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Emergency public event arises everyday on social network.The information propagation of emergency public event (favorable and
harmful) is researched. The dynamics of a susceptible-infected-susceptible and susceptible-infected-removed epidemic models
incorporated with information propagation of emergency public event are studied. In particular, we investigate the propagation
model and the infection spreading pattern using nonlinear dynamic method and results obtained through extensive numerical
simulations. We further generalize the model for any arbitrary number of infective network nodes to mimic existing scenarios in
online social network.The simulation results reveal that the inclusion of multiple infective node achieved stability and equilibrium
in the proposed information propagation model.

1. Introduction

1.1. Background and Status. Emergency public events happen
every day, such that the bitcoin virus is spreading all over
the world in May 2017. In today’s world, individuals interact
with each other inmore complicated patterns than ever. Some
individuals engage through complex networks, while some
communicate only through conventional ways. So, it is easy
to cause infectious diseases. Therefore, it is very necessary
for us to understand the dynamics of epidemic propagation
characteristic and disease dynamic behavior. Epidemiology
is the study of disease distribution rule and the influence
of the epidemic dynamic model. The critical epidemic
thresholds and the infection spreading pattern using mean-
field approximation (MFA) and results obtained through
extensive numerical simulations are researched in [1, 2]. A
new susceptible-infected-susceptible (SIS) epidemic model
incorporated with multistage infection (infection delay) and
an infective medium (propagation vector) over complex
networks [3–6]. In [7–9], a novel ISIR epidemic model with
nonlinear forces of infection to characterize the epidemic
spread on social contact networks with the consideration
of the “crowding” or “protection effect” is proposed. For

this class of dynamic networks, [10–14] derive an epidemic
threshold, considering the susceptible-infected-susceptible
epidemic model. First, an epidemic probabilistic model is
developed assuming independence between states of nodes.
Then they identify the conditions under which the epidemic
dies out by linearizing the underlying dynamical system
and analyzing its asymptotic stability around the origin. The
concept of joint spectral radius is then used to derive the
epidemic threshold, which is later validated using several
networks. A simplified version of the epidemic threshold is
proposed for undirected networks. References [8, 9, 15] inves-
tigated themathematical epidemicmodel, SEIR (Susceptible-
Exposed-Infected-Removed), through extensive simulations
of the effects of social network on epidemic spread in a
Small World (SW) network, to understand how an influenza
epidemic spreads through a human population. A combined
SEIR-SW model was built, to help understand the dynam-
ics of infectious disease in a community and to identify
the main characteristics of epidemic transmission and its
evolution over time. The model was also used to examine
social network effects to better understand the topological
structure of social contact and the impact of its properties.
An improved susceptible-infected-susceptible (SIS) epidemic
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spreadingmodel is proposed in order to provide a theoretical
method to analyze and predict the spreading of diseases [16–
20]. This model is based on the following idea: in social
networks, the contact probability between nodes is decided
by their social distances and their active degrees.

Although classic disease spread dynamic models make
some modest success in predicting some particular disease
behaviors, they are usually overly simplistic and neglect cer-
tain important aspects, like multiple stages, multiple groups,
the number of contacts, and other disease states. The rest of
this paper is organized as follows. In Section 2, characteristic
of information propagation is studied. In Section 3, the
information propagation model is prosed. In Section 4,
stability and equilibrium of information propagation model
are researched, In Section 5, simulation analytical results are
presented. Finally, conclusions are drawn in Section 6.

1.2. Motivations. The above discussion implies that novel
inequality methods allow us to obtain more emergency
public event information propagation model and algorithm.
Most references do not consider the dynamic behaviors of
emergency public event information propagation by using
computer virus propagation theory under online social
network. Social network information modeling methods
and algorithms are inequality presented in some references.
Under the method efficiency, a novel emergency public event
information propagation information propagation algorithm
and mathematics model could be proposed.

1.3. Our Work and Contributions. In this paper, the emer-
gency public event information propagation modeling prob-
lem based on online social network by nonlinear dynamic
method is further investigated. By giving more precise esti-
mation for emergency public event information propagation,
a new emergency public event information propagation
method is obtained. Under this method, some novel results
are presented. Based on computer virus propagation theory,
the nonlinear mathematics model of emergency public event
information propagation is derived. Simulation is employed
to indicate the effectiveness of the proposed method and
model. The main contributions of this paper are listed as
follows. (1) The information propagation process of emer-
gency public event is considered as a process of network
virus transmission. The computer virus propagation theory
is introduced to the emergency public event information
propagation. (2) An emergency public event information
propagation method and a new information process model
are proposed. (3) A new information propagation structure in
online social network is built up. (4) The better performance
is obtained by the theoretical simulation results.These results
are practical and objective.

