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Relations between affective music
and speech: evidence from dynamics
of affective piano performance and
speech production
Xiaoluan Liu* and Yi Xu

Department of Speech, Hearing and Phonetic Sciences, University College London, London, UK

This study compares affective piano performance with speech production from the

perspective of dynamics: unlike previous research, this study uses finger force and

articulatory effort as indexes reflecting the dynamics of affective piano performance

and speech production respectively. Moreover, for the first time physical constraints

such as piano fingerings and speech articulatory constraints are included due to

their potential contribution to different patterns of dynamics. A piano performance

experiment and speech production experiment were conducted in four emotions: anger,

fear, happiness and sadness. The results show that in both piano performance and

speech production, anger and happiness generally have high dynamics while sadness

has the lowest dynamics. Fingerings interact with fear in the piano experiment and

articulatory constraints interact with anger in the speech experiment, i.e., large physical

constraints produce significantly higher dynamics than small physical constraints in piano

performance under the condition of fear and in speech production under the condition

of anger. Using production experiments, this study firstly supports previous perception

studies on relations between affective music and speech. Moreover, this is the first study

to show quantitative evidence for the importance of considering motor aspects such

as dynamics in comparing music performance and speech production in which motor

mechanisms play a crucial role.

Keywords: dynamics, emotion, piano performance, speech production, fingerings, articulatory constraints

Introduction

Background
Music and speech reflect fundamental aspects of human capacities (Juslin and Laukka, 2003;
Patel, 2008). The parallels between music and speech have been attracting scholarly interest for
a long period (Fonagy and Magdics, 1963; Sundberg, 1982; Scherer, 1995), with attempts to
compare the two from a wide range of perspectives: prosody (Scherer, 1995), semantics (Seifert
et al., 2013), syntax (Lerdahl, 2013), evolution (Cross et al., 2013), neurocognitive mechanisms
(Steinbeis and Koelsch, 2008), and facial expressions (Carlo and Guaitella, 2004; Livingstone et al.,
in press). Particularly, an increasing amount of attention has been given to using perceptual tests
for acoustic comparisons between affective music and speech, as they are two important means of
emotion communication (Buck, 1984; Wilson, 1994; Juslin and Laukka, 2003) which is crucial for
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maintaining social bonds in human society (Ekman, 1992). The
majority of comparative studies show that perceptually, acoustic
cues (pitch, intensity, and duration) of affective music and speech
are similar (Juslin and Laukka, 2003; Curtis and Bharucha, 2010;
Ilie and Thompson, 2011).

Admittedly, perception tests have brought valuable insight
into the acoustic relations between affective music and speech,
but sometimes individual variation can significantly influence
perceptual judgments which could lead to unreliable or even
contradictory results (cf. Juslin and Sloboda, 2013). Therefore,
this study aims to compare affective music and speech from
a different perspective by using affective piano performance
and speech production with a special focus on dynamics.
This is because compared with the vast amount of perception
studies, research using production experiments on affective
music performance is on the rise only in the past 20 years,
thanks to the advent of music technology that makes quantifying
music performance easier than before. Particular interest has
been given to piano/keyboard performance due to the availability
of MIDI, 3D motion capture cameras, digital acoustic pianos
(Palmer, 2006). However, to our knowledge, strictly controlled
experiments that directly compare affective piano performance
with speech production are rare. In this study we focus on
dynamics in the comparison between the two domains with the
inclusion of fingerings in piano performance and articulatory
constraints in speech production. The reasons will be elaborated
on in the following sections.

Dynamics of Piano Performance
In studies of affective piano performance, dynamics have received
less attention than timing, although they are equally important
(Repp, 1996; Gabrielsson, 2003). The reason is that unlike timing
which can be easily measured by metronome and hence has been
systematically examined in a scientific way for over a decade
(Repp, 1992a,b, 1994a,b, 1995, among others), dynamics are
more difficult to measure. This could be partly due to perceptual
difficulty in precisely distinguishing different levels of dynamics
(e.g., forte andmezzoforte) or technical challenges in filtering out
unwanted acoustic artifacts (Repp, 1996).

Therefore in this study we decide to examine piano dynamics
from a different perspective, i.e., at the kinematic level of
dynamics which reflects “the varying forces of the pianist’s
finger movements on the keyboard” (Repp, 1996, p. 642) by
using a modified Moog PianoBar scanner (cf. McPherson,
2013). It is a portable scanner that can be rapidly attached
to any acoustic piano keyboards. Using an optical reflectance
sensingmechanism, themodified PianoBar scanner continuously
detects key movements. Quantitatively, the scanner returns the
values of continuous key positions (key displacement) and the
time taken for fingers to reach each key position during one
keystroke. As a result, multiple different dimensions of each key
press, velocity and peak velocity (i.e., the maximum value in a
continuous velocity trajectory) of key movement during each
keystroke can be extracted from continuous key position data,
following a similar approach to McPherson and Kim (2011).
The multidimensions of key touch quantitatively returned by
the scanner can provide an ideal platform for examining the

interaction between pianists’ expressive intention and their piano
key touch (cf. McPherson and Kim, 2013).

Literature on mechanics of skilled motor movement (such
as speech production and music performance) suggests that
dynamics of motor movement are related not only to peak
velocity but also to the movement amplitude, i.e., the peak
velocity should be divided by the movement amplitude in order
to compare dynamics of movement of different sizes (Nelson,
1983; Ostry et al., 1983; Ostry and Munhall, 1985). Therefore,
in the context of piano performance, since each keystroke may
correspond to different degrees of key displacement (i.e., different
amplitudes of key movement), it is necessary to factor in key
displacement at the point of peak velocity to yield the kinematic
dynamics of each keystroke which reflects pianists’ finger force
(Minetti et al., 2007). Similar approach can also be found in
Kinoshita et al. (2007) where key displacement was taken as a
factor in comparing finger force under the conditions of different
types of key touch.

