

By virtue of (35), it follows from simple computations
that invariant measure of ω t is the steady-state probability
density ps ω , which is as follows:

ps ω = 8ϵ4 2πϵ3ϵ4Γ 2 − κ

π 8ϵ3 κΓ 1/2 − κ
ω2 ϵ4ω2 + 8ϵ3

κ−2, 37

where κ = 8ϵ1 + ϵ2 /ϵ4 and Γ s = +∞
0 ts−1e−tdt.

Theorem 4. When τ1 = τ2 = 0 and γi u = 0 i = 1, 2 , if
2 8ϵ1 + ϵ2 − ϵ4 < 0 and 8ϵ1 + ϵ2 − ϵ4 < 0, then there exists a
maximum value ω = ω∗ for ps ω . Occurrence positions and
probabilities of stochastic Hopf bifurcation vary due to values
of ϵi, i = 1,2,3,4.

Proof 6. By using Namachivaya’s theory [36, 37], it is easy to
show that characteristic information of a steady state can be
revealed based on the invariant measure. When intension
of Gaussian white noises tends to zero, the dynamical
behavior of the corresponding deterministic system can be
approximated by extreme values of ps ω . Based on Oseledec
ergodic’s theory [36, 37], ps ω is considered to be the time
measurement in the neighbourhood of ω t , which derives
that ϵ1 < 0,, ϵ2 > 0, ϵ3 > 0, and ϵ4 > 0.

If there exists a maximum value of ps ω around ζ∗ > 0,
then it is easy to show that ζ∗ is asymptotically stable in terms
of probability. On the other hand, if there exists a minimum
value of ps ω (zero), then the opposite case also holds. It is
assumed that there exists a maximum value as ω = ω for
ps ω ; further computations show that

dps ω
dω ω=ω

= 0,

d2ps ω
dω2

ω=ω

< 0,
38

and solutions of the above equation are computed as follows:
ω = 0 or ω = ω = −8ϵ3/8ϵ1 + ϵ2 − ϵ4 as 8ϵ1 + ϵ2 − ϵ4 < 0.
Furthermore, it can be computed that

It is easy to show that ps ω = 0 when ω = 0. Based on the
singular boundary theory [36, 37], it shows that system (33)
is unstable around ω = 0 in terms of probability. Hence, when
τ1 = τ2 = 0 and γi u = 0 i = 1, 2 , system (26) undergoes
stochastic Hopf bifurcation around ω = ω, which derives that

x21 t + x22 t = −
8ϵ3

8ϵ1 + ϵ2 − ϵ4
, whenω = ω 40

Remark 3. From practical and physical perspective of
viewpoints, if the proposed hybrid delayed stochastic
bioeconomic system is unstable around the interior equilib-
rium in terms of probability, then it practically implies that
the population density of the prey and predator population
will not eventually reach an ecological balance state with a
high probability, which is not beneficial to sustainable
survival of each population under a commercially harvested
ecological environment. If stochastic Hopf bifurcation does
not occur and boundary is attractively natural, then it
practically interprets that either the prey or the predator
population density will sharply increase with a high

probability within a short duration, which may result in the
corresponding shortage of survival space and resource and
beyond environment carrying capacity. The ecological
balance state will be destroyed in a high probability.

3.2. Case II: System (3) with Double Time Delays and Lévy
Jumps. It should be noted that x∗1 , x∗2 is not the
equilibrium of the stochastic system (26); we will show
that solution of system (26) is going around x∗1 , x∗2 under
certain conditions.

Theorem 5. For τ1, τ2, v ∈H1 ∩H2, when
Y
γi u − ln

1 + γi u λdu ≤ γi i = 1, 2 and γi are positive constants
and σjk > 0 j, k = 1, 2 is sufficiently small, then

lim sup
t→∞

1
t
E

t

0
x1 s − x∗1

2ds ≤ B1,

lim sup
t→∞

1
t
E

t

0
x2 s − x∗2

2ds ≤ B2,
41

d2ps ω
dω2

ω=0

= 27+3 8ϵ1+ϵ2−4ϵ4 ϵ−14 ϵ2+ 8ϵ1+ϵ2−4ϵ4 ϵ−14
3 > 0,

d2ps ω
dω2

ω=ω

= −
8ϵ1 + ϵ2 − ϵ4 3 8ϵ3 − 8ϵ3ϵ4/ 8ϵ1 + ϵ2 − ϵ4 8ϵ1+ϵ2 /ϵ4

16ϵ23 8ϵ1 + ϵ2 − 2ϵ4 3 < 0

39
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where B1 and B2 are defined as follows:

Proof 7. The proof of Theorem 5 can be found in Appendix C
of this paper.

4. Numerical Simulation

Numerical simulations are carried out to show combined
dynamic effects of double time delays and Lévy jumps
on population dynamics. Parameters are partially taken
from numerical simulations in [18], r1 = 2, b1 = 0 4, a1 =
0 5, k = 6, q = 0 1, m1 = 1, m2 = 2, r2 = 0 3, a2 = 2, w = 5,
and c = 1 with appropriate units.

4.1. Numerical Simulation for Deterministic System. By
utilizing the above parameter values, it follows from (21) that
there exists an interior equilibrium when 0 < v < 2 38. In
order to facilitate the following analysis, v = 0 5 is arbitrarily
selected within 0,2 38 which is enough to merit the
corresponding analysis in this paper, and an interior equilib-
rium M∗ 4 5384, 1 7647, 0 0231 can be obtained as v = 0 5.
Based on Theorem 1 and (A.10), if 0 < τ1 < τ∗1 = 1 4451
and 0 < τ2 < τ∗2 = 6 4223, then it is easy to show that
interior equilibrium M∗ 4 5384, 1 7647, 0 0231 of system
(22) is asymptotically stable. Based on the above analy-
sis, some numerical simulations are supported. System
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Figure 1: Parameter values are given as follows: r1 = 2, b1 = 0 4, a1 = 0 5, k = 6, q = 0 1,m1 = 1,m2 = 2, r2 = 0 3, a2 = 2,w = 5, c = 1, and v = 0 5.
When σjk = 0 j, k = 1, 2 and γi u = 0 i = 1, 2 , dynamical responses of system (21) are plotted, where (a) τ1 = 0 75, τ2 = 2 92, and system (21)
is locally asymptotically stable around 4 5384, 1 7647, 0 0231 and (b) τ1 = 1 4451, τ2 = 2 92, and system (21) is unstable stable around
4 5384, 1 7647, 0 0231 .
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(22) with τ1 = 0 75 < τ∗1 and τ2 = 2 92 is locally asymp-
totically stable around M∗ 4 5384, 1 7647, 0 0231 , whose
dynamical responses are plotted in Figure 1(a). System
(22) with τ1 = τ∗1 = 1 4451 and τ2 = 2 92 is unstable around
M∗ 4 5384, 1 7647, 0 0231 , whose dynamical responses
are plotted in Figure 1(b). Furthermore, system (22)
with τ1 = 0 81 and τ2 = 3 65 < τ∗2 is locally asymptotically
stable around M∗ 4 5384, 1 7647, 0 0231 , whose dynami-
cal responses are plotted in Figure 2(a). System (22)
with τ1 = 0 81 and τ2 = τ∗2 = 6 4223 is unstable around
M∗ 4 5384, 1 7647, 0 0231 , whose dynamical responses
are plotted in Figure 2(b).

