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We propose a class of neutral type quaternion-valued neural networks with delays in the leakage term on time scales that can unify
the discrete-time and the continuous-time neural networks. In order to avoid the difficulty brought by the noncommutativity of
quaternion multiplication, we first decompose the quaternion-valued system into four real-valued systems. Then, by applying the
exponential dichotomic theory of linear dynamic equations on time scales, Banach’s fixed point theorem, the theory of calculus
on time scales, and inequality techniques, we obtain some sufficient conditions on the existence and global exponential stability
of pseudo almost periodic solutions for this class of neural networks. Our results are completely new even for both the case of the
neural networks governed by differential equations and the case of the neural networks governed by difference equations and show
that, under a simple condition, the continuous-time quaternion-valued network and its corresponding discrete-time quaternion-
valued network have the same dynamical behavior for the pseudo almost periodicity. Finally, a numerical example is given to
illustrate the feasibility of our results.

1. Introduction

The quaternion, which was discovered by the Irish mathe-
maticianHamilton [1] in order to generalize complex number
properties to multidimensional space, is extensively used in
several fields, such as modern mathematics, physics, and
computer graphics [2–4]. One of the advantages by the use
of quaternions is that it can treat and operate three- or four-
dimensional vectors as one entity, which allows a significant
decrease of computational complexity in three- or four-
dimensional problems, so the effective information process-
ing can be achieved by the operations for quaternionic vari-
ables. Therefore, the quaternion-valued neural network is
able to cope with multidimensional issues more efficiently by
employing quaternion directly.

In this respect, the quaternion-valued neural network is a
fast growing field of research in both theoretical and applica-
tion points of view (see [5–9]). Quaternion neural networks
have been widely used in many fields and demonstrated

better performances than the real number neural networks in
chaotic time series prediction [10], approximate quaternion-
valued functions [11], 3D wind forecasting [12, 13], image
processing [14, 15], color-face recognition [16], vector sensor
processing [17], and so on.

In reality, it is well known that the time delay is inevitable.
In the circuit implementation of neural networks, time delays
occur naturally due to the processing and transmission of
signals in the network and the finite switching speed of
amplifiers. And they may change the dynamical behaviors of
considered neural networks. Therefore, the consideration of
time delays is more and more significant in the study of the
dynamics of neural networks.

Many scholars have devoted themselves into the dynam-
ics analysis of neural networks with various types of time
delays and many valuable results have been achieved in the
existing literature see [18–26]. There are three typical types
of time delays for incorporating time delays into neural
networks: (i) introduce transmission delays into the neural
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networks, and consider discrete delays, distributed delays,
mixed delays, even state depended delays, or complex delays;
(ii) consider the delays in the leakage term; (iii) take into
account neutral type delays. All of the above three types of
time delays may alter the dynamics of the neural network
under consideration.

On the one hand, the concept of pseudo-almost peri-
odicity was introduced by Zhang [27, 28] in the early
1990s. It quickly aroused the interest of some mathematical
researchers [29–31]. The pseudo almost periodicity is more
general and complicated than the periodicity and the almost
periodicity. In the last few years, the pseudo almost periodic-
ity has become a hot research topic, especially for the pseudo
almost periodic oscillation of neural networks [32–39].

On the other hand, as it is known, both continuous-time
and discrete-time neural networks are important in theo-
cratic studies and applications. Moreover, discrete-time neu-
ral networks are more convenient for computation and
numerical simulation than continuous-time neural networks.
Therefore, we must not only study continuous-time neural
networks, but also study discrete-time neural networks.
Fortunately, the theory of time scales, which was initiated by
Hilger [40] in his Ph.D. thesis in 1988, can unify the con-
tinuous and discrete cases. Studying dynamic equations on
time scales can unify the differential equation case and the
difference equation case. In recent years, the time scale theory
has been widely concerned and rapidly developed [41–45].
And, many authors have studied the dynamical behavior of
neural networks on time scales [46–54].

However, to the best of our knowledge, there is no paper
published on the existence and stability of pseudo almost
periodic solutions of quaternion-valued neural networks on
time scales. This is important in theory and application, and
it is also a very challenging issue.

Motivated by the above statement, in this paper, we
propose the following neutral type quaternion-valued neural
network with delays in the leakage term on time scales:𝑥Δ𝑝 (𝑡) = −𝑐𝑝 (𝑡) 𝑥𝑝 (𝑡 − 𝛿𝑝 (𝑡))+ 𝑛∑

𝑞=1

𝑎𝑝𝑞 (𝑡) 𝑓𝑞 (𝑥𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))
+ 𝑛∑
𝑞=1

𝑏𝑝𝑞 (𝑡) 𝑔𝑞 (𝑥Δ𝑞 (𝑡 − 𝜂𝑝𝑞 (𝑡))) + 𝑢𝑝 (𝑡) ,𝑡 ∈ T ,
(1)

where T is an almost periodic time scale, 𝑝 ∈ {1, 2, . . . , 𝑛} flΛ, 𝑥𝑝(𝑡) ∈ H⊗T is the state of the𝑝th neuron at time 𝑡; 𝑐𝑝(𝑡) >0 is the self-feedback connection weight, H ⊗ T denotes the
set of all quaternion-valued functions defined on time scaleT ;𝑎𝑝𝑞(𝑡) and 𝑏𝑝𝑞(𝑡) ∈ H⊗T are the delay connection weight and
the neutral delay connection weight from neuron 𝑞 to neuron𝑝 at time 𝑡, respectively; 𝑢𝑝(𝑡) is an external input on the 𝑝th
unit at time 𝑡; 𝛿𝑝(𝑡) denotes the leakage delay satisfying 𝑡 −𝛿𝑝(𝑡) ∈ T for 𝑡 ∈ T ; 𝜏𝑝𝑞(𝑡) and 𝜂𝑝𝑞(𝑡) are transmission delays
satisfying 𝑡 − 𝜏𝑝𝑞(𝑡) ∈ T and 𝑡 − 𝜂𝑝𝑞(𝑡) ∈ T for 𝑡 ∈ T .

The initial condition of system (1) is of the form𝑥𝑝 (𝑠) = 𝜑𝑝 (𝑠) , 𝑝 ∈ Λ, 𝑠 ∈ [−𝜃, 0]T , (2)

where 𝜃 = max{𝛿, 𝜏, 𝜂}, 𝛿 = max𝑝∈Λ{sup𝑡∈T𝛿𝑝(𝑡)}, 𝜏 =
max𝑝,𝑞∈Λ{sup𝑡∈T𝜏𝑝𝑞(𝑡)}, 𝜂 = max𝑝,𝑞∈Λ{sup𝑡∈T𝜂𝑝𝑞(𝑡)}, 𝜑𝑝(𝑠) ∈𝐶([−𝜃, 0]T , H𝑛 ⊗ T).

Throughout this paper, we denote [𝑎, 𝑏]T = {𝑡 | 𝑡 ∈ [𝑎, 𝑏]∩
T}. For convenience, for an rd-continuous pseudo almost
periodic function 𝑓 : T → R, we denote 𝑓− = inf 𝑡∈T |𝑓(𝑡)|
and 𝑓+ = sup𝑡∈T |𝑓(𝑡)|.

Our main purpose of this paper is to study the existence
and global exponential stability of pseudo almost periodic
solutions of (1). Our results are completely new even for both
the case of the neural networks governed by quaternion-
valued differential equations and the case of the neural net-
works governed by quaternion-valued difference equations.

The rest of this paper is organized as follows. In Section 2,
we introduce some definitions and preliminary lemmas and
transform the quaternion-valued system (1) into four real-
valued systems. In Section 3, we establish some sufficient
conditions for the existence and global exponential stability
of pseudo almost periodic solutions of (1). In Section 4, we
give an example to demonstrate the feasibility of our results.
This paper ends with a brief conclusion in Section 5.

2. Preliminaries

In this section, we shall first recall some fundamental defini-
tions, lemmas which are used in what follows.

The skew field of quaternions is denoted by

H fl {𝑞 = 𝑞𝑅 + 𝑞𝐼𝑖 + 𝑞𝐽𝑗 + 𝑞𝐾𝑘} , (3)

where 𝑞𝑅, 𝑞𝐼, 𝑞𝐽, and 𝑞𝐾 are real numbers and the elements 𝑖,𝑗, and 𝑘 obey Hamilton’s multiplication rules:𝑖𝑗 = −𝑗𝑖 = 𝑘,𝑗𝑘 = −𝑘𝑗 = 𝑖,𝑘𝑖 = −𝑖𝑘 = 𝑗,𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. (4)

The quaternion conjugate is defined by 𝑞 = 𝑞𝑅−𝑞 = 𝑞𝑅−𝑞𝐼𝑖−𝑞𝐽𝑗−𝑞𝐾𝑘, and the norm |𝑞| of 𝑞 is defined as |𝑞|2 = 𝑞𝑞 = 𝑞𝑞 =(𝑞𝑅)2 + (𝑞𝐼)2 + (𝑞𝐽)2 + (𝑞𝐾)2.
A time scale T is an arbitrary nonempty closed subset of

the real set R with the topology and ordering inherited from
R. The forward jump operator 𝜎 : T → T is defined by 𝜎(𝑡) =
inf {𝑠 ∈ T , 𝑠 > 𝑡}, 𝑡 ∈ T , while the backward jump operator𝜌 : T → T is defined by 𝜌(𝑡) = sup {𝑠 ∈ T , 𝑠 < 𝑡}, 𝑡 ∈ T ,
and the graininess function 𝜇 : T → [0,∞) is defined by𝜇(𝑡) = 𝜎(𝑡) − 𝑡.

The point 𝑡 ∈ T is called left-dense, left-scattered, right-
dense, or right-scattered if 𝜌(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡, 𝜎(𝑡) = 𝑡,
or 𝜎(𝑡) > 𝑡, respectively. Points that are right-dense and
left-dense at the same time are called dense. If T has a left-
scattered maximum 𝑚, define T𝜅 = T − {𝑚}; otherwise,
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set T𝜅 = T . If T has a right-scattered maximum 𝑚, define
T𝜅 = T − {𝑚}; otherwise, set T𝜅 = T .

