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This paper presents a novel fractional-order PID controller tuning strategy based on Bode’s optimal loop shaping which is
commonly used for LTI feedback systems. Firstly, the controller parameters are achieved based on flat phase property and Bode’s
optimal reference model, so that the controlled system is robust to gain variations and can achieve desirable transient performance
according to various control requirements. Then, robustness analysis of the controlled system is carried out to support the results.
Furthermore, the parameter setting is analyzed to demonstrate the superiority of the proposed controller. At last, some simulation
examples are shown to verify the accuracy and usefulness of the proposed control strategy. The proposed fractional-order PID
controller does not have any restriction on the controlled plant, so it can be widely applied on both integer-order and fractional-
order systems.

1. Introduction

Fractional calculus was first mentioned in a letter between
Leibniz and L’Hospital about 300 years ago [1]. Not until
the last few decades had the related studies been general-
ized to various fields instead of pure theoretical derivation.
A number of studies have revealed the potentialities of
fractional calculus, such as engineering [2–4], physics [5],
applied mathematics [6, 7], and bioengineering [8]. Among
these research fields, fractional-order control technology and
fractional-order modeling develop quite fast. Many physical
phenomena were proved to be better described by fractional-
order models [9, 10]. The additional integral and differential
orders in fractional-order control algorithms offer more
possibilities in enhancing system robustness, stability, and
transient performance.

In the control field, PID control is undoubtedly the most
widely used control algorithm in industrial applications [11].
So there are abundant reasons to investigate control algo-
rithm which owns the superiorities of both PID controller
and fractional calculus. The earliest attempt was made by

Podlubny who proposed the fractional-order PID (PI𝜆D𝜇
or FOPID) controller [12]. There are two more parameters,
that is, integral order 𝜆 and differential order 𝜇, in FOPID
controller compared with traditional PID controller. These
extra parameters can serve as additional tuning knobs which
may provide more flexibilities in improving system con-
trol performance. Petras presented a digital version FOPID
controller which was implemented in a DC motor [13].
Fractance circuits and microprocessors were used to achieve
the analogue transformation and implementation of the
digital FOPID controller. An optimal FOPID controller was
designed based on particle swarm optimization and applied
to an automatic voltage regulator by Zamani et al. [14].
A frequency domain tuning scheme of FOPID controller
was proposed by Vinagre et al. [15]. Hamamci investigated
an FOPID controller which can stabilize fractional-order
systems with time delay [16]. The proposed controller can
also be tuned to meet gain and phase margins requirements.
The design method of FOPID controller which is suitable
to be used in industrial applications was demonstrated by
Monje et. al [2]. Moreover, some novel control technologies
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which combined FOPID controller and intelligent control
algorithms together have been investigated and were proved
to be effective in improving system transient performance
[4, 17].

Going a step further, there are many FOPID controllers
proposed for enhancing system robustness. One of the
notable works is CRONE controller with three generations,
developed by Oustaloup to deal with different model uncer-
tainties including zero and pole misplacement [18]. Another
frequently used method is achieving the flat phase property
which is done bymaking the derivative of the phase to be zero
at gain crossover. A PID control scheme based on this prop-
erty was presented in [19]. Later, the fractional-order PD/PI
controllers, which have already been successfully applied
in motion control systems, were also designed according
to the same isodamping property [20–22]. The extension
of this method which can guarantee the system robustness
with respect to different parameters variations was studied
by Liu et al. [23]. Moreover, Feliu-Batlle et al. presented
a Smith predictor based robust fractional-order controller
with the application to water distribution [24]. The author
has also proposed a robust fractional-order control scheme
used in oscillatory systems with large uncertainties in their
parameters [25]. A note on FOPID controller design which
proposed a robust parameter tuning algorithm using Bode
envelopes can be found in [26]. Besides, a robust fractional-
order cascade PD and PI controller was investigated based on
fuzzy control technology byKumar et al. and has been applied
to the speed control of a hybrid electric vehicle [27].

In this paper, we focus on the robust FOPID controller
design based on Bode’s optimal loop shaping which is
commonly used for LTI (Linear Time Invariant) feedback
systems [28]. Bode’s ideal transfer function is served as
a reference model in the parameter optimization process.
Some related fractional-order controller tuning algorithms
were discussed in [29–31]. However, most of them have a
specified controlled system type and cannot bewidely applied
to different kinds of systems. In [29], a PID controller is
proposed based on Bode’s ideal transfer function, but it only
aims at integer-order controlled plants; a similar work can be
found in [30], where a robust fractional-order PI controller is
designed; however, according to the derivation process, only
one certain type of fractional-order controlled plant has been
taken into consideration; moreover, the Bode loop shaping
with CRONE compensator is discussed in [31], but it only
emphasizes the loop shaping accuracy instead of controller
tuning algorithm. The application domain of these studies
is quite limited. Therefore, a robust fractional-order PID
controller tuning algorithm based on Bode’s optimal loop
shaping which can be widely applied on both integer-order
and fractional-order controlled systems is worth exploring
in this paper. The controlled system with the proposed
controller is robust to gain variations because the phase curve
is flat within a certain frequency limit. The effectiveness of
the presented robust FOPID controller is demonstrated by
the simulation results of several controlled systems including
integer-order and fractional-order ones.

