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We propose the cosine similarity measures for intuitionistic fuzzy linguistic sets (IFLSs) and interval-valued intuitionistic fuzzy
linguistic sets (IVIFLSs), which are expressed by the linguistic scale function based on the cosine function. Then, the weighted
cosine similarity measure and the ordered weighted cosine similarity measure for IFLSs and IVIFLSs are introduced by taking into
account the importance of each element, and the properties of the cosine similarity measures are also given.Themain advantage of
the proposed cosine similarity measures is that the decision-makers can flexibly select the linguistic scale function depending on
the actual semantic situation. Finally, we present the application of the cosine similarity measures for intuitionistic fuzzy linguistic
term sets and interval-valued intuitionistic fuzzy linguistic term sets to pattern recognition and medical diagnosis, and the existing
cosine similarity measures are compared with the proposed cosine similarity measures by the illustrative example.

1. Introduction

The fuzzy set was proposed by Zadeh [1] and has achieved a
great success in various fields, which is considered to be an
effective tool to solve the decision-making problems, pattern
recognition, and fuzzy inference [2–4]. Since the fuzzy set
was put forward, it was extended in different aspects. One
of the generalizations of fuzzy set is intuitionistic fuzzy set
(IFS), which was introduced by Atanassov [5]. A typical
feature of IFS is that themembership relations are represented
by the membership degree and nonmembership degree,
respectively. However, due to the fuzziness and uncertainty in
the multiple criteria decision-making problems, it is difficult
to use the exact values to present qualitative evaluation. At
this time, people often provide their opinions in linguistic
term sets. In some practical decision-making problems, the
decision-maker regards the linguistic information as the
values of linguistic variables; that is to say, the values of the
variables are not represented by numerical values but are rep-
resented by linguistic values, such as “good,” “better,” “fair,”
“slightly worse,” and “poor.” Up to now, many people have

studied the problem of linguistic multiple criteria decision-
making, Herrera and Verdegay [6] proposed the linguistic
assessments in group decision-making (GDM) problem in
1993, then Herrera et al. [7] proposed a consensus model
for group decision-making based on linguistic evaluations
information, and Herrera et al. [8] considered several group
decision-making processes using linguistic ordered weighted
averaging (LOWA) operator. Later, Xu [9] proposed a group
decision-making method based on the uncertain linguistic
ordered weighted geometric (LOWG) operators and the
induced uncertain LOWG operators. Furthermore, Xu [10]
presented the linguistic hybrid aggregation (LHA) operator
and applied it to group decision-making.

However, in some practical decision-making problems,
the decision-makers may have some indeterminacy in their
linguistic evaluation; they cannot express their preferences
by using only membership degree of a linguistic term.
Then Wang et al. [11] proposed the intuitionistic fuzzy
linguistic aggregation operators and applied them to mul-
ticriteria group decision-making problems. For example,⟨𝑠3, (0.2, 0.6)⟩ is an intuitionistic fuzzy linguistic number
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(IFLN), 0.2 is the membership degree of the linguistic term𝑠3, and 0.6 is the nonmembership degree of the linguistic
term 𝑠3. The intuitionistic fuzzy linguistic sets (IFLSs) have
made great progress in describing linguistic information and
to some extent it can be regarded as an innovative construct.
The research on this field has been growing rapidly [12–15].

On the other hand, similarity measure is an important
topic in the fuzzy set theory, and it is widely used in
some fields [16–19], such as pattern recognition, medical
diagnosis, and citation analysis. One of the important sim-
ilarity measures is the cosine similarity measure, which is
defined in vector space. Ye [20] proposed the cosine similarity
measure and the weighted cosine similarity measure between
IFSs. Zhou et al. [21] presented the intuitionistic fuzzy
ordered weighted cosine similarity measure and applied it
to the group decision-making problem about the choice of
investment plan. Liu et al. [22] presented the interval-valued
intuitionistic fuzzy ordered weighted cosine similarity (IVI-
FOWCS) measure and applied it to the investment decision-
making. As far as we know, the study of cosine similarity
measures of intuitionistic fuzzy set has not been discussed. In
the following, we will propose the cosine similarity measures
of IFLSs and IVIFLSs. The main characteristics of the cosine
similarity measures that we can calculate are based on
linguistic term set by the linguistic scale function. Linguistic
scale function between IFLSs and IVIFLSs was introduced by
Wang et al. [23], which was used to calculate the Hausdorff
distance between hesitant fuzzy linguistic numbers (HFLNs);
it can assign different semantic values to the linguistic terms
under different circumstances and improve the flexibility of
the proposed cosine similarity measures.

The rest of the paper is organized as follows. In Section 2,
some basic concepts of LTSs, IFSs, IFLSs, and linguistic
scale functions are briefly reviewed. In Section 3, we first
introduce the cosine similarity measures between IFLSs
and then discussed some related properties. Furthermore,
the weighted cosine similarity measure between IFLSs, the
ordered weighted cosine similarity measure between IFLSs,
and the ordered weighted cosine similarity measure between
IVIFLSs are analyzed. In Section 4, we give the application
of the proposed cosine similarity measures between IFLSs
and IVIFLSs on pattern recognition and medical diagnosis
and then make comparison analysis with the existing cosine
similarity measures. The conclusions are given in Section 5.

2. Preliminaries

In this section, we will review and discuss some related basic
concepts, including linguistic term sets (LTSs), intuitionistic
fuzzy sets (IFSs), intuitionistic fuzzy linguistic sets (IFLSs),
linguistic scale functions, the ordered weighted averaging
(OWA) operator, and the cosine similarity measure between
fuzzy sets.

2.1. Linguistic Term Set. In some practical problems, the
information expressed by the numerical values may bring
inconvenience. At this time it is suitable to use linguistic term
set to express information.

Definition 1 (Herrera and Verdegay [6]). Suppose that 𝑆 ={𝑠𝛼 | 𝛼 = 0, 1, . . . , 𝜏} is a finite and totally ordered discrete
term set, where 𝑠𝛼 represents a possible value for a linguistic
variable; it satisfies the following characteristics:

(1) 𝑠𝛼 + 𝑠𝛽 = 𝑠𝛼+𝛽
(2) 𝜆𝑠𝛼 = 𝑠𝜆𝛼
(3) 𝑠𝛼 > 𝑠𝛽 if 𝛼 > 𝛽.
For example, a set of seven terms 𝑆 could be given as

follows:

𝑆 = {𝑠0 = very low, 𝑠1 = low, 𝑠2 = slightly low, 𝑠3= normal, 𝑠4 = slightly high, 𝑠5 = high, 𝑠6
= very high} .

(1)

The discrete linguistic term 𝑆 cannot usually adapt to
the aggregated results. In order to represent these results
accurately, Xu [10] extended the discrete term set 𝑆 to the
continuous term set 𝑆 = {𝑠𝛼 | 𝛼 ∈ [0, 𝑡]}, where 𝑡 (𝑡 > 𝜏)
is a sufficiently large positive integer.