4.2. Numerical Simulation for Stochastic System. In the
absence of double time delays and Lévy jumps, by taking
σ11 = 0 1 and σ21 = 0 5 as fixed values, it follows from simple
computations that ϵ1 = −0 8982, ϵ2 = 1 2, and ϵ4 = 0 88,
which derive 2 8ϵ1 + ϵ2 − ϵ4 = −12 8512 < 0 and 8ϵ1 +
ϵ2 − ϵ4 = −6 8656 < 0. Based on Theorems 3 and 4 of
this paper, when v = 0 5, probabilities and occurrence
positions of stochastic Hopf bifurcation of system (27) with
σ11 = 0 1 and σ21 = 0 5 and different values of σ12 = σ22 =
0 1, 0 2, 0 3, 0 5 are computed in Table 1. Corresponding
to the computation results in Table 1, the probability
density curve ps ω and occurrence positions of stochastic

Table 1: Probabilities and occurrence positions of stochastic Hopf bifurcation of system (26) with σ11 = 0 1 and σ21 = 0 5 and different values
of σ12 and σ22.

σ12 = σ22 = 0 1 σ12 = σ22 = 0 2 σ12 = σ22 = 0 3 σ12 = σ22 = 0 5
ϵ1 −0.8982 −0.8982 −0.8982 −0.8982
ϵ2 1.2 1.2 1.2 1.2

ϵ3 0.5023 0.5323 0.5823 0.7423

ϵ4 0.88 0.88 0.88 0.88

ω 0.7650 0.7876 0.8237 0.93

ps ω 0.9705 0.9427 0.9013 0.7983
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Figure 2: Parameter values are given as follows: r1 = 2, b1 = 0 4, a1 = 0 5, k = 6, q = 0 1,m1 = 1,m2 = 2, r2 = 0 3, a2 = 2,w = 5, c = 1, and v = 0 5.
When σ jk = 0 j, k = 1, 2 and γi u = 0 i = 1, 2 , dynamical responses of system (21) are plotted, where (a) τ1 = 0 81, τ2 = 3 65, and system
(21) is locally asymptotically stable around 4 5384, 1 7647, 0 0231 and (b) τ1 = 0 81, τ2 = 6 4223, and system (21) is unstable stable
around 4 5384, 1 7647, 0 0231 .
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Hopf bifurcation of system (27) due to variations of ω are
plotted in Figure 3. According to (40), the corresponding
phase portraits of probability densities ps ω with respect
to x1 t and x2 t are plotted in Figure 4.

In the presence of double time delays and Lévy jumps, if
0 < τ1 < τ∗1 and 0 < τ2 < τ∗2 , then it follows from Theorem 5
that lim supt→∞ 1/t E t

0 x1 s − x∗1
2ds ≤ B1 and lim supt→∞

1/t E t
0 x2 s − x∗2

2ds ≤ B2, where B1 and B2 have been
defined in Theorem 5. It follows from the mathematical
form of B1 and B2 that σij and γi i, j = 1, 2 affect asymptotic
behaviors of system (3) around interior equilibrium M∗ as
well as fluctuation intensity of population densities of x1 t
and x2 t . By assuming τ1 = 0 8, τ2 = 3 5, v = 0 5, σ11 = 0 1,
and σ21 = 0 5, dynamical responses of system (3) with σ12 =
0 1 and σ22 = 0 1 and different values of γ1 and γ2 are
obtained based on Euler-Maruyama method and plotted in
Figure 5, where γ1 = γ2 = 0 1 and γ1 = γ2 = 0 5. Similarly, by
assuming τ1 = 0 8, τ2 = 3 5, v = 0 5, σ11 = 0 1, and σ21 = 0 5,
dynamical responses of system (3) with σ12 = 0 5 and σ22 =
0 5 and different values of γ1 and γ2 are obtained based
on Euler-Maruyama method and plotted in Figure 6, where
γ1 = γ2 = 0 1 and γ1 = γ2 = 0 5.

Based on the numerical simulations in Figures 1 and 2, it
follows that local asymptotic stability of system (22) around
interior equilibrium switches due to variations of time
delays. System (22) shows unstable dynamical responses
when time delays cross critical values, which can be

computed based on Theorem 1. It follows from the math-
ematical formulation of ϵ3 and numerical computational
results in Table 1 that the value of ϵ3 increases as intensi-
ties of external excitations σ12 and σ22 values increase.
Furthermore, it follows from Figure 3 the occurrence
positions where system (27) undergoes stochastic Hopf
bifurcation switch higher as the intensities of external exci-
tations σ12 and σ22 values increase. On the other hand, the
corresponding stochastic Hopf bifurcation will decrease
in a higher probability, which is observed in Figure 4.
Based on the numerical simulations in Figures 5 and
6, it can be concluded that the magnitude of environmen-
tal external stochastic excitation σ12 and σ22 values and Lévy
jump γ1 and γ2 values plays significant roles to determine the
magnitude of oscillation of population dynamics. It follows
from the detailed numerical comparison results between
Figures 5 and 6 that oscillation magnitude of dynamical
responses increases as Lévy jump γ1 and γ2 values increase
for the fixed environmental external stochastic excitation
σ12 and σ22 values. On the other hand, oscillation magnitudes
of dynamical responses increase as external stochastic excita-
tion σ12 and σ22 values increase for the fixed environmental
Lévy jump γ1 and γ2 values.

