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Note on Supervenience and Definability

LLOYD HUMBERSTONE

Abstract The idea of a property’s being supervenient on a class of properties
is familiar from much philosophical literature. We give this idea a linguistic turn
by converting it into the idea of a predicate symbol’s being supervenient on a
set of predicate symbols relative to a (first order) theory. What this means is that
according to the theory, any individuals differing in respect to whether the given
predicate applies to them also differ in respect to the application of at least one
of the predicates in the set. The latter relationship we show turns out to coincide
with something antecedently familiar from work on definability: with what is
called the piecewise (or modelwise) definability, in the theory in question, of
the given predicate in terms of those in the set.

1 The idea of the supervenience of a propertyP on a setS of properties has become
increasingly familiar in the philosophical literature of the past twenty-five years.1 At
its simplest, this relation holds betweenP andS when it is impossible for there to be
two individuals alike in respect to each property inS which are not alike in respect to
P. (Objects “are alike” or “agree” in respect to a property when both have the prop-
erty or both lack the property.) In possible worlds terms, we can take this as saying
that two individuals in any arbitrarily selected world which agree, in that world, on all
properties inS, also agree onP in that world. This is what is sometimes calledweak
or intraworld supervenience, and it contrasts, in particular, withstrong or interworld
supervenience, by which is meant that any two individuals in an arbitrarily selected
pair of worlds which agree, in the respective worlds, on the properties inS, also agree
on P.2 The purpose of the present note is to consider a version of supervenience ap-
plied to monadic predicates in the language of a first-order theory and to relate it to a
well-known concept from definability theory. The reasoning will be entirely elemen-
tary.

2 Philosophicaldiscussions of supervenienceoften involve the question of whether
this or that notion of supervenience amounts to “reducibility” in some sense. Our in-
terest will be in how what we shall be calling supervenience relative to (orin) atheory
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is related to various theory-relative notions of definability. We therefore review the
latter concepts here. (A full discussion with references to the original sources may
be found in the useful survey in Rantala [7]; the reason we define explicit definability
as a special case of piecewise definability is that we shall need the latter, more gen-
eral, concept below.) Ann-ary predicate symbolF in the language of a theoryT is
piecewise definable in T if for some formulasϕ1, . . . , ϕm in that language, none of
which contains occurrences ofF or has variables other thanx1, x2, . . . , xn free in it,
we have

�T ∀x1, . . . ,∀xn(Fx1, . . . , xn ←→ ϕ1)∨ · · ·∨ ∀x1, . . . ,∀xn(Fx1, . . . ,xn ←→ ϕm).

Weadd “in terms of such-and-such items of nonlogical vocabulary” (presumed not to
includeF) when the only nonlogical expressions to appear inϕ1, . . . , ϕm are drawn
from the listed items. For present purposes, the items in question will always be pred-
icate symbols.F is explicitly definable in T (“in terms of a given set of predicates”)
if something of the above form is provable inT wherem = 1 (and only predicates in
the given set occur inϕ1). Finally, F is implicitly definable in T in terms of predicates
G1, . . . , Gk when any two models ofT with the same domain and the same extensions
for G1, . . . , G2 also assign the same extension toF. (“Model of T” means, of course:
structure for the language ofT in which all sentences ofT are true.)