Assume that 𝑓 : T → R is a function and let 𝑡 ∈ T𝑘. Then
we define 𝑓Δ(𝑡) to be the number (provided its exists) with
the property that, given any 𝜀 > 0, there is a neighborhood𝑈
of 𝑡 such that󵄨󵄨󵄨󵄨󵄨𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓Δ (𝑡) (𝜎 (𝑡) − 𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀 |𝜎 (𝑡) − 𝑠| , (5)

for all 𝑠 ∈ 𝑈. We call 𝑓Δ(𝑡) the delta derivative of 𝑓 at 𝑡.
Moreover, we say that 𝑓 is delta differentiable on T𝑘 provided
that 𝑓Δ(𝑡) exists for all 𝑡 ∈ T𝑘.

Bywriting𝑓 ∈ H⊗T in the formof𝑓 = 𝑓𝑅+𝑖𝑓𝐼+𝑗𝑓𝐽+𝑘𝑓𝐾
with 𝑓𝑙 ∈ H ⊗ T , 𝑙 ∈ {𝑅, 𝐼, 𝐽, 𝐾} fl 𝐸, it is easy to verify that𝑓 is delta differentiable if and only if 𝑓𝑅, 𝑓𝐼, 𝑓𝐽, 𝑓𝐾 are delta
differentiable. Moreover, if 𝑓 is delta differentiable, then𝑓Δ (𝑡) = (𝑓𝑅)Δ (𝑡) + 𝑖 (𝑓𝐼)Δ (𝑡) + 𝑗 (𝑓𝐽)Δ (𝑡)+ 𝑘 (𝑓𝐾)Δ (𝑡) . (6)

A function 𝑝 : T → R is said to be regressive provided1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T𝜅.The set of all regressive and rd-
continuous functions 𝑝 : T → R is denoted by R = R(T).
We define R+ = {𝑝 ∈ R : 1 + 𝜇(𝑡)𝑝(𝑡) > 0 for all 𝑡 ∈ T}.
For more knowledge about calculus on time scales, we refer
to [41, 42].

Definition 1 (see [47]). A time scale T is called an almost
periodic time scale ifΠ fl {𝜏 ∈ R : 𝑡 ± 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (7)

Definition 2 (see [47]). Let T be an almost periodic time scale.
A function 𝑓 ∈ 𝐶(T ,R𝑛) is called an almost periodic on T if
for any given 𝜀 > 0, there exists a constant 𝑙(𝜀) > 0 such that
each interval of length 𝑙(𝜀) contains at least one 𝜏(𝜀) ∈ Π such
that 󵄨󵄨󵄨󵄨𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)󵄨󵄨󵄨󵄨 < 𝜀, ∀𝑡 ∈ T . (8)

Let AP(T ,R𝑛) = {𝑓 ∈ 𝐶(T ,R𝑛) : 𝑓 be almost periodic}
and BC(T ,R𝑛) denote the space of all bounded continuous
functions from T to R𝑛.

Similar to Definition 4.1 in [55], we introduce the follow-
ing definition.

Definition 3. A function 𝑓 ∈ 𝐶(T ,R𝑛) is called pseudo
almost periodic if 𝑓 = 𝑔 + ℎ, where 𝑔 ∈ AP(T ,R𝑛) andℎ ∈ PAP0(T ,R𝑛) = {𝑓 ∈ BC(T ,R𝑛) : 𝑓 is Δ-measurable such
that lim𝑟→+∞(1/2𝑟) ∫𝑡0+𝑟

𝑡0−𝑟
|𝑓(𝑠)|Δ𝑠 = 0, where 𝑡0 ∈ T , 𝑟 ∈ Π}.

We denote by PAP(T ,R𝑛) the set of all pseudo almost
periodic functions defined on T .

Lemma 4 (see [56]). If 𝑓, 𝑔 ∈ 𝑃𝐴𝑃(T ,R𝑛), then 𝑓 + 𝑔, 𝑓𝑔 ∈𝑃𝐴𝑃(T ,R𝑛); if 𝑓 ∈ 𝑃𝐴𝑃(T ,R𝑛), 𝑔 ∈ 𝐴𝑃(T ,R𝑛), then 𝑓𝑔 ∈𝑃𝐴𝑃(T ,R𝑛).

Similar to the proof of Lemma 2.10 in [56], one can show
the following.

Lemma 5. If𝑓 ∈ 𝐶(R,R) satisfies the Lipschitz condition, 𝜑 ∈𝑃𝐴𝑃(T ,R), 𝜏 ∈ 𝐶1(T , Π), and inf 𝑡∈T (1 − 𝜏Δ(𝑡)) > 0, then𝑓(𝜑(𝑡 − 𝜏(𝑡))) ∈ 𝑃𝐴𝑃(T ,R).
Definition 6. Function 𝑓 = 𝑓𝑅 + 𝑖𝑓𝐼 + 𝑗𝑓𝐽 + 𝑘𝑓𝐾 ∈ 𝐶(T ,H𝑛 ⊗
T) is called pseudo almost periodic if for each 𝑙 ∈ 𝐸, 𝑓𝑙 ∈𝐶(T ,R𝑛) is pseudo almost periodic.

Definition 7 (see [47]). Let 𝐴(𝑡) be an 𝑛 × 𝑛 matrix-valued
function on T . Then the linear system𝑥Δ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , 𝑡 ∈ T , (9)

is said to admit an exponential dichotomy on T if there exist
positive constant 𝐾, 𝛼, projection 𝑃, and the fundamental
solution matrix𝑋(𝑡) of (9), satisfying󵄩󵄩󵄩󵄩󵄩𝑋 (𝑡) 𝑃𝑋−1 (𝑠)󵄩󵄩󵄩󵄩󵄩0 ≤ 𝐾𝑒⊖𝛼 (𝑡, 𝑠) , 𝑠, 𝑡 ∈ T , 𝑡 ≥ 𝑠,󵄩󵄩󵄩󵄩󵄩𝑋 (𝑡) (𝐼 − 𝑃)𝑋−1 (𝑠)󵄩󵄩󵄩󵄩󵄩0 ≤ 𝐾𝑒⊖𝛼 (𝑠, 𝑡) , 𝑠, 𝑡 ∈ T , 𝑡 ≤ 𝑠.

(10)

Consider the following pseudo almost periodic system:𝑥Δ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ T , (11)

where 𝐴(𝑡) is an almost periodic matrix function and 𝑓(𝑡) is
a pseudo almost periodic vector function.

Lemma 8 (see [47]). If the linear system (9) admits an expo-
nential dichotomy, then the pseudo almost periodic system (11)
has a unique pseudo almost periodic solution 𝑥(𝑡) as follows:

𝑥 (𝑡) = ∫𝑡

−∞
𝑋 (𝑡) 𝑃𝑋−1 (𝜎 (𝑠)) 𝑓 (𝑠) Δ𝑠− ∫+∞

𝑡
𝑋(𝑡) (𝐼 − 𝑃)𝑋−1 (𝜎 (𝑠)) 𝑓 (𝑠) Δ𝑠, (12)

where𝑋(𝑡) is the fundamental solution matrix of (9).

Lemma 9 (see [46]). Let 𝑐𝑝(𝑡) : T → R+ be an almost
periodic function, −𝑐𝑝(𝑡) ∈ R+, 𝑝 ∈ Λ, 𝑡 ∈ T , and
min1≤𝑝≤𝑛{inf 𝑡∈T𝑐𝑝(𝑡)} > 0; then the linear system

𝑥Δ (𝑡) = diag (−𝑐1 (𝑡) , −𝑐2 (𝑡) , . . . , −𝑐𝑛 (𝑡)) 𝑥 (𝑡) (13)

admits an exponential dichotomy on T .



4 Complexity

Throughout the rest of this paper, we assume the follow-
ing:(𝐻1) Let 𝑥𝑝 = 𝑥𝑅𝑝 + 𝑖𝑥𝐼𝑝 + 𝑗𝑥𝐽𝑝 +𝑘𝑥𝐾𝑝 , where 𝑥𝑅𝑝 , 𝑥𝐼𝑝, 𝑥𝐽𝑝, 𝑥𝐾𝑝 ∈

R, 𝑝 ∈ Λ. Then 𝑓𝑝(𝑥𝑝) and 𝑔𝑝(𝑥𝑝) can be expressed
as𝑓𝑝 (𝑥𝑝) = 𝑓𝑅𝑝 (𝑥𝑅𝑝) + 𝑖𝑓𝐼𝑝 (𝑥𝐼𝑝) + 𝑗𝑓𝐽𝑝 (𝑥𝐽𝑝)+ 𝑘𝑓𝐾𝑝 (𝑥𝐾𝑝 ) , 𝑝 ∈ Λ,𝑔𝑝 (𝑥𝑝) = 𝑔𝑅𝑝 (𝑥𝑅𝑝) + 𝑖𝑔𝐼𝑝 (𝑥𝐼𝑝) + 𝑗𝑔𝐽𝑝 (𝑥𝐽𝑝)+ 𝑘𝑔𝐾𝑝 (𝑥𝐾𝑝 ) , 𝑝 ∈ Λ.