5. Conclusion

In this paper, a double delayed hybrid stochastic bioeco-
nomic system with commercial harvesting and Lévy jumps
is established, which extends work done in [18] by incor-
porating double time delays and stochastic fluctuations.
The dynamical model proposed in [18] is composed of
ordinary differential equations, which are utilized to study
the interaction mechanism of the prey-predator system
with single time delay. Compared with the system estab-
lished in [18], an algebraic equation is introduced into
system (3), which concentrates on the dynamic effect of
the economic interest of commercial harvesting on popu-
lation dynamics and provides a straightforward way to
investigate complex dynamics due to the variation of eco-
nomic interests. Furthermore, two discrete time delays,
which represent the maturation delay of the prey and
gestation delay of the predator, are incorporated into
system (3). Population growth of the prey and predator
population affected by environmental stochastic fluctua-
tions is assumed to be a stochastic process. Gaussian white
noises and Lévy jumps are incorporated into system (3) to
describe stochastic surrounding environmental factors.
For the deterministic system, positivity of solutions and
uniform persistence of system are discussed in Lemmas
1 and 2, respectively. Some sufficient conditions associ-
ated with double time delays are derived to discuss the
asymptotic stability of interior equilibrium in Theorem 1.
For the stochastic system, existence and uniqueness of
global positive solution are studied in Theorem 2. By using
the invariant measure theory and singular boundary
theory of the diffusion process, the existence of stochastic
Hopf bifurcation and stochastic stability is investigated in
the absence of double time delays and Lévy jumps, which
can be found in Theorems 3 and 4, respectively. By
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Figure 3: Parameter values for numerical simulations are given as
follows: r1 = 2, b1 = 0 4, a1 = 0 5, k = 6, q = 0 1, m1 = 1, m2 = 2,
r2 = 0 3, a2 = 2, w = 5, c = 1, and v = 0 5. When γi u = 0 i = 1, 2
and τ1 = τ2 = 0, the probability densities ps ω and occurrence
positions of stochastic Hopf bifurcation of system (27) with σ11 =
0 1 and σ21 = 0 5 and different values of σ12 and σ22, where (a)
σ12 = σ22 = 0 1, (b) σ12 = σ22 = 0 2, (c) σ12 = σ22 = 0 3, and (d)
σ12 = σ22 = 0 5.
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constructing appropriate Lyapunov functions, the asymp-
totic dynamic behavior of the proposed hybrid stochastic
system with double time delays and Lévy jumps is discussed
in Theorem 5.

From the practical perspective of viewpoints, positiv-
ity of the proposed hybrid stochastic double delayed
bioeconomic system is relevant to the prey and predator
population survival for a long duration under a commercially
harvested environment. Generally speaking, the natural
resources for the prey and predator population survival
are under sever intraspecies competition. Therefore, per-
manence of the proposed hybrid stochastic double delayed
bioeconomic system biologically means that there are
certain positively finite upper constraints and positively
finite lower constraints for the prey and predator popula-
tion, which may, to a great extent, avoid population
extinction and overpopulation. Furthermore, permanence
of the proposed hybrid stochastic double delayed bioeco-
nomic system biologically also means that there exist
positively finite upper constraints and positively finite

lower constraints for commercial harvesting amount on
the prey population. The practical interpretations are
introduced as follows: with the purpose of maintaining
sustainable development of commercially harvested prey
population resources, commercial harvesting should be
regulated within certain harvesting range by formulating
some constructive policies.

From the practical perspective of viewpoints, if the
proposed hybrid stochastic double delayed bioeconomic
system is unstable in terms of probability, then it prac-
tically interprets that the prey and predator population
density will not eventually arrive at an ecological
balance level with a high probability. The biological
interpretations show that such phenomenon is not
advantageous for a sustainable development of interact-
ing populations under a commercial harvest effect. If
the boundary is attractively natural and stochastic Hopf
bifurcation does not occur, then it practically means that
the interacting population densities may dramatically
increase with a high probability during short time and
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Figure 4: Parameter values for numerical simulations are given as follows: r1 = 2, b1 = 0 4, a1 = 0 5, k = 6, q = 0 1, m1 = 1, m2 = 2, r2 = 0 3,
a2 = 2, w = 5, c = 1, and v = 0 5. The phase portraits of probability densities ps ω corresponding to Figure 3 in the x1 − x2 − ps ω space,
where (a) σ12 = σ22 = 0 1, (b) σ12 = σ22 = 0 2, (c) σ12 = σ22 = 0 3, and (d) σ12 = σ22 = 0 5.
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it may reduce the corresponding survival resources and
space, which are beyond the environment carrying
capacity and destroy the ecological balance state with a
high probability.

From the resource management of viewpoints, the
numerical simulations reveal that population density
may remain an ideal level by controlling double time
delays within certain constraints and the critical
values of time delays may increase as economic inter-
ests of commercial harvesting increase. The sustainable
development of commercially harvested population can
be indirectly achieved by formulating relevant policy
to regulate an economic interest within some appro-
priate ranges.

Recently, some hybrid bioeconomic systems with
time delay and stochastic fluctuations are established in
[27–30] to investigate the combined dynamic effects of
stochastic fluctuation and commercial harvesting on
population dynamics. These proposed systems in [27–30]
are also constructed by several differential equations with
stochastic fluctuations and an algebraic equation. Com-
pared with the previously bioeconomic systems proposed
in [19–23, 31] and the references therein, such delayed
bioeconomic systems [27–30] can not only discuss coexis-
tence and interaction mechanism of delayed bioeconomic

system under stochastic environmental fluctuations but
also investigate population dynamics due to variations of
the economic interest of commercial harvesting. However,
biological characteristics among interacting populations
are not considered in [27–29]; time delays such as
gestation delay and maturation delay for interacting
populations in [27–29] are assumed to be the same
discrete value, which contradicts to the reality in the real
world. Asymptotical stability of interior equilibrium and
dynamic effects of Lévy jumps on population dynamics
are not discussed in [27–29]. It is proved that Lévy noise
can efficiently depict sudden and severe environmental
perturbations arising in the real world [24, 25], while
these phenomena can not be described better by Brow-
nian motion. Although the dynamic effects of double
time delays have been investigated in [30], the combined
dynamic effects of multiple time delays and Lévy jumps
on population dynamics have not been investigated in
[30]. Dynamic effects of multiple time delays on the
hybrid bioeconomic prey-predator system are investigated
in [15, 32]. However, the dynamic effect of Lévy jumps
and asymptotical stability of solutions of the stochastic
system are not studied in [15, 32]. To the authors’ best
knowledge, population dynamics of the hybrid bioeco-
nomic system with double time delays and Lévy jumps
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Figure 5: Parameter values for numerical simulations are given as follows: r1 = 2, b1 = 0 4, a1 = 0 5, k = 6, q = 0 1, m1 = 1, m2 = 2, r2 = 0 3,
a2 = 2, w = 5, c = 1, and v = 0 5. Dynamical responses of system (3) with σ11 = 0 1, σ21 = 0 5, σ12 = 0 1, and σ22 = 0 1 and different values of
γ1 and γ2, where (a) γ1 = γ2 = 0 1 and (b) γ1 = γ2 = 0 5.
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have not been investigated. Compared with the related
work, we can investigate combined dynamic effects of
double time delays and Lévy jumps on population
dynamics by analyzing stability analysis and stochastic
dynamical behavior of system (3) in this paper; these
analytical findings make this paper have some positive
and new features.

