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Abstract. Weakly Aggregative Modal Logic (WAML) is a collection of
disguised polyadic modal logics with n-ary modalities whose arguments
are all the same. WAML has some interesting applications on epistemic
logic and logic of games, so we study some basic model theoretical aspects
of WAML in this paper. Specifically, we give a van Benthem-Rosen char-
acterization theorem of WAML based on an intuitive notion of bisimula-
tion and show that each basic WAML system Kn lacks Craig Interpola-
tion.
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1 Introduction

You are invited to a dinner party for married couples after a logic conference in
China. The host tells you the following facts:

– at least one person of each couple is a logician and
– at least one person of each couple is Chinese.

Given these two facts, can you infer that at least one person of each couple is a
Chinese logician? The answer is clearly negative, since there might be a couple
consisting of a foreign logician and a Chinese spouse who is not a logician.

Now, suppose that the host adds another fact:

– at least one person of each couple likes spicy food.

What do you know now? Actually, you can infer that for each couple, one of the
two people must be either:

– a Chinese logician, or
– a logician who likes spicy food, or
– a Chinese who likes spicy food.

The main work of the first author was completed during his Ph.D. at Peking University.
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This can be verified by the Pigeonhole Principle: for each couple, there is a
logician, a Chinese, and a fan for spicy food, thus there must be at least one
person of the couple who has two of those three properties. This can clearly be
generalized to n-tuples of things w.r.t. n + 1 properties.

Now, going back to logic, if we express “at least one person of each couple
has property ϕ” by �ϕ then the above reasoning shows that the following is not
valid:

C : �p ∧ �q → �(p ∧ q).

On the other hand, the following should be valid:

K2 : �p ∧ �q ∧ �r → �((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)).

In general, if �ϕ expresses “at least one thing of each (relevant) n-tuple of things
has property ϕ” then the following is intuitively valid:

Kn : �p0 ∧ · · · ∧ �pn → �
∨

(0≤i<j≤n)

(pi ∧ pj).

Note that K1 is just C, which is a theorem in the weakest normal modal logic
K. C is sometimes called the Closure of Conjunction [11], or Aggregative Axiom
[20], or Adjunctive Axiom [6]. Clearly, when n ≥ 2, Kn are weaker versions of
C. The resulting logics departing from the basic normal modal logics by using
weaker aggregative axioms Kn instead of C are called Weakly Aggregative Modal
Logics (WAML) [32]. There are various readings of �p under which it is intuitive
to reject C besides the one we mentioned in our motivating party story. For
example, if we read �p as “p is obligatory” as in deontic logic, then C is not that
reasonable since one may easily face two conflicting obligations without having
any single contradictory obligation [32]. As another example, in epistemic logic
of knowing how [16,35], if �p expresses “knowing how to achieve p”, then it is
reasonable to make C invalid: you may know how to open a door and know how
to close the door, but you can never know how to make the door both open and
closed.

Coming back to our setting where Kn are valid, the readings of �ϕ in those
axioms may sound complicated, but they are actually grounded in a more gen-
eral picture of Polyadic Modal Logics (PML) which studies the logics with n-ary
modalities. Polyadic modalities arose naturally in the literature of philosophical
logic, particularly for the binary ones, such as the until modality in temporal
logic [21], instantial operators in games-related neighborhood modal logics [34],
relativized knowledge operators in epistemic logic [9,36], Routley and Meyer’s
ternary accessibility relation semantics in relevance logics [29,30], and the con-
ditional operators in the logics of conditionals [8]. Following the notation in [10],
we use ∇ for the n-ary generalization of the � modality when n > 1.1 The
semantics of ∇(ϕ1, . . . , ϕn) is based on Kripke models with n + 1-ary relations
R [10,20]:
1 This is not to be confused with the non-contingency operator, which is also denoted
as ∇ in non-contingency or knowing whether logics [14].
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∇(ϕ1, . . . , ϕn) holds at s iff for all s1, ..., sn such that Rss1 . . . sn there
exists some i ∈ [1, n] such that ϕi holds at si.

We will call ∇ the normal polyadic modal operator and one should also notice
that, by contrast, in those examples with unary operators we just mentioned
above, the unary operators are not normal.2 However, the reading we mentioned
for �ϕ in our motivating story is simply the semantics for ∇(ϕ1, . . . , ϕn) where
ϕ1 = · · · = ϕn: notice how they share the same ∀∃ quantifier alternation pattern.
Thus, the formulas �ϕ under the new reading can be viewed as special cases
of the modal formulas in polyadic modal languages. Due to the fact that the
arguments are the same in ∇(ϕ, . . . , ϕ), we can also call the � the diagonal n-
modalities.3 In this light, we may call the new semantics for �ϕ the diagonal
n-semantics (given frames with n + 1-ary relations).