The way implicit definability was just characterized renders it recognizably a
supervenience relation: “no difference here (on interpretation ofF) without a differ-
ence there (on interpretation ofG1, . . . , Gk).” Accordingly, Beth’s Theorem, which
states that wheneverF is implicitly definable inT in terms ofG1, . . . , Gk, F is ex-
plicitly definable inT in terms ofG1, . . . , Gk, may be seen as claiming that some
sort of supervenience implies some sort of reducibility.3 Note, however, that the ob-
jects among whom agreement in certain respects implies agreement in another are
certain first-order structures, namely, models of the theoryT . (It is these which, if
they interpret each ofG1, . . . , Gk alike, must also treatF alike.) Accordingly, this
is the wrong sort of supervenience to connect with the supervenience notions (weak,
strong, . . . ) webegan with. Those concerned agreement among the objects having
or lacking the properties—which we can think of here simply as sets—represented by
such predicates, rather than among models assigning various sets as the predicates’
extensions. Let us, then, consider a theory-relative notion of supervenience in which
the objects among which agreement counts are the individuals in the domains of the
theory’s models, and what constitutes agreement is agreement as to whether or not
these predicates are true of the individuals concerned. This would be the most direct
analogue of the notion of supervenience of properties on sets of properties introduced
in our initial paragraph, except that now properties give way to predicates, and the
whole thing is done relative to a first-order theory. The most straightforward adapta-
tion of those initial ideas will be to monadic predicates, since it is these that are true
or false of the individuals in the domain (of a model of a theory). It may be of interest
to consider what would become of the developments to follow if the definition to be
given below were stated more generally forn-adic predicates(n ≥ 1), but we shall
not consider this here. (Certainly, some of the points made apropos of Corollaries 3.3
and 3.4 at the end of our discussion would not hold in the more general setting.)

Suppose, then, thatT is a first-order theory and among the primitive monadic
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predicates of the language ofT areF, G1, . . . , Gk. (We reserve these letters to stand
for distinct monadic predicates until further notice.) Then we say thatF is superve-
nient on G1, . . . , Gk in T just in case

�T ∀x∀y(((G1x ←→ G1y) ∧ · · · ∧ (Gkx ←→ Gk y)) → (Fx ←→ Fy)).

(Note that the ‘←→’ i n the consequent can be replaced by ‘→’ without loss of logical
strength.) We adapt the above talk of agreement and likeness to the present setting and
say that two objects in the domain of a first-order structure agree on (or are alike with
respect to) a predicate if both lie in the extension of that predicate in the structure or
if both lie outside that extension. Then the present notion is akin to weak, rather than
strong, supervenience in the sense of our opening paragraph because the relation just
defined holds when in any model ofT (compare “in an arbitrarily selected world”),
agreement on each ofG1, . . . , Gk implies agreement onF.

Clearly, if F is explicitly definable inT in terms ofG1, . . . , Gk , then F is su-
pervenient onG1, . . . , Gk in T . For any individuals agreeing on the latter predicates
in a model ofT will agree on the open formula constructed from them and serving
as theϕ in a definition∀x(Fx ←→ ϕ(x)),4 and hence, since we are only considering
structures which are models ofT , will agree onF. We can see that the converse does
not hold—supervenience does not imply explicit definability (relative to an arbitrarily
given theory)—because the argument just provided for the implication from explicit
definability to supervenience works just as well to show that piecewise definability
implies supervenience. This is because of the way models ofT are considered one at
a time. (The point here is that, whereTh(M)—the theory of M—is the set of closed
first-order formulas in the language of a (first-order) structureM which are true inM,
then piecewise definability inT amounts to explicit definability inTh(M) for every
modelM of T . Indeed, piecewise definability is sometimes called modelwise defin-
ability.) Thus we havepiecewise definability =⇒ supervenience, so we could not also
havesupervenience =⇒ explicit definability; otherwise we should have—something
that is certainly not the case—piecewise definability =⇒ explicit definability. Read-
ers for whom it is clear that piecewise definability is strictly weaker than explicit de-
finability should skip the following paragraph.

(A referee for this journal has suggested that an example along the following
lines be included for the benefit of readers who do not find it obvious that piecewise
definability does not imply explicit definability. LetT be the theory comprising the
consequences of∀x(Fx ←→ G1x) ∨ ∀x(Fx ←→ G2x), in the language whose non-
logical vocabulary consists of the predicate symbols figuring in this axiom. By the
choice of axiom,F is evidently piecewise definable in terms ofG1 andG2 in T . Let
M be a structure with the three-element domain{a, b, c} with {a, b} as the extension
of G1 and{a, c} as the extension ofG2. We can expandM to a model ofT in each of
two distinct ways: (i) by taking{a, b} as the extension ofF, and (ii) by taking{a, c}
as the extension ofF. Since the extension ofF is thus not fixed by those ofG1 and
G2 in this model ofT , T does not implicitly defineF in terms ofG1 andG2 , and so
F is not explicitly definable inT in terms of them, its piecewise definability notwith-
standing.)