Appendix

A. Proof of Theorem 1

Proof 8. Let W1 t = ∣y1 t ∣, by using Lemma 2 and comput-
ing the upper right derivative of W1 t along the solution of
system (24), it can be obtained that
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Figure 6: Parameter values for numerical simulations are given as follows: r1 = 2, b1 = 0 4, a1 = 0 5, k = 6, q = 0 1, m1 = 1, m2 = 2, r2 = 0 3,
a2 = 2, w = 5, c = 1, and v = 0 5. Dynamical responses of system (3) with σ11 = 0 1, σ21 = 0 5, σ12 = 0 5, and σ22 = 0 5 and different values of
γ1 and γ2, where (a) γ1 = γ2 = 0 1 and (b) γ1 = γ2 = 0 5.
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∗
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Q1
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a1kx

∗
2 ey2 t − 1

k +Q1 k + x∗1
+
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∗
1x

∗
2

P1
−
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P1 m1v +m2x

∗
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t

t−τ1
ey1 s dy1
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b1x
∗
1P1 ey1 t − 1

Q1
−
a1kx

∗
2 ey2 t − 1

k +Q1 k + x∗1

+
qvm2x

∗
1 wx∗1 − c ey1 t − 1

m1v +m2x
∗
1 wx∗1 − c m1v +m2Q1 wx∗1 − c

−
bx∗1P1
Q1

−
a1x

∗
1x

∗
2

P1
−

qvx∗1
P1 m1v +m2x

∗
1 wx∗1 − c

t

t−τ1

b1P1 ey1 s−τ1 − 1 ds

−
bx∗1P1
Q1

−
a1x

∗
1x

∗
2

P1
−

qvx∗1
P1 m1v +m2x

∗
1 wx∗1 − c

t

t−τ1

a1x
∗
2kP1 ey2 s − 1

x∗1 k + x∗1 k +Q1
ds +

bx∗1P1
Q1

−
a1x

∗
1x

∗
2

P1
−

qvx∗1
P1 m1v +m2x

∗
1 wx∗1 − c

×
t
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qvm2P1 wP1 t − c ey2 s − 1
m1v +m2x

∗
1 wx∗1 − c m1v +m2Q1 wx∗1 − c

ds,

A 1
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where Pi,Qi i = 1, 2 have been defined in Lemma 2.
Furthermore, let

W2 t =W1 t − P1W1

t

t−τ1

t

z
b1 e

y1 s−τ1 − 1

+
a1x

∗
2k ey2 s − 1

x∗1 k + x∗1 k +Q1
dsdz

+
t

t−τ1

t

z

qvm2P1W1 wP1 − c ey1 s − 1
m1v +m2x

∗
1 wx∗1 − c m1v +m2Q1 wx∗1 − c

dsdz,

A 2

where W1 = bx∗1P1/Q1 − a1x
∗
1x

∗
2 /P1 − qvx∗1 / P1 m1v +

m2x
∗
1 wx∗1 − c .
By virtue of (A.1) and computing the upper right

derivative of W2 t along the solution of system (24), it can
be obtained that

D+W2 t ≤D+W1 t − b1P1W1τ1 e
y1 t−τ1 − 1

−
a1x

∗
2kP1W1τ1 ∣ ey2 t − 1 ∣
x∗1 k + x∗1 k +Q1

+
qvm2P1W1τ1 wP1 − c ∣ ey1 t − 1 ∣

m1v +m2x
∗
1 wx∗1 − c m1v +m2Q1 wx∗1 − c

+W1

t

t−τ1

b1P1 1 − ey1 s−τ1 ds

+
t

t−τ1

a1x
∗
2kP1 1 − ey2 s

x∗1 k + x∗1 k +Q1
ds

−W1

t

t−τ1

qvm2P1 wP1 − c ey2 s − 1
m1v +m2x

∗
1 wx∗1 − c m1v +m2Q1 wx∗1 − c

ds

A 3

Let W3 t = ∣y2 t ∣, by using Lemma 2 and computing
the upper right derivative of W3 t along the solution of
system (24), it can be obtained that

where Pi,Qi i = 1, 2 have been defined in Lemma 2.
Furthermore, let

By virtue of (A.1) and computing the upper right
derivative of W4 t along the solution of system (24), it can
be obtained that

D+W3 t ≤
a2x

∗
1x

∗
2 ey1 t − 1

k + x∗1 k +Q1
−
a2x

∗
2 ey2 t − 1
k + P1

−
a2x

∗
1x

∗
2

k + x∗1 k + P1

t

t−τ2

ey1 s dy1
ds

ds +
a2x

∗
2

k +Q1

t

t−τ2

ey2 s dy2
ds

ds

≤
a2x

∗
1x

∗
2 ey1 t − 1

k + x∗1 k +Q1
−
a2x

∗
2 ey2 t − 1
k + P1

+
a2x

∗
1x

∗
2

k + x∗1 k + P1

t

t−τ2

b1P1 ey1 s−τ1 − 1 ds

+
a2x

∗
1x

∗
2

k + x∗1 k + P1

t

t−τ2

a1x
∗
2kP1 ey2 s − 1

x∗1 k + x∗1 k +Q1
ds −

a2x
∗
1x

∗
2

k + x∗1 k + P1

t

t−τ2

qvm2P1 wP1 t − c ey2 s − 1
m1v +m2x

∗
1 wx∗1 − c m1v +m2Q1 wx∗1 − c

ds

+
a2x

∗
2

k +Q1

t

t−τ2

a2P2x
∗
1 ey1 t−τ2 − 1

k + x∗1 k +Q1
−
a2 k + x∗1 Q2 ey2 t−τ2 − 1

k + P1
ds,

A 4

W4 t =W3 t +
a2kx

∗
2P1

k + x∗1 k + P1

t

t−τ2

t

z
b1 e

y1 s−τ1 − 1 dsdz +
a2kx

∗
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t

t−τ2

t

z

a1x
∗
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ey2 s − 1 dsdz

−
a2kx

∗
2P1
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t

t−τ2

t

z

qvm2 wP1 − c
m1v +m2x

∗
1 wx∗1 − c m1v +m2Q1 wx∗1 − c

ey2 s − 1 dsdz

+
a2x

∗
2

k +Q1

t

t−τ2

t

z

a2P2x
∗
1

k + x∗1 k +Q1
ey1 s−τ2 − 1 dsdz −

a2x
∗
2

k +Q1

t

t−τ2

t

z

a2 k + x∗1 Q2
k + P1

ey2 s−τ2 − 1 dsdz

A 5

15Complexity



By definingW t =W2 t +W4 t , it is easy to show that
W t > ∣y1 t ∣ + ∣y2 t ∣. By virtue of (A.3), (A.6), and simple
computations, it can be obtained that

D+W t ≤ −S1 τ1, τ2 ey1 t − 1 − S2 τ1, τ2 ey2 t − 1 ,

A 7

where Si τ1, τ2 , i = 1, 2 are defined as follows:

where Pi,Qi i = 1, 2 have been defined in Lemma 2 andW1
has been defined in (A.3).