Diagonal modalities also arise in other settings in disguise. For example, in
epistemic logic of knowing value [18], the formula Kv(ϕ, c) says that the agent
knows the value of c given ϕ, which semantically amounts to that for all the pairs
of ϕ worlds that the agent cannot distinguish from the actual worlds, c has the
same value. In other words, in every pair of the indistinguishable worlds where c
has different values, there is a ¬ϕ world, which can be expressed by �c¬ϕ with
the diagonal 2-modality (�c) based on intuitive ternary relations (see details
in [18]). As another example in epistemic logic, [13] proposed a local reasoning
operator based on models where each agent on each world may have different
frames of mind (sets of indistinguishable worlds). That one agent believes ϕ then
means that in one of his current frame of mind, ϕ is true everywhere. This belief
modality can also be viewed as the dual of a diagonal 2-modality (noticing the
quantifier alternation ∃∀ in the informal semantics).

Yet another important reason to study diagonal modalities comes from the con-
nection with paraconsistent reasoning established by Schotch and Jennings [32]. In
a nutshell, [32] introduces a notion of n-forcing where a set of formulas Γ n-forces
ϕ (Γ 
n ϕ) if for each n-partition of Γ there is a cell Δ such that ϕ follows from
Δ classically w.r.t. some given logic (Γ 
 ϕ). This leads to a notion of n-coherence
relaxing the notion of consistency: Γ �n ⊥ (Γ is n-coherent) iff there exists an
n-partition of Γ such that all the cells are classically consistent. These notions
led the authors of [32] to the discovery of the diagonal semantics for � based on
frames with n + 1-ary relations, by requiring �(u) = {ϕ | u � �ϕ} to be an
n-theory based on the closure over n-forcing, under some other minor conditions.
Since the derivation relation of basic normal modal logic K can be characterized by
a proof system extending the propositional one with the rule Γ 
 ϕ/�(Γ ) 
 �ϕ
where �(Γ ) = {�ϕ | ϕ ∈ Γ}, it is interesting to ask whether adding Γ 
n ϕ/
�(Γ ) 
n �ϕ characterizes exactly the valid consequences for modal logic under
the diagonal semantics based on frames with n-ary relations. Apostoli and Brown
answered this question positively in [5] 15 years later, and they characterize 
n by
a Gentzen-style sequent calculus based on the compactness of 
n proved by using

2 One can find a model theoretical survey on PML in [22].
3 Name mentioned by Yde Venema via personal communications.
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a compact result for coloring hypergraphs.4 Moreover, they show that the WAML
proof systems with Kn are also complete w.r.t. the class of all frames with n + 1-
ary relations respectively. The latter proof is then simplified in [26] without using
the graph theoretical compactness result. This completeness result is further gen-
eralized to the extensions of WAML with extra one-degree axioms in [4]. The com-
putational complexity issues of such logics are discussed in [1], and this concludes
our relatively long introduction to WAML, which might not be that well-known to
many modal logicians.

In this paper, we continue the line of work on WAML by looking at the model
theoretical aspects. In particular, we mainly focus on the following two questions:

– How to characterize the expressive power of WAML structurally within first-
order logic over (finite) pointed models?

– Whether WAML has Craig Interpolation?

For the first question, we propose a notion of bisimulation to characterize WAML
within the corresponding first-order logic. The answer for the second question is
negative, and we will provide counterexamples in this paper to show WAML (in
particular, each Kn for n ≥ 2) does not have Craig Interpolation.

In the rest of the paper, we lay out the basics of WAML in Sect. 2, prove
the characterization theorem based on a bisimulation notion in Sect. 3, and give
counterexamples for the interpolation theorem in Sect. 4 before concluding with
future work in Sect. 5.

2 Preliminaries

In this section we review some basic definitions and results in the literature.

2.1 Weakly Aggregative Modal Logic

The language for WAML is the same as the language for basic (monadic) modal
logic.

Definition 1. Given a set of propositional letters Φ and a single unary modality
�, the language of WAML is defined by:

ϕ := p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ

where p ∈ Φ. We define �, ϕ ∨ ψ, ϕ → ψ, and ♦ϕ as usual.