Though supervenience does not coincide with explicit definability, the possibil-
ity remains open of a coincidence with the weaker property of piecewise definability.
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Let us introduce this possibility (which Proposition 3.2 (below) shows is indeed re-
alized) by looking at a special—and especially manageable—case, in whichk = 1.
Suppose, then, thatF is supervenient onG in some theoryT .

�T ∀x∀y((Gx ←→ Gy) → (Fx ←→ Fy)). (1)

Thus we have (2) and (3).

�T ∀x∀y((Gx ∧ Gy) → (Fx → Fy)). (2)

�T ∀x∀y((¬Gx ∧ ¬Gy) → (Fx → Fy)). (3)

We can manipulate (2) and (3) so that atomic subformulas in the same variable are
grouped together, getting (4) and (5), respectively.

�T ∀x∀y((Gx ∧ Fx) → (Gy → Fy)). (4)

�T ∀x∀y((¬Gx ∧ Fx) → (¬Gy → Fy)). (5)

Having separated the variables, we can now massage (4) and (5) into the disjunctive
forms (6) and (7).

�T ∀x(Gx → ¬Fx) ∨ ∀x(Gx → Fx). (6)

�T ∀x(Fx → Gx) ∨ ∀x(¬Fx → Gx). (7)

Calling the first and second disjunct of the formula in (6), (6i), and (6ii), respectively,
and similarly in the case of (7), we note that

(6i), (7i) � ∀x(¬Fx)

(6i), (7ii) � ∀x(Fx ←→ ¬Gx)

(6ii), (7i) � ∀x(Fx ←→ Gx)

(6ii), (7ii) � ∀x(Fx)

where� is (classical) first-order logical consequence. Thus from (6), (7), and there-
fore from (1), it follows that

�T ∀x(Fx ←→ Gx) ∨ ∀x(Fx ←→ ¬Gx) ∨ ∀x(Fx) ∨ ∀x(¬Fx). (8)

It is easy to see that each of the four disjuncts here, and hence the disjunction, simi-
larly implies the formula in (1), which is therefore equivalent to that in (8). The latter
is not quite in the form required for piecewise definability, but we can adjust the last
two disjuncts so that the letter of the condition is satisfied; we abbreviateGx ∨ ¬Gx
to 	x and its negation to⊥x.

�T ∀x(Fx ←→ Gx) ∨ ∀x(Fx ←→ ¬Gx) ∨
∀x(Fx ←→ 	x) ∨ ∀x(Fx ←→ ⊥x). (9)

Since (9) follows from (1), for the special case of supervenience ofF on a single
predicateG, we have shown that such supervenience implies piecewise definability.
Noting that the four disjuncts involve, on the right, each of the four nonequivalent
Boolean compounds that can be constructed fromGx, we would expect something
similar in the general case, in which the hypothesis is thatF is supervenient inT on
G1, . . . , Gk. For the proof in the general case, however, it would be cumbersome in
the extreme to retrace the analogue of the passage from (1) to (9), and we use a dif-
ferent style of argument—one for which no particular originality is claimed: see note
2.



SUPERVENIENCE AND DEFINABILITY 247

3 Formulas of the form±G1x ∧ ±G2x ∧ · · · ∧ ±Gkx, where±Gix is either the
formulaGix or else the formula¬Gix, will be calledelementary G-conjunctions; we
reserve ‘ψ’ as avariable ranging over these conjunctions. ByψM we mean the set
of elements satisfying such a formula in the structureM. (See note 4.) SimilarlyFM

(alias(Fx)M) isthe extension assigned toF by M. Wecallψ F-favorable just in case
ψM ∩ FM �= ∅. (We should strictly say ‘F-favorable relative toM’ but the relevant
structure will be clear from the context.)

Lemma 3.1 If M is a model for a theory in which F is supervenient on G1, . . . , Gk

then FM = ∪ {ψM|ψ is an F-favorable elementary G-conjunction}.