2.2. Intuitionistic Fuzzy Set

Definition 2 (Atanassov [5]). Given a fixed set 𝑋 = {𝑥1, 𝑥2,. . . , 𝑥𝑛}, then an intuitionistic fuzzy set 𝜉 in 𝑋 is defined as

𝜉 = {(𝑥, 𝜇𝜉 (𝑥) , ]𝜉 (𝑥)) | 𝑥 ∈ 𝑋} , (2)

where 𝜇𝜉(𝑥) (0 ≤ 𝜇𝜉(𝑥) ≤ 1) and ]𝜉(𝑥) (0 ≤ ]𝜉(𝑥) ≤1) represent the membership degree and nonmembership
degree of 𝑥 to 𝜉, respectively, and they satisfy the condition:0 ≤ 𝜇𝜉(𝑥) + ]𝜉(𝑥) ≤ 1.

For all 𝑥 ∈ 𝑋, if 𝜋𝜉(𝑥) = 1 − 𝜇𝜉(𝑥) − ]𝜉(𝑥), then 𝜋𝜉(𝑥) is
called the hesitancy degree of 𝑥 to 𝜉.

On the basis of intuitionistic fuzzy set and linguistic term
set, Wang et al. [11] presented the following intuitionistic
fuzzy linguistic term set.

2.3. Intuitionistic Fuzzy Linguistic Term Set

Definition 3 (Wang et al. [11]). Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a
fixed set and 𝑠𝛾(𝑥) ∈ 𝑆 an intuitionistic fuzzy linguistic term
set 𝛾 in 𝑋 is defined as

𝛾 = {⟨(𝑥, 𝑠𝛾(𝑥)) , 𝜇𝛾 (𝑥) , ]𝛾 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (3)

where𝜇𝛾(𝑥) and ]𝛾(𝑥) are themembership function and non-
membership function of the element 𝑥 to 𝑠𝛾(𝑥), respectively,
and 0 ≤ 𝜇𝛾(𝑥) + ]𝛾(𝑥) ≤ 1 (𝑥 ∈ 𝑋).

For all𝑥 ∈ 𝑋, let𝜋𝛾(𝑥) = 1−𝜇𝛾(𝑥)−]𝛾(𝑥) be the hesitancy
function, which means the degree of hesitancy of 𝑥 to 𝑠𝛾(𝑥).
2.4. Linguistic Scale Functions. One of the advantages of
linguistic term set is that it can express uncertain information
flexibly in practical problems, but if we use the subscript
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of linguistic terms directly in the process of operations, it
may lose this advantage. The most important thing is to
find effective tools to transform linguistic terms to numerical
values. As we all know, linguistic scale function (Wang et al.
[23]) is a mapping from linguistic term set 𝑠𝑖 to the real value𝜂𝑖. The linguistic scale function can assign different semantic
values to the linguistic terms under different circumstances.
In practice, the linguistic scale functions are very popular
because they are very flexible and they can give more
deterministic results based on different semantics.

Definition 4 (Wang et al. [23]). Let 𝑆 = {𝑠𝑖 | 𝑖 = 0, 1, . . . , 2𝜏}
be a linguistic term. If 𝜂𝑖 is a numeric value between 0 and 1,
then the linguistic scale function 𝑓 can be defined as follows:

𝑓 : 𝑠𝑖 󳨀→ 𝜂𝑖 (𝑖 = 0, 1, . . . , 2𝜏) , (4)

where 0 ≤ 𝜂0 < 𝜂1 < ⋅ ⋅ ⋅ < 𝜂2𝜏 ≤ 1. The linguistic scale
function is strictly monotonously increasing function with
respect to the subscript of 𝑠𝑖; in fact, the function value 𝜂𝑖
represents the semantics of the linguistic terms.

Nowwe introduce three kinds of linguistic scale functions
as follows:

(1) 𝑓1 (𝑠𝑖) = 𝜂𝑖 = 𝑖2𝜏 (𝑖 = 0, 1, . . . , 2𝜏) . (5)

The evaluation scale of the linguistic information expressed
by 𝑓1(𝑠𝑖) is divided on average.

(2) 𝑓2 (𝑠𝑖) = 𝜂𝑖
= {{{{{{{

𝑐𝜏 − 𝑐𝑡−𝑖2𝑐𝜏 − 2 , 𝑖 = 0, 1, . . . , 𝜏;
𝑐𝜏 + 𝑐𝑖−𝜏 − 22𝑐𝜏 − 2 , 𝑖 = 𝜏 + 1, 𝜏 + 2, . . . , 2𝜏.

(6)

For linguistic scale function 𝑓2(𝑠𝑖), the absolute deviation
between adjacent language sets will increase when we extend
it from the middle of the given set of language to both ends.

(3) 𝑓3 (𝑠𝑖) = 𝜂𝑖
= {{{{{{{{{

𝜏𝛼󸀠 − (𝜏 − 𝑖)𝛼󸀠2𝜏𝛼󸀠 , 𝑖 = 0, 1, . . . , 𝜏;
𝜏𝛽󸀠 + (𝑖 − 𝜏)𝛽󸀠2𝜏𝛽󸀠 , 𝑖 = 𝜏 + 1, 𝜏 + 2, . . . , 2𝜏.

(7)

For linguistic scale function 𝑓3(𝑠𝑖), the absolute deviation
between adjacent language sets will decrease when we extend
it from the middle of the given linguistic term set to both
ends.

The above linguistic scale functions can be developed to𝑓∗ : 𝑆 → 𝑅+ (where 𝑅+ is a nonnegative real number),

which is a continuous and strictly monotonically increasing
function.

2.5. The OWA Operator. The ordered weighted averaging
(OWA) operator (Yager [24]) is an aggregation operator that
includes the minimum, the average, and the maximum as
special cases, which is defined as follows.

Definition 5 (Yager [24]). An 𝑛 dimension OWA operator is
a mapping OWA: 𝑅𝑛 → 𝑅 that has an associated weighting
vector 𝜔 with ∑𝑛𝑗=1 𝜔𝑗 = 1 (0 ≤ 𝜔𝑗 ≤ 1), such that

OWA (𝛾1, 𝛾2, . . . , 𝛾𝑛) = 𝑛∑
𝑗=1

𝜔𝑗𝛾󸀠𝑗, (8)

where 𝛾󸀠𝑗 is the 𝑗th largest of the arguments 𝛾1, 𝛾2, . . . , 𝛾𝑛.
2.6. Cosine Similarity Measure for Fuzzy Sets

Definition 6 (Salton and Mcgill [25]). Let 𝑋 = {𝑥1, 𝑥2, . . . ,𝑥𝑛}; assume 𝜉 = {(𝑥𝑗, 𝜇𝜉(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} and𝜎 = {(𝑥𝑗, 𝜇𝜎(𝑥𝑗)) |𝑥𝑗 ∈ 𝑋} are two fuzzy sets; the cosine similarity measure
between fuzzy sets 𝜉 and 𝜎 is defined as follows:

𝐶FS (𝜉, 𝜎) = ∑𝑛𝑗=1 𝜇𝜉 (𝑥𝑗) 𝜇𝜎 (𝑥𝑗)
√∑𝑛𝑗=1 𝜇2𝜉 (𝑥𝑗)√∑𝑛𝑗=1 𝜇2𝜎 (𝑥𝑗) . (9)

The cosine similarity measure between fuzzy sets 𝜉 and 𝜎
satisfies the following properties:

(1) 0 ≤ 𝐶FS(𝜉, 𝜎) ≤ 1;
(2) 𝐶FS(𝜉, 𝜎) = 𝐶FS(𝜎, 𝜉);
(3) for 𝑗 = 1, 2, . . . , 𝑛 if 𝜉 = 𝜎, that is, 𝜇𝜉(𝑥𝑗) = 𝜇𝜎(𝑥𝑗),

then 𝐶FS(𝜉, 𝜎) = 1.
3. Cosine Similarity Measures for
Intuitionistic Fuzzy Linguistic Term Sets

3.1. Cosine Similarity Measure for Intuitionistic Fuzzy Lin-
guistic Term Sets. At first, we will present cosine similarity
measure for intuitionistic fuzzy linguistic term sets, which
includes not only the membership degree and nonmember-
ship degree of the IFLSs but also the linguistic scale function𝑓∗.
Definition 7. Let 𝛽 = {⟨(𝑥𝑗, 𝑠𝛽(𝑥𝑗)), 𝜇𝛽(𝑥𝑗), ]𝛽(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋}
and 𝛾 = {⟨(𝑥𝑗, 𝑠𝛾(𝑥𝑗)), 𝜇𝛾(𝑥𝑗), ]𝛾(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋} be two
IFLSs in 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, and let 𝑓∗ be a linguistic scale
function.Then the cosine similaritymeasure for intuitionistic
fuzzy linguistic term sets between 𝛽 and 𝛾 can be defined as
follows:

𝐶IFLS (𝛽, 𝛾) = ∑𝑚𝑗=1 [𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾 (𝑥𝑗) + 𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾 (𝑥𝑗)]
𝐾 ∙ 𝐻 , (10)



4 Complexity

where

𝐾
= √ 𝑚∑
𝑗=1

[(𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽 (𝑥𝑗))2],
𝐻
= √ 𝑚∑
𝑗=1

[(𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾 (𝑥𝑗))2].

(11)

The cosine similarity measure between IFLSs 𝛽 and 𝛾
satisfies the following properties:

(1) 0 ≤ 𝐶IFLS(𝛽, 𝛾) ≤ 1;

(2) 𝐶IFLS(𝛽, 𝛾) = 𝐶IFLS(𝛾, 𝛽);
(3) for 𝑗 = 1, 2, . . . , 𝑛 if 𝛽 = 𝛾, that is, 𝑠𝛽(𝑥𝑗) =𝑠𝛾(𝑥𝑗), 𝜇𝛽(𝑥𝑗) = 𝜇𝛾(𝑥𝑗), and ]𝛽(𝑥𝑗) = ]𝛾(𝑥𝑗), then𝐶IFLS(𝛽, 𝛾) = 1.

Proof. Properties (1), (2), and (3) are obvious; here we omit
the proof of property.

If we consider the weight of different element 𝑥𝑗 ∈ 𝑋,
now we introduce the intuitionistic fuzzy linguistic weighted
cosine similarity measure 𝐶IFLWS, which can be defined as
follows.

Definition 8. Let 𝛽 = {⟨(𝑥𝑗, 𝑠𝛽(𝑥𝑗)), 𝜇𝛽(𝑥𝑗), ]𝛽(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋}
and 𝛾 = {⟨(𝑥𝑗, 𝑠𝛾(𝑥𝑗)), 𝜇𝛾(𝑥𝑗), ]𝛾(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋} be two
IFLSs in 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, and let 𝑓∗ be a linguistic scale
function. Then the weighted cosine similarity measure for
intuitionistic fuzzy linguistic term sets between 𝛽 and 𝛾 can
be defined as follows:

𝐶IFLWS (𝛽, 𝛾) = ∑𝑚𝑗=1 𝜔𝑗 [𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾 (𝑥𝑗) + 𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾 (𝑥𝑗)]
𝐾1 ∙ 𝐻1 , (12)

where

𝐾1
= √ 𝑚∑
𝑗=1

𝜔𝑗 [(𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽 (𝑥𝑗))2],
𝐻1
= √ 𝑚∑
𝑗=1

𝜔𝑗 [(𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾 (𝑥𝑗))2],

(13)

𝜔𝑗 is the weight of 𝑥𝑗 ∈ 𝑋, and ∑𝑚𝑗=1 𝜔𝑗 = 1 (0 ≤ 𝜔𝑗 ≤ 1).
Remark 9. For all 𝑗 = 1, 2, . . . , 𝑚, if we take 𝜔𝑗 = 1/𝑚,
then the weighted cosine similarity measure 𝐶IFLWS(𝛽, 𝛾) is
reduced to the cosine similarity measure 𝐶IFLS(𝛽, 𝛾).

Based on the idea of the OWA operator, we present
the intuitionistic fuzzy ordered weighted cosine similarity
measure 𝐶IFLOWS(𝛽, 𝛾) between intuitionistic fuzzy linguistic
term sets 𝛽 and 𝛾 as follows.

Definition 10. Let 𝛽 = {⟨(𝑥𝑗, 𝑠𝛽(𝑥𝑗)), 𝜇𝛽(𝑥𝑗), ]𝛽(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋}
and 𝛾 = {⟨(𝑥𝑗, 𝑠𝛾(𝑥𝑗)), 𝜇𝛾(𝑥𝑗), ]𝛾(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋} be two
IFLSs in 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, and let 𝑓∗ be a linguistic
scale function. Then the ordered weighted cosine similarity
measure for intuitionistic fuzzy linguistic term sets between𝛽 and 𝛾 can be defined as follows:

𝐶IFLOWS (𝛽, 𝛾)
= ∑𝑚𝑗=1 𝜔𝑗 [𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) 𝜇𝛽 (𝑥𝜑(𝑗)) 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) 𝜇𝛾 (𝑥𝜑(𝑗)) + 𝐺]

𝐾2 ∙ 𝐻2 , (14)

where

𝐾2 = √ 𝑚∑
𝑗=1

𝜔𝑗 [(𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) 𝜇𝛽 (𝑥𝜑(𝑗)))2 + (𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) ]𝛽 (𝑥𝜑(𝑗)))2],

𝐻2 = √ 𝑚∑
𝑗=1

𝜔𝑗 [(𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) 𝜇𝛾 (𝑥𝜑(𝑗)))2 + (𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) ]𝛾 (𝑥𝜑(𝑗)))2],
𝐺 = 𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) ]𝛽 (𝑥𝜑(𝑗)) ∙ 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) ]𝛾 (𝑥𝜑(𝑗)) ,

(15)
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the associated weighting vector 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑚) with∑𝑚𝑗=1 𝜔𝑗 = 1 (0 ≤ 𝜔𝑗 ≤ 1), and (𝜑(1), 𝜑(2), . . . , 𝜑(𝑚)) is any
permutation of (1, 2, . . . , 𝑚), such that

𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) 𝜇𝛽 (𝑥𝜑(𝑗)) 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) 𝜇𝛾 (𝑥𝜑(𝑗))
+ 𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) ]𝛽 (𝑥𝜑(𝑗)) 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) ]𝛾 (𝑥𝜑(𝑗))
≥ 𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗+1))) 𝜇𝛽 (𝑥𝜑(𝑗+1)) 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗+1)))
⋅ 𝜇𝛾 (𝑥𝜑(𝑗+1)) + 𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗+1))) ]𝛽 (𝑥𝜑(𝑗+1))
⋅ 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗+1))) ]𝛾 (𝑥𝜑(𝑗+1)) .