However, given n, WAML can be viewed as a fragment of polyadic modal
logic with a n-ary modality, since �ϕ is essentially ∇(ϕ, . . . , ϕ). Notation: in
the sequel, we use WAMLn, where n > 1, to denote the logical framework with
the semantics based on n-models defined below:
4 Other connections between WAML and graph coloring problems can be found in [24]
where the four-color problem is coded by the validity of some formulas in the WAML
language.
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Definition 2 (n-Semantics). An n-frame is a pair 〈W,R〉 where W is an
nonempty set and R is an n + 1-ary relation over W . An n-model M is a pair
〈F , V 〉 where the valuation function V assigns each w ∈ W a subset of Φ. We
say M is an image-finite model if there are only finitely many n-ary successors
of each point. The semantics for �ϕ (and ♦ϕ) is defined by:

M, w |= �ϕ iff for all v1, . . . vn ∈ W with Rwv1 . . . , vn, M, vi |= ϕ for some i ≤ n.

M, w |= ♦ϕ iff there are v1, . . . vn ∈ W st. Rwv1 . . . , vn and M, vi |= ϕ for all i ≤ n.

According to the above semantics, it is not hard to see that the aggregation
axiom �ϕ∧�ψ → �(ϕ∧ψ) in basic normal modal logic is not valid on n-frames
for any n > 1.

[32] proposed the following proof systems Kn for each n.

Definition 3 (Weakly aggregative modal logic). The logic Kn is a modal
logic including propositional tautologies, the axiom Kn and closed under the rules5

N and RM:

Kn �p0 ∧ · · · ∧ �pn → �
∨

(0≤i<j≤n)(pi ∧ pj)
RM 
 ϕ → ψ =⇒ 
 �ϕ → �ψ
N 
 ϕ =⇒ 
 �ϕ

It is clear that K1 is just the aggregation axiom C and thus K1 is just the normal
monadic modal logic K. It can also be shown easily that for each n > m, Kn is
strictly weaker than Km. In fact, many familiar equivalences in normal modal
logics, like the equivalence between ♦� and �p → ♦p, no longer hold in Kn for
n > 1. Semantically speaking, while �p → ♦p’s validity corresponds to seriality
on 1-frames (usual Kripke frames), its correspondence on 2-frames is not even
elementary (♦� still corresponds to each point having at least a successor tuple).

After being open for more than a decade, the completeness for Kn over n-
models was finally proved in [5] and [4], by reducing to the n-forcing relation
proposed in [32]. In [26], a more direct completeness proof is given using some
non-trivial combinatorial analysis to derive a crucial theorem of Kn.

3 Characterization via Bisimulation

In this section, we introduce a notion of bisimulation for WAML and prove the
van Benthem-Rosen Characteristic Theorem for WAML.6

Definition 4 (wan-bisimulation). Let M = (W,R, V ) and M′ = (W ′, R′, V ′)
be two n-models. A non-empty binary relation Z ⊆ W × W ′ is called a wan-
bisimulation between M and M′ if the following conditions are satisfied:

inv If wZw′, then w and w′ satisfy the same propositional letters (in Φ).
5 This rule can be simplified by the axiom �� since we have RM here.
6 We have another proof for the Characterization theorem over arbitrary n-models,
using tailored notions of saturation and ultrafilter extension for WAMLn, due to the
space limit we only present the proof which also works for finite models.
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forth If wZw′ and Rwv1, . . . , vn then there are v′
1, . . . , v

′
n in W ′ s.t.

R′w′v′
1, . . . , v

′
n and for each v′

j there is a vi such that viZv′
j where 1 ≤

i, j ≤ n.
back If wZw′ and R′w′v′

1, . . . , v
′
n then there are v1, . . . , vn in W s.t.

Rwv1, . . . , vn and for each vi there is a v′
j such that viZv′

j where 1 ≤
i, j ≤ n.

When Z is a bisimulation linking two states w in M and w′ in M′ we say that
w and w′ are Φ-wan-bisimilar (M, w ↔n M′, w′).

Remark 1. Observe the two subtleties in the above definition: i, j in the forth and
back conditions are not necessarily the same, thus we may not have an aligned
correspondence of each vi and v′

i; in the second part of the forth condition, we
require each v′

j to have a corresponding vi, not the other way around. Similar in
the back condition. This reflects the quantifier alternation in the semantics of �
in WAMLn.