The examination of kinematic dynamics needs to take
into account the role of fingerings. This is because in piano
performance, alternative fingerings can be used for the same
piece of music, which is unlike playing other instruments.
Usually, different fingering strategies can reflect how pianists
intend to interpret the structure, meaning and emotion of music
in which dynamics play an important role (Neuhaus, 1973;
Bamberger, 1976; Clarke et al., 1997). Parncutt et al. (1997)
established a set of hypothetical rules of right-hand fingerings
according to ergonomic difficulty such as the extent of hand
spans, the involvement of weak fingers, and the coordinated
playing on black and white keys. Of particular importance are
hand spans and weak fingers. This is because the extent of
hand spans can affect the degree of tension and physical effort
of fingers (Parncutt et al., 1997). Weak fingers usually refer
to the fourth and fifth fingers (Parncutt et al., 1997) which
can constrain the flexibility of finger movement because of the
hand’s anatomical structure: unlike the thumb and index fingers
which are relatively independent, the middle, ring and little
finger are closely linked to each other via the flexor digitorum
profundus (FDP) tendons because they share a common muscle
belly (Gunter, 1960). Moreover, the flexor digitorum superficialis
(FDS) is especially responsible for the coupling between the
fourth and fifth fingers (Baker et al., 1981; Austin et al., 1989).
Nevertheless, whether weak fingers can significantly influence
piano performance is still a matter of debate. As pointed out
in Kochevitsky (1967), Neuhaus (1973), and Sandor (1981),
weak fingers are not necessarily weak; instead, they are often
strong enough to meet the demand of different levels of playing,
especially octave playing.

Dynamics of Speech Production
With regard to speech, articulatory effort which reflects “force
of articulation” (Malécot, 1955) is the counterpart of finger
force in piano performance. Articulatory effort is essentially
a neuromuscular phenomenon. Electrochemical reaction of
nerve impulses triggers the activation of articulator muscles
(Kirchner, 1998). Full contraction of articulator muscles occurs
when agonist muscle activity outweighs the antagonist muscle
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activity under the condition of repeated neuron firing (Clark
and Yallop, 1990). Articulatory effort is therefore the sum
action of the neuron firing of each articulator muscle (Kirchner,
1998). However, direct measurements of the neuron firing
of each articulator muscle are clearly too intrusive and
complex to perform. Therefore, indirect measurements have
been put forth through examining phenomena related to
articulatory gestures: articulator displacement (Lindblom, 1983),
clear speech (Uchanski, 2008), fricative closures (Lavoie, 2001),
trill articulation (Padgett, 2009), assimilation (Lindblom, 1983),
all of which require great articulatory effort. Correspondingly,
speech production models as in Lindblom and Sundberg (1971),
Westbury and Keating (1986), Kirchner (1998), have been
established in an attempt to quantify articulatory effort. However,
the aforementioned measurements of articulatory gestures run
the risk of not capturing articulatory phenomena large enough
for statistically significant differences (Kaplan, 2010); in addition,
the proposed models would oversimplify the reality of speech
articulation which often involves much finer details than what
the models can accommodate (Kaplan, 2010).

Hence, different alternatives are worth exploring. One such
example is to use formant dynamics (i.e., trajectories and
velocity) as an indicator of articulatory effort (cf. Cheng and Xu,
2013). Admittedly, one could argue formant dynamics may not
be a reliable indicator of articulatory effort given the fact that
there does not exist a one-to-one mapping between acoustics and
articulation. Nevertheless, direct measurements on articulators
as has been pointed out above do not capture the whole picture
of articulatory movement either (cf. Cheng and Xu, 2013 for
more examples and discussions). Acoustic signals, on the other
hand, have been argued to provide reliable information for
phonetic characteristics of segments and suprasegments with
theoretical (Lindblom, 1990) and experimental evidence (Perkell
et al., 2002). In addition, acoustic and articulatory measurements
can produce similar dynamic patterns: the evidence is that the
linear relations between F0/formant velocity and F0/formant
movement amplitude (Xu andWang, 2009; Cheng and Xu, 2013)
in acoustics are similar to those in articulation (Kelso et al.,
1985). Therefore, it is justifiable to use acoustic characteristics of
formant dynamics to analyze articulatory effort.

In speech, formant patterns tend to be affected by articulatory
constraints (e.g., articulatory pressure and distance) in different
suprasegmental and segmental contexts (Erickson et al., 2004;
Kong and Zeng, 2006). Tone languages such as Mandarin can
be a typical platform for investigating articulatory pressure in
different suprasegmental contexts: In Mandarin, there are five
types of tones—High (tone 1), Rising (tone 2), Low (tone 3),
Falling (tone 4), and Neutral (tone 5). Tone 2 + tone 2 and tone
4+ tone 4 create high articulatory pressure while tone 3+ tone 1
create weak articulatory pressure. The reason is that as reported
in Xu and Wang (2009), successive rising tones (i.e., tone 2 +

tone 2) or falling tones (tone 4 + tone 4) create much larger
articulatory pressure than other tonal combinations because
each involves two movements within one syllable. Successive
static tones (tone 3 and tone 1), in contrast, have much smaller
articulatory pressure because only a single movement is needed
within each syllable. With regard to the segmental dimension,

diphthongs (i.e., two adjacent vowels) can be used because they
are categorized into wide and narrow diphthongs according
to their articulatory distance: wide diphthongs (e.g., /ai/, /au/,
/ ci/) have wider articulatory distance between the initial and
final vowel and hence involve greater articulatory movement
of speech organs. Narrow diphthongs (e.g., /ei/, / eu/) have
narrower articulatory distance between the initial and final vowel
and hence the articulatory movement is not as large as wide
diphthongs.

