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1. Introduction 
 
In his famous article “The Unreasonable Effectiveness of Mathematics in the Natural 

Sciences” Eugen Wigner argues for a unique tie between mathematics and physics, 

invoking even religious language:  “The miracle of the appropriateness of the language of 

mathematics for the formulation of the laws of physics is a wonderful gift which we 

neither understand nor deserve” (Wigner 1960: 1).  The possible existence of such a 

unique match between mathematics and physics has been extensively discussed by 

philosophers and historians of mathematics (Bangu 2012; Colyvan 2001; Humphreys 

2004; Pincock 2012; Putman 1975; Steiner 1998).  Whatever the merits of this claim are, 

a further question can be posed with regard to mathematization in science more 

generally: What happens when we leave the area of theories and laws of physics and 

move over to the realm of mathematical modeling in interdisciplinary contexts? Namely, 

in modeling the phenomena specific to biology or economics, for instance, scientists 

often use methods that have their origin in physics. How is this kind of mathematical 

modeling justified?  

In the following we will shed light on these questions by focusing on the 

interdisciplinary research practice of synthetic biology. Synthetic biology is a relatively 

novel field of research located at the interface of physics, biology, engineering, and 
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computer science. Being situated in this rather complex disciplinary environment makes 

model building in synthetic biology a highly interdisciplinary task: Methods, techniques, 

strategies, and concepts from various, even distant fields enter into and get intertwined in 

the modeling practice of synthetic biology. One unique characteristic of this practice is 

due to how synthetic biologists combine various kinds of models: model organisms, 

mathematical models and synthetic models. The latter ones comprise a novel type of 

model that are constructed from biological components such as genes and proteins on the 

basis of mathematical modeling. To understand the rationale of this combinational 

modeling approach one needs to take a closer look at the strategies of mathematization in 

synthetic biology.  

We will discuss two interrelated means through which synthetic biologists study 

models of gene regulatory networks: analogies and mathematical templates. Synthetic 

biologists, we argue, proceed to mathematize gene regulatory networks by compound 

analogies that draw inspiration from engineered artifacts on the one hand, and model 

systems with non-linear dynamics on the other hand. Engineered artifacts provide 

material analogs for biological systems, whereas the theory of complex systems offers 

formal analogs in the form of various mathematical templates for analyzing oscillatory 

phenomena.1 A kind of patchwork model results from such compound analogies that, as 

we will discuss, consists of elements that may even draw into opposite directions. These 

mathematical models nevertheless allow synthetic biologists to conceptualize biological 

regulation in terms of positive and negative feedback loops side-by-side with 

mathematical templates and methods that have been applied in various contexts dealing 

with rhythmic/cyclic behavior resulting from non-linear dynamics (e.g., physics, 

chemical kinetics, ecology, economics). In the modeling process the general templates for 

describing various forms of interaction are adjusted to the subject matter in question, but 

they remain nevertheless rather abstract, lacking many known empirical details. This 

contributes to one typical problem constraining the use of template-based mathematical 

modeling: such models are usually underdetermined by data. 

Interestingly, this does not worry synthetic biologists too much. One reason may 

be that they do not consider their models to be representations of any specific naturally 
																																																								
1 For a discussion on material and formal analogies, see Hesse (1966), and Knuuttila and Loettgers (2014). 
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occurring gene regulatory networks. Instead, they consider themselves to be in the 

business of studying general design principles or network motifs of gene regulatory 

systems (i.e., genetic circuits). Being very aware of the fact that the conceptual and 

mathematical means they use are often transferred from other disciplines, they consider 

their models to depict only possible mechanisms underlying biological regulation. Such 

principles could have evolved in natural systems but biological systems might have 

implemented different kinds of regulatory mechanisms. As a consequence the design 

principles studied mathematically are best conceived of as fictions and their very 

fictionality has led synthetic biologists to construct synthetic models on the basis of 

mathematical models. Built from biological material, synthetic models can be considered 

as experimental objects constructed to study the assumptions and credibility of 

mathematical models. Yet, as we will show, the relationship between mathematical 

modeling and synthetic modeling is anything but direct—and synthetic models 

themselves can also be regarded as fictions, albeit concrete ones. In what follows we will 

first briefly introduce the field of synthetic biology and then go over to the discussion of 

the means and process of mathematization in this particular field.  

 
2. Synthetic Biology: A Nascent Interdisciplinary Field 

 

Synthetic biology focuses on the design and construction of novel biological functions 

and systems. It is often understood in terms of the pursuit for well–characterized 

biological parts to create synthetic wholes, and as such it has typically been understood as 

a kind of engineering science in which engineering principles are applied to biology 

(Church 2005). This view is shared by the public understanding of synthetic biology as 

well as the practitioners themselves. According to Jim Collins, who introduced one of the 

first synthetic networks, a toggle-switch, in 2000: “[…] synthetic biology was born with 

the broad goal of engineering or ‘wiring’ biological circuitry – be it genetic, protein, 

viral, pathway or genomic – for manifesting logical forms of cellular control” (Khalil and 

Collins 2010).  