(14)

By (𝐻1), we can transform system (1) into the following four
real-valued systems:(𝑥𝑅𝑝 (𝑡))Δ = −𝑐𝑝 (𝑡) 𝑥𝑅𝑝 (𝑡 − 𝛿𝑝 (𝑡))+ 𝑛∑

𝑞=1

(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝑅𝑞 (𝑥𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))− 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝐼𝑞 (𝑥𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))− 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝐽𝑞 (𝑥𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))− 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝐾𝑞 (𝑥𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))))+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝑅𝑞 ((𝑥𝑅𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))
− 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝐼𝑞 ((𝑥𝐼𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))− 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝐽𝑞 ((𝑥𝐽𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))− 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝐾𝑞 ((𝑥𝐾𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))) + 𝑢𝑅𝑝 (𝑡) ,(𝑥𝐼𝑝 (𝑡))Δ = −𝑐𝑝 (𝑡) 𝑥𝐼𝑝 (𝑡 − 𝛿𝑝 (𝑡))+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝐼𝑞 (𝑥𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))+ 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝑅𝑞 (𝑥𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))+ 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝐾𝑞 (𝑥𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))− 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝐽𝑞 (𝑥𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))))+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝐼𝑞 ((𝑥𝐼𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))
+ 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝑅𝑞 ((𝑥𝑅𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))

+ 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝐾𝑞 ((𝑥𝐾𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))− 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝐽𝑞 ((𝑥𝐽𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))) + 𝑢𝐼𝑝 (𝑡) ,(𝑥𝐽𝑝 (𝑡))Δ = −𝑐𝑝 (𝑡) 𝑥𝐽𝑝 (𝑡 − 𝛿𝑝 (𝑡))+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝐽𝑞 (𝑥𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))+ 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝑅𝑞 (𝑥𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))− 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝐾𝑞 (𝑥𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))+ 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝐼𝑞 (𝑥𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))))+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝐽𝑞 ((𝑥𝐽𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))
+ 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝑅𝑞 ((𝑥𝑅𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))− 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝐾𝑞 ((𝑥𝐾𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))+ 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝐼𝑞 ((𝑥𝐼𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))) + 𝑢𝐽𝑝 (𝑡) ,(𝑥𝐾𝑝 (𝑡))Δ = −𝑐𝑝 (𝑡) 𝑥𝐼𝑝 (𝑡 − 𝛿𝑝 (𝑡))+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝐾𝑞 (𝑥𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))+ 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝑅𝑞 (𝑥𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))+ 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝐽𝑞 (𝑥𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))− 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝐼𝑞 (𝑥𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))))+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝐾𝑞 ((𝑥𝐾𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))
+ 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝑅𝑞 ((𝑥𝑅𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))+ 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝐽𝑞 ((𝑥𝐽𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))− 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝐼𝑞 ((𝑥𝐼𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))) + 𝑢𝐾𝑝 (𝑡) ,

(15)𝑎𝑝𝑞 (𝑡) = 𝑎𝑅𝑝𝑞 (𝑡) + 𝑖𝑎𝐼𝑝𝑞 (𝑡) + 𝑗𝑎𝐽𝑝𝑞 (𝑡) + 𝑘𝑎𝐾𝑝𝑞 (𝑡) ,𝑏𝑝𝑞 (𝑡) = 𝑏𝑅𝑝𝑞 (𝑡) + 𝑖𝑏𝐼𝑝𝑞 (𝑡) + 𝑗𝑏𝐽𝑝𝑞 (𝑡) + 𝑘𝑏𝐾𝑝𝑞 (𝑡) ,𝑢𝑝 (𝑡) = 𝑢𝑅𝑝 (𝑡) + 𝑖𝑢𝐼𝑝 (𝑡) + 𝑗𝑢𝐽𝑝 (𝑡) + 𝑘𝑢𝐾𝑝 (𝑡) , 𝑝 ∈ Λ.
(16)
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According to (15), we can get𝑋Δ
𝑝 (𝑡) = −𝑐𝑝 (𝑡) 𝑋𝑝 (𝑡 − 𝛿𝑝 (𝑡))+ 𝑛∑

𝑞=1

𝐴𝑝𝑞 (𝑡) 𝐹𝑞 (𝑋𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))
+ 𝑛∑
𝑞=1

𝐵𝑝𝑞 (𝑡) 𝐺𝑞 (𝑋Δ
𝑞 (𝑡 − 𝜂𝑝𝑞 (𝑡))) + 𝑈𝑝 (𝑡) ,𝑝 ∈ Λ,

(17)

where

𝐴𝑝𝑞 (𝑡) = (𝑎𝑅𝑝𝑞 (𝑡) −𝑎𝐼𝑝𝑞 (𝑡) −𝑎𝐽𝑝𝑞 (𝑡) −𝑎𝐾𝑝𝑞 (𝑡)𝑎𝐼𝑝𝑞 (𝑡) 𝑎𝑅𝑝𝑞 (𝑡) −𝑎𝐾𝑝𝑞 (𝑡) 𝑎𝐽𝑝𝑞 (𝑡)𝑎𝐽𝑝𝑞 (𝑡) 𝑎𝐾𝑝𝑞 (𝑡) 𝑎𝑅𝑝𝑞 (𝑡) −𝑎𝐼𝑝𝑞 (𝑡)𝑎𝐾𝑝𝑞 (𝑡) −𝑎𝐽𝑝𝑞 (𝑡) 𝑎𝐼𝑝𝑞 (𝑡) 𝑎𝑅𝑝𝑞 (𝑡) ) ,
𝐵𝑝𝑞 (𝑡) = (𝑏𝑅𝑝𝑞 (𝑡) −𝑏𝐼𝑝𝑞 (𝑡) −𝑏𝐽𝑝𝑞 (𝑡) −𝑏𝐾𝑝𝑞 (𝑡)𝑏𝐼𝑝𝑞 (𝑡) 𝑏𝑅𝑝𝑞 (𝑡) −𝑏𝐾𝑝𝑞 (𝑡) 𝑏𝐽𝑝𝑞 (𝑡)𝑏𝐽𝑝𝑞 (𝑡) 𝑏𝐾𝑝𝑞 (𝑡) 𝑏𝑅𝑝𝑞 (𝑡) −𝑏𝐼𝑝𝑞 (𝑡)𝑏𝐾𝑝𝑞 (𝑡) −𝑏𝐽𝑝𝑞 (𝑡) 𝑏𝐼𝑝𝑞 (𝑡) 𝑏𝑅𝑝𝑞 (𝑡) ) ,
𝑋𝑝 (𝑡) = (𝑥𝑅𝑝 (𝑡) , 𝑥𝐼𝑝 (𝑡) , 𝑥𝐽𝑝 (𝑡) , 𝑥𝐾𝑝 (𝑡))𝑇 ,𝑈𝑝 (𝑡) = (𝑢𝑅𝑝 (𝑡) , 𝑢𝐼𝑝 (𝑡) , 𝑢𝐽𝑝 (𝑡) , 𝑢𝐾𝑝 (𝑡))𝑇 ,𝐹𝑞 = (𝑓𝑅𝑞 , 𝑓𝐼𝑞 , 𝑓𝐽𝑞 , 𝑓𝐾𝑞 )𝑇 ,𝐺𝑞 = (𝑔𝑅𝑞 , 𝑔𝐼𝑞, 𝑔𝐽𝑞, 𝑔𝐾𝑞 )𝑇 .

(18)

The initial condition associated with (17) is of the form𝑋𝑝 (𝑠) = Φ𝑝 (𝑠) , 𝑝 ∈ Λ, 𝑠 ∈ [−𝜃, 0]T , (19)

where Φ𝑝(s) = (𝜙𝑅𝑝(𝑠), 𝜙𝐼𝑝(𝑠), 𝜙𝐽𝑝(𝑠), 𝜙𝐾𝑝 (𝑠)), 𝜙𝑙𝑝(𝑠) ∈𝐶([−𝜃, 0]T ,R), 𝑙 ∈ 𝐸.
Remark 10. It is obvious that if 𝑥(𝑡) =(𝑥𝑅1 (𝑡), 𝑥𝐼1(𝑡), 𝑥𝐽1(𝑡), 𝑥𝐾1 (𝑡), 𝑥𝑅2 (𝑡), 𝑥𝐼2(𝑡), 𝑥𝐽2(𝑡), 𝑥𝐾2 (𝑡), . . .,𝑥𝑅𝑛 (𝑡), 𝑥𝐼𝑛(𝑡), 𝑥𝐽𝑛(𝑡), 𝑥𝐾𝑛 (𝑡))𝑇 is a solution to system (17), then𝑦 (𝑡) = (𝑋1 (𝑡) , 𝑋2 (𝑡) , . . . , 𝑋𝑛 (𝑡))𝑇 , (20)

where 𝑥𝑝(𝑡) = 𝑥𝑅𝑝(𝑡) + 𝑖𝑥𝐼𝑝(𝑡) + 𝑗𝑥𝐽𝑝(𝑡) + 𝑘𝑥𝐾𝑝 (𝑡), 𝑝 = 1, 2, . . . , 𝑛
must be a solution to (1). Thus, the problem of finding a
pseudo almost periodic solution for (1) reduces to finding one
for system (17). For considering the stability of solutions of (1),
we just need to consider the stability of solutions of system
(17).

3. Main Results

In this section, we will study the existence and global
exponential stability of pseudo almost periodic solutions of
system (17).

Let X = {𝑓 | 𝑓, 𝑓Δ ∈ PAP(T ,R4𝑛)} with the norm‖𝑓‖X = max {‖𝑓‖, ‖𝑓Δ‖}, where ‖𝑓‖ = max1≤ℎ≤4𝑛{𝑓+ℎ },‖𝑓Δ‖ = max1≤ℎ≤4𝑛{(𝑓Δℎ )+}; thenX is a Banach space.
Throughout this paper, we assume that the following

conditions hold:(𝐻2) 𝑐𝑝 ∈ 𝐶(T ,R+) with −𝑐𝑝 ∈ R+ is an almost periodic
function, 𝐴𝑝𝑞, 𝐵𝑝𝑞 ∈ AP(T ,R4×4), 𝑈𝑝 ∈ PAP(T ,
R4×1), 𝛿𝑝 ∈ 𝐶(T , Π), 𝜏𝑝𝑞, 𝜂𝑝𝑞 ∈ 𝐶1(T , Π), inf 𝑡∈T (1 −𝜏Δ𝑝𝑞(𝑡)) > 0, inf 𝑡∈T (1 − 𝜂Δ𝑝𝑞(𝑡)) > 0, 𝑝, 𝑞 ∈ Λ.(𝐻3) Functions 𝑓𝑙𝑞, 𝑔𝑙𝑞 ∈ 𝐶(R,R) and there exist positive
constants 𝛼𝑙𝑞, 𝛽𝑙𝑞 such that for all 𝑥𝑙, 𝑦𝑙 ∈ R󵄨󵄨󵄨󵄨󵄨𝑓𝑙𝑞 (𝑥𝑙) − 𝑓𝑙𝑞 (𝑦𝑙)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛼𝑙𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝑙 − 𝑦𝑙󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑔𝑙𝑞 (𝑥𝑙) − 𝑔𝑙𝑞 (𝑦𝑙)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛽𝑙𝑞 󵄨󵄨󵄨󵄨󵄨𝑥𝑙 − 𝑦𝑙󵄨󵄨󵄨󵄨󵄨 , (21)