(16)

𝐶IFLOWS is a similarity measure that uses the cosine similarity
measure for IFLS in theOWAoperator and the linguistic scale
function is also applied.

Example 1. Let 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6} be the linguistic
term set, and assume two intuitionistic fuzzy linguistic
term sets are 𝛽 = {⟨(𝑥1, 𝑠4), 1, 0⟩, ⟨(𝑥2, 𝑠5), 0.8, 0⟩, ⟨(𝑥3, 𝑠3),0.7, 0.1⟩}, 𝛾 = {⟨(𝑥1, 𝑠5), 0.8, 0.1⟩, ⟨(𝑥2, 𝑠5), 1, 0⟩, ⟨(𝑥3, 𝑠4), 0.8,0.1⟩}. If the linguistic scale function 𝑓∗(𝑠𝑖) = 𝑖/2𝜏 (𝜏 = 3), by
(10), we can get

𝐶IFLS (𝛽, 𝛾) = 0.9867. (17)

If 𝜔 = (𝜔1, 𝜔2, 𝜔3) = (0.22, 0.4, 0.38), then the weighted
cosine similarity measure 𝐶IFLWS(𝛽, 𝛾) = 0.9889.

If 𝜔 = (𝜔1, 𝜔2, 𝜔3) = (0.22, 0.4, 0.38), the ordered
weighted cosine similarity measure 𝐶IFLoWS(𝛽, 𝛾) = 0.9837.

3.2. Cosine Similarity Measure for Interval-Valued Intuition-
istic Fuzzy Linguistic Term Sets. In the intuitionistic fuzzy
linguistic set 𝛾 = {⟨(𝑥, 𝑠𝛾(𝑥)), 𝜇𝛾(𝑥), ]𝛾(𝑥)⟩ | 𝑥 ∈ 𝑋},𝜇𝛾(𝑥) represents the membership degree of the element 𝑥
to 𝑠𝛾(𝑥), and ]𝛾(𝑥) represents the nonmembership degree
of the element 𝑥 to 𝑠𝛾(𝑥); they are all precise values in[0, 1]. But in some circumstances, it is difficult to provide
the precise membership degree and nonmembership degree
of the element 𝑥 to 𝑠𝛾(𝑥). Atanassov and Gargov [26, 27]
proposed the interval-valued intuitionistic fuzzy linguistic
term set (IVIFLS), and the definition of interval-valued
intuitionistic fuzzy linguistic term set is given as follows.

Definition 11. Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a fixed set and 𝑠𝛾(𝑥) ∈𝑆 an interval-valued intuitionistic fuzzy linguistic term set 𝛾
in 𝑋 is defined as

𝛾 = {⟨(𝑥, 𝑠𝛾(𝑥)) , 𝜇𝛾 (𝑥) , ]𝛾 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (18)

where 𝜇𝛾(𝑥) = [𝜇𝛾𝑙(𝑥), 𝜇𝛾𝑟(𝑥)] ⊂ [0, 1] and ]𝛾(𝑥) =[]𝛾𝑙(𝑥), ]𝛾𝑟(𝑥)] ⊂ [0, 1] are the interval membership degree
and the interval nonmembership degree of the element 𝑥 to𝑠𝛾(𝑥), respectively, and 0 ≤ 𝜇𝛾𝑟(𝑥) + ]𝛾𝑟(𝑥) ≤ 1 (𝑥 ∈ 𝑋).

Based on the cosine similarity measure for intuitionistic
fuzzy linguistic term sets 𝛽 and 𝛾, we present the cosine
similarity measure for interval-valued intuitionistic fuzzy
linguistic term sets 𝛽 and 𝛾 as follows.

Definition 12. Let 𝛽 = {⟨(𝑥𝑗, 𝑠𝛽(𝑥𝑗)), 𝜇𝛽(𝑥𝑗), ]𝛽(𝑥𝑗)⟩ | 𝑥𝑗 ∈𝑋} and 𝛾 = {⟨(𝑥𝑗, 𝑠𝛾(𝑥𝑗)), 𝜇𝛾(𝑥𝑗), ]𝛾(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋} be
two IVIFLSs in 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, and let 𝑓∗ be a
linguistic scale function. Then the cosine similarity measure
for IVIFLSs between 𝛽 and 𝛾 can be defined as follows:

𝐶IVIFLS (𝛽, 𝛾) = ∑𝑚𝑗=1 [𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽𝑙 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾𝑙 (𝑥𝑗) + 𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽𝑙 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾𝑙 (𝑥𝑗) + 𝑈]
𝑄 ∙ 𝑅 , (19)

where

𝑈 = 𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽𝑟 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾𝑟 (𝑥𝑗) + 𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽𝑟 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾𝑟 (𝑥𝑗) ,

𝑄 = √ 𝑚∑
𝑗=1

[(𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽𝑙 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽𝑟 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽𝑙 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽𝑟 (𝑥𝑗))2],

𝑅 = √ 𝑚∑
𝑗=1

[(𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾𝑙 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾𝑟 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾𝑙 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾𝑟 (𝑥𝑗))2].

(20)
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The cosine similarity measure between IVIFLSs 𝛽 and 𝛾
also satisfies the following properties:

(1) 0 ≤ 𝐶IVIFLS(𝛽, 𝛾) ≤ 1;
(2) 𝐶IVIFLS(𝛽, 𝛾) = 𝐶IVIFLS(𝛾, 𝛽);
(3) for 𝑗 = 1, 2, . . . , 𝑛 if 𝛽 = 𝛾, that is, 𝑠𝛽(𝑥𝑗) =𝑠𝛾(𝑥𝑗), 𝜇𝛽𝑙(𝑥𝑗) = 𝜇𝛾𝑙(𝑥𝑗), 𝜇𝛽𝑟(𝑥𝑗) = 𝜇𝛾𝑟(𝑥𝑗), ]𝛽𝑙(𝑥𝑗) =

]𝛾𝑙(𝑥𝑗) and ]𝛽𝑟(𝑥𝑗) = ]𝛾𝑟(𝑥𝑗), then 𝐶IVIFLS(𝛽, 𝛾) = 1.

Next we go on studying the weighted cosine similarity
measure between IVIFLSs; it can be defined as follows.