However, a more basic science oriented branch of synthetic biology has 

developed alongside the more engineering and application oriented approaches. This 
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basic science oriented branch of synthetic biology targets our understanding of biological 

organization by probing the basic design principles of life by various strategies of 

modeling (see above).  The design and exploration of synthetic models, i.e. engineered 

genetic circuits constructed from biological material and implemented in natural cell 

environment, provides the most recent strategy of this kind of approach (Sprinzak and 

Elowitz 2005).  

The two branches of synthetic biology are not isolated but overlap and interact in 

several important ways. First, both make use of compound analogies to engineered 

artifacts and abstract model systems showing rhythmic/cyclic behavior. Second, the 

scientists in both branches employ largely the same theoretical tools and techniques. 

Third, the results gained in the basic science approach are utilized by the engineering 

oriented branch and the other way around. The main differences between the two 

branches thus lie in the primary aims of the scientists working in them, that is, whether 

they probe design principles in order to learn about the mechanisms operating in 

biological organisms or search of design principles, which could be used in the 

engineering of novel biological parts and systems. These differences in aims are largely 

rooted in the different scientific backgrounds of the scientists. For example, the majority 

of scientists belonging to the first group probing the basic design principles of biological 

organization comes from physics, whereas most of the scientists belonging to the second, 

more application oriented group has a background in engineering.  Moreover, the 

synthetic genetic circuits are so far largely in their proof of principle phase, and the actual 

applications of synthetic biology, like the synthetic malaria drug artemisinin, have in 

contrast resulted from laborious tinkering processes in the lab. 

 

Modeling Biological Mechanisms 

 

Biological systems have an inherent complexity given by the number of the different 

components and their interactions embodied by them. Metabolic and gene regulatory 

networks provide examples of biological systems that are extensively studied in synthetic 

biology (e.g., Bujara, Schümperli, Pellaux, Heinemann, and Panke 2011; Zhang, 

Rodriquez, and Keasling 2011; Elowitz and Leibler 2000; Nandagopal and Elowitz 
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2011). In what follows, we will focus on gene regulatory networks. Such networks 

consist of interacting genes and proteins.  Genes and proteins interact via transcription 

and translation processes. Figure (1) shows a simplified picture of the main steps of these 

translation and transcription processes. Following the central dogma of molecular biology 

the DNA (deoxyribonucleic acid) carries all the genetic instructions necessary for the 

development, reproduction and functioning of an organism.  The information stored in 

DNA is transcribed in the process of RNA (ribonucleic acid) synthesis into individual 

transportable cassettes, the so-called messenger RNA (mRNA). The individual cassettes 

carrying the blueprint of a protein as sequences of amino-acids, leave the nucleus and 

enter a complex protein machinery, the ribosome. In this machinery the transcribed 

information is translated and used in the formation of the protein.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The diagram shows the main elements of the transcription and translation 

processes according to what is called ‘the central dogma of molecular biology’.2 

																																																								
2 (https://nanohub.org/resources/17701/watch?resid=17812)  
The central dogma was introduced by Francis Crick in 1958. The dogma states that genetic information, 
which is transcribed from DNA into RNA and used in the production of proteins, cannot flow in the reverse 
direction.	
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The transcription process is activated or inhibited by so-called transcription factors. 

These are proteins binding to the promoter site of the gene. Figure (2) shows an example 

of such an activator binding to the promoter site of a gene. In the upper part of the picture 

the transcription factors binding to the promoter site inhibit RNA polymerase. In the 

lower part of the picture the transcription factor gets released by proteins moving into the 

cell and the transcription process starts.  

 

 

 

 

 

 

 

 

 

 
 

Figure 2. A transcription factor binding at the promoter site and inhibiting RNA 

polymerase.3 Only when the transcription factor is released from the promoter site does 

the transcription process start.  

 

Many important biological functions are based on gene regulatory networks. A prominent 

example is the circadian clock, which regulates day and night rhythm in biological 

organisms. The early modelers of biological organization had suggested already in the 

1960s that the rhythmic behavior observed in the circadian clock is controlled by a 

molecular feedback mechanism (Goodwin 1963; Winfree 1967). For example, Colin 

Pittendrigh, who studied circadian rhythms on Drosophila  wrote that the: “[...] 

commonest device in installing regulators—from the control of heartbeat to that of 

protein synthesis—is negative feedback. And one of the innate tendencies of such 
																																																								
3 (https://en.wikipedia.org/wiki/Promoter_(genetics)) The numbers represent the following entities:1: RNA 
Polymerase, 2: Repressor, 3: Promoter, 4: Operator, 5: Lactose, 6: lacZ, 7: lacY, 8: lacA. 
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feedback systems is to oscillate” (Pittendrigh 1961: 122). Yet it has remained an open 

question as to whether gene regulatory networks in biological systems implement control 

in the same way as human engineered systems. 