The rest of this paper is organized as follows: in Section 2,
some preliminaries of fractional calculus are given; detailed

analysis of Bode’s optimal loop shaping is presented in
Section 3; Section 4 illustrates the proposed controller tuning
process aswell as robustness analysis of the controlled system;
simulation results to verify the effectiveness of the proposed
algorithm are presented in Section 5; finally, conclusions are
made in Section 6.

2. Preliminaries

2.1. Fractional-Order Derivative. The fractional-order inte-
gral-differential operator 𝑡0𝐷𝛼𝑡 can be defined as

𝑡0
𝐷𝛼
𝑡
=
{{{{{{{{{{{{{

∫𝑡
𝑡0

𝑓 (𝜏) 𝑑𝜏−𝛼, 𝛼 < 0
𝑓 (𝑡) , 𝛼 = 0
𝑑𝛼
𝑑𝑡𝛼𝑓 (𝑡) , 𝛼 > 0,

(1)

where 𝛼 ∈ 𝑅 is the integral or differential order and 𝑡, 𝑡0 are
upper and lower limits of the operator, respectively.

So far, there is still no unified definition of fractional-
order derivative. But there have been three generally accepted
definitions, that is, Caputo definition, Riemann-Liouville
definition, and Grunwald-Letnikov [1]. Each of the three def-
initions has its own properties. In this paper, we use Caputo
definition because it has been extensively used in engineering
applications [6, 7]. The Caputo derivative of order 𝛼 for a
function 𝑓(𝑡) ∈ 𝐶𝑛+1([𝑡0, +∞], 𝑅) is defined as [6]

𝑡0
𝐷𝛼
𝑡
𝑓 (𝑡) = 1

Γ (𝑛 − 𝛼) ∫
𝑡

𝑡0

𝑓(𝑛) (𝜏)
(𝑡 − 𝜏)𝛼+1−𝑛 𝑑𝜏, (2)

where 𝑛 is a positive integer, such that 𝑛 − 1 < 𝛼 ≤ 𝑛.
The Laplace transform based on Caputo definition can be

expressed as

L { 𝑡0𝐷𝛼𝑡 𝑓 (𝑡)} = 𝑠𝛼𝐹 (𝑠) − 𝑛−1∑
𝑘=0

𝑠𝛼−𝑘−1𝑓(𝑘) (𝑡0) , (3)

whereL{⋅} represents the Laplace transform, 𝑛 − 1 < 𝛼 < 𝑛,
and 𝑠 is the Laplace transform operator.

2.2. Mittag-Leffler Function. The Mittag-Leffler (ML) func-
tion is a generalized form of exponential function. It is widely
used in solving fractional-order differential equations [1]. An
ML function with two parameters can be written as a power
series as [1]

𝐸𝛼,𝛽 (𝑥) =
∞∑
𝑘=0

𝑥𝑘
Γ (𝛼𝑘 + 𝛽) , (4)

where 𝛼 > 0, 𝛽 > 0 and 𝑥 ∈ 𝐶. When 𝛼 = 𝛽 = 1, 𝐸1,1(𝑥) =𝑒𝑥.
When 𝛽 = 1, the ML function in (4) simplifies to a one-

parameter form as

𝐸𝛼 (𝑥) = 𝐸𝛼,1 (𝑥) =
∞∑
𝑘=0

𝑥𝑘
Γ (𝛼𝑘 + 1) . (5)
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Figure 1: Bode diagram with different 𝛼.