Proof:

Case 1: ⊆ For each elementa of the domain of any structureM for a language
with the predicates mentioned in the statement of Lemma 3.1, we havea ∈ ψM for
some (indeed for exactly one) elementaryG-conjunctionψ (corresponding toa’s pat-
tern of membership in the sets±GM

i ). So if a ∈ FM , theψM to which a belongs
satisfies theF-favorability condition in the union term, showing thatFM is included
in that union.

Case 2: ⊇ Supposea belongs to the union, and hence to someψM with ψF-
favorable. The latter means that for someb ∈ FM, we haveb ∈ ψM . Now M is
supposed to be a model for a theory in whichF is supervenient onG1, . . . , Gk , and
since we havea, b ∈ ψM, a andb agree on membership in eachGM

i , so they must
agree in respect toFM. But b ∈ FM . Thereforea ∈ FM . �

Weare now in a position to state the main observation of this note.

Proposition 3.2 Let T be a first-order theory with monadic predicates F,G1,. . . ,Gn

in its language. Then F is supervenient on G1, . . . , Gn in T if and only if F is piece-
wise definable in terms of G1, . . . , Gn in T.

Proof:

Case 1: If Clear.

Case 2: Only if Suppose thatT is as described in Proposition 3.2, withF su-
pervenient onG1, . . . , Gn in T . For each modelM of T , we show that there is a
formula ∀x(Fx ←→ ϕ(x)) verified by M, with ϕ a disjunction of elementaryG-
conjunctions. Since there are only finitely many pairwise nonequivalent such disjunc-
tionsϕ, the disjunction of all such∀x(Fx ←→ ϕ(x)) is a formula which will be prov-
able inT . To get each of theseinner disjunctions ϕ from M, we appeal to Lemma 3.1.
Let ψ1, . . . , ψr be all of theF-favorable elementaryG-conjunctions (relative toM).
Then according to Lemma 3.1,FM = ψM

1 ∪ · · · ∪ ψM
r , so we can takeϕ(x) as

ψ1(x) ∨ · · · ∨ ψr(x).

Suppose there are altogethers nonequivalent such disjunctions obtainable from the
models ofT . Then we have, for suitable values of the indices:

�T ∀x(Fx ←→ (ψ1
1 ∨ · · · ∨ ψ1

r1
)) ∨ · · · ∨ ∀x(Fx ←→ (ψS

1 ∨ · · · ∨ ψS
rs
))
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Since the disjunctions of theψ i
j contain no predicates other thanG1, . . . , Gn and no

free variables other thanx, this shows thatF is piecewise definable in terms of these
predicates inT . �

In fact—continuing from the last sentence of the above proof—it shows rather more,
since in our disjunctions of theψ i

j , there are not only no free variables other than
x, but there are no variables at all other thanx. It is worth having some terminology
for such quantifier-freedefinientia, so we introduce the following specialization of
the notion of piecewise definability. For its statement, ‘F’ and ‘G1’, ‘ G2’ , . . . revert
to their use to stand in for predicates of arbitrary arity. We say that ann-ary predi-
cate symbolF in the language of a theoryT is piecewiseBoolean-definable in T (in
terms of predicatesG1, . . . , Gk ) if for some formulasϕ1, . . . , ϕm , each of these being
a Boolean combination of atomic formulas (whose nonlogical vocabulary is drawn
from the listG1, . . . , Gk ), we have:

�T ∀x1, . . . ,∀xn(Fx1, . . . , xn ←→ ϕ1) ∨ · · · ∨ ∀x1, . . . ,∀xn(Fx1, . . . , xn ←→ ϕm)

Analogously, we say thatF is explicitly Boolean-definable in T (in terms of
G1, . . . , Gk ) when a formula of the above form is provable inT , with m = 1.5 Al-
though we give the definition here in general terms, for present applications we are
concerned only with the special case in whichF, G1, . . . , Gk are all monadic.

We are now in a position to say what more the proof of the proposition above
yields than is stated in the proposition itself, namely, that wheneverF is superve-
nient onG1, . . . , Gk in the theoryT , the predicateF is piecewise Boolean-definable
in terms ofG1, . . . , Gk in T . Hence we extract the following information, deleting all
reference to supervenience.

