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Synchronous probabilistic Boolean networks (PBNs) and generalized asynchronous PBNs have received significant attention over
the past decade as a tool for modeling complex genetic regulatory networks. From a biological perspective, the occurrence of
interactions among genes, such as transcription, translation, and degradation, may require a few milliseconds or even up to a
few seconds. Such a time delay can be best characterized by generalized asynchronous PBNs. This paper attempts to study an
optimal control problem in a generalized asynchronous PBN by employing the theory of average value-at-risk (AVaR) for finite
horizon semi-Markov decision processes. Specifically, we first formulate a control model for a generalized asynchronous PBN as
an AVaR model for finite horizon semi-Markov decision processes and then solve an optimal control problem for minimizing
average value-at-risk criterion over a finite horizon. In order to illustrate the validity of our approach, a numerical example is
also displayed.

1. Introduction

Modeling genetic regulatory networks is a core issue in sys-
tem biology. Numerous models of modeling and understand-
ing genetic regulatory networks have been proposed, which
include Boolean networks, Bayesian networks, Petri net, dif-
ferential equations, computational framework based on the
automata and languages theory, and probabilistic Boolean
networks (PBNs) [1–8]. Among all the models, Boolean net-
works and PBNs have gained popularity in modeling real
genetic regulatory networks [1, 9–11]. They are also very use-
ful to infer genetic regulatory networks because they can
monitor the dynamic behavior in complicated systems based
on large amounts of gene expression data. Compared with a
Boolean network, which is essentially a deterministic model,
a stochastic model is more suitable due to the measurement
noise in inferring a gene regulatory network. PBNs are then
introduced to cope with the shortcoming. According to the
updating time for each gene in the networks, the works on
PBNs can be roughly classified into two cases: synchronous

PBNs and asynchronous PBNs. Synchronism means that all
genes or nodes simultaneously update their activities. The
time parameters of the state processes are discrete, and the
time between two successive transitions is equal and fixed.
However, synchronous PBNs cannot characterize the real sit-
uations. For example, interactions among genes, such as
transcription, translation, and degradation, may require a
few milliseconds or even up to a few seconds [12]. Motivated
by practical considerations, generalized asynchronous PBNs
have emerged. In a generalized asynchronous PBN, all the
genes update synchronously and the updating period of each
gene is randomly selected based on a given distribution.
We next briefly describe some existing works on the two
cases, respectively.

From different treatment viewpoints, synchronous PBNs
and their corresponding intervention methods have been
studied in the literatures. For example, due to the fact that
the dynamic behavior of the synchronous PBNs can be char-
acterized by the theories of Markov chains and Markov deci-
sion processes, the studies of synchronous PBNs have mainly
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focused on manipulating external (control) variables that
alter the transition probabilities of the network and can be
used to help the network avoid undesirable states such as
those associated with a disease [9–11]. Specifically, based on
the introduction of control inputs, Datta et al. [10] formulate
the corresponding control problem as a minimization prob-
lem with some costs. Optimal policies are obtained by using
the theory of average expected costs and expected discounted
cost criteria in infinite horizon Markov decision processes in
[11]. Chen and Chen [13] study the control of gene regula-
tory networks using a Markovian approach, and in the study
of Ng et al. [14], the corresponding control model for a gene
intervention problem is approximated to drive undesirable
states to desirable ones and formulated as a minimization
problem with integer variables and continuous variables. To
reduce the detrimental side effects of cancer treatment and
treatment of patients suffering, Faryabi et al. [15] restrict
the expected number of treatments beneath some bounds
by using the approach of constrained Markov decision pro-
cesses; Ching et al. [16] formulate the control problem as a
new minimization problem of the distance related to system
behaviors with hard constraints in which they add the
upper bound for the number of control inputs and compute
using a similar approximate method in [17]; Kobayashi and
Hiraishi propose an integer programming-based approach
for a context-sentive PBN in [18], and they also reduce
the optimal control of PBNs to a polynomial optimization
problem in [19]. Ivanov and Dougherty consider two kinds
of mappings reduction and projection and their effect on
the original probability structure of a given PBN in [20].
A review of existing references above shares one common
feature: the assumption of synchronous time and fixed
observable epoch.

Based on semi-Markov processes, asynchronism in PBNs
has been introduced by updating each node based on its
period. Faryabi et al. obtain an optimal control policy for
semi-Markov asynchronous regulatory networks that mini-
mizes the time that the system spends in undesirable states
based on the theory of semi-Markov decision processes in
[21]. Liu et al. solve an optimal control problem by choosing
optimal constituent Boolean networks in the asynchronous
PBN [22]; Liu also describes a control model in an asynchro-
nous PBN as a first passage model in controlled semi-Markov
processes [23].