Motivations for This Study
Theoretically, motion for a long time has been an important
platform for investigating music, i.e., how physical motion
is associated with sound patterns subsequently generated
(Sundberg, 2000). Human voice is a direct reflection of
such motion-to-sound mapping through physical coordination
of articulatory gestures; meanwhile, performance of musical
instruments is another way of mapping motion to sound through
the use of tonguing, breathing, and fingering (Palmer et al.,
2007, 2009). Therefore, similar to speech production, music
performance can be conceptualized as a “sequence of articulatory
movements resulting in a continuous acoustic wave” (Palmer
et al., 2007, p. 119). In the context of piano performance,
fingers can thus be perceived as “articulators” for pianists to
articulate their interpretation of music. Indeed, experimental
results on piano performance (Winges et al., 2013) show that
speech production phenomenon such as coarticulation also
exists in pianists’ finger movement during performance. This is
not surprising given the fact that both speech production and
piano performance are under neuromuscular control (Winges
et al., 2013) and essentially both domains require skilled motor
movements following similar physical mechanisms of dynamics
(Grillner et al., 1982; Nelson, 1983; Ostry et al., 1983; Winges
et al., 2013; van Vugt et al., 2014). In the context of motor
movement, force is a crucial component contributing to the
dynamics of physical movements (Stein, 1982). Therefore, it is
reasonable to compare articulatory effort with force of other
types of motor movements such as finger force (Gentil and
Tournier, 1998; Ito et al., 2004; Loucks et al., 2010). As discussed
in previous sections, the kinematic dynamics of keystroke reflect
pianists’ finger force and the formant dynamics of speech
reflect speakers’ articulatory effort. Since music performance and
speech are two important platforms for humans to communicate
emotion (Juslin and Laukka, 2003), plus the fact that these
two domains are essentially skilled motor movements following
similar physical mechanisms of dynamics as discussed above,
it is therefore justifiable to compare music performance and
speech production in the context of emotion using dynamics
of motion (i.e., kinematic dynamics of keystroke and formant
dynamics of speech production) as a measurement parameter. To
our knowledge, such comparison is currentlymissing in literature
and we believe it is worth bridging the gap.

In addition, one may wonder how piano fingerings (Section
Dynamics of Piano Performance) and articulatory constraints
(Section Dynamics of Speech Production) can relate to each
other. Anatomically, articulation refers to motor movement
caused by skeletal muscle contraction (Tortora, 2002). Hence
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typical human motor movements such as speech production or
music performance are effectively muscular articulation. There
is no wonder, therefore, that pianists’ fingers are always referred
to as “articulators” expressing pianists’ interpretation of music.
Different fingerings involve different degrees of hand span and
alternation between strong and weak fingers, which consequently
lead to different degrees of finger muscular tension (Parncutt
et al., 1997). Similarly in speech, different degrees of articulatory
constraints are involved as discussed in Section Dynamics of
Speech Production. Both finger muscular tension and speech
articulatory pressure can be considered as physical constraints
on motor movements such as piano performance and speech
production (Nelson, 1983; Winges et al., 2013). Therefore it
is the physical constraints triggered by different fingerings or
articulatory constraints that relate the two domains to each other.
Despite the importance of fingerings and articulatory constraints
reviewed above, it is still unknown whether they interact with
emotion in piano performance and speech production. This
serves as another motivation for this study.

Four of the basic emotions (Ekman, 1992) are chosen: anger,
fear, happiness, and sadness. One may wonder why a discrete
model of emotion (Ekman, 1992; Panksepp, 1998) has been
chosen rather than a dimensional approach such as Russell’s
circumplex model (1980). This is because firstly, so far no
theoretical consensus has been reached as to which approach
is better than the other for modeling emotion (for a recent
summary of theoretical debates, see Zachar and Ellis, 2012). More
importantly, the two approaches are not necessarily in conflict
with each other as recent affective neuroscience studies (e.g.,
Panksepp and Watt, 2011) have suggested that the differences
between the two may well be insignificant given the fact that
both approaches share many common grounds in explaining
cognitive functions of emotion. Since it is not the purpose of
this study to test which model is better, a discrete model of affect
is adopted. Among the “big six” emotions (Ekman, 1992), vocal
disgust usually cannot be elicited satisfactorily under laboratory
conditions (cf. Scherer, 2003); musical surprises can be very
complicated often requiring sharp contrast in compositional
structure (Huron, 2006) which is out of the scope of this study.
Hence, only the remaining four of the “big six” emotions are
chosen. The research questions to be addressed are.

Are dynamics of piano performance (i.e., finger force) similar
to or different from dynamics of speech production (i.e.,
articulatory effort) under the condition of the four emotions? Do
fingerings and articulatory constraints interact with emotion in
their influence on the dynamics of piano performance and speech
production respectively?

Experiments

Experiment 1: The Piano Experiment
Stimuli
Two excerpts of music were composed for this study. According
to the above reviews on fingerings, hand span and weak
fingers should be the primary focus. Therefore, the two excerpts
were composed corresponding to small and large hand span,
respectively. Small hand span is where fingers are at their natural
resting positions on the keyboard, i.e., without needing to extend
far beyond the resting positions to reach the notes (Sandor, 1981).
Large hand span is where fingers need to extend far beyond their
resting positions, which usually involves stretching at least an
octave (Parncutt et al., 1997). Meanwhile, each excerpt was to
be played with strong finger combinations (the thumb, index,
and middle fingers) and weak finger combinations (the ring and
little fingers). In addition, given the fact that right and left hands
tend to have different patterns in piano performance (Minetti
et al., 2007), only the right hand is involved in this experiment
to avoid theoretical and practical complexities. Hence altogether
there are four levels of fingerings for this study: small-weak (SW),
small-strong (SS), large-weak (LW), large-strong (LS). To avoid
confounding effects, all excerpts have musically neutral structure,
i.e., without having overtly emotional implications. Figures 1–4
demonstrate the fingering design.