Synthetic biologists have followed the tradition of modeling the organization of 

biological systems in terms of feedback systems, although the relationship of this 

modeling paradigm to experimental results is far from straightforward. The exploration of 

regulatory networks in model organisms is very complicated even in the case of such 

“simple” organisms as the bacteria Escherichia coli. It requires a lot of experience and 

skill to determine the constituent elements (genes, proteins) of the network, its structure 

and the interaction between the elements. Although the results of experimentation with 

model organisms are interpreted in terms of design principles adapted from engineering, 

recent results in synthetic biology show that gene regulatory networks can function in 

rather counter-intuitive ways. Nature seems to make use of different kinds of principles 

than human engineers, exploiting, for example, stochastic fluctuations (i.e., noise) in a 

functional way (cf. Çağatay, Turcotte, Elowitz, Garcia-Ojalvo, and Suel 2009). Engineers 

typically try to eliminate noise from their systems (see below). Such results as these are 

bound to question the basic concepts and assumptions made by mathematical modeling of 

genetic circuits. This friction between the work on mathematical models vis-à-vis model 

organisms has led synthetic biologists to introduce a novel, additional model type, a 

synthetic model, which is located between mathematical models and model organisms. In 

the next sections we will study how the mathematical models of gene regulatory systems 

are constructed and the way these mathematical models are related to synthetic models. 

 

3. Analogical Reasoning and the Use of Templates 

 

As discussed above, scientists have assumed for some time that negative and/or positive 

feedback mechanisms play an important role in controlling biological functions (Jacob 

and Monod 1961; Goodwin 1963; Winfree 2001). This assumption was to a large part 

based on drawing analogies to engineered systems and it also formed the basic idea on 

which the mathematical models of biological regulation were built. The starting point of 

such mathematical model consists often of what synthetic biologists call a toy model. It is 
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a model of a stylized abstract mechanism, such as a simple negative feedback 

mechanism, which is then being extended and refined taking into consideration some 

subject specific empirical knowledge. Below we will discuss some essential steps of 

designing a mathematical model from an initial toy model. 

Negative feedback loops provide a control mechanism of a very general character: 

models of negative feedback can be found from many different contexts such as 

engineering, biochemistry, and physics. In a negative feedback loop the output feeds back 

into the input of the system repressing the further output and by doing so stabilizes the 

system. In designing mathematical models of gene regulatory networks an oft-used motif 

is autorepression. In the case of autorepression, the gene product of a gene A suppresses 

its own function by binding to its (transcription) site.  

The process of autorepression in gene regulatory networks is shown on the left 

hand side of the picture and the right hand side shows a sketch of a positive feedback 

loop.  

 

 

 

 

 

 

 
Figure 3. Two network motifs: b depicts a negative feedback loop and c a positive 

feedback loop (Alon 2006: 451).  

 

The simple diagram (Figure 3) omits all biochemical details, the structure of genes and 

proteins as well as such essential parts of the mechanism as the binding of the activator to 

the promoter site etc. As discussed in the last section, the gene regulatory mechanism is 

comprised of a transcription and a translation part. During transcription the protein 

functions as a transcription factor binding to the transcription site of the gene. In the first 

step one observes an initial rise in the production of the gene product. But when the 

concentration reaches the repression threshold, which means that the transcription of the 
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gene product becomes repressed, the production rate decreases and the system locks into 

a steady-state level. This locking into a steady state can be accompanied with oscillations 

in the protein level. Finding the conditions for sustained oscillations is one of the aims of 

mathematical modeling because many biological phenomena are periodic/rhythmic, and 

oscillations are thought to underlie the organization of such important gene regulatory 

systems as the circadian clock.  

However, such oscillations also mark an important difference between feedback 

mechanisms in engineering and biology. Whereas oscillations in protein levels are 

essential for controlling biological rhythms, in engineered artifacts oscillations are 

typically regarded as unwanted and the systems are designed in such a way that 

oscillations are suppressed. For example, all kinds of electronic control systems typically 

have to avoid such oscillations in order to function reliably. Familiar examples of such 

devices are thermostats and cruise controls.  This shows that the dynamic features of the 

regulation mechanisms are different in the case of biological systems despite the initial 

analogy to engineering. Brian Goodwin described this point in his influential book 

Temporal Organization in Cells (1963) in the following way: “The appearance of such 

oscillations is very common in feedback control systems. Engineers call them parasitic 

oscillations because they use up a lot of energy. They are usually regarded as undesirable 

and the control system is nearly always designed, if possible, to eliminate them” 

(Goodwin 1963: 5). 

