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Abstract. Formal symptoms of relevance usually concern the propositional variables
shared between the antecedent and the consequent of provable conditionals. Among the
most famous results about such symptoms are Belnap’s early results showing that for
sublogics of the strong relevant logic R, provable conditionals share a signed variable
between antecedent and consequent.

For logics weaker than R stronger variable sharing results are available. In 1984, Ross
Brady gave one well-known example of such a result. As a corollary to the main result of
the paper, we give a very simple proof of a related but strictly stronger result.
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1. Introduction

Intuitively, the logic L is a relevant logic just when ⊢L A → B only if the content of A
is somehow related to the content of B. Formal symptoms of relevance usually concern
the propositional variables shared between the antecedent and the consequent of provable
conditionals. Among the most famous results about such symptoms are the following
theorems proved in 1960 by Belnap.1

Theorem 1 (The Weak Belnap Theorem). If L is a sublogic of the logic R and ⊢L A→ B,
then some variable p occurs in both A and B.

Theorem 2 (The Strong Belnap Theorem). If L is a sublogic of the logic R and ⊢L A→ B,
then some variable p occurs with the same sign in both A and B.

Note that the notion of ‘sign’ invoked in Theorem 2 will be explained below. For the
moment, we note only that for logics weaker than R, we can strengthen the conditions we
put on the variable being shared. One step in this direction was taken by Brady in 1984,
when he proved the following result:

Theorem 3 (The Weak Brady Theorem). If L is a sublogic of the logic DR and ⊢L A→ B,
then some variable p occurs at the same depth in both A and B.

In [5], using essentially the same techniques Brady used, I proved the following strength-
ening of his result:

Theorem 4 (The Strong Brady Theorem). If L is a sublogic of the logic DR and ⊢L A→ B,
then some variable p occurs at the same depth and with the same sign in both A and B.

1See [2] for Belnap’s proof of what I here am calling the Strong Belnap Theorem. Since the Weak Belnap
Theorem clearly follows from the Strong Belnap Theorem, we should take this to be the first instance of a proof
of either result. Also worth noting is that the proof in [2] only technically proves the weak Belnap theorem for
subsystems of the weaker logic E, rather than R. However, the proof in [2] is taken up nearly word-for-word as the
proof of Theorem 2 found in Section 22.1.3 of [1].
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What we will show in this paper is that, for a restricted logic that in [?] I called DR−, the
Belnap Theorems and the Brady Theorems are more tightly connected than meets the eye.
In particular one consequence of the result I prove is that logics generated by any subset of
DR’s axioms using any subset of DR−’s rules have a feature that I below call hyperformality,
and it is a consequence of hyperformality that, in such logics, violations of the Weak Brady
Theorem can be turned into violations of the Weak Belnap Theorem and violations of the
Strong Brady Theorem can be turned into violations of the Strong Belnap Theorem. A nice
consequence of this discussion is that we get nice, ‘user-friendly’ proofs of Brady’s results,
restricted to these logics.

2. Some Setup

We work in a standard propositional language with the connectives ∧, ∨, →, and ¬. Our
interest will center on the strong relevant logic R made famous by [1], the logic called DR
in [3], and the fragment of DR known as DR− examined in [?]. These logics contain the
logic DW, axiomatized below, as a common fragment:
A1. A→ A

A2. (A ∧ B)→ A/B

A3. A/B→ (A ∨ B)

A4. ((A→ B) ∧ (A→ C))→ (A→ (B ∧C))

A5. ((A→ C) ∧ (B→ C))→ ((A ∨ B)→ C)

A6. (A ∧ (B ∨C))→ ((A ∧ B) ∨ (A ∧C))

A7. ¬¬A→ A

A8. (A→ ¬B)→ (B→ ¬A)

R1. A,B⇒ A ∧ B

R2. A,A→ B⇒ B

R3. A→ ¬B⇒ B→ ¬A

R4. A→ B,C → D⇒ (B→ C)→ (A→ D)

DR extends DW with the following two axioms and three rules:

A9. ((A→ B) ∧ (B→ C))→ (A→ C)

A10. A ∨ ¬A

R4. C ∨ A,C ∨ (A→ B)⇒ C ∨ B

R5. C ∨ A⇒ C ∨ ¬(A→ ¬A)

R6. E ∨ (A→ B),E ∨ (C → D)⇒ E ∨ ((B→ C)→ (A→ D))

DR−, in contrast, adds only the following rule to DW:
R7. A⇒ ¬(A→ ¬A)

R instead adds these three axioms to DW:

A11. (A→ B)→ ((B→ C)→ (A→ C))

A12. A→ ((A→ B)→ B)

A13. (A→ (A→ B))→ (A→ B)
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It is a straightforward exercise to verify that all the axioms and rules of DR are derivable in
R, from which it follows that DR (and thus DR−) is a sublogic of R.