and 𝑓𝑙𝑞(0) = 𝑔𝑙𝑞(0) = 0, 𝑞 ∈ Λ, 𝑙 ∈ 𝐸.(𝐻4) There exists a positive constant 𝜅 such that

max
𝑝∈Λ

{{{max
𝑙∈𝐸

{{{Γ𝑙𝑝𝜅 + 𝑢𝑙+𝑝𝑐−𝑝 , (1 + 𝑐+𝑝𝑐−𝑝 )(Γ𝑙𝑝𝜅 + 𝑢𝑙+𝑝 )}}}}}}≤ 𝜅,
max
𝑝∈Λ

{max
𝑙∈𝐸

{Γ𝑙𝑝𝑐−𝑝 , (1 + 𝑐+𝑝𝑐−𝑝 )Γ𝑙𝑝}} fl 𝜌 < 1,
(22)

whereΓ𝑙𝑝 = 𝑐+𝑝𝛿+𝑝 + 𝐴𝑙
𝑝 + 𝐵𝑙𝑝, 𝑝 ∈ Λ, 𝑙 ∈ 𝐸,𝐴𝑅

𝑝 = 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞𝛼𝑅𝑞 + 𝑎𝐼+𝑝𝑞𝛼𝐼𝑞 + 𝑎𝐽+𝑝𝑞𝛼𝐽𝑞 + 𝑎𝐾+𝑝𝑞 𝛼𝐾𝑞 ) , 𝑝 ∈ Λ,𝐵𝑅𝑝 = 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 𝛽𝑅𝑞 + 𝑏𝐼+𝑝𝑞𝛽𝐼𝑞 + 𝑏𝐽+𝑝𝑞𝛽𝐽𝑞 + 𝑏𝐾+𝑝𝑞 𝛽𝐾𝑞 ) , 𝑝 ∈ Λ,
A𝐼
𝑝 = 𝑛∑

𝑞=1

(𝑎𝑅+𝑝𝑞𝛼𝐼𝑞 + 𝑎𝐼+𝑝𝑞𝛼𝑅𝑞 + 𝑎𝐽+𝑝𝑞𝛼𝐾𝑞 + 𝑎𝐾+𝑝𝑞 𝛼𝐽𝑞) , 𝑝 ∈ Λ,𝐵𝐼𝑝 = 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 𝛽𝐼𝑞 + 𝑏𝐼+𝑝𝑞𝛽𝑅𝑞 + 𝑏𝐽+𝑝𝑞𝛽𝐾𝑞 + 𝑏𝐾+𝑝𝑞 𝛽𝐽𝑞) , 𝑝 ∈ Λ,
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𝐴𝐽
𝑝 = 𝑛∑

𝑞=1

(𝑎𝑅+𝑝𝑞𝛼𝐽𝑞 + 𝑎𝐽+𝑝𝑞𝛼𝑅𝑞 + 𝑎𝐼+𝑝𝑞𝛼𝐾𝑞 + 𝑎𝐾+𝑝𝑞 𝛼𝐼𝑞) , 𝑝 ∈ Λ,𝐵𝐽𝑝 = 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 𝛽𝐽𝑞 + 𝑏𝐽+𝑝𝑞𝛽𝑅𝑞 + 𝑏𝐼+𝑝𝑞𝛽𝐾𝑞 + 𝑏𝐾+𝑝𝑞 𝛽𝐼𝑞) , 𝑝 ∈ Λ,𝐴𝐾
𝑝 = 𝑛∑

𝑞=1

(𝑎𝑅+𝑝𝑞𝛼𝐾𝑞 + 𝑎𝐾+𝑝𝑞 𝛼𝑅𝑞 + 𝑎𝐼+𝑝𝑞𝛼𝐽𝑞 + 𝑎𝐽+𝑝𝑞𝛼𝐼𝑞) , 𝑝 ∈ Λ,𝐵𝐾𝑝 = 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 𝛽𝐾𝑞 + 𝑏𝐾+𝑝𝑞 𝛽𝑅𝑞 + 𝑏𝐼+𝑝𝑞𝛽𝐽𝑞 + 𝑏𝐽+𝑝𝑞𝛽𝐼𝑞) , 𝑝 ∈ Λ.
(23)

Theorem 11. Assume that (𝐻1)–(𝐻4) hold; then system (17)
has a unique pseudo almost periodic solution in the region
X∗ = {𝜑 ∈ X | ‖𝜑‖X ≤ 𝜅}.
Proof. System (17) can be written as𝑋Δ

𝑝 (𝑡) = −𝑐𝑝 (𝑡) 𝑋𝑝 (𝑡) + 𝑐𝑝 (𝑡) ∫𝑡

𝑡−𝛿𝑝(𝑡)
𝑋Δ
𝑝 (𝑠) Δ𝑠

+ 𝑛∑
𝑞=1

𝐴𝑝𝑞 (𝑡) 𝐹𝑞 (𝑋𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))
+ 𝑛∑
𝑞=1

𝐵𝑝𝑞 (𝑡) 𝐺𝑞 (𝑋Δ
𝑞 (𝑡 − 𝜂𝑝𝑞 (𝑡))) + 𝑈𝑝 (𝑡) ,𝑝 ∈ Λ, 𝑡 ∈ T .

(24)

For any 𝜑 ∈ X, consider the linear dynamic system𝑋Δ
𝑝 (𝑡) = −𝑐𝑝 (𝑡) 𝑋𝑝 (𝑡) + 𝑐𝑝 (𝑡) ∫𝑡

𝑡−𝛿𝑝(𝑡)
𝜑Δ𝑝 (𝑠) Δ𝑠

+ 𝑛∑
𝑞=1

𝐴𝑝𝑞 (𝑡) 𝐹𝑞 (𝜑𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))

+ 𝑛∑
𝑞=1

𝐵𝑝𝑞 (𝑡) 𝐺𝑞 (𝜑Δ𝑞 (𝑡 − 𝜂𝑝𝑞 (𝑡))) + 𝑈𝑝 (𝑡) ,𝑝 ∈ Λ, 𝑡 ∈ T .
(25)

Since min1≤𝑝≤𝑛{inf 𝑡∈T𝑐𝑝(𝑡)} > 0 and −𝑐𝑝 ∈ R+, it follows
from Lemma 9 that the linear system

𝑋Δ
𝑝 (𝑡) = −𝑐𝑝 (𝑡) 𝑋𝑝 (𝑡) (26)

admits an exponential dichotomy on T . Thus, by Lemma 8,
we see that system (25) has exactly one pseudo almost
periodic solution which can be expressed as follows:

𝑋𝜑
𝑝 (𝑡) = ∫𝑡

−∞
𝑒−𝑐𝑝 (𝑡, 𝜎 (𝑠)) (𝑐𝑝 (𝑠) ∫𝑠

𝑠−𝛿𝑝(𝑠)
𝜑Δ𝑝 (𝑢) Δ𝑢

+ 𝑛∑
𝑞=1

𝐴𝑝𝑞 (𝑠) 𝐹𝑞 (𝜑𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))
+ 𝑛∑
𝑞=1

𝐵𝑝𝑞 (𝑠) 𝐺𝑞 (𝜑Δ𝑞 (𝑠 − 𝜂𝑝𝑞 (𝑠))) + 𝑈𝑝 (𝑠))Δ𝑠,
𝑝 ∈ Λ.

(27)

Now, we define the operator Φ : X∗ → X∗ as

(𝜑1, 𝜑2, . . . , 𝜑𝑛)𝑇 󳨀→ (𝑋𝜑
1 , 𝑋𝜑

2 , . . . , 𝑋𝜑
𝑛)𝑇 , (28)

where 𝜑𝑝 = (𝜑𝑅𝑝 , 𝜑𝐼𝑝, 𝜑𝐽𝑝, 𝜑𝐾𝑝 ),𝑋𝜑
𝑝 is defined by (27), 𝑝 ∈ Λ.

First, we show that, for any 𝜑 ∈ X∗, we have Φ𝜑 ∈ X∗.
From (27), we have

󵄨󵄨󵄨󵄨󵄨(Φ𝜑)𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡

−∞
𝑒−𝑐𝑝 (𝑡, 𝜎 (𝑠)) (𝑐𝑝 (𝑠) ∫𝑠

𝑠−𝛿𝑝(𝑠)
(𝜑𝑅𝑝)Δ (𝑢) Δ𝑢

+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑠) 𝑓𝑅𝑞 (𝜑𝑅𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑎𝐼𝑝𝑞 (𝑠) 𝑓𝐼𝑞 (𝜑𝐼𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑎𝐽𝑝𝑞 (𝑠) 𝑓𝐽𝑞 (𝜑𝐽𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑎𝐾𝑝𝑞 (𝑠) 𝑓𝐾𝑞 (𝜑𝐾𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))))
+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑠) 𝑔𝑅𝑞 ((𝜑𝑅𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑏𝐼𝑝𝑞 (𝑠) 𝑔𝐼𝑞 ((𝜑𝐼𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑏𝐽𝑝𝑞 (𝑠) 𝑔𝐽𝑞 ((𝜑𝐽𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑏𝐾𝑝𝑞 (𝑠) 𝑔𝐾𝑞 ((𝜑𝐾𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))
+ 𝑢𝑅𝑝 (𝑠))Δ𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫𝑡

−∞
𝑒−𝑐𝑝 (𝑡, 𝜎 (𝑠)) (𝑐+𝑝 ∫𝑠

𝑠−𝛿𝑝(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨(𝜑𝑅𝑝)Δ (𝑢)󵄨󵄨󵄨󵄨󵄨󵄨 Δ𝑢
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+ 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝑅𝑞 (𝜑𝑅𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))󵄨󵄨󵄨󵄨󵄨 + 𝑎𝐼+
𝑝𝑞