The Laplace transform of (4) is

L {𝑡𝛽−1𝐸𝛼,𝛽 (−𝜃𝑡𝛼)} = 𝑠𝛼−𝛽
𝑠𝛼 + 𝜃 , (Re (𝑠) > |𝜃|1/𝛼) , (6)

where 𝑡 ≥ 0 and Re(𝑠) is the real part of 𝑠.
3. Analysis of Bode’s Optimal Loop Shaping

Consider a system whose open-loop transfer function is

𝐹 (𝑠) = 𝐴
𝑠𝛼 , (7)

where 𝛼 ∈ 𝑅, 𝐴 = 𝜔𝑐𝛼, and 𝜔𝑐 is the crossover frequency of
amplitude curve in Bode diagramwhich satisfies lg |𝐹(𝑗𝜔𝑐)| =0. System (7) is a typical elementary fractional-order system.
The resonance condition of this kind of system is 1 < 𝛼 < 2,
which has been proved in [32]. Therefore, we only take 1 <𝛼 < 2 into consideration in this paper. The Bode diagrams
of system (7) with 𝛼 = 1.1, 1.3, 1.5, 1.7, 1.9 are shown
as Figure 1. The amplitude curves are straight lines with the
slopes of −20𝛼 dB/dec, and the corresponding phase curves
are horizontal lines with −𝛼𝜋/2 rad. Therefore, the phase
margin of system (7) is (1 − 𝛼/2)𝜋. That is to say, the phase
margin will not change along with the change of𝐴. So system
with the open-loop transfer function in (7) is robust to gain
variations.This is the optimal loop shaping suggested byBode
in [28].

The closed-loop transfer function corresponding to the
open-loop one in (7) is

𝐹 (𝑠) = 𝐴
𝑠𝛼 + 𝐴 = 1

𝑇𝑠𝛼 + 1 , (8)

where 1 < 𝛼 < 2 and 𝑇 = 1/𝐴 = 𝜔𝑐𝛼 is the time
constant of the system. The closed-loop system in (8) will be
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Figure 2: Step responses with different 𝛼.

a reference model in the controller parameters optimization
process in next section. Therefore, parameters 𝛼, 𝑇 can be
tuned to satisfy different performance requirements.

When a unit step signal is fed into system (8), the time
response of the system can be achieved as [1]

𝑦 (𝑡) = 𝐿−1 [ 1
𝑠 (𝑇𝑠𝛼 + 1)] = 1 − ∞∑

𝑛=0

[−𝑇−1𝑡𝛼]𝑛
Γ (𝛼𝑛 + 1)

= 1 − 𝐸𝛼,1 (−𝑇−1𝑡𝛼) .
(9)

Figure 2 gives the step responses of system (8) with 𝛼 =1.1, 1.2, . . . , 1.9. Some important time response performance
indicators are derived as follows.
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(1) Overshoot percentage𝑀𝑝
𝑀𝑝 = 𝑦max − 𝑦final𝑦final × 100%. (10)

(2) Rise time 𝑇𝑟 (the time for the output to rise from 10%
to first time 90% of the final value).

(3) 2% or 5% error band settling time 𝑇𝑠 (the time for the
output to reach and stay within a 2% or 5% error band of the
final value).

These indicators cannot be achieved explicitly. Therefore,
we express the relations between them and parameter 𝛼 in
Figures 3–6.The relationship curves have been approximated
numerically into some nonlinear functions in [33]. However,
the approximate accuracies may not be satisfactory enough.
Hence, we recommend referring to the results we got in the
figures. In this way, the controller parameters can be tuned
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Figure 5: Setting time with different 𝛼 (2%).
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Figure 6: Setting time with different 𝛼 (5%).

by choosing different 𝛼 values according to the required time
domain indicators.

Moreover, frequency domain response specifications
should also be taken into consideration. As it was demon-
strated above, the phase margin of system (8) which has
correspondence with time domain response overshoot is(1 − 𝛼/2)𝜋. The closed-loop frequency domain responses
of system (8) with different 𝑇 are illustrated in Figure 7.
It can be seen from Figure 7 that the bandwidth of the
system increases along with the value of 𝑇. On the other
hand, the wider the bandwidth is in a system frequency
domain response, the smaller the rise time will be in the
corresponding time domain response. Namely, the controller
parameters can also be tuned according to frequency domain
specifications by changing the values of 𝛼 and 𝑇. Moreover,
the curves attenuate fast at high frequencies, which means
that the system is not sensitive to high frequency disturbance.
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Figure 7: Frequency responses with different 𝑇 (𝛼 = 1.5).

It should be noted that there are some conflict relations
between different design specifications. For instance, param-
eters chosen according to small rise time will lead to large
overshoot. Therefore, wise trade-offs should be made on the
selection of reference model.