3. The Belnap Theorems

To begin, we recursively define the sign of an occurrence of a subformula as follows:

● Every formula occurs positively as a subformula of itself.

● If an occurrence of B ∧C is positive, then the corresponding occurrences of B and
C are positive as well.

● If an occurrence of B ∧C is negative, then the corresponding occurrences of B and
C are negative as well.

● If an occurrence of B ∨C is positive, then the corresponding occurrences of B and
C are positive as well.

● If an occurrence of B ∨C is negative, then the corresponding occurrences of B and
C are negative as well.

● If an occurrence of B → C is positive, then the corresponding occurrence of B is
negative and the corresponding occurrence of C is positive.

● If an occurrence of B→ C is negative, then the corresponding occurrence of B is
positive and the corresponding occurrence of C is negative.

● If an occurrence of ¬B is positive, then the corresponding occurrence of B is
negative.

● If an occurrence of ¬B is negative, then the corresponding occurrence of B is
positive.

If you prefer, you can picture these rules as acting on parse trees using the following rules:

ISPR: A
+

∧+SPR: A ∧ B
+
⇒ A

+
∧ B
+

∧−SPR: A ∧ B
−
⇒ A

−
∧ B
−

∨+SPR: A ∨ B
+
⇒ A

+
∨ B
+

∨−SPR: A ∨ B
−
⇒ A

−
∨ B
−

→+SPR: A→ B
+

⇒ A
−
→ B

+

→−SPR: A→ B
−

⇒ A
+
→ B

−

¬+SPR: ¬
+

A⇒ ¬A
−

¬−SPR: ¬
−

A⇒ ¬A
+

We read these as follows: ISPR—the Initial Sign Parse Rule—says to begin by placing a
plus under the formula being examined. ∧+SPR says that a plus placed under conjunction
should lead, in the next ‘level’ of the parse tree, to plusses under each conjunct. The
remaining rules are interpreted similarly. Both to show the rules in action and to address a
common misunderstanding, we’ll pause to look at an example.
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Example 1: Consider the formula (p→ ¬q)→ (q→ ¬p). If we follow the
parse-tree rules above, ISPR tells us to begin with the following:

(p→ ¬q)→ (q→ ¬p)
+

We then apply the appropriate parse rule—in this case,→+SPR. The next
step thus looks like this:

(p→ ¬q)→ (q→ ¬p)
+

((QQQQQQQQ

vvmmmmmmmm

p→ ¬q
−

q→ ¬p
+

Continuing this process, the end result is the following labeled tree:

(p→ ¬q)→ (q→ ¬p)
+

))RRRRRRRRR

uukkkkkkkkk

p→ ¬q
−

��====

������

q→ ¬p
+

��>>>>

������

p
+

�
�

¬q
−

��

q
−

�
�

¬p
+

��
p
+

q
+

q
−

p
−

Where here the dashed lines simply repeat prior information so the end
result is easier to read. End Example

Recall that the Strong Belnap Theorem said that if L is a sublogic of the logic R and
⊢L A → B, then some variable p occurs with the same sign in both A and B. It is easy to
misunderstand the content of this theorem in a way that makes it look like Example 1 gives
a counterexample. After all, the formula we began with clearly is a theorem—indeed, an
axiom!—of R. But as the parse tree makes clear, every atom that occurs in the antecedent is
positive in its occurrence there and no atom that occurs in the consequent is positive in its
occurrence there. And that sure seems like a clear violation of the Strong Belnap Theorem.

To see what’s gone wrong notice that the Strong Belnap Theorem concerns the signs
of atomic subformulas of the antecedent as subformulas of the antecedent and of atomic
subformulas of the consequent as subformulas of the consequent. But the sign of an
occurrence of a given formula A as a subformula of some formula B will, in general, be
different than the sign of the same occurrence of A when considered as a subformula of
some formula B′ that B is itself a subformula of. In the case at hand, what matters is that
the sign of an occurrence of a variable p as a subformula of A will in general be different
than the sign of that same occurrence of p as a subformula of A→ B.

Differences in this neighborhood will cause a bit of unavoidable confusion later, so let’s
pause to make sure the point is perfectly clear. The basic point is that Theorems 1, 2, 3, and
4 all have roughly the following form:

For appropriate logics L, if ⊢L A→ B, then the labels attached to the parse
tree for A and the labels attached to the parse tree for B have thus and such
in common.
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What they don’t say is anything that has this form:
For appropriate logics L, if ⊢L A→ B, then in the parse tree for A→ B, the
labels attached to the subtree under A and the labels attached to the subtree
under B have thus and such in common.