Example 1. Consider the following two 2-models where {〈w,w1, w2〉,
〈w,w2, w3〉} is the ternary relation in the left model, and {〈v, v1, v2〉} is the
ternary relation in the right model.

w1 : p v1 : p

w : p

����������

����
����

��� w2 : p v : p

����������
v2 : p

w3

Z = {〈w, v〉, 〈w1, v1〉, 〈w2, v2〉, 〈w2, v1〉} is a wa2-bisimulation. A polyadic modal
formula ¬∇¬(p,¬p), not expressible in WAML2, can distinguish w and v.

It is easy to verify that ↔n is indeed an equivalence relation and we show
WAMLn is invariant under it.

Proposition 1. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two n-models.
Then for every w ∈ W and w′ ∈ W ′, w ↔n w′ implies w ≡WAMLn w′. In words,
WAMLn formulas are invariant under wan-bisimulation.

Proof. We consider only the modality case. Suppose that w ↔n w′ and w |= ♦ϕ.
Then there are v1, . . . , vn s.t. Rwv1, . . . , vn, and each vi |= ϕ. By the forth
condition, there are v′

1, . . . , v
′
n in W ′ s.t. Rw′v′

1, . . . , v
′
n and for each v′

j there is a
vi such that viZv′

j . From the I.H. we have each v′
i |= ϕ. As a result, w′ |= ♦ϕ.

For the converse direction just use the back condition.

Theorem 1 (Hennessy-Milner Theorem for WAMLn). Let M = (W,R, V )
and M′ = (W ′, R′, V ′) be two image-finite n-models. Then for every w ∈ W and
w′ ∈ W ′, w ↔n w′ iff w ≡WAMLn w′.
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Proof. As in basic modal logic, the crucial part is to show ≡WAMLn is indeed
a wan-bisimulation and we only verify the forth condition. Suppose towards
contradiction that Rwv1 . . . vn but for each v′

1 . . . v′
n such that R′w′v′

1 . . . v′
n there

is a v′
j such that it is not WAMLn-equivalent to any of vi. In image-finite models

we can list such v′
j as u1 . . . um. Now for each uk and vi we have ϕi

k which holds
on vi but not on uk. Now we consider the formula ψ = ♦(

∨
1≤i≤n

∧
1≤k≤m ϕi

k).
It is not hard to see that ψ holds on w but not w′, hence contradiction.

Like in normal modal logic, we can also define a notion of k-bisimulation of
WAMLn, by restricting the maximal depth we may go to.

Definition 5 (k-wan-bisimulation). Let M = (W,R, V ) and M′ = (W ′, R′,
V ′) be two n-models. w and w′ are 0-wan-bisimilar (w ↔n

0 w′) iff V (v) = V ′(v′).
w ↔n

k+1 w′ iff w ↔n
k w′ and the follow two conditions are satisfied:

forth If v ↔n
k+1 v′ and Rvv1, . . . , vn then there are v′

1, . . . , v
′
n in W ′ s.t.

R′v′v′
1, . . . , v

′
n and for each v′

j there is a vi such that vi ↔n
k v′

j where
1 ≤ i, j ≤ n.

back If v ↔n
k+1 v′ and R′v′v′

1, . . . , v
′
n then there are v1, . . . , vn in W s.t.

Rvv1, . . . , vn and for each vi there is a v′
j such that vi ↔n

k v′
j where

1 ≤ i, j ≤ n.

We can translate each WAMLn formula to an equivalent FOL formula with one
free variable and one n + 1-ary relation symbol, thus WAMLn is also compact.

Definition 6 (Standard translation). ST : WAMLn → FOL:

STx(p) = Px
STx(¬ϕ) = ¬STx(ϕ)
STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)
STx(�ϕ) = ∀y1∀y2 . . . ∀yn(Rxy1y2 . . . yn → STy1(ϕ) ∨ · · · ∨ STyn

(ϕ))

By following a similar strategy as in [27], we will show a van Benthem-Rosen
characterization theorem for WAMLn: a FOL formula is equivalent to the trans-
lation of a WAMLn formula (over finite n-models) if and only if it is invariant
under wan-bisimulations (over finite n-models).

First we need to define a notion of unraveling w.r.t. n-ary models similarly
to models with binary relations. We use an example of a graph with ternary
relations to illustrate the intuitive idea behind the general n-ary unraveling,
which is first introduced in [28].