2. Characteristic of Information Propagation

2.1. Public Event Information Characteristic. Nowadays, the
time and speed of the Internet are very huge for emergency
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Figure 3: The chart model of SIR.

public event information. Emergency public event informa-
tion is spread exponentially based on six-degree theory of
partition theory, which can be seen from Figure 1.

The propagation model of public event information is
shown in Figure 2.

2.2. Traditional Virus and Epidemic Model. The “compart-
ment” model is an essential mathematical model for a long
time.The basic idea of the “compartment” model was built by
Kermack andMckendrick. It has received various high praise
right from the start.

2.2.1. SIR Model. SIR model [21–26] is divided into three
classes, which are susceptible (𝑆), infections (𝑅), and removed
(𝐼); their quantity is 𝑆(𝑡), 𝐼(𝑡), and𝑅(𝑡), respectively.The chart
model of SIR is shown in Figure 3.
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𝛽 and 𝛾 are the proportionality coefficients. On the basis
of the change rate of the quantity in every compartment, the
material balance equation can be obtained:

d𝑆
d𝑡 = −𝛽𝑆𝐼,
d𝐼
d𝑡 = 𝛽𝑆𝐼 − 𝛾𝐼,
d𝑅
d𝑡 = 𝛾𝐼.

(1)

2.2.2. SISModel. Generally speaking, influenza, measles, and
other epidemics are spread by viral disease. Immunization
is also a key strategy to ensure global health security and
for responding to the threat of emerging infections such as
pandemic influenza. These diseases are immune to provirus.
The model of SIR is suitable for these epidemics. It is likely
that most of epidemics do not have immunity to provirus.
Then the SIS model [27–30] is proposed by Kermack and
Mckendrick. The chart model of SIR is drawn in Figure 4.

The material balance equation can be denoted as

d𝑆
d𝑡 = −𝛽𝑆𝐼 + 𝛾𝐼,
d𝐼
d𝑡 = 𝛽𝑆𝐼 − 𝛾𝐼.

(2)

SISmodel can reduce the probability of infection and increase
the cure rate.

2.2.3. EpidemicDynamicModel with Time-Lag. Thebasic fact
for the epidemic dynamic mathematics model of time-lag is
that the movement rule of a certain moment 𝑡 depending on
current 𝑡 not only is related to its previous stat 𝑡 but also is

a reflection of certain factors on previous stat 𝑡. Kermack-
Mckendrick model [31–33] is expressed as

d𝑆
d𝑡 = −𝛽𝑆𝐼 + 𝛾𝐼,
d𝐼
d𝑡 = 𝛽𝑆𝐼 − 𝛾𝐼,

(3)

where 1/𝛾 denotes the average recovery period; 𝑡 is the
time; 𝑆 is the susceptible; 𝐼 expresses the infection; 𝛽 is the
proportionality coefficient.

3. Information Propagation Model

We assume that the total number of network nodes is
continuously changed by time. 𝑆(𝑡) denotes the susceptible
node number which is not infected at time 𝑡. 𝐼(𝑡) is the
infected node number, which has been infectedwith the virus
infections at time 𝑡. 𝑅(𝑡) expresses the immune node number
of susceptible which has immunity to the virus at time 𝑡. The
virus propagation model is shown in Figure 5. 𝑛 indicates the
node number of new added infected nodes. 𝛽 shows the coef-
ficient which reflects the relation between susceptible nodes
and infected node. 1 − 𝑝 signifies the probability that it is the
number of new nodes that is priorly equipped with a firewall
directly into immune state. 𝜇

1
, 𝜇
2
, and 𝜇

3
express removing

probability of the network node three states, respectively.𝑘 represents received immunized antivirus measures rate
which is the susceptible nodes through effective antivirus
software installation in advance measures and a series of
antivirus, firewall, and so on. 𝜏 denotes incubation period
of the virus. Thus individual susceptibility node infection
rate that was infected with the virus can be expressed as𝛽𝐼(𝑡 − 𝜏).

Based on the above assumptions and propagation dynam-
ics theory, network time-delay model can be built up as
follows:

d𝑆
d𝑡 = 𝑝𝑛 − 𝛽𝑆 (𝑡) 𝐼 (𝑇 − 𝜏) − (𝜇1 + 𝑘) 𝑆 (𝑡) ,
d𝐼
d𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑇 − 𝜏) − (𝜇2 + 𝑘) 𝐼 (𝑡) ,
d𝑅
d𝑡 = (1 − 𝑝) 𝑛 + 𝛾𝐼 (𝑡) − 𝜇3𝑅 (𝑡) + 𝑘𝑆 (𝑡) .