Participants and Procedure
This experiment was approved by the Committee on Research
Ethics at University College London. Eight professional pianists
(four females, Mean = 26 years, SD = 2.2, all right-handed)
from London were recruited to play the excerpts according to
the fingerings provided on scores. They have been receiving
professional piano training for an average of 20 years. They
were instructed to play each of the excerpts with four emotions:
anger, happiness, fear, and sadness. Each excerpt per emotion
was repeatedly played three times in a quiet room. Admittedly,
lacking ecological validity can be a problem with this method,
i.e., it deviates from the reality of music making in that firstly,
performances usually take place in concert halls; secondly,
different emotions are often expressed by different pieces of
music (cf. Juslin, 2001 for references therein). Nevertheless, real
music making settings often cannot be scientifically controlled,
i.e., it is impossible to filter out confounding factors coming
from the acoustics of concert halls and audience. Moreover, it
is hard to judge whether it is the way music is performed or
the melody of music that leads the listeners to decide on the
emotional categories if different pieces of music are used for

FIGURE 1 | The small-weak condition (SW): small hand span (i.e., fingers are at their natural resting positions) with only weak fingers, i.e., the ring (4)

and little (5) fingers involved.
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FIGURE 2 | The small-strong condition (SS): small hand span (i.e., fingers are at their natural resting positions) with only strong fingers, i.e., the thumb

(1), index (2) and middle (3) fingers involved.

FIGURE 3 | The large-weak condition (LW): large hand span (i.e., fingers stretching across an octave) with only weak fingers, i.e., the ring (4) and little

(5) fingers involved.

FIGURE 4 | The large-strong condition (LS): large hand span (i.e., fingers stretching across an octave) with only strong fingers, i.e., the thumb (1) and

middle (3) fingers involved.

different emotions (Juslin, 2000, 2001). Therefore, conducting
the experiment in a scientifically controlled way is still the better
option if validity of the results is the priority.

As introduced in Section Dynamics of Piano Performance,
a Moog PianoBar scanner was attached to the keyboard
of a Bösendorfer grand piano. Finger force is reflected by
keystroke dynamics which were calculated according to the

formula: dynamics =
peak velocity of each keystroke (Vp)
maximum piano key displacement (d)

(Vp/d

henceforth) because of the need to considermovement amplitude
(i.e., displacement) in relation to peak velocity to reflect
kinematic dynamics as reviewed above. More specifically, Vp =

maximum piano key displacement (d)
time taken to reach the maximum displacement (t)

, and so the ratio Vp/d =

d
t ×

1
d
=

1
t . The unit of displacement is mm and that of time is sec.

The data were obtained by an external computer attached to one
end of the PianoBar. A Matlab script was written for computing
dynamics according to the formula.

There were altogether 8 (pianists) ∗ 4 (emotions) ∗ 4
(fingerings) ∗ 3 (repetitions) = 384 episodes performed by the
pianists. A follow-up perceptual validation test was carried out:
sixteen professional musicians (10 females, Mean = 28 years,
SD = 1.5) were asked to rate each emotion ∗ fingering episode on
a 1–5 scale. 1 represents not at all angry/fearful/happy/sad while
5 represents very angry/fearful/happy/sad. The top 8 ranked
episodes (out of 24) for each emotion ∗ fingering were selected.
The mean score for each emotion ∗ fingering was 4.03.

TABLE 1 | Mean Vp/d of the four levels of emotion (A, anger; F, fear; H,

happiness; S, sadness) and the four levels of fingerings (SW, small-weak;

SS, small-strong; LW, large-weak; LS, large-strong).

Anger Fear Happiness Sadness

Mean Vp/d 25.2 17.3 22.9 5.8

Standard deviation 1.8 4.9 2.1 1.2

SW SS LW LS

Mean Vp/d 13.7 17.8 19.4 20.5

Standard deviation 2 1.8 2.6 1.5

Results of the Piano Experiment
A Two-Way repeated measures ANOVA was performed to
examine the effect of emotion (four levels: anger, fear,
happiness, and sadness) and fingerings (four levels: small-weak,
small-strong, large-weak, large-strong). The results (Table 1)
demonstrate that both factors play significant roles in finger force
reflected by Vp/d. The interaction between the two factors is also
significant.

The means of keystroke dynamics (Vp/d) for each condition
are displayed in Table 2 and Post-hoc Tukey HSD tests
(Table 3) reveal more detailed patterns: anger and happiness
have significantly higher dynamics than fear and sadness. The
differences between anger and happiness are non-significant.
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TABLE 2 | Results of the Two-Way repeated-measures ANOVA of emotion

and fingerings on keystroke dynamics (as reflected by Vp/d).

F df p η
2
p

Emotion 8.26 3.21 <0.001 0.31

Fingerings 4.05 3.21 <0.05 0.16

Emotion * fingerings 2.17 9.63 <0.05 0.13

TABLE 3 | Results of Post-hoc Tukey tests on means of the four levels of

emotion (A, anger; F, fear; H, happiness; S, sadness) and the four levels of

fingerings (SW, small-weak; SS, small-strong; LW, large-weak; LS,

large-strong).

p A vs. F A vs. H A vs. S F vs. H F vs. S H vs. S

<0.05 >0.05 <0.001 <0.05 <0.05 <0.001

p SW vs. LS SW vs. LW SW vs. SS LS vs. LW LS vs. SS LW vs. SS

<0.01 <0.01 <0.05 >0.05 >0.05 >0.05

Fear has significantly lower dynamics than anger and happiness
but it is still significantly higher in dynamics than sadness. With
regard to the factor of fingerings, the Tukey tests demonstrate
that weak fingers in large hand span (the LW condition) do
not produce significantly different dynamics from strong fingers
in large hand span (the LS condition). However, under the
condition of small hand span, weak fingers tend to produce
significantly lower dynamics than strong fingers.