All told, what this makes clear is that the right parse trees to look at are these ones:

p→ ¬q
+

��====

������

q→ ¬p
+

��>>>>

������

p
−

�
�

¬q
+

��

q
−

�
�

¬p
+

��
p
−

q
−

q
−

p
−

And now the apparent counterexample vanishes. Indeed, now every variable that occurs in
the antecedent occurs with the same sign in the consequent.

The Belnap Theorems are really quite useful. To see this, let’s have a look at another
example:

Example 2: Since (p → q) ∨ (q → r) is a theorem of classical logic, the
following is as well:

p→ ((p→ q) ∨ (q→ r))

But anyone with even a hint of relevant scruples ought to hope that it
isn’t a theorem of R. And, indeed, it isn’t. But in any of the usual model
theoretic semantic theories for R, providing a countermodel would be a
nontrivial—not to mention annoying—exercise. Luckily, the parse-tree
method of checking for strong variable sharing is quick and painless. For
convenience, here are the necessary parse trees:

p
+

�
�
�
�
�

(p→ q) ∨ (q→ r)
+

((PPPPPPPP

vvnnnnnnnn

p→ q
+

��8888

������

q→ r
+

��7777

������

p
+

p
−

q
+

q
−

r
+

And there we have it: no signed variable is shared from antecedent to
consequent. Thus p→ ((p→ q) ∨ (q→ r)) is not a theorem of R or any
of its sublogics. End Example

In spite of their usefulness, however, the Belnap Theorems really do only manage to
give necessary and not sufficient conditions for R-theoremhood. For example, p→ (q→ p)
is canonically a non-theorem of R. But it does have a positive occurrence of p in both
antecedent and consequent. Thus, while failing to share a (signed) variable rules out a
conditional as a theorem of R, sharing a (signed) variable doesn’t rule in a conditional as a
theorem of R.
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We’ll now turn to thinking about Belnap’s proof of the Strong Belnap Theorem. It has
roughly the following structure:

● First, he defines a class of interpretations of the language that take values in certain
lattice known as M0.

● With the interpretations on hand, he then proves two key lemmas:
(1) All Theorems of R are assigned a designated value on each interpretation.
(2) If A and B don’t share a signed variable, then there is an interpretation that

assigns A→ B a non-designated value.
● Together, the lemmas show that if A and B don’t share a signed variable, A → B

isn’t a theorem of R.
● Contraposing finishes the job.

This is an argument structure logicians should, generally speaking, feel comfortable with.
What’s more is that the two main characters here—the lattice M0 and the class of interpreta-
tions of our language into M0—are themselves pretty friendly. More to the point, M0 has
the following Hasse diagram.

+3

BBBBBBBB

||||||||

+1

BBBBBBBB −0

||||||||

BBBBBBBB +2

||||||||

−1

BBBBBBBB +0 −2

||||||||

−3

This lattice is very familiar from the algebraic study of relevant logics. In fact, when
Anderson and Belnap first introduce M0 in Entailment Volume 1, they say the following:

Stone 1936 showed that a maximal filter of a Boolean algebra B determines
a homomorphism of B into the particularly simple two-element Boolean
algebra. We are about to prove an analogous theorem for intensional
lattices, but first we must characterize the particular simple intensional
lattice, which we call M0, that is used in our theorem.[1, §18.4]

The class of interpretations Belnap actually gives are also quite nice. To begin, say that an
assignment is a function v that maps propositional variables into M0. Belnap then extends
each assignment to a function v+ mapping arbitrary formulas into M0 by the following—
pretty vanilla looking—recursive clauses:

● v+(¬A) = −1 ⋅ v+(A);
● v+(A ∧ B) = inf(v+(A), v+(B));
● v+(A ∨ B) = sup(v+(A), v+(B));
● v+(A→ B) = m→(v+(A), v+(B)) where m→ has the following matrix:
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y
+3 +3 +3 +3 +3 +3 +3 +3 +3
+2 +3 +2 −3 −3 +2 −3 +2 −3
+1 +3 −3 +1 −3 +1 +1 −3 −3
+0 +3 −3 −3 −3 +0 −3 −3 −3
−0 +3 +2 +1 +0 −0 −1 −2 −3
−1 +3 −3 +1 −3 −1 −1 −3 −3
−2 +3 +2 −3 −3 −2 −3 −2 −3
−3 +3 −3 −3 −3 −3 −3 −3 −3

m→(x, y) −3 −2 −1 −0 +0 +1 +2 +3 x
m→ is not the weirdest function to interpret the arrow, but I do think it stands in need of
some justification.

To provide such justification, it helps to think of the elements of M0 as having the form
σn where σ ∈ {+,−} and n ∈ {0,1,2,3}, and to interpret these values in the following way:

● ‘formula A having value +3’ is interpreted as ‘A is totally true’; A having other
positive values is interpreted as other ways for A to be (less than totally) true.