Once the simple sketch of a feedback mechanism has been designed, it has to be 

translated into a mathematical model. Such mathematical model typically consists of a set 

of differential equations, one modeling the production and degradation of a protein and a 

second one modeling the mRNA synthesis and degradation. The model then gets adjusted 

to the particularities of the biological system under study. This modeling approach is very 

common in kinetic theory and the differential equations are essentially kinetic equations. 

The challenge is how to choose the relevant biochemical parameters and to determine 

their values. These limitations are of both of the practical nature (i.e., how to measure the 

values of the biochemical parameters, which are part of dynamical processes), as well as 

theoretical, regarding the lack of knowledge and theoretical insight that would guide the 

search for the most relevant parameters.  
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Clearly, this process of model construction disregards most biochemical details as 

well as the rich structures of genes and proteins. Goodwin discussed this abstract 

character of mathematization accordingly: “[...] in the study of the dynamic properties of 

a class of biological phenomena such as we are attempting, it is necessary to extract a 

manageable number of variables from the very large array which occurs in biological 

system. Is it ever possible to make such an extraction or simplification without doing 

violence to the very basis of biological organization, its inherent complexity? There is 

certainly no a priori answer to this question, and the only procedure is to try to find some 

set of variables which appear to constitute a reasonably self-contained system4 and see if 

one can get meaningful and useful results relating to its behavior.” (Goodwin 1963: 9). 

The work by Goodwin on temporal organization in cells has been fundamental in 

modeling cyclic processes in biological systems such as the circadian clock. He provided 

the elementary mathematical model that functioned as a basic template for the 

construction of such synthetic models as the Repressilator, nearly four decades later.  

Let us finally note how the quote by Goodwin mediates the lingering sense of not 

knowing much of the details. And even after the 1980s when experimental data on genes 

and proteins involved in circadian clocks in various model organisms started to 

accumulate, the situation has not changed too much. The limits to what the scientists 

know about the components, organization and biochemical details of biological systems 

such as the circadian clock are still pressing. Because of this the already established 

conceptual frameworks from other areas, such as negative and positive feedback loops, 

provide at least a starting point for the first modeling attempts. And a corresponding 

mathematical framework is provided by the computational templates and methods that 

are used in modeling non-linear dynamic systems. These initial mathematical models for 

representing and studying various kinds of abstract feedback systems need mathematical 

articulation and adjustment in view of the systems at hand, yet modelers need to 

simultaneously take into account the mathematical constraints on how much detailed 

information can be expressed and studied by these models. 

																																																								
4 This notion of a “reasonably self-contained system” bears an interesting link to the theme of fiction 
discussed below in section 5.  
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Mathematical Templates for the Study of Gene Regulation 

 

The general equations used by many systems and synthetic biologists (e.g., Goodwin 

1963; Elowitz and Leibler 2000; Alon 2006) to describe the processes of transcription 

and translation are of the following form:  

 

   (1) 

 

where m is the concentration of RNA and p the concentration of protein ,  and   the 

production, and  and  the degradation rates of RNA and the protein. This set of 

differential equations is called rate equations. It is used in chemical kinetics to describe 

the rate of reactions. These equations provide an example of what Paul Humphreys 

(2004) calls a computational template. With a concept of a computational template 

Humphreys refers to genuinely cross-disciplinary computational devices, such as 

functions, sets of equations, and computational methods, which can be applied to 

different problems in various domains. An example of such a template is the Lotka-

Volterra model, which provides one of the simplest templates for modeling non-linear 

dynamics. In fact, the rate equations are at a formal level close to Lotka-Volterra 

equations.5 The equations are of such a general character that without knowing that they 

are describing transcription and translation in a genetic network one could as well take 

them to describe something else, for instance some chemical reaction. In other words, 

these differential equations are able to describe the general dynamic behavior of various 

kinds of systems independently from many particularities of these systems. In addition to 

generality, Humphreys explains the cross-disciplinary usability of computational 

templates by their tractability. This is one important reason for the introduction of the rate 

																																																								
5 For Lotka-Volterra equations as computational templates, see Knuuttila and Loettgers (2011, 2016). 
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equations from chemical kinetics to the study of genetic regulation: one can easily 

calculate the steady states of the system. 

 

The steady states are calculated in the following way:  

 

 
 

the condition for the steady state is fulfilled by: 

 

 

with: 

 

 

 

On the basis of these general equations it is possible to specify in more detail the kind of 

regulation process one is going to study. For example, if the protein p in the set of general 

equations (1) functions as a repressor one has the case of negative autoregulation/ 

negative feedback loop. In this case the protein p inhibits the transcription process and 

therefore its own production.  This will lead to oscillations in the protein level.  

A first possible step in the adjustment of the differential equations consists in 

making the assumption that RNAp (RNA polymerase) binds fast to the transcription site 

being represented by the promoter activity function. This simplifies the problem in such a 

way that one does not need to take explicitly into consideration the binding of RNAp.6 

																																																								
6 Other scientists such as Brian Goodwin take the binding of the RNAp into account. This makes the 
differential equations more difficult by adding a further variable.   
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The differential equations for the process of autorepression are then of the following 

form:   

 

  

 

with  as the promoter activity function and r the number of repressors. The 

differential equations are non-linear and coupled. The change in the number of m 

(mRNA) depends on the number of the repressors r, and the other way around, the 

number of repressors on the number of mRNA.  The resulting set of non-linear coupled 

differential equations cannot be solved analytically.  