(4)

Emergency public event information propagation can be
divided into favorable information and harmful information.
As for favorable information, 𝑝

𝜏
can be expressed as follows:

𝑝
𝜏
=
{{{{{{{{{{{

1 − 1 − 𝑝24𝑝 ln
1 + 𝑝
1 − 𝑝 , 𝜏 = 1

1 − 𝑝2
4𝑝 [(1 + 𝑝2 )𝜏−1 − (1 − 𝑝2 )𝜏−1] 1𝜏 − 1 exp( 𝜏30𝑛) , 𝜏 > 1.

(5)
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As for harmful information, the 𝑝
𝜏
can be expressed as

𝑝
𝜏
=
{{{{{{{{{{{

1 − 1 − 𝑝24𝑝 ln
1 + 𝑝
1 − 𝑝, 𝜏 = 1

((1 − 𝑝2) /4𝑝) [((1 + 𝑝) /2)𝜏−1 − ((1 − 𝑝) /2)𝜏−1] (1/ (𝜏 − 1))
exp (𝜏/25𝑛) , 𝜏 > 1.

(6)

4. Stability Analysis

Theorem 1 (see [33–35]). When 𝑅
0
≤ 1, the local no prop-

agation equilibrium point 𝑃 is becoming asymptotic stability.
When𝑅

0
> 1, no propagation equilibrium point𝑃 is instability.

Proof. Jacobi matrix of 𝑃 can be expressed as follows:

[[
[

𝛼 − 2𝛼𝐻 − (𝛽 + 𝜀) 0 0
𝛽 −𝛾 0
𝜀 𝛾 −𝜂

]]
]
. (7)

The eigenvalue can be denoted as

𝜆
1
= 𝛼 − 2𝛼𝐻 − (𝛽 + 𝜀) ,

𝜆
2
= −𝛾,

𝜆
3
= −𝜇.

(8)

As for 𝑃,𝐻 = 0. So 𝜆
1
= 𝛼− (𝛽 + 𝜀). As can be known for the

setting of parameters, 𝜆
2
and 𝜆

3
are the negative real number.

So, when 𝑅
0
< 1, 𝜆

1
< 0; when 𝑅

0
> 1, 𝜆

1
> 0.

5. Simulation Analysis

The network dynamics epidemic propagation process can be
simulated by using continuous time algorithm. Each node
in the network at any time 𝑡 can be denoted by 𝑆(𝑡), 𝐼(𝑡),
and 𝑅(𝑡). When 𝑡 = 0, we can select a node randomly in a
network and make their status 𝐼(𝑡), and the rest of the nodes
are denoted by 𝑆(𝑡).

After that, calculate the positive equilibrium point 𝐸
0

of formula (4). When 𝜏 = 1, the system is asymptotically
stable, as can be seen from Figure 6. In the case of other
parameters being constant, take different 𝜏 value. For each
state node number along with the change of time for
numerical simulation, we found that although the delay does
not affect the ultimate stability of equilibria, the pace of
influence model tends towards equilibrium. When the value𝜏 is small, formula (4) tends towards equilibrium solution in
a short time. When the value 𝜏 is large, system solution to
balance time increases. The ubiquity of computer network
virus shows what can happen when the technology of virus
detection gets distributed. You will be able to realize effective
control of the spread of the virus in a short period of time.
This is the case of early detection, early antivirus. This aspect
shows the virus detection technology in the control of the
computer network and the importance of the spread of the

virus. On the other hand, it proves the feasibility of this
model.

As for the favorable event (Figure 7), when 𝑝 is ranging
from 0.99 to 0.999, when the waiting time is the initial value,
no matter what the value of 𝑝 is, the occurring probability of
emergency public event is 1. As the wait time is increasing,
the value of 𝑝 is becoming smaller. The curve of waiting
time is going down faster. In Figure 7, red curve represents
the probability curve of the initial waiting time; the black
curve expresses the improved method’s probability curve of
the waiting time.

As for the harmful event (Figure 8), when 𝑝 is ranging
from 0.99 to 0.999, when the waiting time is the initial value,
no matter what the value of 𝑝 is, the occurring probability of
emergency public event is 1. As the wait time is increasing,
the value of 𝑝 is becoming smaller. The curve of waiting time
is going down faster.

The predictions of a scale-free network model can be
demonstrated in Figure 9.