In terms of the interaction between emotion and fingerings,
Figure 5 shows that the most obvious interaction is between
fear, large-strong (LS), large-weak (LW), and small-strong (SS)
fingering conditions. For all of the aforementioned fingerings,
fear has significantly higher (p < 0.05) dynamics than sadness
according to a series of post-hoc Tukey tests, although it is
still significantly lower (p < 0.05) than anger and happiness.
Between the LS, LW, and SS conditions in fear, the differences
are non-significant. For anger, happiness and sadness, large
hand span generates higher dynamics than small hand span,
but the differences are non-significant, i.e., regardless of whether
the hand span is large or small, the dynamics are on average
always high for anger and happiness while for sadness they are
always low. Therefore, the contrast in dynamics between different
fingerings is evident under the condition of fear only.

Experiment 2: The Speech Experiment
Stimuli
The stimuli consist of six sentences divided into two sets
(Tables 4, 5), with tones and vowels being the two variables.
The purpose is to use the two variables to test the respective
impact of suprasegmental and segmental constraints on formant
dynamics. According to the reviews in Section Dynamics of
Speech Production, tone 2 + tone 2 and tone 4 + tone 4 are
used to create high articulatory pressure. Tone 3 + tone 1 is
used to create low articulatory pressure. Meanwhile, a wide
diphthong /au/ is used for long segmental distance and a narrow
diphthong / eu/ is used for short segmental distance. Cuilaoyao
and Cuilouyou are compound words denoting a person’s name.

FIGURE 5 | The interaction between emotions and fingerings in terms

ofVp/d in piano performance. Error bars represent the standard error of the

mean.

TABLE 4 | The first set of the stimuli in which the numbers of the syllables

represent the five lexical tones in Mandarin: 1 for H (High tone), 2 for R

(Rising tone), 3 for L (Low tone), 4 for F (Falling tone), and 5 for N (Neutral

tone).

lao2[lau]

work

yao2[jau]

distant

cui1

surname

lao3[lau]

old

yao1[jau]

waist

nian4

read

shu1

book

qu4

aspect

le5

particle

lao4[lau]

flood

yao4[jau]

medicine

IPA transcriptions for the key words laoyao are provided in brackets. Translation: cuilaoyao

has gone to read a book.

TABLE 5 | The second set of the stimuli in which the numbers of the

syllables represent the five lexical tones in Mandarin: 1 for H (High tone), 2

for R (Rising tone), 3 for L (Low tone), 4 for F (Falling tone), and 5 for N

(Neutral tone).

lou2[l

e

u]

building

you2 [j

e

u]

oil

cui1

surname

lou3[l

e

u]

hug

you1[j

e

u]

good

nian4

read

shu1

book

qu4

aspect

le5

particle

lou4[l

e

u]

drip

you4[j

e

u]

right

IPA transcriptions for the key words louyou are provided in brackets. Translation: cuilouyou

has gone to read a book.

Measurement of Formant Dynamics
As reviewed in Section Dynamics of Speech Production, formant
dynamics are an important factor reflecting the articulatory
effort of speech production. Formant peak velocity, i.e., “the
highest absolute value in the continuous velocity profile of
the (formant) movement” (Cheng and Xu, 2013, p. 4488),
and the displacement/amplitude of the formant movements are
particularly related to articulatory effort [cf. Cheng and Xu
(in press) for further discussion]. The peak velocity is measured
in the following way (Xu and Wang, 2009, p. 506):
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“Positive and negative extrema in the velocity curve
correspond to the rising and falling ramps of each unidirectional
pitch (formant) movement. A velocity curve was computed by
taking the first derivative of an F0 (formant) curve after it has
been smoothed by low-pass filtering it at 20Hz with the Smooth
command in Praat. Following Hertrich and Ackermann (1997),
the velocity curve itself was not smoothed so as not to reduce the
magnitude of peak velocity.”

Figures 6, 7 show the measurement points taken from F1 and
F2 formant contours. This allows the calculation of the ratio of
formant peak velocity (Vp) to maximum formant displacement
(d), henceforth Vp/d. It reflects articulatory effort/vocal
vigorousness (Cheng and Xu, 2013, in press). Similar to the piano

experiment, Vp =
maximum formant displacement (d)

time taken to reach the maximum displacement (t)
, and

so the ratio Vp/d =
d
t ×

1
d
=

1
t . The unit of displacement is Hz

and the unit of time is sec.
Table 6 lists the values extracted from themeasurement points

for the calculation of Vp/d for F1 and F2.

Subjects and Procedure
Ten native Mandarin speakers without speech or hearing
problems were recruited as subjects (5 females; Mean = 27
years, SD = 2.5) via the University College London Psychology

Pool. The recording session for each participant lasted for
around half an hour. This experiment was approved by the
Committee on Research Ethics at University College London.
Voice portrayal/simulationmethod was used to induce emotions,
i.e., the participants were asked to imagine themselves in
emotion-triggering scenarios when recording the sentences.

TABLE 6 | Values taken from the measurement points a, b, c for the

calculation of Vp/d.

minF1a: F1minimum in a minF2a: F2minimum in b

maxF1a: F1 maximum in b maxF2a: F2 maximum in a

minF1b: F1minimum in b-c minF2b: F2minimum in c

maxF1b: F1 maximum in c maxF2b: F2 maximum in b-c

D1a: maxF1a – minF1a [F1 rising

displacement]

D2a: maxF2a – minF2a [F2 falling

displacement]

D1b: maxF1a – minF1b [F1 falling

displacement]

D2b: maxF2b – minF2a [F2 rising

displacement]

D1c: maxF1b – minF1b [F1 rising

displacement]

D2c: maxF2b – minF2b [F2 falling

displacement]

V1a: F1 peak rising velocity, in a-b V2a: F2 peak falling velocity, in a-b

V1b: F1 peak falling velocity, in a-b V2b: F2 peak rising velocity, in a-b

V1c: F1 peak rising velocity, in b-c V2c: F2 peak falling velocity, in b-c

FIGURE 6 | Syllable segmentation and labeling of the sentence “Cui laoyao nian shu qu le.”