4. Controller Tuning

4.1. Fractional-Order PID Controller. FOPID (PI𝜆D𝜇) con-
troller is an extension of conventional PID controller with
extra two parameters, that is, integral order 𝜆 and differential
order 𝜇 [12]. It can be expressed in frequency domain as

𝐺𝑐 (𝑠) = 𝐾𝑝 + 𝐾𝑖𝑠𝜆 + 𝐾𝑑𝑠𝑢, (0 < 𝜆, 𝜇 < 2) (11)

where𝐾𝑝, 𝐾𝑖, 𝐾𝑑 are proportional, integral, and differential
coefficients, respectively. When 𝜆 = 𝜇 = 1, FOPID controller
is equal to conventional PID controller. Figure 8 gives
the comparison of controller parameters tuning domains
between FOPID and PID controllers in geometrical perspec-
tive.The two extra parameters make the controller parameter
tuning domain extend from a few points into a partial
quarter plane. Meanwhile, the slope of amplitude curve in
open-loop system frequency response at crossover frequency
updates from −20 dB/dec into −20𝜆 dB/dec. These provide
more possibilities in improving control system robustness as
well as transient performance, especially for fractional-order
systems. However, the regulating process may become more
complicated at the same time. The detailed analysis of the
influence of 𝜆, 𝜇 on control system performance can be found
in [4].

4.2. Fractional Operator Realization. The fractional operators
in (11) can be realized by several approaches [1]. In this
paper, taking system (7) into consideration, we choose the

O
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Figure 8: Comparison of PID and FOPID controllers.

Oustaloup approximation method which is widely used in
this field [34]. A generalized fractional operator can be
expressed as

𝐻(𝑠) = ( 𝑠
𝜔𝑖)
𝛼 , 𝛼 ∈ 𝑅+. (12)

Consider the expected approximate frequency range as(𝜔𝑎, 𝜔𝑏); the operator 𝑠/𝜔𝑖 can be substituted by

𝐾0 1 + 𝑠/𝜔𝑠1 + 𝑠/𝜔𝑙 , (13)

where𝐾0 = 𝜔𝑠/𝜔𝑖 = 𝜔𝑖/𝜔𝑙, 𝜔𝑠 < 𝜔𝑎, 𝜔𝑙 > 𝜔𝑏. Therefore, (12)
can be updated as

𝐻(𝑠) = 𝐾(1 + 𝑠/𝜔𝑠1 + 𝑠/𝜔𝑙 )
𝛼 , (14)

where 𝐶 = 𝐶0𝛼. Transform the transfer function above into
the zero-pole form; it is obtained that

𝐻(𝑠) = lim
𝑛→∞

∧𝐻 (𝑠) , (15)
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where
∧𝐻 (𝑠) = (𝜔𝑖𝜔𝑙)

𝛼 𝑁∏
𝑘=−𝑁

1 + 𝑠/𝜔𝑘1 + 𝑠/𝜔󸀠
𝑘

,

𝜔𝑘 = 𝜔𝑠 (𝜔𝑙𝜔𝑠)
((1/2)(1−𝛼)+𝑘+𝑁)/(2𝑁+1) ,

𝜔󸀠𝑘 = 𝜔𝑠 (𝜔𝑙𝜔𝑠)
((1/2)(1+𝛼)+𝑘+𝑁)/(2𝑁+1) .

(16)

In this paper, we use the 7th approximation with inter-
ested frequency range (10−3, 103).
4.3. Parameter Optimization. Normally, controller parameter
optimization is proceeded based on the objective function
which includes error between reference signal and actual
output. However, this tuning method can only randomly get
satisfactory control performance. Itmaymake the rise time or
overshoot of the controlled system quite small, but it cannot
guarantee meeting any specific requirement. Besides, large
times of trial and error are needed in the tuning process. In
this paper, the Bode’s optimal loop shaping transfer function
is used as a nominal reference model in the optimiza-
tion process to help the controlled system satisfy different
control performance requirements. The tuning structure of
the controlled system is represented in Figure 9, where𝑟(𝑡), 𝑦(𝑡), 𝑑(𝑡) are reference signal, actual output signal, and
disturbance signal, 𝑒𝑓(𝑡), 𝑦𝑓(𝑡) are nominal error signal and
desire output signal which satisfy 𝑒𝑓(𝑡) = 𝑦𝑓(𝑡) − 𝑦(𝑡), and𝐶(𝑠), 𝐺(𝑠), 𝐹(𝑠) are controller, controlled plant, and nominal
reference model, respectively. In this way, the robustness and
other transient performance requirements can be improved
by tuning the controller parameters as well as the parameters
of the nominal reference model 𝐹(𝑠) which was discussed in
Section 3.The ITAE (Integral Time Absolute Error) indicator
is chosen as the objective function in this paper. Therefore,
according to Figure 9, the objective function can be expressed
as

𝐽 = ∫∞
0

𝑡 󵄨󵄨󵄨󵄨󵄨𝑒𝑓 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡 = ∫∞
0

𝑡 󵄨󵄨󵄨󵄨󵄨𝑦𝑓 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡. (17)

After getting the objective function, the Nelder-Mead
(NM) simplex search algorithm is used to optimize the

controller parameters according to the value of the objective
function [35].The fundamental principle of NM algorithm is
constructing a rough search direction according to the initial
parameter values first and updating the search direction
constantly according to the objective function value until the
optimal result is achieved. NM algorithm is widely applied
in optimization processes, but the initial values influence the
optimization result a lot. Therefore, suitable initial values
should be selected before optimization.