Definition 13. Let 𝛽 = {⟨(𝑥𝑗, 𝑠𝛽(𝑥𝑗)), 𝜇𝛽(𝑥𝑗), ]𝛽(𝑥𝑗)⟩ | 𝑥𝑗 ∈𝑋} and 𝛾 = {⟨(𝑥𝑗, 𝑠𝛾(𝑥𝑗)), 𝜇𝛾(𝑥𝑗), ]𝛾(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋} be two
IVIFLSs in 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, 𝜔𝑗 is the weight of 𝑥𝑗 ∈ 𝑋,
and ∑𝑚𝑗=1 𝜔𝑗 = 1 (0 ≤ 𝜔𝑗 ≤ 1). Assume 𝑓∗ be a linguistic
scale function, then the weighted cosine similarity measure
between IVIFLSs 𝛽 and 𝛾 can be defined as follows:

𝐶IVIFLWS (𝛽, 𝛾) = ∑𝑚𝑗=1 𝜔𝑗 [𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽𝑙 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾𝑙 (𝑥𝑗) + 𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽𝑙 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾𝑙 (𝑥𝑗) + 𝑈]
𝑄1 ∙ 𝑅1 , (21)

where

𝑈 = 𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽𝑟 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾𝑟 (𝑥𝑗) + 𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽𝑟 (𝑥𝑗) 𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾𝑟 (𝑥𝑗) ,
𝑄1 = √ 𝑚∑

𝑗=1

𝜔𝑗 [(𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽𝑙 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛽(𝑥𝑗)) 𝜇𝛽𝑟 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽𝑙 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛽(𝑥𝑗)) ]𝛽𝑟 (𝑥𝑗))2],

𝑅1 = √ 𝑚∑
𝑗=1

𝜔𝑗 [(𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾𝑙 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛾(𝑥𝑗)) 𝜇𝛾𝑟 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾𝑙 (𝑥𝑗))2 + (𝑓∗ (𝑠𝛾(𝑥𝑗)) ]𝛾𝑟 (𝑥𝑗))2].
(22)

Remark 14. For all 𝑗 = 1, 2, . . . , 𝑚, if we take 𝜔𝑗 = 1/𝑚,
then the weighted cosine similarity measure 𝐶IVIFLWS(𝛽, 𝛾) is
reduced to the cosine similarity measure 𝐶IVIFLS(𝛽, 𝛾).
Remark 15. For all 𝑗 = 1, 2, . . . , 𝑚, if 𝜇𝛽𝑙(𝑥𝑗) =𝜇𝛽𝑟(𝑥𝑗), 𝜇𝛾𝑙(𝑥𝑗) = 𝜇𝛾𝑟(𝑥𝑗), then the weighted cosine similar-
ity measure 𝐶IVIFLWS(𝛽, 𝛾) is reduced to the weighted cosine
similarity measure 𝐶IFLWS(𝛽, 𝛾).
Remark 16. For all 𝑗 = 1, 2, . . . , 𝑚, if 𝜔𝑗 = 1/𝑚 and𝜇𝛽𝑙(𝑥𝑗) = 𝜇𝛽𝑟(𝑥𝑗), 𝜇𝛾𝑙(𝑥𝑗) = 𝜇𝛾𝑟(𝑥𝑗), then the weighted
cosine similarity measure 𝐶IVIFLWS(𝛽, 𝛾) is reduced to the
cosine similarity measure 𝐶IFLS(𝛽, 𝛾) for IFLSs.

Similarly, we also apply the OWA operator and the
cosine similarity measure for IVIFLS to present the interval-
valued intuitionistic fuzzy ordered weighted cosine similarity
measure 𝐶IVIFLOWS(𝛽, 𝛾) between the interval-valued intu-
itionistic fuzzy linguistic term sets 𝛽 and 𝛾 as follows.

Definition 17. Let 𝛽 = {⟨(𝑥𝑗, 𝑠𝛽(𝑥𝑗)), 𝜇𝛽(𝑥𝑗), ]𝛽(𝑥𝑗)⟩ | 𝑥𝑗 ∈𝑋} and 𝛾 = {⟨(𝑥𝑗, 𝑠𝛾(𝑥𝑗)), 𝜇𝛾(𝑥𝑗), ]𝛾(𝑥𝑗)⟩ | 𝑥𝑗 ∈ 𝑋} be
two IVIFLSs in 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, 𝜔𝑗 is the weight of𝑥𝑗 ∈ 𝑋, and ∑𝑚𝑗=1 𝜔𝑗 = 1 (0 ≤ 𝜔𝑗 ≤ 1). Assume 𝑓∗ be
a linguistic scale function, then the ordered weighted cosine
similaritymeasure between IVIFLSs𝛽 and 𝛾 can be defined as
follows:

𝐶IVIFLOWS (𝛽, 𝛾) = ∑𝑚𝑗=1 𝜔𝑗 [𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) (𝜇𝛽𝑙 (𝑥𝜑(𝑗)) 𝜇𝛾𝑙 (𝑥𝜑(𝑗)) + ]𝛽𝑙 (𝑥𝜑(𝑗)) ]𝛾𝑙 (𝑥𝜑(𝑗))) + 𝑈2]𝑄2 ∙ 𝑅2 , (23)

where

𝑈2 = 𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) 𝜇𝛽𝑟 (𝑥𝜑(𝑗)) 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) 𝜇𝛾𝑟 (𝑥𝜑(𝑗)) + 𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) ]𝛽𝑟 (𝑥𝜑(𝑗)) 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) ]𝛾𝑟 (𝑥𝜑(𝑗)) ,
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𝑄2 = √ 𝑚∑
𝑗=1

𝜔𝑗 [(𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗)))2 ((𝜇𝛽𝑙 (𝑥𝜑(𝑗)))2 + 𝜇𝛽𝑟 (𝑥𝜑(𝑗)))2) + (𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗)))2 ((]𝛽𝑙 (𝑥𝜑(𝑗)))2 + ]𝛽𝑟 (𝑥𝜑(𝑗)))2)],

𝑅2 = √ 𝑚∑
𝑗=1

𝜔𝑗 [(𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗)))2 ((𝜇𝛾𝑙 (𝑥𝜑(𝑗)))2 + 𝜇𝛾𝑟 (𝑥𝜑(𝑗)))2) + (𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗)))2 ((]𝛾𝑙 (𝑥𝜑(𝑗)))2 + ]𝛾𝑟 (𝑥𝜑(𝑗)))2)],
(24)

and (𝜑(1), 𝜑(2), . . . , 𝜑(𝑚)) is any permutation of (1, 2, . . . , 𝑚),
such that

𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗))) 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗))) [𝜇𝛽𝑙 (𝑥𝜑(𝑗)) 𝜇𝛾𝑙 (𝑥𝜑(𝑗))
+ ]𝛽𝑙 (𝑥𝜑(𝑗)) ]𝛾𝑙 (𝑥𝜑(𝑗)) + 𝜇𝛽𝑟 (𝑥𝜑(𝑗)) 𝜇𝛾𝑟 (𝑥𝜑(𝑗))
+ ]𝛽𝑟 (𝑥𝜑(𝑗)) ]𝛾𝑟 (𝑥𝜑(𝑗))] ≥ 𝑓∗ (𝑠𝛽(𝑥𝜑(𝑗+1)))
⋅ 𝑓∗ (𝑠𝛾(𝑥𝜑(𝑗+1))) [𝜇𝛽𝑙 (𝑥𝜑(𝑗+1)) 𝜇𝛾𝑙 (𝑥𝜑(𝑗+1))
+ ]𝛽𝑙 (𝑥𝜑(𝑗+1)) ]𝛾𝑙 (𝑥𝜑(𝑗+1))
+ 𝜇𝛽𝑟 (𝑥𝜑(𝑗+1)) 𝜇𝛾𝑟 (𝑥𝜑(𝑗+1))
+ ]𝛽𝑟 (𝑥𝜑(𝑗+1)) ]𝛾𝑟 (𝑥𝜑(𝑗+1))] .

(25)

4. Applications of the Cosine
Similarity Measure

In this section, we will apply the cosine similarity measures
of IFLSs and IVIFLSs to pattern recognition and medical
diagnosis.