Corollary 3.3 Where T is a first-order theory in a language with monadic predi-
cates F, G1, . . . , Gk in its language, F is piecewise definable in terms of G1, . . . , Gn

in T if and only if F is piecewise Boolean-definable in terms of G1, . . . , Gn in T.

Since explicit definability is a special case of piecewise definability, we have the fol-
lowing corollary.

Corollary 3.4 With T as before: if F is explicitly definable in terms of G1, . . . , Gk

in T, then F is piecewise Boolean-definable in terms of G1, . . . , Gk in T.

We devote the remainder of our discussion to illustrating the phenomenon involved
here and relating it to some of the foregoing remarks.

4 Weleft the proof of theIf direction of Proposition 3.2 above at the word “Clear,”
having remarked earlier that our argument that explicit definability implied super-
venience in fact showed, more generally, that piecewise definability implied super-
venience. The argument went like this: suppose thatF is explicitly definable inT
in terms ofG1, . . . , Gk, say because�T ∀x(Fx ←→ ϕ(x)), whereϕ is built from
G1, . . . , Gk and contains no free variables other thanx. Then F is supervenient on
G1, . . . , Gk in T . For any individuals agreeing on the latter predicates in a model ofT
will have to agree onϕ(x), and hence onF. That was the argument. But in particular
cases we can see that the form ofϕ may enable us to eliminate some ofG1, . . . , Gk
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in the conclusion about whatF is supervenient on inT , thereby getting a stronger
conclusion. (Of course, ifF is supervenient on a set of predicates, it is automati-
cally supervenient on any superset thereof.) For example,ϕ(x) is G1x ∧ ∃y(G2y)

and�T ∀x(Fx ←→ (G1x ∧ ∃y(G2y))). Then F is explicitly definable in terms
of G1, G2 (in T), and we cannot eliminate the reference toG2 in this definability
statement. ButF is supervenient onG1 all by itself (in T), sincea andb agree on
(G1x ∧∃y(G2y))M if they agree onGM

1 : if ∃y(G2y) is true inM thena andb belong
to (G1x ∧ ∃y(G2y))M if and only if they belong toGM

1 — on which we are suppos-
ing them to agree—and if∃y(G2y) is false inM thena andb automatically agree on
(G1x ∧∃y(G2y))M, since this is∅ in that case.6 The internal structure of the formula
∃y(G2y) in the example just considered was irrelevant to the point, and so we repre-
sent it here by the schematic letter ‘χ’ (mnemonic:chi for closed). If theϕ(x) which
provides thedefiniens in an explicit definition (ofF) does not itself secure Boolean-
definability, becauseϕ(x) is of the formϕ1(x) ∧ χ, wherex occurs free inϕ1(x) but
not inχ, then we can move to piecewise Boolean-definability by noting that (11) fol-
lows from (10).

�T ∀x(Fx ←→ (ϕ1(x) ∧ χ)). (10)

�T ∀x(Fx ←→ ϕ1(x)) ∨ ∀x(¬Fx). (11)

As before (transition from (8) to (9) above) to make it clear that we are dealing with
piecewise (Boolean-)definability, we can rewrite (11) as (12).

�T ∀x(Fx ←→ ϕ1(x)) ∨ ∀x(Fx ←→ ⊥x). (12)

The first disjunct of the formula in (11) (or (12)) is the ‘χ-true’ case, and the sec-
ond, the “χ-false” case. The reader is invited to explore the analogues of (11)/(12)
for the cases in which the ‘∧’ of (10) is replaced by ‘∨’ or by ‘←→’. (By judiciously
negatingϕ1(x) or χ, one sees that no other binary Boolean connectives need be con-
sidered.) We have lost information, it should be noted, in passing from (10) to (12),
because the conditions under whichFM = ϕM

1 and those under whichFM = ∅ are
no longer specified. (What Corollary 3.3 says are equivalent are piecewise Boolean-
definability and piecewise definability: it is not claimed that a given “piecewise defi-
nition” and the promised “piecewise Boolean definition” are themselves equivalent.)7

Wecan convert (12) into something recovering this lost information easily enough.