In sum, in mathematizing biological circuits systems synthetic biologists typically 

start from the analogies drawn to electric circuits and render the network motifs that 

describe various kinds of feedback loops into equations by using the toolbox of modeling 

complex systems, especially the non-linear differential equations. However, as a result 

the models arrived at are abstract in that they lack a lot of details, and furthermore, there 

is the problem that the formalisms have not typically been developed with biological 

systems in mind, although they have been adjusted to take into account some features of 

the subject matter in question. This abstract, hypothetical and interdisciplinary nature of 

the mathematical models of genetic circuits has led synthetic biologists to develop a 

novel modeling method, synthetic modeling. Synthetic models probe to what extent it is 

legitimate to suppose that gene regulatory networks function on the basis of feedback 

mechanisms of some kind. Synthetic models are biological networks that are engineered 

from genes and proteins on the basis of mathematical models. In that sense they can be 

considered epistemic tools that are constructed to study the design principles depicted by 

the mathematical models.7 In a sense this strategy can be seen as a way to materially 

embody and recontextualize the template-based, sparse and “foreign” mathematical 

																																																								
7 On the notion of an epistemic tool, see Knuuttila (2011). 
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models into the actual biological conditions where the dynamic, mechanism or function 

under study is located.  

 

4. Synthetic Modeling - The Repressilator 
 

The Repressilator is a simple engineered gene regulatory network. It is one of the first 

and most famous synthetic models, introduced in 2000 by Michael Elowitz and Stanislas 

Leibler (Elowitz and Leibler 2000). The Repressilator consists of three interacting genes 

connected via a negative feedback loop creating oscillations in the protein level. In gene 

regulatory systems, as we have seen, oscillating proteins are the essential part of the 

control.  The basic network design is taken from electronics: The Repressilator is a 

biological version of a ring oscillator. Before the Repressilator was built, Elowitz and 

Leibler designed a mathematical model of it utilizing mathematical tools that had been 

developed to study the biological feedback systems (discussed in the previous section).8 

One particular book was of special importance for the design of the Repressilator: 

Biological Feedback by Thomas and D'Ari (1990), which presents a formal methodology 

for analyzing the dynamic behavior of complex systems.9 In this book feedback systems 

are analyzed and described in a very general way—that is, it provides computational 

templates for analyzing different kinds of feedback systems.  

 

 

The Mathematical Model of the Repressilator  

 

Already the seemingly simple set of differential equations presented in the section 3 leads 

to complex dynamics. More complicated models of gene regulation can be built on this 

basic template. The mathematical model underlying the Repressilator provides an 

example of such a model (Elowitz and Leibler 2000). The Repressilator consists in three 

genes,  and , which are arranged in such a way that they inhibit each others’ 

																																																								
8 For example, the properties and dynamic features of network motifs describing recurrent structures in 
genetic networks (e.g. feed-forward and feed-back loops) can be analyzed by making use of the Michaelis-
Menten equations (Berg, Tymoczko and Stryer 2002). 
9 Personal communication by Michael Elowitz.	
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activity (see Figure 4). The fourth gene used in the construction of the Repressilator is a 

Green Fluorescent Protein (GFP). The GFP gene is not part of the differential equations, 

as it does not contribute to the dynamic of the system (as discussed below). The dynamic 

of the Repressilator results from the following mechanism: The protein related to each 

gene represses the protein production of its neighboring gene. This leads to oscillations in 

the protein levels of the respective genes. 

 

 

 

 

 

 

 

 
Figure 4. The main structure of the Repressilator 

 

 

The mathematical model Leibler and Elowitz constructed was based on the two 

differential equations for autorepression. In the case of the Repressilator, instead of one 

gene and its protein, one has 3 genes and proteins—and therefore 6 coupled differential 

equations of the following form:  
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The three proteins lacl, tetR, cl are produced by the genes of the Repressilator. The set of 

differential equations is basically of the same form as the one discussed above. It consists 

of a production and a degradation term.  As before  denotes the number of proteins and

 the number of mRNA. In the case of a saturating number of repressors, the number of 

proteins is given by  because of some leakiness at the binding side. In the case of no 

repressors, the number of proteins is given by , which denotes the ratio of the 

protein over the mRNA decay rate. The Hill coefficient denoted by  describes the 

binding strength of the proteins to the transcription site. Thus the differential equations 

take into account specific biomolecular properties such as leakiness and binding 

strength.10 However, those parameters are usually not known and have to be estimated by 

computer simulations. In those computer simulations a stability diagram is produced 

marking regions of stable and unstable solutions of the differential equations for different 

values of and . Only when the studied state becomes unstable, sustained 

oscillations may occur. Since Elowitz and Leibler were interested in regulation by 

oscillations they focused on the latter case. Only sustained limit-cycle oscillations could 

provide the rhythm for controlling day and night rhythms in biological organisms.   