As can be seen from Figure 9, it is very clear that
the model describes the peak time of arrival. The values
of the experiment and the calculation of ground surface
roughness are accordant basically and also have the same
change tendency.

6. Conclusions

In this paper, we have formulated an improved mathematical
model with information propagation of emergency public
event using nonlinear dynamic method. Although a few
models were reported in this respect, they were specially
focused on the presence of either one of the two factors
and did not account for their joint impact on the spreading
process. In reality, the proposed model applies to the trans-
mission of diseases in network systems.

The analogy in technological networks includes infor-
mation propagation of emergency public event via e-mails
and file sharing. Through numerical simulations, we demon-
strated that the inclusion of delayed infection and infective
network node remarkably lowered the traditional method.
We also increased the number of network nodes to a
considerable time. Such results simply imply that effective
and feasible preventive and containment countermeasures
are required to lessen the impact of either or both factors
to avoid the enhancement and prevalence of infection in
networks. A number of modifications to the presentedmodel
can be made to add more realism. Though this work targets
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the spread of information propagation of emergency public
event, the methods presented here could be applied for other
applications such as the spread of rumors or ideas through
social contact networks.

In the future, we intend to study the impact of infection
delay and multiple epidemic propagation vectors on the
spreading process in more recent complex models with
multiple network layers.
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epidemic spreading in Côte d’Ivoire,” Physica A. Statistical
Mechanics and its Applications, vol. 467, pp. 30–40, 2017.

[23] W. Liu, C. Liu, X. Liu, S. Cui, and X. Huang, “Modeling
the spread of malware with the influence of heterogeneous
immunization,” Applied Mathematical Modelling. Simulation
and Computation for Engineering and Environmental Systems,
vol. 40, no. 4, pp. 3141–3152, 2016.

[24] P. Di Giamberardino and D. Iacoviello, “Optimal control of SIR
epidemic model with state dependent switching cost index,”
Biomedical Signal Processing and Control, vol. 31, pp. 377–380,
2017.

[25] S. N. Langel, F. C. Paim, K. M. Lager, A. N. Vlasova, and L. J.
Saif, “Lactogenic immunity and vaccines for porcine epidemic
diarrhea virus (PEDV): Historical and current concepts,” Virus
Research, vol. 226, pp. 93–107, 2016.

[26] D. Greenhalgh, Y. Liang, and X. Mao, “Modelling the effect of
telegraph noise in the SIRS epidemic model using Markovian
switching,” Physica A. Statistical Mechanics and its Applications,
vol. 462, pp. 684–704, 2016.

[27] K. P. Hadeler, K. Dietz, and M. Safan, “Case fatality models for
epidemics in growing populations,” Mathematical Biosciences,
vol. 281, pp. 120–127, 2016.

[28] W. Liu, C. Liu, Z. Yang, X. Liu, Y. Zhang, and Z. Wei,
“Modeling the propagation of mobile malware on complex
networks,”Communications inNonlinear Science andNumerical
Simulation, vol. 37, pp. 249–264, 2016.

[29] S. Wen, J. Jiang, B. Liu, Y. Xiang, andW. Zhou, “Using epidemic
betweenness to measure the influence of users in complex
networks,” Journal of Network and Computer Applications, vol.
78, pp. 288–299, 2017.

[30] C. Li, X. Yu, T. Huang, G. Chen, and X. He, “A generalized Hop-
field network for nonsmooth constrained convex optimization:
Lie derivative approach,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 27, no. 2, pp. 308–321, 2016.

[31] M. Frasca and K. J. Sharkey, “Discrete-time moment closure
models for epidemic spreading in populations of interacting
individuals,” Journal of Theoretical Biology, vol. 399, pp. 13–21,
2016.

[32] M. A. Andrews and C. T. Bauch, “The impacts of simultaneous
disease intervention decisions on epidemic outcomes,” Journal
of Theoretical Biology, vol. 395, pp. 1–10, 2016.

[33] Y. Feng, L. Ding, Y.-H. Huang, and L. Zhang, “Epidemic
spreading on weighted networks with adaptive topology based
on infective information,” Physica A. Statistical Mechanics and
its Applications, vol. 463, pp. 493–502, 2016.

[34] G.Chen,C. J. Li, andZ.Y.Dong, “Parallel andDistributedCom-
putation forDynamical EconomicDispatch,” IEEETransactions
on Smart Grid, vol. 8, no. 2, pp. 1026-1027, 2017.

[35] H. Li, G. Chen, T. Huang, and Z. Dong, “High-performance
consensus control in networked systems with limited band-
width communication and time-varying directed topologies,”
IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–12, 2016.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