FIGURE 7 | Syllable segmentation and labeling of the sentence “Cui louyou nian shu qu le.”
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This is because compared to other emotional speech induction
methods (e.g., natural vocal expression), this method is more
effective in obtaining relatively genuine emotional speech when
experimental control is a key concern. Support for this method
comes from the fact that natural emotional expression is
often inherently involved with unintended portrayal and self-
representation (Scherer, 2003). The recording was conducted in
a sound-controlled booth. Participants were asked to record each
sentence 3 times in four emotions: anger, fear, happiness, and
sadness, resulting in 10 (speakers) ∗ 4 (emotions) ∗ 3 (tones) ∗
2 (segments) ∗ 3 (repetitions)= 720 tokens.

Similar to the first experiment, a follow-up perception
validation test was conducted: twenty native speakers of
Mandarin (11 females, Mean = 23 years, SD = 2.6) were
asked to rate each emotion ∗ tone ∗ segment token on a 1–5
scale. 1 represents not at all angry/fearful/happy/sad while 5
represents very angry/fearful/happy/sad. The top eight ranked
tokens (out of 30) for each emotion ∗ tone ∗ segment were
selected. The mean score for each emotion ∗ tone ∗ segment was
4.16. ProsodyPro and FormantPro scripts (Xu, 2014) running
under Praat (Boersma and Weenink, 2013) was used for data
analyses.

Results
The mean Vp/d of all measurement points are represented in
Table 7. A Three-Way repeated measures ANOVA shows that
among the three factors (emotion, tone, and segments), emotion
is the only factor exerting a significant impact on the value of
Vp/d. The interaction between emotion, tone and segments is
non-significant. However, the interactions between emotion and
tone and that between emotion and segments are significant
(Table 8).

Post-hoc Tukey tests show more details: sadness has
significantly (p < 0.05) the lowest Vp/d value compared with

TABLE 7 | Mean Vp/d of the four levels of emotion (anger; fear; happiness;

sadness) and the four levels of articulatory constraints (SS, small

segmental distance /

e

u/; ST, small tonal pressure T3 + T1; LS, large

segmental distance /au/; LT, large tonal pressure T2 + T2/T4 + T4).

Anger Fear Happiness Sadness

Mean Vp/d 37.3 41.5 43.6 24

Standard deviation 6.2 5.5 5.6 4.9

SS ST LS LT

Mean Vp/d 34 33.6 38.5 39.8

Standard deviation 5.9 4.8 5.1 5

TABLE 8 | Results of the Three-Way repeated-measures ANOVA on

articulation dynamics (as reflected by Vp/d).

F Df P η
2
p

Emotion 5.22 3,21 <0.01 0.25

Emotion * tone 2.39 6,42 <0.05 0.11

Emotion * segments 3.08 3,21 <0.05 0.12

the other three emotions. Happiness has the highest dynamics
followed by fear and anger, but the differences between each other
are non-significant.

The interaction between emotion and tonal pressure is
significant. As shown in Figure 8, the Vp/d of all emotions is
higher in tonal combinations of large articulatory constraints
(i.e., T2 + T2 and T4 + T4) than the Vp/d in those of small
articulatory constraints (T3+T1). This is themost obvious in the
case of anger where T2+T2 and T4+T4make the Vp/d of anger
become closer to that of fear and happiness. Post-hoc Tukey tests
show that the difference between anger and fear plus that between
anger and happiness are non-significant under the T2 + T2 and
T4 + T4 conditions. In contrast, under the T3 + T1 condition,
the differences are significant (both ps < 0.05). In addition, fear,
happiness and sadness do not differ significantly between the
two tonal conditions. Therefore, anger is more affected by tonal
variation than the other three emotions.

Emotion also interacts significantly with segmental distance.
Figure 8 shows Vp/d is overall higher in the wide diphthong
condition than in the narrow condition. The interaction is the
most obvious in anger because it is almost as high as fear and
happiness with regard to Vp/d in the wide diphthong condition.
Post-hoc Tukey tests show the difference between anger and fear
plus that between anger and happiness are non-significant in the
wide diphthong condition. The differences are significant (both
ps < 0.05), however, under the narrow condition. Moreover, fear,
happiness and sadness do not differ significantly between the two
segmental distance conditions. Therefore, similar to above, anger
is more influenced by segmental distance variation than the other
three emotions.

Comparisons between the Results of the Piano
and Speech Experiment
To directly compare the results of the piano and speech
experiments, a MANOVA test was conducted: the within-
subjects independent variables are emotion (four levels: anger,
fear, happiness, and sadness) and physical constraint (two
levels: large hand span/articulatory constraints and small

FIGURE 8 | The mean Vp/d of narrow diphthong, wide diphthong, T3 +

T1 and T2 + T2/T4 + T4 in the four types of emotional speech (anger,

fear, happiness, and sadness). Error bars represent the standard error of

the mean.
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hand span/articulatory constraints) while the between-subjects
independent variable is group (two levels: pianists and speakers).
The dependent variables are Vp/d (speakers) and Vp/d (pianists).
Using Pillai’s trace, there is a significant difference between
pianists and speakers [F(8, 7) = 13.78, p < 0.01]. The following
univariate ANOVAs show that the group differences between
pianists and speakers are significant across most conditions:
anger-large [F(1, 14) = 14.92, p < 0.01], anger-small [F(1, 14) =
16.23, p < 0.01], happiness-small [F(1, 14) = 15.61, p < 0.01],
fear-large [F(1, 14) = 14.95, p < 0.01], fear-small [F(1, 14) =

18.09, p < 0.01], sadness-large [F(1, 14) = 15.93, p < 0.01].
In the happiness-large and sadness-small conditions, the group
difference is non-significant (speech production still has higher
Vp/d than that of piano performance). The results suggest on the
whole, piano performance has significantly different (i.e., lower)
dynamics than speech production.