The computer simulations performed by Leibler and Elowitz gave them more 

insight into the biochemical conditions of sustained oscillations: “We found that 

oscillations are favoured by strong promoters coupled to efficient ribosome-binding sites, 

tight transcriptional repression (low ‘leakiness’), cooperative repression characteristics, 

and comparable protein and mRNA decay rates” (Elowitz and Leibler 2000: 336).  

To sum up, the preceding discussion on mathematical modeling in synthetic 

biology shows how a mathematical model of gene regulation is constructed: by 

introducing rate equations from chemical kinetics and combining them with a special 

control mechanism adopted from electrical engineering one can arrive at a general form 

of coupled differential equations. These differential equations need then to be adapted to 

the subject matter under investigation by specifying parameters such as binding strength 

and by exploring different possible dynamics related to the parameters.  All these 

																																																								
10 Even if all the active sites of the proteins are occupied by repressors one observes some production of 
proteins, which is expressed by . This is what is meant by leakiness.  
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modeling activities can be best described as developing and exploring a blueprint for the 

construction of the subsequent synthetic model.   

  

The Repressilator 

 

The synthetic model, the Repressilator, was constructed on the basis of the mathematical 

model and consists of two parts (Figure 5). 

 

 

Figure 5. The main components of the Repressilator (left hand side) and the Reporter (right hand 

side) (Elowitz and Leibler 2000: 336). 

 

In the diagram the synthetic genetic regulatory network, the Repressilator, is shown on 

the left hand side. The outer part is an illustration of the plasmid constructed by Elowitz 

and Leibler. The plasmid is an extra-chromosomal DNA molecule integrating the three 

genes of the Repressilator. Plasmids occur naturally in bacteria. In the state of 

competence, bacteria are able to take up extra chromosomal DNA from the environment. 

In the case of the Repressilator, this property allowed the integration of the specifically 

designed plasmid into E.coli bacteria.  The inner part of the illustration represents the 

feedback loop between the three genes, , , and l cl , whose dynamics was 
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studied in advance by the mathematical model. The left-hand side of the diagram shows 

the Reporter consisting of a gene expressing a green fluorescent protein (GFP), which is 

fused to one of the three genes of the Repressilator.  

The construction of the Repressilator critically depended on the development of 

new methods and technologies, such as the construction of plasmids, Polymerase Chain 

Reactions (PCR) and Green Fluorescent Proteins (GFP). GFP became available in the 

mid-1990s (Chalfie, Tu, Euskirchen, Ward, and Prasher 1994) and very soon also 

fluorescent proteins with yellow (YFP) and red channels (CFP) were introduced (Elowitz, 

Surette, Wolf, and Leibler, 1997). By fusing GFPs into a gene regulatory network, 

implemented within for example E. coli, the expression of genes becomes visible and can 

be analyzed. Figure (6) shows a picture of “blinking bacteria” from the work of Michael 

Elowitz (Elowitz, Levine, Siggia, and Swain 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. The picture shows E.coli bacteria into which next to GFP’s also Yellow and 

Red Fluorescent Proteins have been introduced (Elowitz, Levine, Siggia, andSwain 2000 

1184). 

 

  

In analyzing the intensity of the light emitted by the GFP, YFP, and CFP of the E.coli, 
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synthetic biologists like Elowitz and his co-workers, try to get insight into the dynamic of 

such networks and how they give rise to specific biological functions. This kind of 

analysis comes with several challenges and difficulties. For example, the measurements 

may indicate that two genes interact, but this does not necessarily mean that one can 

assign in a straightforward fashion a mechanism underlying that interaction. Moreover, 

even if the two genes interacted, this does yet not mean that this interaction would play 

any functional role in the biological system. 

The GFP oscillations in the protein level of the Repressilator made visible the 

molecular behavior of transformed cells, i.e. the cells in which the Repressilator was 

implanted. It turned out that the Repressilator was indeed able to produce oscillations at 

the protein level but these oscillations showed irregularities. Interestingly, to find out 

what was causing such noisy behavior Elowitz and Leibler reverted back to mathematical 

modeling. In designing the Repressilator, Elowitz and Leibler had used a deterministic 

model. A deterministic model does not take into account stochastic effects such as 

stochastic fluctuations in gene expression. Performing computer simulations on a 

stochastic version of the original mathematical model, Elowitz and Leibler were able to 

reproduce similar variations in the oscillations as observed in the synthetic model. This 

led researchers to the conclusion that stochastic effects may play a role in gene 

regulation—which gave rise to a new research program attempting to identify sources of 

noise in biological systems and the effect of noise on the dynamics of the system (e.g., 

Swain et al. 2002). This research program makes extensive use of combinational 

modeling: the role of noise in biological systems was not only studied and explored by 

making use of mathematical and synthetic modeling but also by comparing the network 

architectures in model organisms such as B. subtilis and synthetic systems (e.g., Süel et 

al. 2007). Model organisms have become an increasingly important part of the modeling 

practice of synthetic biology laboratories.  