By using the mean value theorem [35], for ϑ1 t ∈ 0, 1 ,
ϑ2 t ∈ 0, 1 , and ϑ1 t ≠ ϑ2 t it can be obtained that

D+W t ≤ −S1 τ1, τ2 eϑ1 t y1 t − S2 τ1, τ2 eϑ2 t y2 t

≤ −S1 τ1, τ2 y1 t − S2 τ1, τ2 y2 t

≤ −min S1 τ1, τ2 , S2 τ1, τ2 y1 t + y2 t

A 9

Ifmin S1 τ1, τ2 , S2 τ1, τ2 > 0, then it is easy to derive
that τ1, τ2, v ∈H2 and H2 is as follows:

H2 = τ1, τ2, v 0 < τ1 < τ∗1 , 0 < τ2 < τ∗2 , v > 0 , A 10

where τ∗1 , τ∗2 satisfies the following inequalities S1 τ∗1 , τ∗2 > 0
and S2 τ∗1 , τ∗2 > 0 hold.

B. Proof of Theorem 2

Proof 9. For system (25), it is easy to show that Lipschitz
conditions hold. Hence, there exists a unique local solution

x1 t , x2 t for t ∈ −τm, τ , where τm =max τ1, τ2 and
τ represents the explosion time [38].

Subsequently, we will show that τ =∞, which implies
that solution x1 t , x2 t is global, by assuming that
j0 ≥ 1 is sufficiently large such that x1 t ∈ 1/j0 , j0
and x2 t ∈ 1/j0 , j0 for t ∈ −τm, 0 . With the purpose of
facilitating the following analysis, the stopping time [38] for
any j ≥ j0 is defined as follows:

t j = inf t ∈ −τm, τ x1 t ∉
1
j
, j , x2 t ∉

1
j
, j

B 1

Let ∅ represent an empty set and inf∅ =∞. It is easy to
show that t j increases as j increases through ∞, by defining
τ∞ = lim j→∞t j, which derives that τ∞ ≥ τ almost surely.
Hence, if τ∞ =∞ almost surely, then we can show τ =∞
and the solution x1 t , x2 t ∈ℝ2

+ for all t > 0 almost surely.
If τ∞ ≠∞, then there exists a pair of constants T > 0 and

0 < ζ < 1 such that ℙ τ∞ ≤ T > ζ. Hence, there exists some
j1 ≥ j0, and ℙ t j ≤ T ≥ ζ holds for all j ≥ j1.

Define a ℂ2-function V ℝ2
+ →ℝ+ as follows:

D+W4 t ≤D+W3 t +
a2kb1x

∗
2P1τ2

k + x∗1 k + P1
ey1 t−τ1 − 1 +
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A 6

S1 τ1, τ2 =
b1P1 x∗1 +Q1W

Q1
−

qvm2 x∗1 wx∗1 − c + P1Wτ1 wP1 − c

m1v +m2x
∗
1 wx∗1 − c m1v +m2Q1 wx∗1 − c

−
a2kb1x

∗
2P1τ2

k + x∗1 k + P1
,

S2 τ1, τ2 =
a1kx

∗
2 Wτ1 + x∗1

x∗1 k + x∗1 k +Q1
−

a1a2k
2x∗22 P1τ2

x∗1 k + x∗1
2 k + P1 k +Q1

−
a22x

∗
2τ2

k +Q1

P2x
∗
1

k + x∗1 k +Q1
−

k + x∗1 Q2
k + P1

+
a2kx

∗
2qvm2P1 wP1 − c τ2

k + x∗1 k + P1 m1v +m2x
∗
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,

A 8
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V x1 t , x2 t = x1 t −
r
b1

−
r
b1

ln
b1x1 t

r1
+ x2 t − 1 − ln x2 t

B 2

By assuming that σjk > 0 j, k = 1, 2 are sufficiently small,
by utilizing Lemma 2 of this paper and Itô’s formula (5), it
can be obtained that

In order to facilitate the following analysis, J is defined
as follows:

J =
r1 Q1 + 4P1 b1 − r1

4b1Q1
+
r1 − bQ1

b
q
m1

+
a1P2
k

+ P2 − 1 r2 + a2 +
r1
2b1

σ211 + σ221 +
σ212
Q2

1
+
σ2
22
Q2

1

+
Y

r1
b1

γ1 u − ln 1 + γ1 u λdu

+
Y

γ2 u − ln 1 + γ2 u λdu,

B 4

where Pi,Qi i = 1, 2 are defined in Lemma 2.
If

Y
γi u − ln 1 + γi u λdu ≤ γi i = 1, 2 and γi are

positive constants, then

J ≤
r1 Q1 + 4P1 b1 − r1

4b1Q1
+
r1 − bQ1

b
q
m1

+
a1P2
k

+ P2 − 1 r2 + a2 +
r1
2b1

σ211 + σ221 +
σ212
Q2

1
+
σ2
22
Q2

1

+
r1
b1

γ1 + γ2

B 5

Consequently, it follows from (B.5) that

dV x1 t , x2 t ≤ J + x1 t −
r1
b1

σ11 + x2 t − 1 σ21 ξ1 t

+
r1σ11
b1

+ σ21 ξ2 t dt

+
Y

r1
b1

γ1 u x1 t − − ln 1 + γ1 u N dt, du

+
Y

γ2 u x2 t − − ln 1 + γ2 u N dt, du

B 6

By integrating both sides of (B.6) from 0 to t j∧T =min
t j, T , T has been defined in (25) and then expectations

can be computed as follows:

EV x1 t j∧T , x2 t j∧T ≤V x1 0 , x2 0 + JE t j∧T ,

B 7

which follows that

EV x1 t j∧T , x2 t j∧T ≤V x1 0 , x2 0 + JT

B 8

When j ≥ j1, we define Ωj = t j ≤ T ; it is easy to derive

that ℙ Ωi ≥ ζ based on the fact ℙ t j ≤ T ≥ ζ holds for
all j ≥ j1. Furthermore, it can be obtained that x1 t j, ε or
x2 t j, ε equals to either j or 1/j which holds for any ε ∈Ωj,

which follows that V x1 t j, ε , x2 t j, ε is no less than either
j − 1 − ln j or 1/j − 1 − ln 1/j .