󵄨󵄨󵄨󵄨󵄨𝑓𝐼𝑞 (𝜑𝐼𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))󵄨󵄨󵄨󵄨󵄨 + 𝑎𝐽+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝐽𝑞 (𝜑𝐽𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))󵄨󵄨󵄨󵄨󵄨 + 𝑎𝐾+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨𝑓𝐾𝑞 (𝜑𝐾𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))󵄨󵄨󵄨󵄨󵄨)
+ 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨󵄨𝑔𝑅𝑞 ((𝜑𝑅𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑏𝐼+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨󵄨𝑔𝐼𝑞 ((𝜑𝐼𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑏𝐽+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨󵄨𝑔𝐽𝑞 ((𝜑𝐽𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑏𝐾+𝑝𝑞 󵄨󵄨󵄨󵄨󵄨󵄨𝑔𝐾𝑞 ((𝜑𝐾𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))󵄨󵄨󵄨󵄨󵄨󵄨)
+ 𝑢𝑅+𝑝 )Δ𝑠 ≤ ∫𝑡

−∞
𝑒−𝑐𝑝 (𝑡, 𝜎 (𝑠)) (𝑐+𝑝𝛿+𝑝𝜅 + 𝑛∑

𝑞=1

(𝑎𝑅+𝑝𝑞𝛼𝑅𝑞 𝜅 + 𝑎𝐼+𝑝𝑞𝛼𝐼𝑞𝜅 + 𝑎𝐽+𝑝𝑞𝛼𝐽𝑞𝜅 + 𝑎𝐾+𝑝𝑞 𝛼𝐾𝑞 𝜅) + 𝑛∑
𝑞=1

(𝑏𝑅+𝑝𝑞 𝛽𝑅𝑞 𝜅 + 𝑏𝐼+𝑝𝑞𝛽𝐼𝑞𝜅 + 𝑏𝐽+𝑝𝑞𝛽𝐽𝑞𝜅 + 𝑏𝐾+𝑝𝑞 𝛽𝐾𝑞 𝜅)
+ 𝑢𝑅+𝑝 )Δ𝑠 ≤ 1𝑐−𝑝 (𝑐+𝑝𝛿+𝑝𝜅 + 𝐴𝑅

𝑝𝜅 + 𝐵𝑅𝑝𝜅 + 𝑢𝑅+𝑝 ) = Γ𝑅𝑝 𝜅 + 𝑢𝑅+𝑝𝑐−𝑝 , 𝑝 ∈ Λ.
(29)

In a similar way, we have󵄨󵄨󵄨󵄨󵄨󵄨(Φ𝜑)𝑙𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ Γ𝑙𝑝𝜅 + 𝑢𝑙+𝑝𝑐−𝑝 , 𝑝 ∈ Λ, 𝑙 = 𝐼, 𝐽, 𝐾. (30)

On the other hand, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨((Φ𝜑)𝑅𝑝)Δ (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑐𝑝 (𝑡) ∫𝑡

𝑡−𝛿𝑝(𝑡)
(𝜑𝑅𝑝)Δ (𝑢) Δ𝑢 + 𝑛∑

𝑞=1

(𝑎𝑅𝑝𝑞 (𝑡) 𝑓𝑅𝑞 (𝜑𝑅𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))) − 𝑎𝐼𝑝𝑞 (𝑡) 𝑓𝐼𝑞 (𝜑𝐼𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡))) − 𝑎𝐽𝑝𝑞 (𝑡) 𝑓𝐽𝑞 (𝜑𝐽𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))
− 𝑎𝐾𝑝𝑞 (𝑡) 𝑓𝐾𝑞 (𝜑𝐾𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))) + 𝑛∑

𝑞=1

(𝑏𝑅𝑝𝑞 (𝑡) 𝑔𝑅𝑞 ((𝜑𝑅𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡))) − 𝑏𝐼𝑝𝑞 (𝑡) 𝑔𝐼𝑞 ((𝜑𝐼𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡))) − 𝑏𝐽𝑝𝑞 (𝑡) 𝑔𝐽𝑞 ((𝜑𝐽𝑞)Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))
− 𝑏𝐾𝑝𝑞 (𝑡) 𝑔𝐾𝑞 ((𝜑𝐾𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡)))) + 𝑢𝑅𝑝 (𝑡) − 𝑐𝑝 (𝑡) ∫𝑡

−∞
𝑒−𝑐𝑝 (𝑡, 𝜎 (𝑠)) (𝑐𝑝 (𝑠) ∫𝑠

𝑠−𝛿𝑝(𝑠)
(𝜑𝑅𝑝)Δ (𝑢) Δ𝑢

+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑠) 𝑓𝑅𝑞 (𝜑𝑅𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑎𝐼𝑝𝑞 (𝑠) 𝑓𝐼𝑞 (𝜑𝐼𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑎𝐽𝑝𝑞 (𝑠) 𝑓𝐽𝑞 (𝜑𝐽𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑎𝐾𝑝𝑞 (𝑠) 𝑓𝐾𝑞 (𝜑𝐾𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))))
+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑠) 𝑔𝑅𝑞 ((𝜑𝑅𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑏𝐼𝑝𝑞 (𝑠) 𝑔𝐼𝑞 ((𝜑𝐼𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑏𝐽𝑝𝑞 (𝑠) 𝑔𝐽𝑞 ((𝜑𝐽𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑏𝐾𝑝𝑞 (𝑠) 𝑔𝐾𝑞 ((𝜑𝐾𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))
+ 𝑢𝑅𝑝 (𝑠))Δ𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (1 + 𝑐+𝑝𝑐−𝑝 )(𝑐+𝑝𝛿+𝑝𝜅 + 𝐴𝑅

𝑝𝜅 + 𝐵𝑅𝑝𝜅 + 𝑢𝑅+𝑝 ) = (1 + 𝑐+𝑝𝑐−𝑝 )(Γ𝑅𝑝 𝜅 + 𝑢𝑅+𝑝 ) , 𝑝 ∈ Λ.

(31)

In a similar way, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨((Φ𝜑)𝑙𝑝)Δ (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (1 + 𝑐+𝑝𝑐−𝑝 )(Γ𝑙𝑝𝜅 + 𝑢𝑙+𝑝 ) ,𝑝 ∈ Λ, 𝑙 = 𝐼, 𝐽, 𝐾. (32)

It follows from (29) to (32) and (𝐻4) that󵄩󵄩󵄩󵄩Φ𝜑󵄩󵄩󵄩󵄩X ≤ 𝜅, (33)

which implies that Φ𝜑 ∈ X∗, so the mapping Φ is a self-
mapping from X∗ to X∗. Next, we shall prove that Φ is a
contraction mapping. In fact, for any 𝜑, 𝜓 ∈ X∗, we have󵄨󵄨󵄨󵄨󵄨(Φ𝜑 − Φ𝜓)𝑅𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡

−∞
𝑒−𝑐𝑝 (𝑡, 𝜎 (𝑠))

⋅ (𝑐𝑝 (𝑠) ∫𝑠

𝑠−𝛿𝑝(𝑠)
((𝜑𝑅𝑝)Δ (𝑢) − (𝜓𝑅

𝑝)Δ (𝑢)) Δ𝑢
+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑠) (𝑓𝑅𝑞 (𝜑𝑅𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑓𝑅𝑞 (𝜓𝑅
𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))))− 𝑎𝐼𝑝𝑞 (𝑠) (𝑓𝐼𝑞 (𝜑𝐼𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑓𝐼𝑞 (𝜓𝐼

𝑞 (𝑠 − 𝜏𝑝𝑞 (s))))− 𝑎𝐽𝑝𝑞 (𝑠) (𝑓𝐽𝑞 (𝜑𝐽𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑓𝐽𝑞 (𝜓𝐽
𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))))−𝑎𝐾𝑝𝑞 (𝑠) (𝑓𝐾𝑞 (𝜑𝐾𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑓𝐾𝑞 (𝜓𝐾
𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))))+ 𝑛∑

𝑞=1

(𝑏𝑅𝑝𝑞 (𝑠) (𝑔𝑅𝑞 ((𝜑𝑅𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑔𝑅𝑞 ((𝜓𝑅
𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))

− 𝑏𝐼𝑝𝑞 (𝑠) (𝑔𝐼𝑞 ((𝜑𝐼𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑔𝐼𝑞 ((𝜓𝐼
𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))− 𝑏𝐽𝑝𝑞 (𝑠) (𝑔𝐽𝑞 ((𝜑𝐽𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑔𝐽𝑞 ((𝜓𝐽
𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))−𝑏𝐾𝑝𝑞 (𝑠) (𝑔𝐾𝑞 ((𝜑𝐾𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝑔𝐾𝑞 ((𝜓𝐾
𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))) )Δ𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤ 1𝑐−𝑝 (𝑐+𝑝𝛿+𝑝 + 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞𝛼𝑅𝑞 + 𝑎𝐼+𝑝𝑞𝛼𝐼𝑞 + 𝑎𝐽+𝑝𝑞𝛼𝐽𝑞 + 𝑎𝐾+𝑝𝑞 𝛼𝐾𝑞
+𝑏𝑅+𝑝𝑞 𝛽𝑅𝑞 + 𝑏𝐼+𝑝𝑞𝛽𝐼𝑞 + 𝑏𝐽+𝑝𝑞𝛽𝐽𝑞 + 𝑏𝐾+𝑝𝑞 𝛽𝐾𝑞 ))
⋅ 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X = Γ𝑅𝑝𝑐−𝑝 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X , 𝑝 ∈ Λ.