 
5. Fictions: Abstract and Concrete 

 

Above we have described the complex interplay of mathematical modeling and synthetic 

modeling in synthetic biology. Due to the way mathematical models are constructed they 
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remain abstract and describe only possibilities. However, this is also an advantage of 

mathematical modeling as the abstract general templates make it possible to study several 

possible scenarios by adjusting them accordingly. This gives modelers a handle on how 

things could be and what reasons might underpin why these things might be organized in 

this or that way. The case of the Repressilator showed how synthetic modeling can probe 

the biological realisticness or implementability of the possible mechanisms depicted by 

mathematical models.  

It is already evident how synthetic modeling has affected synthetic biology: 

Biology in all its complexity has occupied the central stage. Important engineering 

notions on which synthetic biology has been grounded, such as noise and modularity, 

have been reinterpreted and some analogies drawn to engineering have been questioned 

(see Knuuttila and Loettgers 2013, 2014). 

Yet, in order to study the new questions raised by synthetic modeling, researchers 

typically revert back to mathematical modeling. A good example of this is provided by a 

recent study by Tatiana T. Marguéz-Lago and Jörg Stelling (2010) who, by employing a 

series of what they call “minimal models,” studied some counter-intuitive behaviors of 

genetic circuits with negative feedback. As discussed above, the Repressilator and related 

studies made synthetic biologists seriously consider how noise could have a functional 

role in biological organization (cf. Loettgers 2009). Marguéz-Lago and Stelling have 

further analyzed the implications of stochastic fluctuations (i.e., noise) by mathematical 

modeling. They write: “It has often been taken for granted that negative feedback loops 

in gene regulation work as homeostatic control mechanisms. If one increases the 

regulation strength a less noisy signal is to be expected. However, recent theoretical 

studies have reported the exact contrary, counter-intuitive observation, which has left a 

question mark over the relationship between negative feedback loops and noise” 

(Marguéz-Lago and Stelling 2011: 1743). Marguéz-Lago and Stelling’s article is a telling 

example of how mathematical models are used to explore different possible explanations 

for such unexpected behaviors. Starting out from a simple toy model, one that cannot 

represent realistically any biological system, the scientists explore the conditions for 

different observed behaviors.  They create different possible design principles, which 

could occur but do not necessarily exist in any natural systems. Thus the way 



	 21	

mathematical models are designed and used in synthetic biology serves to highlight their 

fictional character.  

This exploration of possible natural design principles resonates interestingly with 

the recent philosophical discussion on the fictional nature of modeling (cf. Suárez 2009).  

For instance, Peter Godfrey-Smith approaches the contemporary model-based theoretical 

strategy in terms of imagined non-actual, objects which are investigated and explored in 

order to learn something about real-world objects. An important property of these 

imagined non-actual objects is that they could be concrete if real. Or in the words of 

Godfrey-Smith: “[…] what I see model-builders are after is trying to describe and 

understand systems that are only imaginary, but which would be concrete if real” 

(Godfrey-Smith 2009: 101). Synthetic biologists proceed in this way, taking this process 

even a step further by constructing concrete fictions. The mark of fiction is thus not in its 

imaginary non-concrete nature but its being a self-contained system that can be 

manipulated and explored (Knuuttila 2009; Rouse 2009). By engineering gene regulatory 

networks from biological components synthetic biologists design concrete fictions, which 

can be tested by and compared with mathematical models—or even transferred into an 

engineered object fulfilling a specific task.  

It is not difficult to uncover the fictional features of a synthetic model such as the 

Repressilator although it is a biological construct functioning in a living cell: Its 

components (and their number and arrangement) had to be chosen in view of what would 

be optimal for the behavior under study. The genes used in the Repressilator do not occur 

in such a combination in any known biological system but are chosen and tuned on the 

basis of the simulations of the underlying mathematical model and other background 

knowledge11—in such a way that the resulting mechanism would allow for sustained 

oscillations. These technical constraints imply a constraint on what can be explored by 

such synthetic models: they also study possible design principles in biological systems. In 

that synthetic models are like mathematical models, they still only provide “how-

possibly” explanations. This emphasis is clear  from the writings of synthetic biologists. 