4.1. Intuitionistic Fuzzy Cosine Similarity Measure for Pattern
Recognition

Example 2. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, the linguistic term set𝑆 = {𝑠0 = very poor, 𝑠1 = poor, 𝑠2 = slightly poor, 𝑠3 =
fair, 𝑠4 = slightly good, 𝑠5 = good, 𝑠6 = very good}. We
consider some known patterns 𝑄1, 𝑄2, 𝑄3, 𝑄4, which are
represented by the IFLSs as follows:

𝑄1 = {⟨(𝑥1, 𝑠4) , 0.8, 0.1⟩ , ⟨(𝑥2, 𝑠3) , 1, 0⟩ ,
⟨(𝑥3, 𝑠5) , 0.7, 0.1⟩ , ⟨(𝑥4, 𝑠3) , 0.6, 0.3⟩} ,

𝑄2 = {⟨(𝑥1, 𝑠3) , 0.9, 0⟩ , ⟨(𝑥2, 𝑠3) , 0.8, 0.1⟩ ,
⟨(𝑥3, 𝑠4) , 0.9, 0.1⟩ , ⟨(𝑥4, 𝑠3) , 0.6, 0.3⟩} ,

𝑄3 = {⟨(𝑥1, 𝑠4) , 0.7, 0.1⟩ , ⟨(𝑥2, 𝑠4) , 0.9, 0⟩ ,
⟨(𝑥3, 𝑠5) , 0.8, 0.1⟩ , ⟨(𝑥4, 𝑠3) , 0.8, 0.1⟩} ,

𝑄4 = {⟨(𝑥1, 𝑠5) , 0.6, 0.2⟩ , ⟨(𝑥2, 𝑠4) , 0.7, 0.2⟩ ,
⟨(𝑥3, 𝑠5) , 0.8, 0.2⟩ , ⟨(𝑥4, 𝑠2) , 0.7, 0.2⟩} .

(26)

If an unknown pattern 𝑄 = {⟨(𝑥1, 𝑠4), 0.8, 0.2⟩, ⟨(𝑥2, 𝑠4),1, 0⟩, ⟨(𝑥3, 𝑠4), 0.8, 0.1⟩, ⟨(𝑥4, 𝑠3), 0.8, 0.2⟩}, in order to classify
the pattern 𝑄 in 𝑄1, 𝑄2, 𝑄3, 𝑄4, we can calculate the
weighted cosine similarity measure between 𝑄 and 𝑄𝑖 (𝑖 =1, 2, 3, 4), respectively. The best 𝑄𝑖 is derived by 𝑅 =
argmax1≤𝑖≤4{𝐶IFLWS(𝑄𝑖, 𝑄)}. Assume the weight of (𝑥1, 𝑥2,𝑥3, 𝑥4) is (0.22, 0.3, 0.2, 0.28) and let the linguistic scale
function 𝑓∗ = 𝑓1(𝑠𝑖) = 𝑖/2𝜏 (𝜏 = 3), and by applying
(10), (12), and (14), we obtain the cosine similarity measures
between 𝑄 and 𝑄𝑖 (𝑖 = 1, 2, 3, 4), and the results are shown in
Table 1.

From the result shown in Table 1, we can conclude that
the pattern 𝑄 belongs to the pattern 𝑄3.

To illustrate the influence of the linguistic scale function𝑓∗ on decision-making, we utilize the different linguistic
scaling functions in the proposed cosine similarity measures.

Let

𝑓∗ = 𝑓2 (𝑠𝑖)
= {{{{{{{

𝑐𝜏 − 𝑐𝜏−𝑖2𝑐𝜏 − 2 , 𝑖 = 0, 1, . . . , 𝜏,
𝑐𝜏 + 𝑐𝑖−𝜏 − 22𝑐𝜏 − 2 , 𝑖 = 𝜏 + 1, 𝜏 + 2, . . . , 2𝜏,

(27)

and 𝑐 = 1.4, 𝜏 = 3, then the results are listed in Table 2.
If

𝑓∗3 (𝑠𝑖) = {{{{{{{{{
𝜏𝛼󸀠 − (𝜏 − 𝑖)𝛼󸀠2𝜏𝛼󸀠 , 𝑖 = 0, 1, . . . , 𝜏,
𝜏𝛽󸀠 + (𝑖 − 𝜏)𝛽󸀠2𝜏𝛽󸀠 , 𝑖 = 𝜏 + 1, 𝜏 + 2, . . . , 2𝜏, (28)

and 𝜏 = 3, 𝛼󸀠 = 𝛽󸀠 = 0.8, the results of the cosine similarity
measure are shown in Table 3.

As we can see from Tables 2 and 3, we know that the
pattern 𝑄 should be classified in 𝑄3 in most cases. It is a little
different when the linguistic scale function 𝑓∗ = 𝑓2(𝑠𝑖) (the
linguistic scale functionwhich can be considered as the actual
semantic situation), then the decision-makers can select the
appropriate linguistic scale function 𝑓∗ according to their
interests.

4.2. Interval-Valued Intuitionistic Fuzzy Cosine Similarity
Measure for Medical Diagnosis. In this subsection, we will
utilize the interval-valued intuitionistic fuzzy cosine similar-
ity measure to discuss the medical diagnosis. In fact, it is also
a pattern recognition problem.
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Table 1: Intuitionistic fuzzy linguistic cosine similaritymeasures for𝑓∗ = 𝑓1(𝑠𝑖).
𝑄1 𝑄2 𝑄3 𝑄4𝐶IFLS(𝑄, 𝑄𝑖) 0.9828 0.9589 0.9859 0.9476𝐶IFLWS(𝑄, 𝑄𝑖) 0.9826 0.9587 0.9853 0.9488𝐶IFLOWS(𝑄, 𝑄𝑖) 0.9824 0.9582 0.9849 0.9473

Table 2: Intuitionistic fuzzy linguistic cosine similaritymeasures for𝑓∗ = 𝑓2(𝑠𝑖).
𝑄1 𝑄2 𝑄3 𝑄4𝐶IFLS(𝑄, 𝑄𝑖) 0.9861 0.9655 0.9854 0.9600𝐶IFLWS(𝑄, 𝑄𝑖) 0.9862 0.9654 0.9871 0.9598𝐶IFLOWS(𝑄, 𝑄𝑖) 0.9853 0.9849 0.9848 0.9713

Table 3: Intuitionistic fuzzy linguistic cosine similaritymeasures for𝑓∗ = 𝑓3(𝑠𝑖).
𝑄1 𝑄2 𝑄3 𝑄4𝐶IFLS(𝑄, 𝑄𝑖) 0.9806 0.9530 0.9875 0.9494𝐶IFLWS(𝑄, 𝑄𝑖) 0.9800 0.9526 0.9889 0.9472𝐶IFLOWS(𝑄, 𝑄𝑖) 0.9805 0.9519 0.9870 0.9458

Example 3. Let us consider that the doctor makes a diagnosis𝐷 = {𝐷1(viral fever), 𝐷2(typhoid), 𝐷3(pneumonia),𝐷4(stomach problem)}, and assume that a set of
symptoms 𝑋 = {𝑥1(fever), 𝑥2(cough), 𝑥3(headache),𝑥4(stomach pain)}, and each symptom can be presented
as the linguistic term set 𝑆1 = {𝑠0 = very low, 𝑠1 =
low, 𝑠2 = slightly low, 𝑠3 = normal, 𝑠4 = slightly high, 𝑠5 =
high, 𝑠6 = very high}, 𝑆𝑗 = {𝑠0 = none, 𝑠1 = very slight,𝑠2 = slight, 𝑠3 = a little terrible, 𝑠4 = terrible,𝑠5 = very terrible, 𝑠6 = insufferable} (𝑗 = 2, 3, 4). Suppose
that the patient 𝑃 has all the symptoms, which is represented
by the IVIFLS as follows:

𝑃(patient) = {⟨(𝑥1, 𝑠3) , [0.4, 0.5] , [0.2, 0.3]⟩ ,
⟨(𝑥2, 𝑠4) , [0.7, 0.8] , [0.1, 0.2]⟩ ,
⟨(𝑥3, 𝑠3) , [0.9, 1] , [0, 0.1]⟩ ,
⟨(𝑥4, 𝑠1) , [0.3, 0.5] , [0.2, 0.4]⟩} .