�T (χ → ∀x(Fx ←→ ϕ1(x))) ∧ (¬χ → ∀x(Fx ←→ ⊥x)). (13)

The formula in (13) is a conjunction of what are sometimes called conditional defini-
tions, though of a rather special form here, since the antecedent does not contain the
variable ‘x’ f ree. (To qualify strictly as conditional definitions we should write, for
example, for the first conjunct:

∀x(χ → (Fx ←→ ϕ1(x)),

but of course there is no difference in content between this and the first conjunct in
(13) as written).

In general, a representation ofϕ(x) as ϕ1(x) # χ, where # is some binary
Boolean mode of combination (as is #′ below), is not guaranteed to be available be-
cause the open and closed subformulas in a Boolean compound are too intermingled.
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For example, ifϕ(x) is χ1 ∧ (ϕ1(x) ∨ χ2), there is no representation ofϕ(x) in the
form ϕ1(x) # (χ1 #′ χ2).

8 So for the general case, we should allowϕ(x) to have the
form f(χ1, . . . , χm, ϕ1(x), . . . , ϕn(x)), wheref indicates some Boolean combination
(some polynomial in∧ and¬, say).

Note that since only monadic predicate letters are involved, we can assume
ϕ1(x), . . . , ϕn(x) are themselves quantifier-free. Let the(m + n)-ary truth-function
corresponding in the obvious sense tof be f . We can treat the general case adequately
and avoid a mire of subscripts and ellipses if we consider puttingm = 3, n = 2. Then
ϕ(x) has the form indicated on the right of (14).

∀x(Fx ←→ f(χ1, χ2, χ3, ϕ1(x), ϕ2(x))) (14)

Wedenote the truth-valuesTrue, False by 1, 0, respectively, and use ‘u,’ ‘ v,’ as vari-
ables ranging over{1,0}. From the 5-ary truth-functionf associated withf, wedefine
the binary truth-functionsf 111, f 110, f 101, and so on, by holding fixed the first three
arguments as indicated by the superscripts, that is, by putting:

f 111(u, v)= f (1,1,1, u, v),

f 110(u, v)= f (1,1,0, u, v),

f 101(u, v)= f (1,0,1, u, v), etc.

Wheref111, f110, f101, and so on, are Boolean compoundings corresponding to these
truth-functions, we then have, in the style of (13), a representation of the content of
(14) as the conjunction of

(χ1 ∧ χ2 ∧ χ3) → ∀x(Fx ←→ f111(ϕ1(x), ϕ2(x))),

(χ1 ∧ χ2 ∧ ¬χ3) → ∀x(Fx ←→ f110(ϕ1(x), ϕ2(x))),

(χ1 ∧ ¬χ2 ∧ χ3) → ∀x(Fx ←→ f101(ϕ1(x), ϕ2(x))), etc.

Throwing away the information, given in the antecedents of these (eight) condition-
als, about the conditions saying exactly how the extension ofF is determined by those
of ϕ1(x) andϕ2(x), weobtain a piecewise Boolean definition ofF by disjoining their
consequents.

Wehave concentrated on illustrating Corollary 3.4 showing how explicit defin-
ability, with possible internal quantificational complexity, implies piecewise defin-
ability without such complexity. But similar “Booleanizing” of piecewise definability
proceeds along the same lines, disjunct by disjunct. For example, suppose we have

�T ∀x(Fx ←→ (χ1 ∧ ϕ1(x))) ∨ ∀x(Fx ←→ (χ2 ∨ ϕ1(x))). (15)

Then, in any model ofT , the truth of the first disjunct implies (16), and the second
implies (17).

∀x(Fx ←→ ϕ1(x)) ∨ ∀x(Fx ←→ ⊥x). (16)

∀x(Fx ←→ 	x) ∨ ∀x(Fx ←→ ϕ2(x)). (17)

The disjunction of (16) with (17) is provable inT , establishing piecewise Boolean-
definability of F on the basis of (15), as is promised by Corollary 3.3.
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NOTES

1. We date the emergence of supervenience as a topic in its own from the appearance of
Kim [5] and Hellman and Thompson [2], though the term is not used in the latter pa-
per. For a discussion of [2] in the general framework of the theory of supervenience, see
Haugeland [1], Teller [8]. [5] is now mainly of historical interest, its main claim having
since been retracted by Kim (see [6], p. 65, especially note 18).