Example 2. Given the 2-model with ternary relations 〈{w, v, u, t}, {〈w, u, t〉,
〈u, t, u〉, 〈t, w, v〉}, V 〉. It is quite intuitive to first unravel it into a tree with
pairs of states as nodes, illustrated below:
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w

��������
����

��

〈u, t〉
�����

���
��

��

〈u, t〉
�� �����

����
��

〈t, u〉 〈t, u〉 〈w, v〉 〈w, v〉

To turn it into a 2-model, we need to define the new ternary relations. For
each triple 〈s0, s1, s2〉 of pairs, 〈s0, s1, s2〉 is in the new ternary relation iff s1 and
s2 are successors of s0 in the above graph and the triple of underlined worlds in
s0, s1, s2 respectively is in the original ternary relation, e.g., 〈u, t〉, 〈w, v〉, 〈w, v〉
is in the new ternary relation since 〈t, w, v〉 is in the original ternary relation.

In general, we can use the n-tuples of the states in the original model together
with a natural number k ∈ [1, n] as the basic building blocks for the unraveling
of an n-model, e.g., 〈w, v, u, 2〉 means the second the state is the underlined one.
To make the definition uniform, we define the root as the sequence 〈w, . . . , w, 1〉.
Like the unraveling for a binary graph, formally we will use sequences of such
building blocks as the nodes in the unraveling of a n-model, e.g., the left-most
node 〈t, u〉 in the above example will become 〈〈w,w, 1〉, 〈u, t, 1〉, 〈t, u, 1〉〉. This
leads to the following definition.

Definition 7. Given an n-model M = 〈W,R, V 〉 and w ∈ W , we first define
the binary unraveling Mb

w of M around w as 〈Ww, Rb, V ′〉 where:

– Ww is the set of sequences 〈〈v0, i0〉, 〈v1, i1〉, . . . , 〈vm, im〉〉 where:
• m ∈ N;
• for each j ∈ [0,m], vj ∈ Wn and ij ∈ [1, n] such that R(vj [ij ])vj+1;
• v0 is the constant n-sequence 〈w, . . . , w〉 and i0 = 1;

– Rbss′ iff s′ extends s with some 〈v, i〉
– V ′(s) = V (r(s)), where r(s) = vm[im] if s = 〈. . . , 〈vm, im〉〉.
The unraveling Mw = 〈Ww, R′, V ′〉 is based on Mb

w by defining R′s0s1 . . . sn
iff Rr(s0)r(s1) . . . r(sn) and Rbs0si for all i ∈ [1, n]. Let the bounded unraveling
Mw|l be the submodel of Mw up to level l.

Remark 2. The unravelling Mw itself is not totally “tree-like”, since there may
be some node w occurs in both an n-tuple successor of x and an n-tuple successor
of y for x �= y. But clearly Mb

w is a tree, and in Mw, if Rs0 . . . sn then s1 . . . sn
are at the next “level” of s0. The latter property is crucial in the later proofs,
but due to space issues, we have to omit the details here.

r defined above reveals the corresponding state of s in the original model M. It
is not hard to show the following.
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Proposition 2. The above r (viewed as a relation) is a wan-bisimulation
between Mw and M. Actually r is a p-morphism (over n-models) from Mw

to M.

Now we have all the ingredients to prove the following characterization the-
orem. Note that the characterization works with or without the finite model
constraints.

Theorem 2. A first-order formula α(x) is invariant under ↔n (over finite mod-
els) iff α(x) is equivalent to a WAMLn formula (over finite models).

Following the general strategy in [27], the only non-trivial part is to show
that the FOL formula α(x) that is invariant under wan-bisimulation has some
locality property w.r.t. its bounded unraveling Mw|l for some l. Due to lack of
space, we only show the following lemma and give a proof sketch here. For other
relatively routine parts of the proof, see [27].

Lemma 1 (locality). An FOL formula α(x) is invariant under ↔ (over finite
models) implies that for some l ∈ N, for any n-model M, w: M, w � α(x)[w] iff
Mw|l � α(x)[(〈w, 1)〉].
Here we explain the most important ideas behind the proof. First of all, like
in [27], we take l = 2q − 1 where q is the quantifier rank of α(x), and build
two bigger models M∗, w∗ and N ∗, v∗ which are wan-bisimilar to M, w and
Mw|l, w respectively using our new unraveling notion. Then we show that in
the q-round EF game between the bigger n-models Duplicator has a winning
strategy. To specify the strategy, which is essentially letting the duplicator to
keep some “safe zones” for extensions of partial isomorphisms, we need to define
the distance of points in n-models. Let the distance between s and s′ (notation
d(s, s′)) be the length of the shortest (undirected) path between s and s′ via a
new relation binary Rc where Rcxy iff Rxy1 . . . yn and y = yi for some i ∈ [1, n].
We set d(s, s′) = ω if s and s′ are not connected by any such path. It is easy to
see that in the unraveling Mw, d(s, s′) is exactly the distance in the usual sense
between s, s′ in the tree Mb