Consequently, it derives that

V x1 t j, ε , x2 t j, ε ≥ j − 1 − ln j ∧
1
j
− 1 − ln

1
j

B 9

It follows from (B.8) that

V x1 0 , x2 0 + JT ≥ E IΩ j
ε V x1 t j, ε , x2 t j, ε

≥ j − 1 − ln j ∧
1
j
− 1 − ln

1
j
,

B 10

dV x1 t , x2 t = 1 −
r1

b1x1 t
x1 t − τ1 r1 − b1x1 t − τ1 −

a1x1 t x2 t
k + x1 t

−
qvx1 t

m1v +m2x1 t wx1 t − c
dt

+ 1 −
1

x2 t
x2 t r2 −

a2x2 t − τ2
k + x1 t − τ2

dt +
r1
2b1

σ2
11 + σ2

21 +
σ212
x21 t

+
σ2
22

x22 t
dt

+
Y

r1
b1

γ1 u − ln 1 + γ1 u λdu +
Y

γ2 u − ln 1 + γ2 u λdu dt

+ x1 t −
r1
b1

σ11 + x2 t − 1 σ21 ξ1 t +
r1σ11
b1

+ σ21 ξ2 t dt

+
Y

r1
b1

γ1 u x1 t − − ln 1 + γ1 u N dt, du +
Y

γ2 u x2 t − − ln 1 + γ2 u N dt, du

B 3
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where IΩ j
represents indicator function of Ωj. When j→∞,

it derives that

∞ =V x1 0 , x2 0 + JT <∞, B 11

which is a contradiction.
Based on the above analysis, it can be obtained that

τ∞ =∞ and x1 t , x2 t will not explode in a finite time
almost surely.

C. Proof of Theorem 5

Proof 10. Firstly, we construct the following function:

W11 t = x1 t + τ1 − x∗1 − x∗1 ln
x1 t + τ1

x∗1
C 1

By using simple computations, it can be obtained that

dW11 t = x1 t + τ1 − x∗1
b1x1 t
x1 t + τ1

x∗1 − x1 t + a1

x∗2x1 t
x1 t + τ1 k + x∗1

−
x2 t + τ1

k + x1 t + τ1
dt

+ qv x1 t + τ1 − x∗1
x1 t

x1 t + τ1 m1v +m2x
∗
1 wx∗1 − c

−
1

m1v +m2x1 t + τ1 wx∗1 − c
dt

+
x∗1
2

σ2
11 +

σ2
12

x21 t

+
Y

x∗1 γ1 u − ln 1 + γ1 u λdu dt

+ x1 t − x∗1 σ11ξ1 t + x∗1σ12ξ2 t dt

+
Y

x∗1 γ1 u x1 t − − ln 1 + γ1 u N dt, du

=
x1 t x1 t + τ1 − x∗1

x1 t + τ1

b1 x∗1 − x1 t +
a1x

∗
2

k + x∗1
+

qv
m1v +m2x

∗
1 wx∗1 − c

dt

− x1 t + τ1 − x∗1
a1x2 t + τ1
k + x1 t + τ1

+
qv

m1v +m2x1 t + τ1 wx∗1 − c
dt

+
x∗1
2

σ2
11 +

σ2
12

x21 t
+

Y

x∗1 γ1 u − ln 1 + γ1 u λdu dt

+ x1 t − x∗1 σ11ξ1 t + x∗1σ12ξ2 t dt

+
Y

x∗1 γ1 u x1 t − − ln 1 + γ1 u N dt, du

= ℒW11 + x1 t − x∗1 σ11ξ1 t + x∗1σ12ξ2 t dt

+
Y

x∗1 γ1 u x1 t − − ln 1 + γ1 u N dt, du ,

C 2

where ℒW11 satisfies the following inequalities:

ℒW11 ≤ b1x1 t x∗1 − x1 t + x1 t

a1x
∗
2

k + x∗1
+ qv
m1v +m2x

∗
1 wx∗1 − c

−
a1x1 t + τ1 x2 t + τ1

k + x1 t + τ1

−
qvx1 t + τ1

m1v +m2 wx∗1 − c x1 t + τ1
−

x∗1x1 t
x1 t + τ1

b1 x∗1 − x1 t +
a1x

∗
2

k + x∗1
+

qv
m1v +m2x

∗
1 wx∗1 − c

+ x∗1
a1x2 t + τ1
k + x1 t + τ1

+
qv

m1v +m2x1 t + τ1 wx∗1 − c

+
x∗1
2

σ211 +
σ212
x21 t

+
Y

x∗1 γ1 u − ln 1 + γ1 u λdu

≤ −b1 x1 t − x∗1
2 + x1 t

a1x
∗
2

k + x∗1
+

qv
m1v +m2x

∗
1 wx∗1 − c

+ x∗1
a1x2 t + τ1

k
+

q
m1

+ b1x
∗
1 x∗1 − x1 t

1 −
x1 t

x1 t + τ1
− x∗1 1 + ln

x1 t
x1 t + τ1

a1x
∗
2

k + x∗1
+

qv
m1v +m2x

∗
1 wx∗1 − c

+
x∗1
2

σ211 +
σ212
x21 t

+
Y

x∗1 γ1 u − ln 1 + γ1 u λdu

≤ −b1 x1 t − x∗1
2 + x1 t

a1x
∗
2

k + x∗1
+

qv
m1v +m2x

∗
1 wx∗1 − c

+ x∗1
a1x2 t + τ1

k
+

q
m1

+ b1x
∗
1 x∗1 +

x21 t
x1 t + τ1

− x∗1 ln
x1 t
x∗1

− ln
x1 t + τ1

x∗1
+ 1

a1x
∗
2

k + x∗1
+

qv
m1v +m2x

∗
1 wx∗1 − c

+
x∗1
2

σ211 +
σ212
x21 t

+
Y

x∗1 γ1 u − ln 1 + γ1 u λdu

C 3

Based on (C.3), W12 t is defined as follows,

W12 t =W11 t −
ax∗1
k

t+τ1

t
x2 s ds +

a1x
∗
1x

∗
2

k + x∗1

t+τ1

t

ln
x1 s
x∗1

− ln
x1 s
x∗1

+ 1 ds

+
qvx∗1

m1v +m2x
∗
1 wx∗1 − c

t+τ1

t

ln
x1 s
x∗1

− ln
x1 s
x∗1

+ 1 ds

C 4

By using simple computations, it can be obtained that
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ℒW12 ≤ −b1 x1 t − x∗1
2 + x1 t

a1x
∗
2

k + x∗1
+

qv
m1v +m2x

∗
1 wx∗1 − c

+ x∗1
a1x2 t + τ1

k
+

q
m1

+ b1x
∗
1 x∗1 +

x21 t
x1 t + τ1

+
x∗1
2

σ211 +
σ212
x21 t

+
Y

x∗1 γ1 u − ln 1 + γ1 u λdu

C 5

Secondly, we construct the following function:

W13 t =
x1 t + τ1 − x∗1

2

2
C 6

By using similar arguments in (C.3) and (C.5), it follows
from simple computations that

Let W1 t =W12 t +W13 t ; it follows from (C.5) and
(C.7) that

If
Y
γ1 u − ln 1 + γ1 u λdu ≤ γ1 and γ1 are positive

constants and σj1 > 0 j = 1, 2 is sufficiently small, then

ℒW13 = b1 x∗1 − x1 t + τ1 x1 t − x∗1
2 + b1x

∗
1 x∗1 − x1 t + τ1 x1 t − x∗1 + a1 x1 t + τ1 − x∗1

x∗2x1 t
k + x∗1

−
x1 t + τ1 x2 t + τ1

k + x1 t + τ1

+ qv x1 t + τ1 − x∗1
x1 t

m1v + w1x
∗
1 − c m2x

∗
1
−

x1 t + τ1
m1v +m2x1 t + τ1 wx1 t + τ1 − c

+ σ211x
∗2
1 +

σ2
12
2

+
Y

γ1 u − ln 1 + γ1 u λdu ≤ b1x
∗
1 x1 t − x∗1

2 − b1x
∗
1 x1 − x∗1 x1 t + τ1 − x1 t + x1 t − x∗1

+ a1 x1 t + τ1 − x∗1
x∗2x1 t k + x1 t + τ1 − k + x∗1

k + x∗1 k + x1 t + τ1
+ qv x1 t + τ1 − x∗1

x1 t
m1v + w1x

∗
1 − c m2x

∗
1
−

x1 t + τ1
m1v +m2x1 t + τ1 wx1 t + τ1 − c

+ σ2
11x

∗2
1 +

σ2
12
2

+
Y

γ1 u − ln 1 + γ1 u λdu ≤ b1x
∗2
1 x1 t + x1 t + τ1 + a1x1 t + τ1

x∗2x1 t
k + x∗1

+
x∗1x2 t + τ1
k + x1 t + τ1

+ qv
x1 t x1 t + τ1

m1v +m2x
∗
1 wx1 t − c

+
x∗1x1 t + τ1

m1v +m2x1 t + τ1 wx1 t + τ1 − c
+ σ2

11x
∗2
1 +

σ2
12
2

+
Y

γ1 u − ln 1 + γ1 u λdu

C 7

ℒW1 ≤ −b1 x1 t − x∗1
2 + x1 t

a1x
∗
2

k + x∗1
+

qv
m1v +m2x

∗
1 wx∗1 − c

+ b1x
∗
1 x∗1 +

x21 t
x1 t + τ1

+
x∗1
2

σ211 +
σ212
x21 t

+
Y

x∗1 γ1 u − ln 1 + γ1 u λdu + b1x
∗2
1 x1 t + x1 t + τ1 + a1x1 t + τ1

x∗2x1 t
k + x∗1

+
x∗1x2 t + τ1
k + x1 t + τ

+ x∗1
a1x2 t + τ1

k
+

q
m1

+ qv
x1 t x1 t + τ1

m1v +m2x
∗
1 wx1 t − c

+
x∗1x1 t + τ1

m1v +m2x1 t + τ1 wx1 t + τ1 − c

+ σ2
11x

∗2
1 +

σ212
2

+
Y

γ1 u − ln 1 + γ1 u λdu

C 8
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ℒW1 ≤ −b1 x1 t − x∗1
2 + P1

a1x
∗
2

k + x∗1
+

q
m1

+
a1P

2
1 x∗1 + x∗2
k + x∗1

+ b1x
∗
1 x∗1 +

P2
1

Q1
+ x∗1

a1P2
k

+
q
m1

+ qv
P2
1

m1v +m2x
∗
1 wQ1 − c

+
x∗1

m2 wQ1 − c

+
x∗1 1 + x∗1 σ211

2
+

2 +Q2
1 σ2

12

2Q2
1

+ 1 + x∗1 γ1 ≤ −b1 x1 t − x∗1
2

+
a1m1P1 x

∗
2 1 + P1 + x∗1P1 + qP1 k + x∗1

m1 k + x∗1

+
b1x

∗
1 Q1x

∗
1 + P2

1
Q1

+
x∗1 a1m1P2 + qk

km1

+
qv P2

1 + x∗21
m2x

∗
1 wQ1 − c

+
x∗1 1 + x∗1 σ211

2

+
2 +Q2

1 σ2
12

2Q2
1

+ 1 + x∗1 γ1,

C 9

where P1, P2,Q1 are defined in Lemma 2 of this paper.
By integrating both sides of (C.9) from 0 to t and deriving

expectation, it is easy to show that

It follows from (C.10) that

lim sup
t→∞

1
t
E

t

0
x1 s − x∗1

2ds ≤ B1, C 11

where B1 is defined as follows:

Thirdly, we construct the following function:

W21 t = x2 t + τ2 − x∗2 − x∗2 ln
x2 t + τ2

x∗2
C 13

By using simple computations, it can be obtained that

dW21 t = a2 x2 t + τ2 − x∗2
x∗2

k + x∗1
−

x2 t
k + x1 t

+
x∗2σ

2
21σ

2
22

2
+ σ21 x1 t + τ2 − x∗2 ξ1 t dt

+ σ22ξ2 t +
Y

γ2 u − ln 1 + γ2 u λdu dt

+
Y

γ2 u x2 t − − ln 1 + γ2 u N dt, du

= ℒW21 + σ21 x1 t + τ2 − x∗2 ξ1 t + σ22ξ2 t dt

+
Y

γ2 u x2 t − − ln 1 + γ2 u N dt, du ,

C 14

where ℒW21 satisfies the following inequalities:

EW1 t − EW1 0 ≤ −b1E
t

0
x1 s − x∗1

2ds

+
a1m1P1 x

∗
2 1 + P1 + x∗1P1 + qP1 k + x∗1

m1 k + x∗1
+
b1x

∗
1 Q1x

∗
1 + P2

1
Q1

+
x∗1 a1m1P2 + qk

km1
+

qv P2
1 + x∗21

m2x
∗
1 wQ1 − c

+
x∗1 1 + x∗1 σ2

11
2

+
2 +Q2

1 σ2
12

2Q2
1

+ 1 + x∗1 γ1 t

C 10

B1 =
a1m1kP1 x

∗
1P1 + x∗2 1 + P1 + k + x∗1 qk P + x∗1 + a1m1P2x

∗
1

km1b1 k + x∗1
+
x∗1 Q1x

∗
1 + P2

1
Q1

+
2qvQ2

1 P2
1 + x∗21 +m2x

∗
1 wQ1 − c x∗1 1 + x∗1 σ211 + 2 +Q2

1 σ2
12 + 2Q2

1 1 + x∗1 γ1
2b1m2x

∗
1Q

2
1 wQ1 − c

C 12
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ℒW21 = a2 x2 t + τ2 − x∗2
x∗2 − x2 t
k + x∗1