4.4. Robustness Analysis. In this subsection, the robustness of
a typical fractional-order system controlled by the proposed
controller is analyzed. Consider a fractional-order transfer
function described by

𝑃 (𝑠) = 𝑘
𝑎1𝑠𝛼1 + 𝑎2𝑠𝛼2 + 1 , (18)

where 𝑘 > 0 is the system gain, 𝑎1 and 𝑎2 are positive constant
coefficients, and the fractional-orders satisfy 1 < 𝛼1 ≤ 2, 0 <𝛼2 ≤ 1.

Next we consider the corresponding FOPID controller
designed as (11), where the fractional-orders are chosen as𝜆 = 𝛼2 and 𝜇 = 𝛼1 − 𝛼2 and the controller parameters are set
as 𝑘𝑝 = 𝑎2/𝑏, 𝑘𝑖 = 1/𝑏, and 𝑘𝑑 = 𝑎2/𝑏. The constant 𝑏 satisfies
𝑏 = 𝑘𝜔−𝛼2𝑐 , and 𝜔𝑐 represents the gain crossover frequency of
the open-loop transfer function 𝐿(𝑠) = 𝑃(𝑠)𝐺𝑐(𝑠).

Based on (11) and (18), the open-loop transfer function
can be obtained as

𝐿 (𝑠) = 𝑘
𝑏𝑠𝛼2 = (𝜔𝑐𝑠 )𝛼2 . (19)

Then we analyze the robustness of the controlled system
with designed FOPID controller by employing the small gain
theorem which has been widely used in FOPID control [36–
38]. According to the small gain theorem, the robust stability
condition can be represented by

𝛿𝑝 (𝜔) < 𝑉 (𝜔, 𝛼2) ≜ |1 + 𝑃 (𝜔𝑖) 𝐶 (𝜔𝑖)|
|𝑃 (𝜔𝑖) 𝐶 (𝜔𝑖)| ,

for ∀𝜔 > 0,
(20)

where 𝛿𝑝(𝜔) denotes the multiplicative norm-bound uncer-
tainty of transfer function 𝑃(𝑠). Thus, larger 𝑉(𝜔, 𝛼2) means
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Table 1: Controller parameters of 𝑃1(𝑠).
𝜙𝑚 = 45∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 0.4576 4.8570 0.0051 1.3814 1.8969
𝜔𝑐 = 1.0 0.2174 1.8775 0.0125 1.4226 0.0653
𝜔𝑐 = 1.5 0.1494 1.0816 0.0032 1.4226 2.1905
𝜙𝑚 = 60∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 0.4197 4.7618 0.0907 1.2399 0.0468
𝜔𝑐 = 1.0 0.0649 1.8576 0.1888 1.2794 0.0023
𝜔𝑐 = 1.5 0.1719 1.0697 0.0328 1.2957 1.2878
𝜙𝑚 = 90∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 0.9640 4.3890 0.0063 0.9969 0.2621
𝜔𝑐 = 1.0 0.3930 1.7269 0.0150 0.9976 1.1411
𝜔𝑐 = 1.5 0.2327 1.003 0.0080 0.9981 2.1141

that bigger modeling uncertainty may occur without break-
ing the robust stability of the controlled system.

Due to (11), (18), and (20), we achieve 𝑉(𝜔, 𝛼2) as
𝑉 (𝜔, 𝛼2) =

󵄨󵄨󵄨󵄨󵄨1 + (𝜔𝑐/𝜔𝑖)𝛼2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝜔𝑐/𝜔𝑖)𝛼2 󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨1 + 𝑖(−𝛼2) (𝜔𝑐/𝜔)𝛼2 󵄨󵄨󵄨󵄨󵄨(𝜔𝑐/𝜔)𝛼2

= (( 𝜔
𝜔𝑐)
2𝛼2 + 2( 𝜔

𝜔𝑐)
𝛼2

cos(𝛼2𝜋2 ) + 1)
1/2

.
(21)

Besides, we calculate the derivatives of 𝑉(𝜔, 𝛼2) with
respect to 𝛼2 and obtain

𝑑𝑉 (𝜔, 𝛼2)𝑑𝛼2
= ln (𝜔/𝜔𝑐) [(𝜔/𝜔𝑐)𝛼2 + cos (𝛼2𝜋/2)] − (𝜋/2) sin (𝛼2𝜋/2)