(34)

In a similar way, we have󵄨󵄨󵄨󵄨󵄨󵄨(Φ𝜑 − Φ𝜓)𝑙𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ Γ𝑙𝑝𝑐+𝑝 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X , 𝑝 ∈ Λ, 𝑙 = 𝐼, 𝐽, 𝐾. (35)

On the other hand, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨((Φ𝜑 − Φ𝜓)𝑅ℎ)Δ (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (𝑐+𝑝𝛿+𝑝 + 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞𝛼𝑅𝑞 + 𝑎𝐼+𝑝𝑞𝛼𝐼𝑞+ 𝑎𝐽+𝑝𝑞𝛼𝐽𝑞 + 𝑎𝐾+𝑝𝑞 𝛼𝐾𝑞 + 𝑏𝑅+𝑝𝑞 𝛽𝑅𝑞 + 𝑏𝐼+𝑝𝑞𝛽𝐼𝑞 + 𝑏𝐽+𝑝𝑞𝛽𝐽𝑞+ 𝑏𝐾+𝑝𝑞 𝛽𝐾𝑞 )) 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X + 𝑐+𝑝𝑐−𝑝 (𝑐+𝑝𝛿+𝑝 + 𝑛∑
𝑞=1

(𝑎𝑅+𝑝𝑞𝛼𝑅𝑞+ 𝑎𝐼+𝑝𝑞𝛼𝐼𝑞 + 𝑎𝐽+𝑝𝑞𝛼𝐽𝑞 + 𝑎𝐾+𝑝𝑞 𝛼𝐾𝑞 + 𝑏𝑅+𝑝𝑞 𝛽𝑅𝑞 + 𝑏𝐼+𝑝𝑞𝛽𝐼𝑞+ 𝑏𝐽+𝑝𝑞𝛽𝐽𝑞 + 𝑏𝐾+𝑝𝑞 𝛽𝐾𝑞 )) 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X = (1 + 𝑐+𝑝𝑐−𝑝 )Γ𝑅𝑝 󵄩󵄩󵄩󵄩𝜑− 𝜓󵄩󵄩󵄩󵄩X , 𝑝 ∈ Λ.

(36)

In a similar way, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨((Φ𝜑 − Φ𝜓)𝑙𝑝)Δ (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (1 + 𝑐+𝑝𝑐−𝑝 )Γ𝑙𝑝 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X ,𝑝 ∈ Λ, 𝑙 = 𝐼, 𝐽, 𝐾. (37)

From (34) to (37) and (𝐻4) it follows that󵄩󵄩󵄩󵄩Φ𝜑 − Φ𝜓󵄩󵄩󵄩󵄩X ≤ 𝜌 󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩X . (38)

Hence, we obtain that Φ is a contraction mapping. Then,
system (17) has a unique pseudo almost periodic solution
in the region X∗ = {𝜑 ∈ X : ‖𝜑‖X ≤ 𝜅}. The proof is
complete.

Theorem 12. Assume that (𝐻1)–(𝐻4) hold; then system (17)
has a unique pseudo almost periodic solution that is globally
exponentially stable.

Proof. FromTheorem 11, we see that system (17) has a pseudo
almost periodic solution 𝑋∗(𝑡) = (𝑋∗

1 (𝑡), 𝑋∗
2 (𝑡), . . . , 𝑋∗

𝑛 (𝑡))𝑇
with initial value Φ∗(𝑠) = (𝜑∗1 (𝑡), 𝜑∗2 (𝑡), . . . , 𝜑∗𝑛 (𝑡))𝑇. Sup-
pose that 𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡), . . . , 𝑋𝑛(𝑡))𝑇 is an arbitrary

solution of system (17) with initial value Φ(𝑠) = (𝜑1(𝑡),𝜑2(𝑡), . . . , 𝜑𝑛(𝑡))𝑇 and let 𝑍(𝑡) = 𝑋(𝑡) − 𝑋∗(𝑡); then we have

𝑍Δ
𝑝 (𝑡) = {−𝑎𝑝 (𝑡) (𝑋𝑝 (𝑡 − 𝛿𝑝 (𝑡)) − 𝑋∗

𝑝 (𝑡 − 𝛿𝑝 (𝑡)))
+ 𝑛∑
𝑞=1

𝐴𝑝𝑞 (𝑡) (𝐹𝑞 (𝑋𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))
− 𝐹𝑞 (𝑋∗

𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))) + 𝑛∑
𝑞=1

𝐵𝑝𝑞 (𝑡)
⋅ (𝐹𝑞 (𝑋Δ

𝑞 (𝑡 − 𝜂𝑝𝑞 (𝑡)))− 𝐹𝑞 ((𝑋∗
𝑞 )Δ (𝑡 − 𝜂𝑝𝑞 (𝑡))))} , 𝑝 ∈ Λ.

(39)

For 𝑝 ∈ Λ and 𝑙 ∈ 𝐸, we define Θ𝑙
𝑝 and Π𝑙

𝑝 as follows:

Θ𝑙
𝑝 (𝜁) = 𝑐−𝑝 − 𝜁 − exp(𝜁 sup

𝑡∈T

𝜇 (𝑠)) (𝑐+𝑝𝛿+𝑝 exp (𝜁𝛿+𝑝)+ 𝐴𝑙
𝑝 exp (𝜁𝜏+𝑝𝑞) + 𝐵𝑙𝑝 exp (𝜁𝜂+𝑝𝑞)) ,Π𝑙

𝑝 (𝜁) = 𝑐−𝑝 − 𝜁 − (𝑐+𝑝 exp(𝜁 sup
𝑡∈T

𝜇 (𝑠)) + 𝑐−𝑝 − 𝜁)⋅ (𝑐+𝑝𝛿+𝑝exp (𝜁𝛿+𝑝) + 𝐴𝑙
𝑝exp (𝜁𝜏+𝑝𝑞)+ 𝐵𝑙𝑝exp (𝜁𝜂+𝑝𝑞)) .

(40)

By (𝐻4), we haveΘ𝑙
𝑝 (0) = 𝑐−𝑝 − Γ𝑙𝑝 > 0,Π𝑙
𝑝 (0) = 𝑐−𝑝 − (𝑐+𝑝 + 𝑐−𝑝 ) Γ𝑙𝑝 > 0,𝑝 ∈ Λ, 𝑙 ∈ 𝐸. (41)

Since Θ𝑙
𝑝 and Π𝑙

𝑝 are continuous on [0, +∞) andΘ𝑙
𝑝(𝜁), Π𝑙

𝑝(𝜁) → −∞, as 𝜁 → +∞, there exist 𝜉𝑝𝑙, 𝜉∗𝑝𝑙 > 0
such that Θ𝑙

𝑝(𝜉𝑝𝑙) = Π𝑙
𝑝(𝜉∗𝑝𝑙) = 0 and Θ𝑙

𝑝(𝜁) > 0 for𝜁 ∈ (0, 𝜉𝑝𝑙), Π𝑙
𝑝(𝜁) > 0 for 𝜁 ∈ (0, 𝜉∗𝑝𝑙), 𝑝 ∈ Λ, 𝑙 ∈ 𝐸. Take𝛾 = min𝑝∈Λ,𝑙∈𝐸{𝜉𝑝𝑙, 𝜉∗𝑝𝑙}; we haveΘ𝑙

𝑝(𝛾) ≥ 0,Π𝑙
𝑝(𝛾) ≥ 0. So, we

can choose a positive constant 0 < 𝜆 < min{𝛾,min𝑝∈Λ{𝑐−𝑝 }}
such that Θ𝑙

𝑝 (𝜆) > 0,Π𝑙
𝑝 (𝜆) > 0,𝑝 ∈ Λ, 𝑙 ∈ 𝐸, (42)
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which imply that, for 𝑝 ∈ Λ, 𝑙 ∈ 𝐸,
exp (𝜆 sup𝑡∈T 𝜇 (𝑠))𝑐−𝑝 − 𝜆 (𝑐+𝑝𝛿+𝑝 exp (𝜆𝛿+𝑝)+ 𝐴𝑙

𝑝 exp (𝜆𝜏+𝑝𝑞) + 𝐵𝑙𝑝 exp (𝜆𝜂+𝑝𝑞)) < 1,(1 + 𝑐+𝑝 exp (𝜆 sup𝑡∈T 𝜇 (𝑠))𝑐−𝑝 − 𝜆 ) (𝑐+𝑝𝛿+𝑝 exp (𝜆𝛿+𝑝)+ 𝐴𝑙
𝑝 exp (𝜆𝜏+𝑝𝑞) + 𝐵𝑙𝑝 exp (𝜆𝜂+𝑝𝑞)) < 1.

(43)

Let 𝑀 = max𝑝∈Λmax𝑙∈𝐸{𝑐−𝑝 /Γ𝑙𝑝}; then by (𝐻4) we have𝑀 > 1. Thus,1𝑀 − min
𝑝∈Λ,𝑙∈𝐸

{exp (𝜆sup𝑡∈T𝜇 (𝑠))𝑐−𝑝 − 𝜆 (𝑐+𝑝𝛿+𝑝 exp (𝜆𝛿+𝑝)
+ 𝐴𝑙

𝑝 exp (𝜆𝜏+𝑝𝑞) + 𝐵𝑙𝑝 exp (𝜆𝜂+𝑝𝑞))} < 0. (44)

Let

‖𝑍 (𝑡)‖ = max
𝑝∈Λ

{max
𝑙∈𝐸

{󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑙𝑝 (𝑡) − 𝑥∗𝑙𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥𝑙𝑝)Δ (𝑡) − (𝑥∗𝑙𝑝)Δ (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨}} ,󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 = max
1≤𝑝≤𝑛

{max
𝑙∈𝐸

{ sup
𝑠∈[−𝜃,0]T

󵄨󵄨󵄨󵄨󵄨󵄨𝜑𝑙𝑝 (𝑠) − 𝜑∗𝑙𝑝 (𝑠)󵄨󵄨󵄨󵄨󵄨󵄨 , sup
𝑠∈[−𝜃,0]T

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝜑𝑙𝑝)Δ (𝑠) − (𝜑∗𝑙𝑝)Δ (𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨}} . (45)

Then, for any 𝜖 > 0, it is obvious that
‖𝑍 (0)‖ < (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) , (46)‖𝑍 (𝑡)‖ < 𝑀(󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) 𝑒⊖𝜆 (𝑡, 0) , ∀𝑡 ∈ [−𝜃, 0]T . (47)

We claim that

‖𝑍 (𝑡)‖ < 𝑀(󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) 𝑒⊖𝜆 (𝑡, 0) , ∀𝑡 ∈ (0, +∞)T . (48)