−
x2 t x1 t − x∗1
k + x∗1 k + x1 t

+
x∗2σ

2
21σ

2
22

2
+

Y

γ2 u − ln 1 + γ2 u λdu

≤ −
a2 x2 t + τ2 − x∗2

2

k + x∗1

+
a2 x2 t + τ2 − x∗2 x2 t + τ2 − x2 t

k + x∗1

+
a2x2 t x2 t + τ2 − x∗2 x1 t − x∗1

k + x∗1 k + x1 t

+
x∗2σ

2
21σ

2
22

2
+

Y

γ2 u − ln 1 + γ2 u λdu

C 15

If
Y
γ2 u − ln 1 + γ2 u λdu ≤ γ2 and γ2 are positive

constants and σj2 > 0 j = 1, 2 are sufficiently small, then

ℒW21 ≤ −
a2 x2 t + τ2 − x∗2

2

k + x∗1

+
a2x

2
2 t + τ2 + x2 t x∗2

k + x∗1
+
x∗2σ

2
21σ

2
22

2

+
x2 t x1 t x2 t + τ2 − x∗2x1 t − x∗1x2 t + τ2 + x∗1x

∗
2

k + x∗1 k + x1 t

+
Y

γ2 u − ln 1 + γ2 u λdu

≤ −
a2 x2 t + τ2 − x∗2

2

k + x∗1

+
P2 a2P2 + x∗2 k + P1 + P1P2 + x∗1x

∗
2

k + x∗1 k +Q1

+
x∗2σ

2
21σ

2
22

2
+ γ2

C 16

Based on (C.16), W22 t is defined as follows,

W22 t =W21 t +
a2

k + x∗1

t+τ2

t
x2 s − x∗2

2ds

C 17

By using simple computations, it can be obtained that

ℒW22 ≤ −
a2 x2 t − x∗2

2

k + x∗1

+
P2 a2P2 + x∗2 k + P1 + P1P2 + x∗1x

∗
2

k + x∗1 k +Q1

+ x∗2σ
2
21σ

2
22

2
+ γ2,

C 18

where P1, P2,Q1 have been defined in Lemma 2.
Fourthly, we construct the following function

W23 t =
x2 t + τ2 − x∗2

2

2
C 19

By using similar arguments in (C.16) and (C.18), it
follows from simple computations that

ℒW23 = a2x2 t + τ2 x2 t + τ2 − x∗2
x∗2

k + x∗1
−

x2 t
k + x1 t

+ σ221x
∗2
2 +

σ222
2

+
Y

γ2 u − ln 1 + γ2 u λdu

= a2x2 t + τ2 x2 t + τ2 − x∗2
k x∗2 − x2 t + τ2 + x2 t + τ2 − x2 t

k + x∗1 k + x1 t

+
x∗2x1 t − x∗1x2 t
k + x∗1 k + x1 t

+ σ221x
∗2
2 +

σ222
2

+
Y

γ2 u − ln 1 + γ2 u λdu

≤ −a2kx2 t + τ2
x2 t + τ2 − x∗2

2

k + x∗1 k + x1 t

+ a2x
2
2 t + τ2

kx2 t + τ2 + x∗2x1 t
k + x∗1 k + x1 t

+ a2x2 t + τ2
x∗2x2 t kx2 t + τ2 + x2 t

k + x∗1 k + x1 t

+ σ221x
∗2
2 +

σ222
2

+
Y

γ2 u − ln 1 + γ2 u λdu

C 20

If
Y
γ2 u − ln 1 + γ2 u du ≤ γ2 and γ2 are positive

constants and σj2 > 0 j = 1, 2 is sufficiently small, then

ℒW23 ≤ −a2kP2
x2 t + τ2 − x∗2

2

k + x∗1 k + P1

+
a2P

2
2 kP2 1 + x∗2 + x∗2 P1 + P2

k + x∗1 k +Q1
+ σ2

21x
∗2
2 +

σ222
2

+
Y

γ2 u − ln 1 + γ2 u λdu

≤ −a2kP2
x2 t + τ2 − x∗2

2

k + x∗1 k + P1

+
a2P

2
2 kP2 1 + x∗2 + x∗2 P1 + P2

k + x∗1 k +Q1

+ σ221x
∗2
2 +

σ222
2

+ γ2,

C 21

where P1, P2,Q1 have been defined in Lemma 2.
According to (C.21), W24 t is defined as follows:

W24 t =W23 +
t+τ2

t
a2kP2

x2 s − x∗2
2

k + x∗1 k + P1
ds C 22

It follows from simple computations that

21Complexity



ℒW24 ≤ −a2kP2
x2 t − x∗2

2

k + x∗1 k + P1

+
a2P

2
2 kP2 1 + x∗2 + x∗2 P1 + P2

k + x∗1 k +Q1

+ σ221x
∗2
2 +

σ222
2

+ γ2

C 23

Let W2 t =W22 t +W24 t ; it follows from (C.18) and
(C.23) that

ℒW2 = −
a2 k 1 +Q2 +Q1
k + x∗1 k + P1

x2 t − x∗2
2

+
a2P

2
2 kP2 1 + x∗2 + x∗2 P1 + P2

k + x∗1 k +Q1

+ σ2
21x

∗2
2 +

σ222
2

+
x∗2σ

2
21σ

2
22

2
+ 2γ2

C 24

By integrating both sides of (C.24) from 0 to t and
deriving expectation, it gives that

EW2 t − EW2 0 ≤ −
a2 k 1 +Q2 +Q1
k + x∗1 k + P1

E
t

0
x2 s − x∗2

2ds

+
P2 a2P2 + x∗2 k + P1 + P1P2 + x∗1x

∗
2

k + x∗1 k +Q1

+
a2P

2
2 kP2 1 + x∗2 + x∗2 P1 + P2

k + x∗1 k +Q1

+ σ2
21x

∗2
2 +

σ2
22
2

+
x∗2σ

2
21σ

2
22

2
+ 2γ2 t

C 25

It follows from (C.25) that

lim sup
t→∞

1
t
E

t

0
x2 s − x∗2

2ds ≤ B2, C 26

where B2 is defined as follows:
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