																																																								
11 This draws synthetic modeling close to simulation modeling, which brings to mathematical modeling 
exploratory and experimental features (e.g., Lenhard 2007). 
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Leibler and Elowitz did not claim that their synthetic system corresponds to any 

actual mechanism at work in biological systems. On the contrary, they were very much 

aware of the limitations of their procedure of drawing analogies to mechanisms, which 

have been proven to work in engineering but not necessarily in biology. Elowitz and 

Leibler described their expectations concerning the outcome of the Repressilator: “We 

did not set out to describe precisely the behaviour of the system, as not enough is known 

about the molecular interactions inside the cell to make such a description realistic. 

Instead, we hope to identify possible classes of dynamic behaviour and determine which 

experimental parameters should be adjusted to obtain sustained oscillations” (Elowitz and 

Leibler 2000: 337). Sprinzak and Elowitz in turn write in the introduction of their review 

article on synthetic biology: “They [synthetic models] fail to operate as reliably, but they 

provide a 

proof of principle for a synthetic approach to understanding genetic circuits” (Elowitz 

and Sprinzak 2005: 443). Accordingly, synthetic models could provide a proof of 

principle for the possibility that such a mechanism as negative feedback could function as 

control mechanisms in biological systems. This is due to the fact that, despite their 

fictional character, synthetic models are closer to the actual biological organisms, in so 

far as they are expected to function under the same material constraints as biological 

systems. This feature draws synthetic models closer to experimentation and because of 

this they can be seen as partly bridging the gap between experimentation in model 

organisms and mathematical modeling. But such a proof is of course far from definite, 

which is precisely the reason synthetic biologists make use of the combinational 

approach. 

Finally, the fictional nature of synthetic models shows also what goes 

unrecognized if one takes too literally the idea of mathematical models as blueprints for 

the design and construction of synthetic models. Namely, when talking about 

mathematical models, synthetic biologists often refer to them as blueprints. Yet the 

notion of a blueprint gives the impression of a ready-made, fixed thing that would 

function in a more definite manner, like architectural plans for a house. To describe the 

mathematical model underlying a synthetic model as a blueprint partly misses the 

explorative role of mathematical models.  They provide tools for studying possible 
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realizations or scenarios, or what synthetic biologists call design principles or motifs, 

emulating engineering scientists.  

     

6. Concluding Remarks 
 

Above we have studied the ways in which synthetic biologists make use of compound 

analogies by invoking engineering notions such as feedback system, and utilizing 

computational templates from the study of complex systems. We have argued that 

because the mechanisms underlying biological functions such as the circadian clock are 

largely not known, scientists probe them by using control mechanisms, which have been 

proven to work in other scientific contexts. This makes mathematical modeling, we 

suggest, inherently fictional (cf. Weisberg 2007) —but it simultaneously enables 

scientists to make use of cross-disciplinary computational templates and modeling 

methods. Indeed, the tools and templates that have been developed over the last decades 

by the study of complex systems provide an important reason why synthetic biologists 

make use of feedback mechanisms in describing and designing mathematical models of 

gene regulatory networks. Here also the advancement of computer technologies and the 

possibility of simulating the non-linear dynamics of feedback systems played a prominent 

role. Only with the availability of computer technologies and simulations could the space 

of possible dynamic behaviors of mathematical models be explored, and made use of in 

the construction of synthetic models. 

But of course this analogical procedure of transporting concepts and tools from 

other fields of study is bound to introduce some uncertainties in the new terrain of 

application. As we have seen, such engineering-inspired control mechanisms may not 

resemble those that have evolved in natural processes. They are, indeed, merely possible 

design principles. This then comes close to the present philosophical discussion on the 

fictional nature of modeling—moreover by providing a rationale for it, something that the 

philosophical discussion on fictions largely lacks. This fictional character is also affirmed 

by synthetic biologists themselves who envision that, as a result of the synthetic 

approach, the entire field of biology might undergo an important change “from a 



	 24	

discipline that focuses on natural organisms to one that includes potential organisms” 

(Elowitz and Lim 2010: 889). 

In this paper we have concentrated on the basic science-oriented branch of 

synthetic biology that seeks to understand the general design principles of biological 

organization on the level of their minimal, or sufficient, components and features. Let us 

note, however, the double meaning of the quest for design principles in synthetic biology. 

On the one hand, as we have discussed, synthetic biologists consciously create fictional 

systems in order to try out various design principles. In electrical engineering, for 

example, these design principles have well-understood properties and the challenge is to 

find out whether, and to what extent, they apply in the context of biology. On the other 

hand, the study of possible design principles aims for engineering novel biological parts 

or systems. Even if such design principles may not have evolved, they could be 

constructed and used for various purposes, for example for vaccines (e.g., the work of Jay 

Kiesling).   

Last but not least, the testing of whether a design principle can be found to 

operate in natural systems requires a laborious combinational use of mathematical 

models, experimentation on model organisms, and synthetic models. This approach has 

already led to a change in our understanding of how biological systems function and 

served to underline their differences vis-à-vis engineered artifacts. It will be interesting to 

see what kind of impact this will have on the mathematical methods and techniques used 

in modeling biological organization.  
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