This paper attempts to study a different optimality
problem in the framework of generalized asynchronous
PBNs. The main motivations of this paper are as follows.
First, a fixed and constant sojourn time is assumed in a
synchronous PBN, while sojourn times are allowed to fol-
low an arbitrary probability distribution in a generalized
asynchronous PBN. Hence, generalized asynchronous
PBNs are better able to describe the dynamic behavior
of a gene regulatory network because updating the period
of each gene is allowed to be made at random points
when certain critical events occur, such as a great change
in the process of gene expression. Second, random fluctu-
ations in the abundance of molecules in the living cell
may lead to noise, thereby affecting its growth and well-
being [24–26]. Recent studies suggest that the stochastic

noise in gene expression should be measured by the nor-
malized variance. Due to the limitation of the variance
measure, it has been replaced by more complicated risk
measures like value-at-risk or AVaR [27–29]. Hence, it
is meaningful to control and reduce harmful noise in cel-
lular processes via an AVaR approach. Third, although
regulatory intervention has been treated for synchronous
PBNs, and the development of intervention policies are based
on associated Markov decision processes in [10, 11, 13],
therapeutic intervention policies within the context of
asynchronous PBNs are few. Hence, the AVaR problem
of semi-Markov decision processes in the framework of
asynchronous PBNs is unsolved and worth studying.

In this paper, the corresponding generalized asynchro-
nous PBN is described as an AVaR model in finite horizon
semi-Markov decision processes with each state variable
denoting a GAP at some time. The optimality problem is
solved by minimizing AVaR related to system behavior dur-
ing a finite horizon. In terms of the theory of the AVaR
model in finite horizon semi-Markov decision processes
[28], the state space is a set of all possible GAPs. The available
action space consists of all possible control inputs at a given
GAP, and the objective function of the network to be opti-
mized is defined as AVaR, which represents the expected
loss upon being within some percentage of the worst-case
loss scenario by using a policy starting from an initial state.
We give the main ideas of the solution to the optimality
problem, which have been formalized in [28], in the follow-
ing. More precisely, firstly, using a representation of AVaR,
we convert the problem of minimizing the AVaR of the
finite horizon cost for a semi-Markov decision process into
a bilevel optimization problem in which the outer optimi-
zation problem is an ordinary problem of minimizing a
function of a single variable and the inner optimization
problem is to minimize the expected positive deviation of
the finite horizon cost for semi-Markov decision processes.
According to the results presented in [28], the outer opti-
mization problem can be settled by solving the inner opti-
mization problem. Secondly, we will propose a dynamic
programming-based algorithm to solve the inner optimiza-
tion problem. Thirdly, based on the solution of the inner
optimization problem, the existence and computation of
an AVaR optimal policy are established by solving the outer
optimality problem. Therefore, our optimality problem is
actually described as an AVaR model in finite horizon
semi-Markov decision processes, and the optimality tech-
nique developed well in semi-Markov decision processes
[28, 30] can be used to solve it efficiently. The advantage of
the method used in this paper is to help biologists in further
developing better therapy strategies in synchronous and
asynchronous PBNs [31–33].

The structure of this paper is as follows. Section 2 gives a
brief introduction of generalized asynchronous PBNs. Sec-
tion 3 formulates a finite horizon model in semi-Markov
decision processes for a generalized asynchronous PBN,
and an algorithm for solving the optimization problem is
provided in Section 4. A numerical example is shown in
Section 5. Finally, a brief summary and comments are
put in Section 6.
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2. Boolean Networks, Synchronous
Probabilistic Boolean Networks, and
Generalized Asynchronous Probabilistic
Boolean Networks

In this section, we give a brief review on Boolean networks,
synchronous probabilistic Boolean networks, and general-
ized asynchronous probabilistic Boolean networks. For a
detailed and complete exposition, the readers are referred
to the literatures [4, 31].

A Boolean network B = V , F consists of a set of nodes
(genes) V = x1, x2,… , xn , xi ∈ 0, 1 , i = 1,… , n, and a
collection of Boolean functions F = f1, f2,… , f n , where
f i 0, 1 n → 0, 1 , i = 1,… , n. F contains one Boolean
function for each gene in V . The function f i is the predic-
tor function of gene i. Each gene xi can take on one of
two binary values, 0 or 1, corresponding to the case that
a particular gene is not expressed or expressed. We denote
xi t by the state of gene i at time step t. Thus, the overall
state of all the genes in the network at time step t is given
by the vector x t = x1 t , x2 t ,… , xn t , also known
as the gene activity profile (GAP). The rules of the reg-
ulatory interactions among the genes are determined by
xi t + 1 = f i x t i = 1, 2,… , n .

If the genes and the corresponding Boolean functions are
given, then a Boolean network is defined. It is not difficult to
see that a Boolean network is essentially a deterministic
model. To overcome the deterministic rigidity of a Boolean
network, the uncertainty of intergene relations are imposed
on the dynamic process, which creates synchronous PBNs
[14]. Specifically, each gene contains several Boolean func-

tions (predictor functions) f j
i i = 1, 2,… , l j to be chosen

for determining the next state of the corresponding gene in a
synchronous PBN, while it has only one Boolean function in
a Boolean network. The probability of choosing the Boolean

function f j
i is c j

i , where c j
i satisfies the following equation.