Discussion

Similarities between Affective Piano
Performance and Speech Production
The results show that firstly, anger in piano performance
generates the highest dynamics irrespective of fingerings; in
speech production, it is also relatively high in dynamics although
it interacts with articulatory constraints (more discussions on
the interaction are offered in the following section). This is in
line with previous reports that anger in music performance and
speech production is generally linked to fast tempo, high intensity
and great energy (cf. Juslin and Sloboda, 2013). Physiologically,
the high dynamics of anger can be associated with high levels
of cardiovascular activities such as high heart rate (Rainville
et al., 2006), fast/deep breathing (Boiten et al., 1994), increases
in diastolic pressure and activated baroreceptor mechanisms
(Schwartz et al., 1981). Evolutionarily, anger originates from
natural and sexual selection pressure on animals (Darwin, 1872):
anger induces the inclination to fight or attack whatever that
threatens survival and well-being. As a result, anger is proposed
to be associated with large body size projection (Morton, 1977;
Xu et al., 2013a,b) to scare off enemies. Hence anger should
be linked to high dynamics which can be reflected by high
physical or vocal effort to show great strength and energy (Xu
et al., 2013a). The results of this study support this prediction
by demonstrating that greater finger force and articulatory effort
are generated respectively in piano performance and speech
production in the context of anger.

Secondly, happiness triggers the highest dynamics for speech
production and second highest dynamics for piano performance,
irrespective of fingerings or articulatory constraints. The results
are in line with previous reports that in music performance,
happiness is always associated with faster tempo and higher
intensity (Gabrielsson, 1995; Zanon and De Poli, 2003a,b;
Widmer and Goebl, 2004); happy speech is reported to have
high values in many acoustic dimensions such as pitch, pitch
range, intensity, high frequency energy (Scherer, 2003; Ververidis
and Kotropoulos, 2006), speech rate, and formant shift (Xu
et al., 2013a). Similar to anger, the physiological reason for high

dynamics of happiness is often linked to increases in heart rate,
blood pressure, breathing pattern (Boiten et al., 1994; Rainville
et al., 2006), all of which can contribute to greater physical or
vocal force in music performance or speech production. From
an evolutionary perspective, happiness can be a useful strategy
for attracting mates (Darwin, 1872). Therefore, it is beneficial for
sound signalers to produce highly vigorous (i.e., dynamic) sounds
so as to be audible to potential mates (Xu et al., 2013a). Hence, the
results are also consistent with the evolutionary account.

Thirdly, fear in both piano performance and speech
production produces significantly higher dynamics than sadness;
particularly in speech production fear does not differ significantly
from anger/happiness. This might seem somewhat unexpected
given that fear in music performance is generally associated with
soft playing similar to sadness (cf. Juslin and Sloboda, 2013). In
terms of speech production, however, fear has already been found
to show high dynamics (Xu et al., 2013a), which is consistent
with the view that evolutionarily, fear can be a defensive emotion
(LeDoux, 1996), evidenced from animal alarm calls as a useful
antipredator defensive strategy across many species for the sake
of group survival (Caro, 2005). To serve this purpose, alarm
calls should be reasonably high in dynamics (i.e., vigorousness).
Similarly, musical excerpts of fear could also be highly dynamic,
analogous to human fearful speech or animal alarm calls.

Fourthly, sadness always generates the lowest dynamics for
both piano and speech performance regardless of fingerings or
articulatory constraints. This finding is in line with previous
research: sad music and speech are low in intensity, F0, F0 range
and duration (Juslin and Laukka, 2003; Laukka et al., 2005;
Patel, 2008). This is mainly because sadness is located at the
opposite end of happiness in terms of valence and arousal: it
is a lowly aroused negative emotion because of its association
with reduced physiological energy and arousal level, sometimes
leading to affective pathology such as depression or anhedonia
(cf. Huron, 2011). Evolutionarily, such low dynamics of sadness
indicate a tendency for the sound signaller to beg for sympathy
(Xu et al., 2013a). Hence usually low motor effort is involved
in expression of sadness either through music or speech. It is
worth mentioning sad speech can be split into two categories:
depressed sadness and mourning sadness (Scherer, 1979), the
former being characterized by low vocal energy while the latter
by high vocal energy. In this study, it was the depressed sadness
that was used and hence the resulting formant dynamics are low,
reflecting decreased articulatory effort due to the sluggishness
of articulatory muscles in sad speech (Kienast and Sendlmeier,
2000).

Differences between Affective Piano
Performance and Speech Production
The results also show significant differences between the two
domains. The most notable difference is that speech production
on the whole has higher dynamics than piano performance across
almost all conditions. This is consistent with previous studies
on comparisons between speech articulatory movements and
limb movements (Gentil and Tournier, 1998; Ito et al., 2004;
Loucks et al., 2010). Although those studies did not investigate
movements in the context of affective piano performance
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or speech production, the general biophysical mechanisms
of fingers and speech articulators apply to this study. More
specifically, it was found that compared with fingers or arms,
speech articulators in general produce faster velocity (Ito et al.,
2004; Loucks et al., 2010) and greater force (Gentil and
Tournier, 1998; Loucks et al., 2010). The reasons probably lie
in the biomechanical differences between speech articulators
and fingers: compared with speech articulators, fingers are
associated with more intervening factors (e.g., long tendons,
joints and muscle mass between muscle fibers and skeletal
joints) that prevent finger muscles from contracting as fast
as speech articulatory muscles (Gentil and Tournier, 1998). It
has also been reported that oral-facial muscles are associated
with fast-twitch fibers and motor protein such as myosin which
enable fast acceleration and rapid speech in order to meet
different levels of speech demand (Williams and Warwick, 1980;
Burke, 1981). Therefore, in this study the dynamics of affective
speech production (as reflected by articulatory effort) and piano
performance (as reflected by finger force) are different from each
other due to the biomechanical distinctions.