If (48) is not true, then there must be some 𝑡1 ∈ (0, +∞)T
such that󵄩󵄩󵄩󵄩𝑍 (𝑡1)󵄩󵄩󵄩󵄩 ≥ 𝑀(󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) 𝑒⊖𝜆 (𝑡1, 0) ,‖𝑍 (𝑡)‖ < 𝑀(󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) 𝑒⊖𝜆 (𝑡, 0) , 𝑡 ∈ [−𝜃, 𝑡1)T . (49)

Therefore, there must exist a constant 𝑐 ≥ 1 such that󵄩󵄩󵄩󵄩𝑍 (𝑡1)󵄩󵄩󵄩󵄩 = 𝑐𝑀 (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) 𝑒⊖𝜆 (𝑡1, 0) ,‖𝑍 (𝑡)‖ < 𝑐𝑀 (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) 𝑒⊖𝜆 (𝑡, 0) , 𝑡 ∈ [−𝜃, 𝑡1)T . (50)

Multiplying the both sides of (39) by 𝑒−𝑐𝑝(0, 𝜎(𝑡)) and inte-
grating over [0, 𝑡]T , we get

𝑍𝑝 (𝑡) = {𝑍𝑝 (0) 𝑒−𝑐𝑝 (𝑡, 0) + ∫𝑡

0
𝑒−𝑐𝑝 (𝑡, 𝜎 (𝑠)) (𝑎𝑝 (𝑠) ∫𝑠

𝑠−𝛿𝑝(𝑠)
𝑍Δ
𝑝 (𝑢) Δ𝑢

+ 𝑛∑
𝑞=1

𝐴𝑝𝑞 (𝑠) (𝐹𝑞 (𝑋𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝐹𝑞 (𝑋∗
𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))))

+ 𝑛∑
𝑞=1

𝐵𝑝𝑞 (𝑠) (𝐹𝑞 (𝑋Δ
𝑞 (𝑠 − 𝜂𝑝𝑞 (𝑠))) − 𝐹𝑞 ((𝑋∗

𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))))Δ𝑠} , 𝑝 ∈ Λ.
(51)

In view of (46), (47), and (50) and𝑀 > 1, we have󵄨󵄨󵄨󵄨󵄨(𝑥 − 𝑥∗)𝑅𝑝 (𝑡1)󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨(𝑥𝑅𝑝 (0) − 𝑥∗𝑅𝑝 (0)) 𝑒−𝑐𝑝 (𝑡1, 0)+ ∫𝑡1

0
𝑒−𝑐𝑝 (𝑡1, 𝜎 (𝑠))

⋅ (𝑐𝑝 (𝑠) ∫𝑠

𝑠−𝛿𝑝(𝑠)
((𝑥𝑅𝑝)Δ (𝑢) − (𝑥∗𝑅𝑝 )Δ (𝑢)) Δ𝑢

+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 (𝑠) (𝑓𝑅𝑞 (𝑥𝑅𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))−𝑓𝑅𝑞 (𝑥∗𝑅𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))))



10 Complexity− 𝑎𝐼𝑝𝑞 (𝑠) (𝑓𝐼𝑞 (𝑥𝐼𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑓𝐼𝑞 (𝑥∗𝐼𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))))− 𝑎𝐽𝑝𝑞 (𝑠) (𝑓𝐽𝑞 (𝑥𝐽𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))) − 𝑓𝐽𝑞 (𝑥∗𝐽𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠))))− 𝑎𝐾𝑝𝑞 (𝑠) (𝑓𝐾𝑞 (𝑥𝐾𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))−𝑓𝐾𝑞 (𝑥∗𝐾𝑞 (𝑠 − 𝜏𝑝𝑞 (𝑠)))))+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 (𝑠) (𝑔𝑅𝑞 ((𝑥𝑅𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))−𝑔𝑅𝑞 ((𝑥∗𝑅𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))− 𝑏𝐼𝑝𝑞 (𝑠) (𝑔𝐼𝑞 ((𝑥𝐼𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))−𝑔𝐼𝑞 ((𝑥∗𝐼𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))− 𝑏𝐽𝑝𝑞 (𝑠) (𝑔𝐽𝑞 ((𝑥𝐽𝑞)Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))−𝑔𝐽𝑞 ((𝑥∗𝐽𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))− 𝑏𝐾𝑝𝑞 (𝑠) (𝑔𝐾𝑞 ((𝑥𝐾𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠)))−𝑔𝐾𝑞 ((𝑥∗𝐾𝑞 )Δ (𝑠 − 𝜂𝑝𝑞 (𝑠))))))Δ𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 𝑒−𝑐𝑝 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖)+ 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖)⋅ ∫𝑡1

0
𝑒−𝑐𝑝⊕𝜆 (𝑡1, 𝜎 (𝑠)) (𝑐+𝑝𝛿+𝑝 × 𝑒𝜆 (𝜎 (𝑠) , 𝑠 − 𝛿𝑝 (𝑠))+ 𝐴𝑅
𝑝𝑒𝜆 (𝜎 (𝑠) , 𝑠 − 𝜏𝑝𝑞 (𝑠))+𝐵𝑅𝑝𝑒𝜆 (𝜎 (𝑠) , 𝑠 − 𝜂𝑝𝑞 (𝑠))) Δ𝑠≤ 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖)⋅ {𝑒−𝑐𝑝⊕𝜆 (𝑡1, 0)𝑐𝑀 + ∫𝑡1

0
𝑒−𝑐𝑝⊕𝜆 (𝑡1, 𝜎 (𝑠))

⋅ exp(𝜆 sup
𝑠∈T

𝜇 (𝑠))× (𝑐+𝑝𝛿+𝑝 exp (𝜆𝛿+𝑝) + 𝐴𝑅
𝑝 exp (𝜆𝜏+𝑝𝑞)+𝐵𝑅𝑝 exp (𝜆𝜂+𝑝𝑞)) Δ𝑠}< 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖)⋅ {𝑒−(𝑐𝑝−𝜆) (𝑡1, 0)𝑀 + 1 − 𝑒−(𝑐𝑝−𝜆) (𝑡1, 0)𝑐−𝑝 − 𝜆⋅ exp(𝜆 sup

𝑠∈T

𝜇 (𝑠))× (𝑐+𝑝𝛿+𝑝 exp (𝜆𝛿+𝑝) + 𝐴𝑅
𝑝 exp (𝜆𝜏+𝑝𝑞)+𝐵𝑅𝑝 exp (𝜆𝜂+𝑝𝑞))}

= 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖)⋅ {[ 1𝑀 − exp (𝜆 sup𝑠∈T 𝜇 (𝑠))𝑐−𝑝 − 𝜆⋅ (𝑐+𝑝𝛿+𝑝 exp (𝜆𝛿+𝑝) + 𝐴𝑅
𝑝 exp (𝜆𝜏+𝑝𝑞)+𝐵𝑅𝑝 exp (𝜆𝜂+𝑝𝑞)) ] 𝑒−(𝑐𝑝−𝜆) (𝑡1, 0)

+ exp (𝜆 sup𝑠∈T 𝜇 (𝑠))𝑐−𝑝 − 𝜆⋅ (𝑐+𝑝𝛿+𝑝 exp (𝜆𝛿+𝑝) + 𝐴𝑅
𝑝 exp (𝜆𝜏+𝑝𝑞)+𝐵𝑅𝑝 exp (𝜆𝜂+𝑝𝑞))}< 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) , 𝑝 ∈ Λ.

(52)

Similarly, we can get󵄨󵄨󵄨󵄨󵄨󵄨(𝑥 − 𝑥∗)𝑙𝑝 (𝑡1)󵄨󵄨󵄨󵄨󵄨󵄨 < 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) ,𝑝 ∈ Λ, 𝑙 = 𝐼, 𝐽, 𝐾. (53)

On the other hand, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨((𝑥 − 𝑥∗)𝑅𝑝)Δ (𝑡1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ −𝑐+𝑝 𝑒−𝑐𝑝 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖)+ 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) (𝑐+𝑝𝛿+𝑝𝑒𝜆 (𝑡1, 𝑡1− 𝛿𝑝 (𝑡1)) + 𝐴𝑅
𝑝𝑒𝜆 (𝑡1, 𝑡1 − 𝜏𝑝𝑞 (𝑡1)) + 𝐵𝑅𝑝𝑒𝜆 (𝑡1, 𝑡1− 𝜂𝑝1𝑞 (𝑡1))) + 𝑐+𝑝 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖)× (𝑐+𝑝𝛿+𝑝𝑒𝜆 (𝜎 (𝑠) , 𝑠 − 𝛿𝑝 (𝑠)) + 𝐴𝑅

𝑝𝑒𝜆 (𝜎 (𝑠) , 𝑠− 𝜏𝑝𝑞 (𝑠)) + 𝐵𝑅𝑝𝑒𝜆 (𝜎 (𝑠) , 𝑠 − 𝜂𝑝𝑞 (𝑠))) Δ𝑠< 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖){[ 1𝑀− exp (𝜆 sup𝑠∈T 𝜇 (𝑠))𝑐−𝑝 − 𝜆 (𝑐+𝑝𝛿+𝑝 exp (𝜆𝛿+𝑝)
+ 𝐴𝑅

𝑝 exp (𝜆𝜏+𝑝𝑞) + 𝐵𝑅𝑝 exp (𝜆𝜂+𝑝1𝑞))] 𝑐+𝑝 𝑒−(𝑐𝑝−𝜆) (𝑡1,
0) + (1 + 𝑐+𝑝 exp (𝜆 sup𝑠∈T 𝜇 (𝑠))𝑐−𝑝 − 𝜆 ) × (𝑐+𝑝𝛿+𝑝
⋅ exp (𝜆𝛿+𝑝) + 𝐴𝑅

𝑝 exp (𝜆𝜏+𝑝𝑞) + 𝐵𝑅𝑝 exp (𝜆𝜂+𝑝𝑞))}< 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) , 𝑝 ∈ Λ.