〠
l j

i=1
c j
i = 1 and 0 ≤ c j

i ≤ 1 for j = 1, 2,… , n 1

We denote f i by the ith possible realization, which is

of the form f i = f 1
i1
, f 2

i2
,… , f n

in
. Each vector-valued

function f i = f 1
i1
, f 2

i2
,… , f n

in
determines a constituent

Boolean network in a synchronous PBN. There are at most
N = n

j=1l j constituent Boolean networks. The dynamics

of a synchronous PBN can be represented via a Markov
chain. Let α and β be the two column vectors. Then the
transition probability satisfies the following equation:

P ω t + 1 = β ∣ ω t = α

= 〠
N

i=1
Pi

N

j=1
1 − f j

Kij
x1, x2,… , xn − xj

2

Suppose that α and β take all the possible values in
0, 1 n, one can obtain the transition probability matrix.
In a synchronous PBN, all the genes (nodes) simulta-

neously update when one of the Boolean networks is selected.
The time parameters of the state processes are discrete, and
the time between two successive transitions is equal and
fixed. However, such model is less realistic [26]. From a view
of biology, interactions between genes that cause transcrip-
tion, translation, and degradation may require a few millisec-
onds or even up to a few seconds [12]. Due to the limitation
of the time parameters of the state transitions, the generalized
asynchronous PBNs, which are an extension of synchronous
PBNs, have gained popularity in modeling genetic regulatory
networks [21]. In a generalized asynchronous PBN, all the
genes update synchronously and the updating period of each
gene is randomly selected based on a given distribution.

To be consistent with aforementioned models, we use the
same notation to define generalized asynchronous PBNs.
Similar to the synchronous PBN, a generalized asynchronous
PBN also contains a set of nodes (genes) V = x1, x2,… , xn ,
where xi ∈ 0, 1 and each xi represents the expression
value of a gene, and a collection of vector-valued functions
F = f j

N
j=1. If one of the N possible realizations of the gen-

eralized asynchronous PBN f j is chosen, the values of all
the genes are simultaneously updated according to the pre-
dictors determined by f j. The gene activity profile is an n
-tuple x t = x1 t ,… , xn t giving the values of genes at
time t, where x t ∈ 0, 1 n. Different from synchronous
PBNs, the time parameter of the state process is continuous,
the time length between two transitions is random, and the
random time follows any distribution in a generalized asyn-
chronous PBN. Such superior properties of the generalized
asynchronous PBN can best characterize the real gene reg-
ulatory networks. Two consecutive epoch times tk and tk+1
are considered. When the generalized asynchronous PBN
occupies the GAP z tk = x, a constituent Boolean network
is chosen according to some regulatory rule. As a conse-
quence of the constituent Boolean network choice, the net-
work jumps to a new GAP z tk+1 = y after a sojourn time,
whose distribution can be characterized by semi-Markov
kernel Q x, y, t = P y ∣ x H x, ξ . The transition probability
satisfies P y ∣ x ≔ P z tk+1 = y ∣ z tk = x , ξ is a random
variable, and H x, ξ denotes its distribution function.

3. A Semi-Markov Decision Process Model for
Generalized Asynchronous Probabilistic
Boolean Networks

In this section, we will formulate a generalized asynchronous
PBN as an AVaR model for finite horizon semi-Markov
decision processes with specified definitions of notation
as follows.

First, we specify the state of the generalized asynchronous
PBN, which is the information to the controller. The
state α of the generalized asynchronous PBN at any time
t ≥ 0 denotes the gene activity profile which is a vector
α≔ x1,⋯, xn , where xi represents the expression value
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of gene i and xi ∈ 0, 1 , i = 1, 2,… , n. To facilitate our
discussion, we use the following state representation of
the network and define

x = 1 + 〠
n

i=1
2n−ixi, 3

to be the state of the network. Therefore, the correspond-
ing state space is composed of all possible GAPs, that is,
S = 1, 2,… , 2n .

Second, a vector consisting of control inputs u = u1,… ,
um can be regarded as an action available to the controller
at state x. The use of such control inputs makes sense from
a treatment viewpoint. For instance, in the case of diseases
like cancer, auxiliary treatment inputs, such as radiation
and chemotherapy, may be applied to move the state vectors
away from one which is associated with proliferation of
cancer cells. In order to accord with the above decimal num-
ber, we take a (the decimal representation of a control input)
as an action. We denote A x by a set of actions available
to the controller when the generalized asynchronous PBN
is at state x ∈ S. In other words, A x represents the set of
all possible treatments, which is assumed to be a finite set
A x = 1, 2,… , 2m in this paper.