√(1 + 2 (𝜔𝑐/𝜔)𝛼2 cos (𝛼2𝜋/2) + (𝜔𝑐/𝜔)2𝛼2)
.
(22)

It is obvious that 𝑑𝑉(𝜔, 𝛼2)/𝑑𝛼2 < 0 when 𝜔 ≤ 𝜔𝑐 and0 < 𝛼2 ≤ 1. Thus, 𝑉(𝜔, 𝛼2) is monotone decreasing with
respect to 𝛼2 ∈ (0, 1]. In other words, for the same control
system, FOPID controller owns better robust performance
than PID controller in the low or even medium frequency
ranges, which is established by the gain crossover frequency𝜔 ≤ 𝜔𝑐, and has no connection with the fractional-order 𝛼2.
In the simulation part, the obtained robust analysis result will
be verified by some numerical examples.

5. Simulation

In this section, we take three typical kinds of systems, includ-
ing fractional-order system and integer-order system, into
consideration to illustrate the effectiveness of the proposed
control strategy. Firstly, consider a fractional-order system
whose transfer function is similar to the widely used first-
order system [30]:

𝑃1 (𝑠) = 0.5856
0.2318𝑠0.985 + 1 . (23)
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Figure 10: Bode diagram of 𝑃1(𝑠).

The reference parameters in (8) and controller parameters
in (11) tuned by the proposed algorithm are shown in Table 1.
The Bode diagram of 𝑃1(𝑠) controlled by the proposed
controller with referencemodel parameters𝜔𝑐 = 1, 𝜙𝑚 = 90∘
is depicted in Figure 10. It can be seen that the phase curve at
crossover frequency is almost flat and the phasemargin is𝜋/2
which satisfies the controller design requirements. The step
responses of 𝑃1(𝑠) controlled by FOPID controllers tuned
with the fixed phase margin 𝜙𝑚 = 60∘ and different crossover
frequencies 𝜔𝑐 = 0.5, 𝜔𝑐 = 1, 𝜔𝑐 = 1.5 are shown in
Figure 11. Correspondingly, Figure 12 demonstrates the step
responses of 𝑃1(𝑠) controlled by FOPID controllers tuned
with the fixed crossover frequency 𝜔𝑐 = 1 and varying phase
margins 𝜙𝑚 = 45∘, 𝜙𝑚 = 60∘, 𝜙𝑚 = 90∘. The unchanged
overshoot and different settling times in Figure 11 and the
similar settling time and different overshoots in Figure 12
illustrate the impact of referencemodel with varying parame-
ters.Therefore, different control requirements can be fulfilled
by varying reference model parameters 𝜔𝑐, 𝜙 and controller
parameters. In order to check the robustness of the controlled
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Figure 11: Step responses of 𝑃1(𝑠) with different 𝜔𝑐.
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Figure 12: Step responses of 𝑃1(𝑠) with different 𝜙𝑚.

system, step responses comparisons of systems tuned by
different reference parameters under ±30% gain variations
are demonstrated in Figures 13 and 14, respectively. The
overshoots of the step responses in each subfigures remain
almost the same. These phenomena show that system 𝑃1(𝑠)
controlled by the proposed controller is robust to high
amplitude gain variations. The step response comparison of𝑃1(𝑠) controlled by the proposed FOPID controller and the
FOPID controller used in [30] is shown in Figure 15. The
performance of system controlled by the proposed controller

outperforms the other one with better robustness, lower
overshoot, and smaller settling time. Figure 16 illustrates the
ITAE indices values of𝑃1(𝑠)with different tuning parameters.
All the indices are small enough to meet the optimization
requirements.

Then, consider a fractional-order system [1] which is
relatively complicated as

𝑃2 (𝑠) = 1
𝑠2.6 + 3.3𝑠1.5 + 2.9𝑠1.3 + 3.32𝑠0.9 + 1 . (24)
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Figure 13: Step responses of 𝑃1(𝑠) with different 𝜙𝑚.
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Figure 14: Step responses of 𝑃1(𝑠) with different 𝜔𝑐.