(54)
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Similarly, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨((𝑥 − 𝑥∗)𝑙𝑝)Δ (𝑡1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) ,𝑝 ∈ Λ, 𝑙 = 𝐼, 𝐽, 𝐾. (55)

It follows from (52) to (55) that󵄩󵄩󵄩󵄩𝑍 (𝑡1)󵄩󵄩󵄩󵄩 < 𝑐𝑀𝑒⊖𝜆 (𝑡1, 0) (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 + 𝜖) , (56)

which contradicts the first equation of (49). Therefore, (48)
holds. Let 𝜖 → 0+ leads to

‖𝑍 (𝑡)‖ ≤ 𝑀𝑒⊖𝜆 (𝑡, 0) 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩0 , ∀𝑡 ∈ (0, +∞)T . (57)

Hence, the pseudo almost periodic solution of system (17) is
globally exponentially stable. The proof is complete.

Remark 13. From Theorems 11 and 12, we can find that the
time delays in the leakage term are harmful for the existence
and stability of almost periodic solutions of quaternion-
valued system (1). Therefore, the time delays in the leakage
term cannot be ignored.

Remark 14. In view of Theorems 11 and 12, we can also find
that the neutral terms have an influence on the existence
and stability of the almost periodic solution. Therefore, they
cannot be ignored too.

Remark 15. According toTheorems 11 and 12, it is clear that if
the coefficients of leakage terms of (1) are positive regressive,
then the continuous-time network and its corresponding
discrete-timenetwork have the samedynamics for the pseudo
almost periodicity.

4. An Example

In this section, we give an example to illustrate the feasibility
and effectiveness of our results obtained in Section 3.

Example 1. Let 𝑛 = 2. Consider the following quaternion-
valued neural networks with time delays on almost periodic
time scale T :

𝑥Δ𝑝 (𝑡) = −𝑐𝑝 (𝑡) 𝑥𝑝 (𝑡 − 𝛿𝑝 (𝑡))+ 𝑛∑
𝑞=1

𝑎𝑝𝑞 (𝑡) 𝑓𝑞 (𝑥𝑞 (𝑡 − 𝜏𝑝𝑞 (𝑡)))
+ 𝑛∑
𝑞=1

𝑏𝑝𝑞 (𝑡) 𝑔𝑞 (𝑥Δ𝑞 (𝑡 − 𝜂𝑝𝑞 (𝑡))) + 𝑢𝑝 (𝑡) ,
(58)

where 𝑝 = 1, 2, 𝑡 ∈ T and the coefficients are as follows:𝑐1 (𝑡) = 0.4 + 0.1 󵄨󵄨󵄨󵄨󵄨sin√2𝑡󵄨󵄨󵄨󵄨󵄨 ,𝑐2 (𝑡) = 0.5 − 0.1 |sin 𝑡| ,𝑓1 (𝑥1) = 𝑓2 (𝑥1)= 115 sin𝑥𝑅1 + 𝑖 115 󵄨󵄨󵄨󵄨󵄨cos𝑥𝐼1 − 1󵄨󵄨󵄨󵄨󵄨 + 𝑗 130 sin2𝑥𝐽1+ 𝑘 115 tanh𝑥𝐾1 ,𝑔1 (𝑥1) = 𝑔2 (𝑥1)= 132 (󵄨󵄨󵄨󵄨󵄨𝑥𝑅1 + 1󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑥𝑅1 󵄨󵄨󵄨󵄨󵄨 − 1) + 𝑖 132 sin2𝑥𝐼1+ 𝑗 116 󵄨󵄨󵄨󵄨󵄨𝑥𝐽2󵄨󵄨󵄨󵄨󵄨 + 𝑘 132 sin2𝑥𝐾2 ,𝑎11 (𝑡) = 𝑎12 (𝑡)= 0.2 󵄨󵄨󵄨󵄨󵄨cos (√2𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑖0.1 󵄨󵄨󵄨󵄨󵄨sin (√3𝑡)󵄨󵄨󵄨󵄨󵄨+ 𝑗0.24 |cos 𝑡| + 𝑘0.26 |sin 𝑡| ,𝑎21 (𝑡) = 𝑎22 (𝑡)= 0.28 󵄨󵄨󵄨󵄨󵄨sin (√2𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑖0.32 |cos 𝑡|+ 𝑗0.25 󵄨󵄨󵄨󵄨󵄨cos (√2𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑘0.22 |cos 𝑡| ,𝑏11 (𝑡) = 𝑏12 (𝑡)= 0.16 |cos 𝑡| + 𝑖0.2 󵄨󵄨󵄨󵄨󵄨cos (√3𝑡)󵄨󵄨󵄨󵄨󵄨+ 𝑗0.15 󵄨󵄨󵄨󵄨󵄨sin (√3𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑘0.25 󵄨󵄨󵄨󵄨󵄨cos (√2𝑡)󵄨󵄨󵄨󵄨󵄨 ,𝑏21 (𝑡) = 𝑏22 (𝑡)= 0.2 󵄨󵄨󵄨󵄨󵄨sin (√3𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑖0.18 |sin 𝑡| + 𝑗0.3 |cos 𝑡|+ 𝑘0.26 󵄨󵄨󵄨󵄨󵄨sin (√2𝑡)󵄨󵄨󵄨󵄨󵄨 ,𝑢1 (𝑡) = 𝑢2 (𝑡)= 0.1 cos (√2𝑡) + 𝑖0.15 sin 𝑡+ 𝑗0.09 sin (√2𝑡) + 𝑘0.12 cos (√2𝑡) ,𝛿1 (𝑡) = 0.01 |sin (2𝜋𝑡)| ,𝛿2 (𝑡) = 0.02 sin2 (𝜋𝑡) ,𝜏𝑝𝑞 (𝑡) = 0.2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨cos(𝜋𝑡 + 𝜋2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,𝜂𝑝𝑞 (𝑡) = 0.3 󵄨󵄨󵄨󵄨󵄨󵄨󵄨cos(𝜋𝑡 + 3𝜋2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , 𝑝, 𝑞 = 1, 2.

(59)
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Figure 1: Transient states of four parts with continuous time 𝑡 of (58) in Example 1.

Obviously, (𝐻1) holds. By calculating, we have
𝑐−1 = 0.3,𝑐−2 = 0.4,𝑐+1 = 0.4,𝑐+2 = 0.5,𝛼𝑙1 = 𝛼𝑙2 = 115 ,𝛽𝑙1 = 𝛽𝑙2 = 116 , 𝑙 ∈ 𝐸,𝑎𝑅+11 = 𝑎𝑅+12 = 0.2,𝑎𝐼+11 = 𝑎𝐼+12 = 0.1,𝑎𝐽+11 = 𝑎𝐽+12 = 0.24,𝑎𝐾+11 = 𝑎𝐾+12 = 0.26,

𝑎𝑅+21 = 𝑎𝑅+22 = 0.28,𝑎𝐼+21 = 𝑎𝐼+22 = 0.32,𝑎𝐽+21 = 𝑎𝐽+22 = 0.25,𝑎𝐾+21 = 𝑎𝐾+22 = 0.22,𝑏𝑅+11 = 𝑏𝑅+12 = 0.16,𝑏𝐼+11 = 𝑏𝐼+12 = 0.2,𝑏𝐽+11 = 𝑏𝐽+12 = 0.15,𝑏𝐾+11 = 𝑏𝐾+12 = 0.25,𝑏𝑅+21 = 𝑏𝑅+22 = 0.2,𝑏𝐼+21 = 𝑏𝐼+22 = 0.18,𝑏𝐽+21 = 𝑏𝐽+22 = 0.3,𝑏𝐾+21 = 𝑏𝐾+22 = 0.26,𝑢𝑅+1 = 𝑢𝑅+2 = 0.1,
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Figure 2: Transient states of four parts with discrete time 𝑡 of (58) in Example 1.

𝑢𝐼+1 = 𝑢𝐼+2 = 0.15,𝑢𝐽+1 = 𝑢𝐽+2 = 0.09,𝑢𝐾+1 = 𝑢𝐾+2 = 0.12,𝛿+1 = 0.01,𝛿+2 = 0.02,𝜏+𝑝𝑞 = 0.2,𝜂+𝑝𝑞 = 0.3, 𝑝, 𝑞 = 1, 2.
(60)

It is easy to see that the following conditions hold. Take 𝜅 = 2;
then, we haveΓ𝑅1 = Γ𝐼1 = Γ𝐽1 = Γ𝐾1 = 0.2057,Γ𝑅2 = Γ𝐼2 = Γ𝐽2 = Γ𝐾2 = 0.2702,

max
1≤𝑝≤2

{{{max
𝑙∈𝐸

{{{Γ𝑙𝑝𝜅 + 𝑢𝑙+𝑝𝑐−𝑝 , (1 + 𝑐+𝑝𝑐−𝑝 )(Γ𝑙𝑝𝜅 + 𝑢𝑙+𝑝 )}}}}}}= 1.8713 < 𝜅 = 2,
max
1≤𝑝≤2

{max
𝑙∈𝐸

{Γ𝑙𝑝𝑐−𝑝 , (1 + 𝑐+𝑝𝑐−𝑝 )Γ𝑙𝑝}} = 0.6857 = 𝜌 < 1.
(61)

Therefore, whether T = R or T = Z, all the conditions of
Theorems 11 and 12 are satisfied; hence, we know that system
(58) has a unique pseudo almost periodic solution, which
is globally exponentially stable. This is, the continuous-time
neural network and its discrete-time analogue have the same
dynamical behaviors for the pseudo almost periodicity (see
Figures 1 and 2).

5. Conclusion

In this paper, we have proposed a class of quaternion-valued
neural networks of neutral type with delays in the leakage
term on time scales. Based on the exponential dichotomy
of linear dynamic equations on time scales, Banach’s fixed
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point theorem and the theory of calculus on time scales, we
obtain some sufficient conditions on the existence and global
exponential stability of pseudo almost periodic solutions
for the quaternion-valued neural networks. An example has
been given to demonstrate the effectiveness of our results.
To the best of our knowledge, this is the first time to study
the pseudo almost periodic solutions for quaternion-valued
neural networks on time scales. Our methods used in this
paper can be applied to study other types of quaternion-
valued systems on times scales.
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