Third, the generalized asynchronous PBN occupies a
state x ∈ S at some decision epoch and the controller chooses
a vector of control inputs a ∈ A x (an action) according to
some decision rules. As a consequence of this action choice,
the following thing occurs: the generalized asynchronous
PBN jumps to a new state y after a sojourn time in x, whose
distribution is subject to the semi-Markov kernel. To charac-
terize such event, we need to introduce the semi-Markov
decision kernel Q t, y ∣ x, a as follows. For every t ∈ R+, x,
y ∈ S, and a given action a ∈ A x , based on [10, 28], the
semi-Markov decision kernel Q is of the form

Q t, y ∣ x, a =H t ∣ x, a p y ∣ x, a , 4

where H t ∣ x, a and p y ∣ x, a denote the distribution func-
tions of the sojourn time and the transition probabilities in
mathematics, respectively. In fact, from the definition of
the generalized asynchronous PBN and the properties of
semi-Markov processes, the generalized asynchronous PBN
stays in a given state and a random length of time [28] and
its distribution function is denoted by H t ∣ x, a . In the
previous section, we have shown that the dynamic behavior
of generalized asynchronous PBN could be represented as
a semi-Markov process where the state transition was
completely specified by all of the possible Boolean functions.

Fourth, the cost function is assumed to be c x, a ,
which depends on the current state x ∈ S and a chosen
action a ∈ A x .

Fifth, policies are needed to specify decision rules at every
jump time. A policy is actually a certain operation rule
through which the controller chooses an action. The policies
under our optimization problem are based on the decision
epoches, as well as the states and actions for the controller.
Thus, a policy can be expressed by a function g acting on

R+ × S with the property that g t, x belongs to A x for all
t, x ∈ R+ × S. In other words, the function g t, x is an
action chosen at the current state x and the decision epoch
t, which is controlled by the decision-maker using policy g.
Let G be the set of all policies.

For requirements, we also introduce some other notation
used in this paper. For each t, x ∈ R+ × S and g ∈G, by the
well-known Tulcea theorem in [28, 30, 34], there exists a
stochastic process Tn, Jn, An, n ≥ 0 , in which Tn, Jn, and
An denote the nth decision epoch and the state and the
action (control input) chosen at the nth decision epoch,
respectively.

Under suitable conditions, we define an underlying
continuous-time semi-Markov decision process Z t ,U t ,
t ∈ R+ corresponding to the discrete-time process Tn, Jn,
An by

Z t = Jn, U t = An, forTn ≤ t < Tn+1, t ∈ R+ and n ≥ 0
5

Finally, in order to complete our specified model, we
need to introduce an optimality criterion. Now, for each
t, x ∈ 0, T × S, we define the value-at-risk (VaR) of finite
horizon total cost at level γ ∈ 0, 1 under a policy g ∈G by

ζgγ t, x ≔ inf λ ∈ℝ Pg
t,x

T

t
c Z s ,U s ds ≤ λ ≥ γ ,

6

and the AVaR of finite horizon total cost at level γ under a
policy g ∈ G by

ηgγ t, x ≔
1

1 − γ

1

γ

ζgs t, x ds 7

The VaR ζgγ t, x can be interpreted as the maximum
possible loss for the generalized asynchronous PBN with
probability at least γ over a time horizon t, T . Hence,
the AVaR ηgγ t, x is the expected cost exceeding the

VaR ζgγ t, x .
In this paper, we are interested in minimizing ηgγ over

g ∈G and aim to find a policy g∗ such that

ηg∗γ t, x = η∗γ t, x , 8

where η∗γ t, x ≔ infg∈Gηgγ t, x is the minimum AVaR.
Such a policy g∗, when it exists, is called AVaR optimal.

To that end, we have specified the AVaR model for the
above generalized asynchronous PBN as follows:

S, A x , x ∈ S ,Q t, y ∣ x, a , c x, a , ηgγ t, x , g ∈ G ,

9

where the state space S; the available action set A x at state
x ∈ S; the semi-Markov kernel Q t, y ∣ x, a with x, y ∈ S, t ∈
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0, T , and a ∈ A x ; and the AVaR ηgγ t, x have been
defined as above.

To solve our optimization problem (8), we need the
following alternative representation for AVaR as shown in
the literatures [27–29].

Let g ∈G and γ ∈ 0, 1 . Then, for every t, x ∈ 0, T × S,
it holds that

ηgγ t, x = inf
λ∈ℝ

λ + 1
1 − γ

Eg
t,x

T

t
c Z s ,U s ds − λ

+
,

10

where the minimum point is attained at λ∗ t, x = ζgγ t, x .
The equality above implies that AVaR is equal to VaR plus
the expected losses exceeding VaR divided by the probability
of these losses occurring, 1 − γ.