w. Then, the winning strategy looks exactly like the
one in [27] for binary models. The key point to show that the same strategy is a
winning strategy in the new setting is that when building the correct induction
hypothesis, we need to define two “neighborhoods” of a node–a big one and a
small one. In particular, first let (ai, bi) be the pair selected at i round where
each ai ∈ M∗ and bi ∈ N ∗, where by the rule of the game, a0 = w∗ and b0 = v∗.
Then define S(m) = {ai | i ≤ m}, Ni(m) to be the neighborhood of ai within
distance of 2q−m − 1, and N

′
i (m) to be the neighborhood of ai within distance

of 2q−(m+1). Here the N and N
′
are the two “neighborhoods”. Then finally the

induction hypothesis can be correctly formulated as the following.

After m rounds (0 ≤ m ≤ q), the following two hold.
1. The selected points form a partial isomorphism I: M∗ → N ∗.
2. If m < q then there is a sequence (I0, . . . , Im) s.t. for each i ≤ m,

(a) Ii ⊇ I is a partial isomorphism with Dom(Ii) = Ni(m) ∪ S(m);
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(b) ∀h, j ≤ m∀x ∈ N
′
h(m) ∩ N

′
j(m)(Ih(x) = Ij(x)).

In Otto’s original proof in [27], the induction hypothesis is not very clear, and
we think it is necessary to give such an explicit formulation here.

Remark 3. It is not hard to show that under our distance notion, for each x, y, z
in the model, d(x, z) ≥ d(x, y) − d(y, z), i.e., d(x, z) + d(z, y) ≥ d(x, y) which
is a more usual form of the triangle inequality. This justifies the new distance
notion. To see why a similar strategy like the one in [27] for binary models works,
note that our unraveling Mw is essentially based on a tree Mb

w by definition,
and the n-ary relation over such a tree structure has a very special property: if
Rs0 . . . sn then s1 . . . sn are immediate successors of s0 in the binary unraveling
as mentioned in Remark 2. This leads to the following crucial property we will
use repeatedly: if we already established a partial isomorphism I between S and
N (w.r.t. also n-ary relations), and x �∈ S is not directly connected to anything
in S, and y �∈ N is also not directly connected to anything in N then I ∪{(x, y)}
extending I is again a partial isomorphism.

Finally, the bound l = 2q − 1 in the above proof, which we choose uniformly
for every n, is actually not “optimal”, since for a larger n, we can have a lower
bound. Especially, when n > q, even l = 1, the Duplicator could have a winning
strategy, since any bijection will be a partial isomorphism. So the distance we
define here is not a appropriate one for us to find the minimal bound l. Here we
conjecture that the bound should be the least integer l s.t. l ≥ (2q − 1)/n.

4 Interpolation

By a standard strategy in [19], we know that the basic polyadic modal logics
(PML) have the Craig Interpolation theorem. What’s more, in [31], the authors
proved that the minimal monotonic modal logic M has Uniform Interpolation.
Furthermore, we know that the basic modal logic K also has Uniform Interpola-
tion from [3] and [2]. From the following three aspects we may conjecture that
the basic WAML systems Kn should have interpolation too:

1 WAML can be treated as a fragment of PML.
2 Kn is regarded as a general version of K, since K is just K1.
3 Kn can be viewed as a special kind of monotonic modal logics.

But in fact no Kn has the Craig Interpolation Property for n ≥ 2. The first
counterexample for interpolation we found is for K3, which is relatively easy to
understand and can be readily generalized to all Kn for n ≥ 3. Later we found a
counterexample for K2, which is slightly more complicated. Here we first give the
two counterexamples for K2 and K3 and then provide the general construction
for Kn (n ≥ 3). But before we state the counterexamples, let us first clarify what
do we mean by “a counterexample” of the Craig Interpolation Property for Kn.