2. Strong and weak supervenience are distinguished in various publications of Kim; see
especially the papers reproduced as chapters 4, 5, 7, and 9 of [6]. The reader should be
warned that Haugeland (in [1] and elsewhere) uses “weak supervenience” for another
concept, which in Kim’s terminology (in the papers just cited) is “global supervenience.”
This is a matter of whole worlds agreeing in certain respects (the supervenient respects)
given agreement in others (the subvenient respects). Another point to note is that Kim’s
favored characterizations of supervenience (weak or strong) involve a greater complex-
ity than those sketched here, with a detour down to the subvenient properties and then
back up to the supervenient: thus the class of propertiesS′ is said to be supervenient on
the class of propertiesS when any individual with a propertyP′ ∈ S′ has some (intu-
itively, “maximally specific”) propertyP ∈ S such that any other individual possessing
P possessesP′. The equivalence of this characterization with the traditional characteri-
zation (agreement on every property inS implies agreement on every property inS′) is
then shown by Kim at, for example, p. 58 f. of [6]. The discussion there concentrates on
weak supervenience, and the proof of Lemma 3.1 below involves essentially the same
argument. (The “elementaryG-conjunctions” we employ there correspond to maximally
specific subvenient properties.) However, it is hoped that the somewhat different con-
ceptual orientation of the present discussion will be of interest. The same (pattern of)
argument may also be found—this time apropos of the relation between necessary equiv-
alence and supervenience—in several works of Frank Jackson; see, for example, the first
(new) paragraph on p. 85 of [4]. Finally, I have been informed by my colleague Richard
Holton that similar reasoning is to be found in an unpublished paper (dated 1989) by Bas
van Fraassen. For some further methodological remarks on the traditional characteriza-
tion of (notions of) supervenience, see§1 of Humberstone [3].

3. Thus, Hellman and Thompson pay considerable attention in [2] to the bearing of Beth’s
Theorem on their “determinationism” (a model-theoretic analogue of the concept of
global supervenience alluded to in note 2 above). For further discussion of this point,
see Tennant [9] and for background on Beth’s Theorem, [7].

4. Here we have written ‘ϕ(x)’ as areminder that no variable other thanx may appear free
in ϕ. And we make a natural extension of the talk of agreement on a monadic predicate
letter to agreement on such an open formula: the intention is that for the two individuals
concerned, the formula is true (in the structure in question) when one of them is assigned
to the free variable if and only if it is true when the other is assigned to the free variable.
Below, we denote the set of suchϕ-satisfiers inM by ϕM .

5. This concept goes under the name ‘quantifier-free definability’ in Williamson’s fascinat-
ing study [10] of invertible definitions.

6. Of course, it may be that a closed subformula ofϕ(x) involves no predicate letter other
than figures in open subformulas ofϕ(x), in which case there will not be the kind of
reduction, illustrated by this case, in the set of predicates on whichF is supervenient.
For example,Fx may be defined asG1x ∧ ∃y(¬G1y)—perhaps the simplest example
of a predicate which can be satisfied by some things but not by everything (in a given
domain).
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7. By “piecewise (Boolean) definition” is here meant simply the disjunction (as in the sec-
ond paragraph of this note) whose provability attests to the piecewise (Boolean-) defin-
ability of F.

8. This is a point about truth-functional logic, in the context of which let us say thatq is
extractible from a formulaϕ(q, p1, . . . , pl ) built up from the displayed sentence letters
(all presumed distinct) if there is some Boolean connective # for whichϕ is equivalent to
q # ψ(p1, . . . , pl ), ψ being any formula built fromp1, . . . , pl. Thenq (corresponding
to the ‘ϕ(x)’ of our discussion) is not extractible fromp1 ∧ (q ∨ p2), as one sees by a
truth-table examination.
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