In addition, the results also demonstrate that the interaction
between emotion and physical constraints in piano performance
is different from that in speech production. In piano performance
(Figure 5), only fear interacts with physical constraints (i.e.,
fingerings); in speech production (Figure 8), only anger interacts
with physical constraints (i.e., articulatory constraints). The
reasons could be attributed to the differences in the extent of
acoustic stability of music performance and speech production
in different emotions.

Firstly, in music performance, anger, happiness, and sadness
are associated with relatively consistent acoustic patterns (Juslin
and Sloboda, 2013), i.e., anger and happiness are always fast
and loud to convey high energy and arousal while sadness is
always slow and quiet to convey low energy and arousal. Fear, in
contrast, is linked to highly variable acoustic patterns especially
in terms of tempo and intensity (Juslin and Madison, 1999;
Madison, 2000; Juslin and Sloboda, 2013; Bernays and Traube,
2014) so as to convey the unstable psychological state under
the influence of fear, e.g., scattered notes with pauses between
musical phrases and sharp contrasts between intensity are often
used to express fear (Madison, 2000). This could further imply
there may not be a consistent pattern of finger force under the
condition of fear. Hence, other factors such as fingerings are
highly likely to interact with fear to generate different kinematic
dynamics in piano performance.

On the other hand, fearful speech shown in this study always
has high formant dynamics regardless of articulatory constraints.
This is likely associated with duration. Upon close examination,
the duration of fear (mean = 555.6ms) is similarly short to
that of happiness (mean = 546.6ms) which has the highest
dynamics, with non-significant differences between the two.
Moreover, fear is significantly (p < 0.05) shorter than anger
(mean = 601.1ms) and sadness (mean = 638.2ms). Similar
findings have been reported that fear is often produced with fast
speech rate that is likely to trigger vowel undershoot (i.e., an
articulatory phenomenon where the canonical phonetic forms
of speech sounds fail to be reached because of the articulatory

impact of surrounding segments, Lindblom, 1963) and segmental
reduction (Paeschke et al., 1999; Kienast and Sendlmeier, 2000).
Shorter duration is highly likely to trigger great articulatory effort
according to the report of studies on articulatory movement
(Munhall et al., 1985; Ostry and Munhall, 1985; Edwards et al.,
1991; Adams et al., 1993; Perkell et al., 2002). Therefore, the
relatively stable acoustic pattern (i.e., duration) of fearful speech
could make it less likely to interact with other factors such as
articulatory constraints.

Secondly, this study shows that only angry speech significantly
interacts with articulatory constraints: the formant dynamics are
significantly higher in large articulatory constraints than those
in small articulatory constraints. Again this can be linked to
duration. A closer look at the data reveals that the duration
of angry speech is significantly (p < 0.05) shorter under the
condition of large articulatory constraints than the condition of
small articulatory constraints. It has been reported (Cheng and
Xu, 2013) that when time is short for the articulatory execution
of segments with large articulatory constraints, muscles have to
contract faster (i.e., with stronger articulatory effort) than when
small articulatory constraints are involved in order to reach the
tonal and segmental targets. This is reflected in the high formant
dynamics under the condition of large articulatory constraints. In
addition, the result is also consistent with the finding that anger
is often more variable in duration compared with the other three
emotions (happiness, fear and sadness): it can be slow because of
the need to be precise and clear in articulation (Paeschke et al.,
1999; Kienast and Sendlmeier, 2000) so as to project big body
size to threaten away enemies (Xu et al., 2013a,b); it can also be
fast in speech rate (Scherer, 2003) especially in female speakers to
reflect the highly aroused and variable psychological state under
the influence of anger. Hence, it is the relatively high variability
in duration that makes angry speech more prone to interact with
external factors such as articulatory constraints.

Conclusion

This study compares the dynamics of piano performance (i.e.,
finger force) and those of speech production (i.e., articulatory
effort) in four emotions: anger, happiness, fear and sadness.
The results show that firstly, in both piano performance and
speech production, anger and happiness generally have high
dynamics while sadness has the lowest dynamics. The findings
echo the theoretic argument that affective music shares a
“common code” with affective speech (Juslin and Laukka, 2003).
Secondly, the interaction between fear and fingerings in piano
performance and the interaction between anger and articulatory
constraints in speech production suggest that the more variable
an emotion is in acoustic features, the more likely it is to
interact in production with external factors such as fingerings
or articulatory constraints in terms of dynamics. In addition, the
results suggest that affective speech production on the whole has
higher dynamics than affective piano performance, which may be
due to the biomechanical differences between speech articulators
and fingers.

Therefore, this is the first study to quantitatively demonstrate
the importance of considering motor mechanisms such as

Frontiers in Psychology | www.frontiersin.org 10 July 2015 | Volume 6 | Article 886

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Liu and Xu Dynamics of piano and speech

dynamics (i.e., finger force and articulatory effort) together with
physical constraints (i.e., fingerings and articulatory constraints)
in examining the similarities and differences between affective
music performance and speech production. Limitations also
exist: The emotion induction method of the piano and
speech experiment still needs improvement due to lack of
authenticity under the laboratory condition. Moreover, more
fingering strategies especially those involving black keys and
more articulatory variations in speech such as monophthongs
vs. diphthongs could be added to research designs for more
comprehensive findings. In addition, more categories of emotion
such as disgust and sarcasm could be included tomake the picture
more complete. In a nutshell, focusing on the motor mechanisms

of affective music performance and speech production could
further enhance the connection betweenmusic and speech as two
fundamental capacities for humans to communicate emotion.
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