Lemma 2. Let n be a non-zero natural number. If there are two pointed n-
models M, w and N , v and two formulas ϕ and ψ such that
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1. M, w |= ϕ and N , v |= ψ;
2. Kn 
 ϕ → ¬ψ;
3. letting Φ′ be the set of all the propositional letters that appear both in ϕ and

ψ, for any formula γ in WAML such that only letters in Φ′ appear, M, w |= γ
iff N , v |= γ;

then Kn lack the Craig Interpolation Property.

Proof. Assume for contradiction that Kn has the Craig Interpolation Property.
Then since Kn 
 ϕ → ¬ψ, there is a interpolant γ such that

– Kn 
 ϕ → γ and Kn 
 γ → ¬ψ;
– only letters in Φ′ appear in γ.

Now since M, w |= ϕ with M being an n-model and Kn 
 ϕ → γ, by soundness,
M, w |= γ. Then N , v |= γ by 3. Then using Kn 
 γ → ¬ψ and soundness
again, N , v |= ¬ψ, contradicting N , v |= ψ.

Given this proposition, a pair of pointed n-models and a pair of formulas sat-
isfying the antecedent constitute a counterexample of the Craig Interpolation
property. Now we proceed to provide them for each Kn with n ≥ 2.

Example 3. Consider the following two 2-models where {〈w,w1, w1〉,
〈w,w2, w3〉} is the ternary relation in the left model M2, and {〈v, v1, v2〉} is
the ternary relation in the right model N2, where the valuations are as in the
diagram.

w
�������

�����
����

����
��� v

����
����

���

〈w1, w1〉 : p,¬q w2 : p, q w3 : ¬p, q v1 : p,¬r v2 : p, r

Then set ϕ2 = �(¬p ∨ ¬q) ∧ ♦q and ψ2 = �(p ∧ r) ∧ �(p ∧ ¬r). It is easy to
see that M2, w |= ϕ2 and N2, v |= ψ2. To see that K2 
 ϕ2 → ¬ψ2, consider
the following derivation, where to make long Boolean combinations readable,
we write negation of propositional letters as overline, omit ∧ between purely
Boolean formulas and replace ∨ with |.
– 
2 �(p̄|q̄) ∧ �rp ∧ �r̄p → �(((p̄|q̄)rp)|((p̄|q̄)r̄p)|rpr̄p) K2
– 
2 �(p̄|q̄) ∧ �rp ∧ �r̄p → �pq̄ PL,RE
– 
2 ϕ2 ∧ ψ2 → �pq̄ ∧ ♦q PL
– 
2 ϕ2 ∧ ψ2 → �q̄ ∧ ¬�q̄ PL, RM
– 
2 ϕ2 → ¬ψ2 PL

Here PL means propositional reasoning. Hence we are done with the first two
points for this pair of models and formulas to be a counterexamples. For the
last point, note that Z = {〈w, v〉, 〈w1, v1〉, 〈w1, v2〉, 〈w2, v1〉, 〈w2, v2〉} is a wa2-
bisimulation when Φ = {p}. Hence by Proposition 1, for any formula γ with
p the only propositional letter, M2, w |= γ iff N2, v |= γ. But p is the only
common propositional letters in ϕ2 and ψ2. Clearly, now M, w, N , v, ϕ2, and
ψ2 form a counterexample to the Craig Interpolation Property for K2.
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Example 4. Consider the following two 3-models where {〈w,w1, w2, w3〉} is the
relation in M3 and {〈v, v1, v2, v3〉} is the relation in N3.

w1 : p,¬q v1 : ¬p, r

M3 : w

										















 w2 : p, q N3 : v

										















 v2 : ¬p,¬r

w3 : ¬p, q v3 : p, r

Then set ϕ3 = �pq̄∧�pq∧♦(p|p̄), ψ3 = �p̄r∧�p̄r̄∧♦(p|p̄). Clearly M3, w |= ϕ3

and N3, v |= ψ3. Further, K2 
 ϕ3 → ¬ψ3 since we have the following derivation.

– 
3 �pq̄ ∧ �pq ∧ �p̄r ∧ �p̄r̄ → �(pq̄pq|pq̄p̄r|pq̄p̄r̄|pqp̄r|pqp̄r̄|p̄rp̄r̄) K3
– 
3 �pq̄ ∧ �pq ∧ �p̄r ∧ �p̄r̄ → �pp̄ PL,
– 
3 ϕ3 ∧ ψ3 → �pp̄ ∧ ♦(p|p̄) PL, RM
– 
3 ϕ3 → ¬ψ3 PL

Finally, note that Z = {〈w, v〉, 〈w1, v3〉, 〈w2, v3〉, 〈w3, v1〉, 〈w3, v2〉} is a wa3-
bisimulation if Φ = {p}.