(29)

Each symptom diagnosis 𝐷𝑖 (𝑖 = 1, 2, 3, 4) can be also
represented as IVIFLSs as follows:

𝐷1 = {⟨(𝑥1, 𝑠4) , [0.8, 0.9] , [0, 0.1]⟩ ,
⟨(𝑥2, 𝑠3) , [0.7, 0.9] , [0.1, 0.2]⟩ ,
⟨(𝑥3, 𝑠4) , [0.5, 0.6] , [0.2, 0.3]⟩ ,
⟨(𝑥4, 𝑠0) , [0.7, 0.9] , [0.1, 0.2]⟩} ,

𝐷2 = {⟨(𝑥1, 𝑠3) , [0.5, 0.6] , [0.1, 0.3]⟩ ,
⟨(𝑥2, 𝑠4) , [0.8, 0.9] , [0, 0.1]⟩ ,

Table 4: Interval intuitionistic fuzzy linguistic cosine similarity
measures for 𝑓∗ = 𝑓1(𝑠𝑖).

𝐷1 𝐷2 𝐷3 𝐷4𝐶IVIFLS(𝑃, 𝐷𝑖) 0.8685 0.9004 0.7748 0.5481𝐶IVIFLWS(𝑃, 𝐷𝑖) 0.8809 0.9119 0.8619 0.6102𝐶IVIFLOWS(𝑃, 𝐷𝑖) 0.8967 0.9267 0.8212 0.5310
Table 5: Interval intuitionistic fuzzy linguistic cosine similarity
measures for 𝑓∗ = 𝑓2(𝑠𝑖).

𝐷1 𝐷2 𝐷3 𝐷4𝐶IVIFLS(𝑃, 𝐷𝑖) 0.8842 0.8966 0.7865 0.6839𝐶IVIFLWS(𝑃, 𝐷𝑖) 0.9003 0.9139 0.8657 0.7354𝐶IVIFLOWS(𝑃, 𝐷𝑖) 0.9051 0.9247 0.8292 0.6726
Table 6: Interval intuitionistic fuzzy linguistic cosine similarity
measures for 𝑓∗ = 𝑓3(𝑠𝑖).

𝐷1 𝐷2 𝐷3 𝐷4𝐶IVIFLS(𝑃, 𝐷𝑖) 0.8550 0.9044 0.7724 0.4681𝐶IVIFLWS(𝑃, 𝐷𝑖) 0.8641 0.9247 0.8616 0.5297𝐶IVIFLOWS(𝑃, 𝐷𝑖) 0.8880 0.9292 0.8181 0.4486
⟨(𝑥3, 𝑠3) , [0.6, 0.8] , [0.1, 0.2]⟩ ,
⟨(𝑥4, 𝑠2) , [0.4, 0.6] , [0.1, 0.2]⟩} ,

𝐷3 = {⟨(𝑥1, 𝑠5) , [0.7, 0.8] , [0.1, 0.2]⟩ ,
⟨(𝑥2, 𝑠5) , [0.7, 0.9] , [0, 0.1]⟩ ,
⟨(𝑥3, 𝑠1) , [0.4, 0.6] , [0.2, 0.4]⟩ ,
⟨(𝑥4, 𝑠1) , [0.3, 0.5] , [0.2, 0.4]⟩} ,

𝐷4 = {⟨(𝑥1, 𝑠1) , [0.8, 0.9] , [0, 0.1]⟩ ,
⟨(𝑥2, 𝑠2) , [0.7, 0.8] , [0.1, 0.2]⟩ ,
⟨(𝑥3, 𝑠1) , [0.7, 0.9] , [0, 0.1]⟩ ,
⟨(𝑥4, 𝑠5) , [0.8, 0.9] , [0, 0.1]⟩}

(30)

We assume that the weight vector of (𝑥1, 𝑥2, 𝑥3, 𝑥4) is(0.25, 0.4, 0.15, 0.2) and let the linguistic scale function 𝑓∗ =𝑓1(𝑠𝑖) = 𝑖/2𝜏 (𝜏 = 3), and by applying (19), (21), and (23), we
obtain the cosine similarity measures between 𝑃 and 𝐷𝑖 (𝑖 =1, 2, 3, 4), and the results are shown in Table 4.

From the results of Table 4, we can see that the diagnosis
of the patient 𝑃 is 𝐷2 (typhoid).

To illustrate the influence of the linguistic scale function𝑓∗ on decision-making, we utilize the different linguistic
scaling functions 𝑓2(𝑠𝑖) and 𝑓3(𝑠𝑖) (the parameters are the
same as Example 2) in the cosine similaritymeasures between
IVIFLSs, and the results are shown in Tables 5 and 6.
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Table 7: Cosine similarity measures for intuitionistic fuzzy sets.

𝑄󸀠1 𝑄󸀠2 𝑄󸀠3 𝑄󸀠4𝐶IFS(𝑄󸀠, 𝑄󸀠𝑖 ) 0.9902 0.9733 0.9954 0.9772𝐶IFWS(𝑄󸀠, 𝑄󸀠𝑖 ) 0.9898 0.9734 0.9956 0.9761𝐶IFOWS(𝑄󸀠, 𝑄󸀠𝑖 ) 0.9890 0.9742 0.9949 0.9773

In these cases, we still find that the diagnosis of the patient𝑃 should be classified in 𝐷2 (typhoid).
4.3. Comparison Analysis with Existing Cosine Similarity
Measure. To illustrate the validity and advantage of the pro-
posed cosine similarity measure for pattern recognition and
medical diagnosis, we now use the existing cosine similarity
measure between intuitionistic fuzzy sets and interval-valued
intuitionistic fuzzy sets (Ye [20]) for comparison analysis.
Here we consider the intuitionistic fuzzy set in Example
2 and interval-valued intuitionistic fuzzy set in Example 3,
respectively.