To solve (8), we provide a way of minimizing AVaR. In
fact, by (10), we have

η∗γ t, x = inf
g∈G

ηgγ t, x

= inf
g∈G

inf
λ∈ℝ

λ + 1
1 − γ

Eg
t,x

T

t
c Z s ,U s ds − λ

+

= inf
λ∈ℝ

λ + 1
1 − γ

inf
g∈G

Eg
t,x

T

t
c Z s ,U s ds − λ

+

11

Based on the theory of [27, 28], to solve the outer
optimality problem (i.e., our original optimization problem
(8)), we shall first study the inner optimization problem. To
this end, we define the expected positive deviation of finite
horizon cost from a level λ under a policy g ∈G by

Jg t, x, λ ≔ Eg
t,x,λ

T

t
c Z s ,U s ds − λ

+
 

t, x, λ ∈ 0, T × S ×ℝ
12

Here, λ can be interpreted as the acceptable cost/loss that
the controller expects to spend/lose, and Jg t, x, λ measures
the expected amount by which total cost/loss will exceed an
expectation λ over the horizon t, T . Note that Jg t, x, λ in
(12) depends on the cost level λ. For technical convenience,
it is natural to introduce a class of more general policies
including the cost level λ. We rewrite the definition of
the more general policies denoted by g in lieu of g. Our
goal now is, for every fixed λ ∈ℝ, to minimize Jg ⋅ , ⋅ , λ
over g ∈G and to seek an optimal policy g∗ ∈G (depending
on λ) satisfying

Jg
∗
t, x, λ = J∗ t, x, λ  ∀ t, x, λ ∈ 0, T × S ×ℝ,

13

where J∗ t, x, λ = infg∈GJg t, x, λ is the value function for
the expected positive deviation criterion.

The main goal of this paper is to solve the stochastic opti-
mal control problem above with the help of the theory of
semi-Markov decision processes [28, 30]. As described
above, using a representation of AVaR in (10), we have con-
verted the problem of minimizing the AVaR of the finite
horizon cost for a semi-Markov decision process into a bile-
vel optimization problem in which the outer optimization
problem is an ordinary problem of minimizing a function
of a single variable and the inner optimization problem is
to minimize the expected positive deviation of the finite hori-
zon cost for semi-Markov decision processes.

4. Solutions to the Optimization Problem

Based on the AVaR model in finite horizon semi-Markov
decision processes of the generalized asynchronous PBN
described in Section 3, in this section we want to solve
the optimality problem and propose a solution method
for the optimization problem. We give the main ideas of
the solution process as follows. In fact, the algorithm comes
from the theory of the AVaR problem for finite horizon
semi-Markov decision processes. In order to obtain solu-
tions for the original AVaR criterion (8) in the framework
of generalized asynchronous PBNs, we have done it in
three steps.

In the first step, we formulate our original problem (8) as
a bilevel optimization problem. This step is executed via the
representation (10).

In the second step, we solve the inner optimization
problem for an arising intermediate criterion (12) in finite
horizon semi-Markov decision processes. This treatment is
key to analyzing the inner optimization problem.

In the third step, we derive an AVaR optimal policy
for the original problem (8) from the solution of the inner
optimization problem (12).

From (3.8) in [28], for each t, x, λ ∈ 0, T × S ×ℝ and
g ∈G, we rewrite arising intermediate criterion (12) as (14)
for the inner optimization problem.

Jg t, x, λ = Eg
t,x,λ

T

t
c Z s ,U s ds − λ

+

= lim
n→∞

Eg
t,x,λ 〠

n

m=0
c Xm, Am T − Tm

+∧Θm+1 − λ

+

,

14

where Θm+1 ≔ Tm+1 − Tm denotes the sojourn times between
two successive decision epoches.

According to (14), we define Jg−1 t, x, λ ≔ 0 − λ + = λ−

and

Jgn t, x, λ ≔ Eg
t,x,λ 〠

n

m=0
c Xm, Am T − Tm

+∧Θm+1 − λ

+

,

15
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for every t, x, λ ∈ 0, T × S ×ℝ and n ≥ 0. Clearly, limn→∞

Jgn = Jg. Hence, we shall calculate Jgn so as to compute Jg.
Moreover, from Lemmas 3.3 and 3.4 in [28], we can obtain

various similar properties of Jgn and Jg.
To analyze the optimality problem, we introduce

notations Ha and H as follows: for t, x, λ ∈ 0, T × S ×ℝ,
a ∈ A x ,

HaD t, x, λ ≔ 1 −Q T − t, S ∣ x, a λ − c x, a T − t −

+〠
y∈S

T−t

0
Q ds, y ∣ x, a D t + s, y, λ − c x, a s ,

HD t, x, λ ≔ min
a∈A x

HaD t, x, λ

16

Next, we are ready to establish the computation and
the existence of optimal policies for problem (8). The the-
orem below develops a value iteration algorithm for calcu-
lating the value function J∗ and also derives the optimality
equation. In addition, with the help of the optimality
equation, we show the existence of optimal policies for the
problem (13).