The above example can be naturally generalized for each Kn with n > 3.
Let m be the least natural number s.t. 2m ≥ n − 1 and pick m many distinct
propositional letters r1, . . . , rm from Φ. Then for each i from 1 to n − 1, we
can associate a distinct conjunction of literals ρi using rj ’s so that ρi ∧ ρi′ are
incompatible for each i �= i′. Then we can state the general counterexample.

Example 5. Consider the following two n-models where {〈w,w1, ..., wn〉} is the
relation in Mn, and {〈v, v1, ..., vn〉} is the relation in Nn.

w1 : p,¬q v1 : p

w2 : p, q v2 : ¬p, ρ1

Mn : w

����������




















���
���

���
���

���













w3 : ¬p Nn : v

�����������





















���
���

���
���

���















v3 : ¬p, ρ2

...
...

wn : ¬p vn : ¬p, ρn−1

Set ϕn = �(p ∧ ¬q) ∧ �(p ∧ q) ∧ ♦� and ψn =
∧n−1

i=1 �(¬p ∧ ρi) ∧ ♦�. Clearly
Mn, w |= ϕn and Nn, v |= ψn. It is also easy to see that by Kn, we can derive
(�(p∧¬q)∧�(p∧q)∧∧n−1

i=1 �(¬p∧ρi)) → �⊥. With this we can then easily derive
ϕn → ¬ψn in Kn. Finally, note that p is the only common propositional letter in
ϕn and ψn and that Z = {〈w, v〉, 〈w1, v1〉, 〈w2, v1〉} ∪ {w3, ..., wn} × {v2, ..., vn}
is a wan-bisimulation when Φ = {p}.

With the examples and Lemma 2, the main theorem of this section follows.
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Theorem 3. For any n ≥ 2, Kn does not have the Craig Interpolation Property.

Remark 4. Note that the Lemma 2 uses only the soundness of the logics. Hence
for any extension of Kn that is sound on Mn and Nn, it still lacks the Craig
Interpolation Property. For example, we may extend Kn with 4 and our examples
still work since 4 is valid on the underlying frames.

5 Conclusion

In this paper, we proved two results about WAML: first, WAML have a van
Benthem-Rosen characterization, and second, WAML do not have Craig Inter-
polation Property (CIP). We conclude with two potentially promising lines of
further investigation.

First, the main part of the completeness proof of Kn over n-models is to
solve some combinatorial puzzle [26]. Due to the semantics of WAML there is a
natural link between combinatorics and WAML as also shown in the use of graph
coloring problem in [5]. As future work, we would like to explore the possibility
of using WAML to express interesting combinatorial properties in graph theory,
like the one in [25].

Second, even though we proved that WAML do not have Craig Interpolation
Property, it doesn’t mean that the same must be the case under further con-
straints (stronger logics). For instance, the counterexample in our paper cannot
show that Kn ⊕ T lacks CIP since the logic is not sound on the frames of the
models we provided. What remains to be done then is to chart the map of CIP
among the logics extending Kn’s and look for more general methods.

Lastly, if we change all the � in Kn into ♦, we get the following formula:

K∗
n : ♦p0 ∧ · · · ∧ ♦pn → ♦

∨

(0≤i<j≤n)

(pi ∧ pj).

In basic normal modal logics, this formula characterizes frames where each world
has at most n accessible worlds and is equivalent (assuming the normality of �) to
what is commonly called the Altn in the literature [33]. It is not too hard to observe
that the strategy we gave in Sect. 4 can be used to show that for each n ≥ 3, nor-
mal modal logic K ⊕ K∗

n lacks CIP. It seems that, more abstractly speaking, the
counterexamples exist because the logic can reason about with the help of extra
propositional letters, but cannot express directly, whether there are many accessi-
bleworlds satisfying a property.Note that counting the number of accessibleworlds
satisfying a property is intuitively important and has been studied in Description
Logics (DL) [7] and Graded Modal Logics (GML) [12,15,17]. There are already
some CIP work in those logics, like [23], and we conjecture that CIP may return
when we add modalities that talk directly about numbers.

References

1. Allen, M.: Complexity results for logics of local reasoning and inconsistent belief.
In: Proceedings of the 10th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 92–108. National University of Singapore (2005)



166 J. Liu et al.
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