The reference parameters and the obtained the controller
parameters are shown in Table 2. Figures 17 and 18 demon-
strate the step responses of 𝑃2(𝑠) controlled by the pro-
posed controllers tuning with different 𝜔𝑐 and 𝜙𝑚. Similarly,

the results show that different control performance can be
satisfied by varying reference model parameters. The ITAE
indices of 𝑃2(𝑠) in Figure 19 are also small enough for optimi-
zation.
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Figure 15: Step responses of 𝑃1(𝑠) with different FOPID controllers ((a) FOPID controller proposed in this paper, (b) FOPID controller in
[30]).
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Complexity 11

c = 0.5, m = 90∘

c = 1, m = 90∘

c = 1.5, m = 90∘

5 10 15 20 25 300
Time (Seconds)

0

0.2

0.4

0.6

0.8

1

1.2

A
m

pl
itu

de

Figure 18: Step response of 𝑃2(𝑠) with the same 𝜙𝑚.
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Table 2: Controller parameters of 𝑃2(𝑠).
𝜙𝑚 = 45∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 18.3282 9.9945 1.5199 0.9742 1.3785
𝜔𝑐 = 1.0 7.9000 3.4213 0.5194 1.0581 1.6645
𝜔𝑐 = 1.5 3.4053 1.7451 0.8343 1.0783 0.0200
𝜙𝑚 = 60∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 19.9228 4.6069 2.0377 1.0861 1.3092
𝜔𝑐 = 1.0 8.7852 1.9719 0.9068 1.1120 1.4516
𝜔𝑐 = 1.5 2.6270 1.0729 2.2338 1.1239 0.0068
𝜙𝑚 = 90∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 13.1618 1.6627 6.6312 1.0474 0.8915
𝜔𝑐 = 1.0 5.8327 0.9930 3.7246 1.0143 0.6984
𝜔𝑐 = 1.5 3.7370 0.6459 2.5961 1.0057 0.6438
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Table 3: Controller parameters of 𝑃3(𝑠).
𝜙𝑚 = 45∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 2.4905 4.3983 0.0580 1.2311 1.5110
𝜔𝑐 = 1.0 0.9355 1.4819 0.0018 1.2690 0.6910
𝜔𝑐 = 1.5 0.6170 0.7823 0.0267 1.3210 2.0922
𝜙𝑚 = 60∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 2.7170 3.4615 0.1476 1.1772 1.3201
𝜔𝑐 = 1.0 1.1504 1.3321 0.0444 1.2078 1.5853
𝜔𝑐 = 1.5 0.7038 0.7593 0.0268 1.2262 1.7678
𝜙𝑚 = 90∘ 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
𝜔𝑐 = 0.5 2.4535 1.9657 0.4621 1.0005 1.0355
𝜔𝑐 = 1.0 1.2374 0.9942 0.2407 1.0002 1.0212
𝜔𝑐 = 1.5 0.8273 0.6647 0.1628 1.0001 1.0157
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Figure 20: Step response of 𝑃3(𝑠) with the same 𝜔𝑐.

Finally, take an integer-order system [31], whose transfer
function is shown as below, into consideration:

𝑃3 (𝑠) = 1
(𝑠 + 1) (0.2𝑠 + 1) (0.04𝑠 + 1) (0.008𝑠 + 1) . (25)

Table 3 shows the tuned controller and reference model
parameters of 𝑃3(𝑠). Step responses of 𝑃3(𝑠) controlled by
different controllers in Table 3 are depicted in Figures 20
and 21. It is shown that the step responses of integer-order
system can also be shaped by the proposed FOPID controller
according to different design requirements.The ITAE indices
of 𝑃3(𝑠) in Figure 22 also satisfy the optimization criterion.
The simulation results verify the effectiveness of the proposed
controller used on both fractional-order and integer-order
systems. The systems controlled by the proposed algorithm
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Figure 21: Step response of 𝑃3(𝑠) with the same 𝜙𝑚.

achieve better robustness and transient control performance
compared with other controllers.

6. Conclusion

In this paper, a novel tuning methodology of robust frac-
tional-order PID controller is proposed. The controlled sys-
tem output can be shaped by varying referencemodel param-
eters according to different control performance require-
ments.The phase curve can be flat within a certain frequency
limit. Therefore, the system has the desirable characteristic
of being robust to gain variations. Robustness analysis which
supports the robust tuning specification is also carried out.
The proposed fractional-order PID controller does not have
any restriction on the controlled plant. So it can be widely
applied on both integer-order and fractional-order systems.
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Three design examples including different kinds of controlled
plants are presented to verify the effectiveness of the proposed
algorithm.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the Fundamental Research Funds
for the Central Universities of China (under Grant nos.
G2018KY0305, G2018KY0302, and 3102017OQD069) and
the National Natural Science Foundation of China (NSFC)
(under Grant no. 61703335).

References

[1] D. Xue, Fractional-order Control Systems: Fundamentals and
Numerical Implementations, De Gruyter, Berlin, 2017.