Theorem 1. Under suitable conditions, the following asser-
tions are true.

(a) For each t, x, λ ∈ 0, T × S ×ℝ, let

D∗
−1 t, x, λ ≔ λ−,

D∗
n+1 t, x, λ ≔HD∗

n t, x, λ , n ≥ −1
17

Then, D∗
n increases in n, and limn→∞D∗

n =D∗.

(b) D∗ is the unique solution in some function space to the
optimality equation D∗ =HD∗.

(c) There exists a g ∈ G such that D∗ =HgD∗, and such a
policy is optimal for the optimality problem.

Proof. The proof of this theorem is similar to that of Theorem
3.1 and Theorem 3.2 in [28]. For a detailed discussion,
consult [28] and the references therein.

Remark 1. We have provided a value iteration algorithm for
computing the value function (see Theorem 1 (a)), proven
that the value function was a unique solution in some func-
tion space to the optimality equation (see Theorem 1 (b)),
and shown the existence of optimal policies (see Theorem 1
(c)). This result plays a key role in the derivation of the value
iteration algorithm and the existence of optimal policies.

We now return to the original problem (8). Let
ω t, x, λ ≔ λ + 1/1 − γ u∗ t, x, λ and consider the problem

inf
λ∈ℝ

ω t, x, λ = inf
λ∈ℝ

λ + 1
1 − γ

u∗ t, x, λ 18

The following theorem relates optimal policies of the
inner optimization problem to AVaR optimal policies of the
original problem.

Theorem 2 (see Theorem 3.4 in [28]). Under suitable
conditions, there exists a solution λ∗ (depending on t, x ) of
problem (18), and the policy g∗ ⋅ , ⋅ ≔ g∗ ⋅ , ⋅ , λ∗ ⋅ , ⋅ ∈ G
is AVaR optimal for the original problem, where g∗ ∈G is
an optimal policy for the optimality problem (13).

Remark 2. Based on the solution of the inner optimization
problem, the existence and computation of an AVaR optimal
policy in a generalized asynchronous PBN are established in
Theorem 2.

Next, we will propose a value iteration algorithm for
computing the optimal value functions based on Theorems
1 and 2 above. Moreover, optimal policies for the optimiza-
tion problem are constructed in the course of the algorithm.
According to [28], the details and the derivation are shown
as follows.

Step I. Given an ϵ > 0, and set n = 0. Let D0 t, x, λ ≔ λ− for
each t, x, λ ∈ 0, T × S ×ℝ.

Step II. For each t, x, λ ∈ 0, T × S ×ℝ, compute Dn+1
t, x, λ by

Dn+1 t, x, λ = min
a∈A x

1 −〠
y∈S

Q T − t, y ∣ x, a

λ − c x, a T − t −

+〠
y∈S

T−t

0
Q ds, y ∣ x, a Dn

t + s, y, λ − c x, a s

19

Step III. If Dn+1 −Dn < ϵ, go to Step IV. Otherwise,
increment n by 1 and return to Step II.

Step IV. For each t, x ∈ 0, T × S, find the minimum point
λ∗ t, x of the function λ→ λ + 1/1 − γ Dn+1 t, x, λ , and
stop.

5. Numerical Implementation

In this section, a numerical example on the generalized
asynchronous PBN is conducted to illustrate our results.
From the results presented in [28], the outer optimization
problem can be settled by solving the inner optimization
problem.We first solve the inner optimization problem using
a dynamic programming-based algorithm in Section 4. Then,
based on the solution of the inner optimization problem, the
existence and computation of an AVaR optimal policy are
established by solving the outer optimization problem.

6 Complexity



Consider a generalized asynchronous PBN with three

genes, x1, x2, and x3. There are two Boolean functions f i
1

and f i
2 associated with each gene i. These boolean functions

are provided by the truth table in Table 1. From this table, we
have eight possible Boolean networks.

Suppose that x1 is a control input, taking the value 0 or 1.
For the new generalized asynchronous PBN, to be consistent
with the notation introduced in Section 2, the variables x1, x2,
and x3 are renamed as follows: gene x1 now becomes u while
genes x2 and x3 become x1 and x2, respectively. The informa-
tion of Boolean functions can be found in Table 2, which
shows that there are four possible Boolean networks.

From Table 2, we know that n = 2 in this example. There-
fore, the state space can be assumed as S = 1,2,3,4 , and the
set of the admissible actions is given by A x = 1, 2 , x ∈ S.