Example 2󸀠. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}; we consider some
known patterns 𝑄󸀠1, 𝑄󸀠2, 𝑄󸀠3, 𝑄󸀠4, which are represented by
the IFSs as follows:

𝑄󸀠1 = {⟨𝑥1, 0.8, 0.1⟩ , ⟨𝑥2, 1, 0⟩ , ⟨𝑥3, 0.7, 0.1⟩ ,
⟨𝑥4, 0.6, 0.3⟩} ,

𝑄󸀠2 = {⟨𝑥1, 0.9, 0⟩ , ⟨𝑥2, 0.8, 0.1⟩ , ⟨𝑥3, 0.9, 0.1⟩ ,
⟨𝑥4, 0.6, 0.3⟩} ,

𝑄󸀠3 = {⟨𝑥1, 0.7, 0.1⟩ , ⟨𝑥2, 0.9, 0⟩ , ⟨𝑥3, 0.8, 0.1⟩ ,
⟨𝑥4, 0.8, 0.1⟩} ,

𝑄󸀠4 = {⟨𝑥1, 0.6, 0.2⟩ , ⟨𝑥2, 0.7, 0.2⟩ , ⟨𝑥3, 0.8, 0.2⟩ ,
⟨𝑥4, 0.7, 0.2⟩} .

(31)

The unknown pattern 𝑄󸀠 = {⟨𝑥1, 0.8, 0.2⟩, ⟨𝑥2, 1, 0⟩, ⟨𝑥3,0.8, 0.1⟩, ⟨𝑥4, 0.8, 0.2⟩} and the weight of (𝑥1, 𝑥2, 𝑥3, 𝑥4) is
still (0.22, 0.3, 0.2, 0.28). We can calculate the intuitionistic
fuzzy cosine similarity measure 𝐶IFS, the intuitionistic fuzzy
weighted cosine similarity measure 𝐶IFWS, and the intuition-
istic fuzzy orderedweighted cosine similaritymeasure𝐶IFOWS
between𝑄󸀠 and𝑄󸀠𝑖 (𝑖 = 1, 2, 3, 4), respectively, and the results
are shown in Table 7.

The results of Table 7 show that the pattern 𝑄󸀠 can be
classified in 𝑄󸀠3; this shows the effectiveness of the proposed
cosine similarity measures in this paper.

Example 3󸀠. Let us consider that the doctormakes a diagnosis𝐷 = {𝐷󸀠1(viral fever), 𝐷󸀠2(typhoid), 𝐷󸀠3(pneumonia),𝐷󸀠4(stomach problem)}, and assume that a set of
symptoms 𝑋 = {𝑥1(fever), 𝑥2(cough), 𝑥3(headache),

Table 8: Cosine similarity measures for interval-valued intuitionis-
tic fuzzy sets.

𝐷󸀠1 𝐷󸀠2 𝐷󸀠3 𝐷󸀠4𝐶IFS(𝑃󸀠, 𝐷󸀠𝑖 ) 0.9173 0.9617 0.8757 0.9546𝐶IFWS(𝑃󸀠, 𝐷󸀠𝑖 ) 0.9341 0.9638 0.9019 0.9566𝐶IFOWS(𝑃󸀠, 𝐷󸀠𝑖 ) 0.9423 0.9650 0.8752 0.9614
𝑥4(stomach pain)}, and each symptom can be represented as
the interval-valued intuitionistic fuzzy set as follows:

𝐷󸀠1 = {⟨𝑥1, [0.8, 0.9] , [0, 0.1]⟩ ,
⟨𝑥2, [0.7, 0.9] , [0.1, 0.2]⟩ , ⟨𝑥3, [0.5, 0.6] , [0.2, 0.3]⟩ ,
⟨𝑥4, [0.7, 0.9] , [0.1, 0.2]⟩} ,

𝐷󸀠2 = {⟨𝑥1, [0.5, 0.6] , [0.1, 0.3]⟩ ,
⟨𝑥2, [0.8, 0.9] , [0, 0.1]⟩ , ⟨𝑥3, [0.6, 0.8] , [0.1, 0.2]⟩ ,
⟨𝑥4, [0.4, 0.6] , [0.1, 0.2]⟩} ,

𝐷󸀠3 = {⟨𝑥1, [0.7, 0.8] , [0.1, 0.2]⟩ ,
⟨𝑥2, [0.7, 0.9] , [0, 0.1]⟩ , ⟨𝑥3, [0.4, 0.6] , [0.2, 0.4]⟩ ,
⟨𝑥4, [0.3, 0.5] , [0.2, 0.4]⟩} ,

𝐷󸀠4 = {⟨𝑥1, [0.8, 0.9] , [0, 0.1]⟩ ,
⟨𝑥2, [0.7, 0.8] , [0.1, 0.2]⟩ , ⟨𝑥3, [0.7, 0.9] , [0, 0.1]⟩ ,
⟨𝑥4, [0.8, 0.9] , [0, 0.1]⟩} .

(32)

Suppose that the patient 𝑃󸀠 has all the symptoms, which
is represented by the following interval-valued intuitionistic
fuzzy set:

𝑃󸀠(patient) = {⟨𝑥1, [0.4, 0.5] , [0.2, 0.3]⟩ ,
⟨𝑥2, [0.7, 0.8] , [0.1, 0.2]⟩ , ⟨𝑥3, [0.9, 1] , [0, 0.1]⟩ ,
⟨𝑥4, [0.3, 0.5] , [0.2, 0.4]⟩} .

(33)

The weight vector of (𝑥1, 𝑥2, 𝑥3, 𝑥4) is (0.25, 0.4, 0.15, 0.2).
Using the cosine similarity measure between IVIFSs in
[22], we can calculate the interval-valued intuitionistic fuzzy
cosine similarity measure 𝐶IVIFS, the interval-valued intu-
itionistic fuzzy weighted cosine similarity measure 𝐶IVIFWS,
and the interval-valued intuitionistic fuzzy ordered weighted
cosine similarity measure 𝐶IVIFOWS between 𝑃󸀠 and 𝐷󸀠𝑖 (𝑖 =1, 2, 3, 4), respectively, and the results are shown in Table 8.

As we can see from Table 8, the patient 𝑃󸀠 is assigned
to the diagnosis 𝐷󸀠2(typhoid), and the result is the same
as the method that we presented in this paper. According
to the comparative analysis of Sections 4.1 and 4.2, the
cosine similarity measures in this paper have the following
advantage. It is reasonable that the proposed cosine similarity
measures between IFLSs and IVIFLSs are defined based
on linguistic scale function 𝑓∗, the decision-makers can
flexibly select the linguistic scale function 𝑓∗ depending on
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their preferences and the actual semantic situations, and the
decision-maker can employ it to address practical decision-
making problems with precision.

5. Conclusions

In this paper, we propose the cosine similarity measures for
IFLSs and IVIFLSs, which are expressed by the cosine func-
tion based on linguistic scale function. Then, the weighted
cosine similarity measure and the ordered weighted cosine
similarity measure for intuitionistic fuzzy linguistic term
sets are introduced. The main advantage of the proposed
cosine similarity measures is that the decision-makers can
flexibly select the linguistic scale function depending on
the actual semantic situation. Furthermore, we present the
application of the cosine similaritymeasures for intuitionistic
fuzzy linguistic term sets and interval-valued intuitionistic
fuzzy linguistic term sets to pattern recognition and medical
diagnosis, and the existing cosine similarity measures are
compared with the proposed cosine similarity measures by
the illustrative example. In future research, the developed
cosine similarity measures will be extended to the intuition-
istic fuzzy uncertain linguistic sets and it can be applied in
other related decision-making.
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