[2] C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Chen, “Tuning and
auto-tuning of fractional order controllers for industry applica-
tions,” Control Engineering Practice, vol. 16, no. 7, pp. 798–812,
2008.

[3] L. Liu, S. Tian, D. Xue, T. Zhang, and Y. Chen, “Continu-
ous fractional-order Zero Phase Error Tracking Control,” ISA
Transactions, vol. 75, pp. 226–235, 2018.

[4] L. Liu, F. Pan, and D. Xue, “Variable-order fuzzy fractional PID
controller,” ISA Transactions, vol. 55, pp. 227–233, 2015.

[5] A. Lassoued and O. Boubaker, “Dynamic analysis and circuit
design of a novel hyperchaotic system with fractional-order
terms,” Complexity, vol. 2017, Article ID 3273408, 10 pages, 2017.

[6] S. Zhang, Y. Yu, and H. Wang, “Mittag-Leffler stability of
fractional-order Hopfield neural networks,”Nonlinear Analysis:
Hybrid Systems, vol. 16, pp. 104–121, 2015.

[7] S. Zhang, Y. Yu, and Q. Wang, “Stability analysis of fractional-
order Hopfield neural networks with discontinuous activation
functions,” Neurocomputing, vol. 171, pp. 1075–1084, 2016.

[8] R. L. Magin, “Fractional calculus in bioengineering, part 3,”
Critical Reviews in Biomedical Engineering, vol. 32, no. 1, pp. 1–
104, 2004.

[9] T. J. Freeborn, “A survey of fractional-order circuit models
for biology and biomedicine,” IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, vol. 3, no. 3, pp. 416–424,
2013.

[10] F. Ge, Y. Chen, and C. Kou, “On the regional gradient observ-
ability of time fractional diffusion processes,” Automatica, vol.
74, pp. 1–9, 2016.

[11] K. J. Strm and T. Hgglund, PID controllers: Theory, Design and
Tuning, 1995.

[12] I. Podlubny, “Fractional-order systems and PI𝜆D𝜇-controllers,”
IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208–
214, 1999.

[13] I. Petras, “Fractional-order feedback control of a DC motor,”
Journal of Electrical Engineering, vol. 60, no. 3, pp. 117–128, 2009.

[14] M. Zamani,M. Karimi-Ghartemani, N. Sadati, andM. Parniani,
“Design of a fractional order PID controller for an AVR using
particle swarm optimization,” Control Engineering Practice, vol.
17, no. 12, pp. 1380–1387, 2009.

[15] B. Vinagre, I. Podlubny, L. Dorcak, and V. Feliu, “On fractional
PID controllers: A frequency domain approach,” in Proceedings
of the IFACWorkshop on Digital Control Past, 2000.

[16] S. E. Hamamci, “An algorithm for stabilization of fractional-
order time delay systems using fractional-order PID con-
trollers,” Institute of Electrical and Electronics Engineers Transac-
tions on Automatic Control, vol. 52, no. 10, pp. 1964–1968, 2007.

[17] H.U.Hai-Bo andY. R.Huang, “Self-tuning fractional order PID
based on hybrid PSO neural networks,” in Microelectronics &
Computer, 2010.

[18] A. Oustaloup, J. Sabatier, P. Lanusse et al., “An overview of the
CRONE approach in system analysis, modeling and identifica-
tion, observation and control,” IFAC Proceedings Volumes, vol.
41, no. 2, pp. 14254–14265, 2008.

[19] Y. Chen and K. L. Moore, “Relay feedback tuning of robust PID
controllers with iso-damping property,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 35, no.
1, pp. 23–31, 2005.

[20] H. S. Li, Y. Luo, and Y. Q. Chen, “A fractional order proportional
and derivative (FOPD) motion controller: tuning rule and
experiments,” IEEETransactions on Control Systems Technology,
vol. 18, no. 2, pp. 516–520, 2010.

[21] Y. Luo, Y. Q. Chen, C. Y. Wang, and Y. G. Pi, “Tuning fractional
order proportional integral controllers for fractional order
systems,” Journal of Process Control, vol. 20, no. 7, pp. 823–831,
2010.

[22] Y. Chen, H. Dou, B. M. Vinagre, and C. A. Monje, “A robust
tuning method for fractional order PI controllers,” IFAC Pro-
ceedings Volumes, vol. 39, no. 11, pp. 22–27, 2006.

[23] L. Liu, S. Zhang, D. Xue, and Y. Chen, “General robustness
analysis and robust fractional-order PD controller design for
fractional-order plants,” IET Control Theory Application, 2018.

[24] V. Feliu-Batlle, R. Rivas Pérez, F. J. Castillo Garćıa, and L.
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