The semi-Markov kernel Q is of the form Q t, y ∣ x, a =
H t ∣ x, a p y ∣ x, a for every t ∈ R+, x, y ∈ S, and a ∈ A x .
Suppose that the corresponding distribution functions of
the sojourn time H t ∣ x, a are given by

H t ∣ 1, 1 =
t
15 , t ∈ 0, 15 ,

1, t > 15 ;

H t ∣ 1, 2 =
t

15 2 , t ∈ 0,15 2 ,

1, t > 15 2,
H t ∣ 2, 1 = 1 − e−0 1t , t ∈ R+ ; ,
H t ∣ 2, 2 = 1 − e−0 7t , t ∈ R+,

H t ∣ 3, 1 =
t
60 , t ∈ 0, 60 ,

1, t > 60 ;

H t ∣ 3, 2 =
t
20 , t ∈ 0, 20 ,

1, t > 20
H t ∣ 4, 1 = 1 − e−0 15t , t ∈ R+ ;
H t ∣ 4, 2 = 1 − e−0 4t , t ∈ R+ ;

20

As described in Section 2, we can derive transition
probabilities p y ∣ x, a based on the truth Table 2 and
the involved probabilistic parameters.

Moreover, assume that the cost rates are given by

c 1, 1 = r 1 − c 1 = 9 − 1 = 8,
c 1, 2 = r 1 − c 2 = 9 − 2 = 7,
c 2, 1 = r 2 − c 1 = 4 − 1 = 3,
c 2, 2 = r 2 − c 2 = 4 − 2 = 2,
c 3, 1 = r 3 − c 1 = 5 − 1 = 4,
c 3, 2 = r 3 − c 2 = 5 − 2 = 3,
c 4, 1 = r 4 − c 1 = 7 − 1 = 6,
c 4, 2 = r 4 − c 2 = 7 − 2 = 5

21

Note that the distribution functions and the cost rates are
completely arbitrary. In a real-world example, this informa-
tion would be obtained from biologists.

For this generalized asynchronous PBN, we want to
minimize the AVaR over a time horizon 0, T with respect
to a given confidence level γ.

In addition, we set ϵ = 10−3, T = 15, and γ = 0 95 and
discretize the time interval [0,15] and the cost level
interval [0,150]. Then, we implement the algorithm
stated in Section 4 and obtain some datas on the func-
tions HaD∗ (see Figures 1–4). To be specific, we analyze
the datas on HaD∗ 0, x, λ , HaD∗ 2 5, x, λ , HaD∗ 5, x, λ ,
and HaD∗ 10, x, λ as examples, which are shown in
Figures 1–4 below.

Comparing the data on HaD∗ t, x, λ under admissible
action a for every t, x, λ ∈ 0, 15 × 1,2,3,4 × 0,150 , one
may obtain an optimal policy g∗ for the inner optimization
problem. For example, in light of figures, we can define g∗ by

g∗ 0, 1, λ =
2, λ ≤ 62 9,
1, λ > 62 9,

g∗ 0, 2, λ =
2, λ ≤ 20 1,
1, λ > 20 1,

Table 1: Truth table.

x1x2x3 f 1
1 f 1

2 f 2
1 f 2

2 f 3
1 f 3

2
0 0 0 0 0 1 1 1 0

0 0 1 0 0 1 0 1 0

0 1 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0 1

1 0 0 1 1 1 0 1 0

1 0 1 1 1 1 1 1 0

1 1 0 1 0 1 1 1 0

1 1 1 1 1 1 1 0 1

c i
j 0.5 0.5 0.5 0.5 0.4 0.6

Table 2: Truth table.

u a x1x2 x f 1
1,u f 1

2,u f 2
1,u f 2

2,u

0 1 0 0 1 1 1 1 0

0 1 0 1 2 1 0 1 0

0 1 1 0 3 1 0 0 1

0 1 1 1 4 0 0 0 1

1 2 0 0 1 1 0 1 0

1 2 0 1 2 1 1 1 0

1 2 1 0 3 1 1 1 0

1 2 1 1 4 1 1 0 1

c i
j 0.5 0.5 0.4 0.6
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Figure 1: The function HaD∗ 0, x, λ .
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g∗ 0, 3, λ =
2, λ ≤ 52 4,
1, λ > 52 4,

g∗ 0, 4, λ =
2, λ ≤ 68 4,
1, λ > 68 4,

g∗ 2 5,1, λ =
2, λ ≤ 85 1,
1, λ > 85 1,

g∗ 2 5,2, λ =
2, λ ≤ 18 5,
1, λ > 18 5,

g∗ 2 5,3, λ =
2, λ ≤ 45 8,
1, λ > 45 8,

g∗ 2 5,4, λ =
2, λ ≤ 59 6,
1, λ > 59 6,

g∗ 5, 1, λ =
2, λ ≤ 74 7,
1, λ > 74 7,

g∗ 5, 2, λ =
2, λ ≤ 17,
1, λ > 17,

g∗ 5, 3, λ =
2, λ ≤ 37 3,
1, λ > 37 3,

g∗ 5, 4, λ =
2, λ ≤ 49 7,
1, λ > 49 7,

g∗ 10, 1, λ =
2, λ ≤ 39 1,
1, λ > 39 1,

g∗ 10, 2, λ =
2, λ ≤ 13 2,
1, λ > 13 2,

g∗ 10, 3, λ =
2, λ ≤ 20 1,
1, λ > 20 1,

g∗ 10, 4, λ =
2, λ ≤ 30 7,
1, λ > 30 7
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According to the definition of policy, g∗ is an optimal
policy for the inner optimization problem.

Moreover, we find the minimum point λ∗ t, x of the
function λ↦ω t, x, λ with γ = 0 95. Figure 5 above gives
the graphs of ω t, x, λ with t = 0, 2 5, 5, 10. From Figure 5,
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it is easy to see the minimum points λ∗ t, x with t = 0, 2 5,
5, 10 and x = 1, 2, 3, 4, that is,

λ∗ 0, 1 = 117 4,
λ∗ 0, 2 = 45,
λ∗ 0, 3 = 60,
λ∗ 0, 4 = 90,

λ∗ 2 5,1 = 100,
λ∗ 2 5,2 = 37 5,
λ∗ 2 5,3 = 50,
λ∗ 2 5,4 = 75,
λ∗ 5, 1 = 76,
λ∗ 5, 2 = 28 4,
λ∗ 5, 3 = 38,

λ∗ 2 5,4 = 75,
λ∗ 10, 1 = 40,
λ∗ 10, 2 = 15 9,
λ∗ 10, 3 = 20 1,
λ∗ 10, 4 = 30

23

For other t ∈ 0, 15 , the minimum points λ∗ t, x can
be similarly calculated. Then, the policy g∗ t, x ≔ g∗ t, x,
λ∗ t, x ∈G is AVaR optimal. For example,

g∗ t, x = 2 for all t, x ∈ 0, 15 × 1,2,3,4 24

Moreover, we have also computed AVaR η∗0 95 t, x and
VaR ζg∗0 95 t, x at level 0.95 as shown in Tables 3 and 4.

When the AVaR optimal policy g∗ is applied, we will
have minimum AVaR η∗0 95 t, x at level 0.95, which repre-
sents the minimal expected value of the worst 5% costs of
the generalized asynchronous PBN over t, T . For example,
if the network starts from state 1, the minimum mean value
of the worst 5% costs over 0, 15 is 420.9. On the other hand,
Tables 3 and 4 indicate that the computed VaR is less than
the computed AVaR in all scenarios we considered. When
g∗ is applied, for example, starting from state 1, the VaR of
costs of the generalized asynchronous PBN over [0,15] at
level 0.95 is 117.4, which represents the maximum costs of
the generalized asynchronous PBN over horizon [0,15] with
a confidence level 95%. Note that, in minimizing AVaR
for this example, we have simultaneously improved VaR.
However, it is not clear if the obtained VaR ζg∗0 95 t, x
is the minimum VaR.

6. Conclusion and Discussion

In this paper, we have proposed a systematic approach to
design optimal intervention policies by considering some
generalized asynchronous PBNs. Such an approach can

characterize the time delay among gene interactions. Our
analytic results can be analyzed automatically or by medical
professionals in order to develop better strategies to improve
the quality of medical activities.

It is conceivable that results from this paper may be inte-
grated into identifying potential drugs and treatment
methods to achieve the best curative effect on the treatment
cancer in the future. Although all the facts indicate that the
mechanism of the related applications which is not clear
now remain to be developed, the proposed method is only a
useful attempt but is useful to explore a new and deeper
understanding of biological systems.

Improvement on the proposed method includes further
investigation in the following three main areas: computa-
tional complexity, classification of states, and the distribution
functions of the sojourn time.When the number of states and
time points become large, the computational complexity of
the algorithm increases. When the number of nodes n and
the time horizon T are fixed, the computational complexity
of the algorithm is O 2n . The more discussions about the
computational complexity of the algorithm can consult [28]
and the references therein. As the lack of data has prohibited
the inference of any realistic alternative asynchronous
models, we have assumed that both the classification of
states, the distribution functions of the sojourn time, and
the cost function are known. Hence, improving computation
efficiency of the algorithm for obtaining the optimal policy
for the formulated control model and theoretically getting a
reasonable classification of states and the distribution func-
tions of the sojourn time are left as one of our future works.
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Table 3: Some data of AVaR η∗0 95 t, x .

t
0 2.5 5 10

x

1 420.9 287.6 218.3 66.4

2 553.6 408.0 249.2 68.8

3 181.3 132.0 82.5 29.2

4 761.0 576.0 364.0 106.2

Table 4: Some data of VaR ζ
g∗
0 95 t, x .

t
0 2.5 5 10

x

1 117.4 100 76 40

2 45 37.5 28.4 15.9

3 60 50 38 0.1

4 90 75 57.1 30
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