● ‘formula A having value −3’ is interpreted as ‘A is totally false’; A having other
negative values is interpreted as other ways for A to be (less than totally) true.

With all that on board, here are two observations. First, m→ is almost the function defined
as follows:

m∗
→(σ1a, σ2b) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

+max(a,b) if σ2b ≥ σ1a
−max(a,b) if σ2b < σ1a

−3 otherwise
Second, m∗

→ can intuitively be understood to be evaluating conditionals in the following
way:

● A→ B is as false as possible when A and B can’t be compared. Otherwise,
● A→ B is as close to being totally true/totally false as the closer of its two arguments;

and
– A → B is true when it should be—that is, when we don’t decrease in truth

value when we pass from A to B; and
– A→ B is false otherwise—that is, when we do decrease in truth value as we

pass from A to B.
This is an intelligible and not immediately ridiculous way to evaluate the truth of condition-
als. The resulting matrix has the following form, where I’ve underlined the nine entries that
are different from the corresponding entries in m→:

y
+3 +3 +3 +3 +3 +3 +3 +3 +3
+2 +3 +2 −3 −3 +2 −3 +2 −3
+1 +3 −3 +1 −3 +1 +1 −3 −3
+0 +3 −3 −3 −3 +0 −1 −2 −3
−0 +3 +2 +1 +0 −3 −3 −3 −3
−1 +3 −3 +1 −1 −3 −1 −3 −3
−2 +3 +2 −3 −2 −3 −3 −2 −3
−3 +3 −3 −3 −3 −3 −3 −3 −3

m∗
→(x, y) −3 −2 −1 −0 +0 +1 +2 +3 x

So Belnap’s interpretation of the conditional is almost the intuitive understanding just given.
But the difference is needed. For example, suppose v takes the following values: v(p) = +1,
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v(q) = −1, and v(r) = +0. If we compute v+(((p→ q) ∧ (p→ r))→ (p→ (q ∧ r))) using
m∗
→ to interpret the arrow, the result (as we leave the reader to check) is −3 which is not a

designated value. But if we evaluate it using m→, as Belnap suggested, we instead get +3,
which is.

Altogether the point is this: Belnap’s proof of the Strong Belnap theorem has a familiar
form. The characters inhabiting the proof are also mostly familiar. The one exception—the
function m→—isn’t so bad, being a mere tweak away from something we can make sense
of.

4. The Brady Theorems

We’ll now turn to looking at the Brady Theorems. For convenience, we begin by restating
them:

Weak Brady Theorem: If L is a sublogic of the logic DR and ⊢L A→ B, then some
variable p occurs at the same depth in both A and B.

Strong Brady Theorem: If L is a sublogic of the logic DR and ⊢L A→ B, then some
variable p occurs at the same depth and with the same sign in both A and B.

The notion of depth deployed here is defined as follows::
● A occurs at depth 0 in A.

● Given a depth n occurrence of ¬A in C, the corresponding occurrence of A in C is
a depth n occurrence as well.

● Given a depth n occurrence of A ∧ B in C, the corresponding occurrences of A and
of B in C are depth n occurrences as well.

● Given a depth n occurrence of A ∨ B in C, the corresponding occurrences of A and
of B in C are depth n occurrences as well.

● Given a depth n occurrence of A→ B in C, the corresponding occurrences of A and
of B in C are depth n + 1 occurrences.

Again we can see these as parse tree rules. Stated using the same notation (and with
essentially the same reading) as before, they look like this:

● A
0

● ¬A
n
⇒ ¬A

n

● A ∧ B
n
⇒ A

n
∧ B

n

● A ∨ B
n
⇒ A

n
∨ B

n

● A→ B
n

⇒ A
n+1
→ B

n+1

Either way we look at it, the important part is that depth measures how ‘→-nested’ a
subformula is.

At a casual glance, The Strong Brady Theorem might seem like it’s nothing more than the
conjunction of the Weak Brady Theorem and the restriction of the Strong Belnap Theorem
to sublogics of DR. But this is incorrect: the Strong Brady Theorem is in fact strictly
stronger than this conjunction. To see this, note that if we conjoin the Weak Brady Theorem
and the restricted Strong Brady Theorem, the result is a theorem of the following form:

Whenever L is a sublogic of DR and ⊢L A→ B, some variable p occurs at
the same depth in both A and B and some variable q occurs with the same
sign in both A and B.
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And while this is a consequence of the Strong Brady Theorem, the Strong Brady Theorem
guarantees strictly more; in particular, it guarantees that the very same variable occurs with
(simultaneously) the same depth and the same sign in both A and B. This strengthening
turns out to be useful, as we will make clear by examining an example. As a warning, we
will have reason to think about this very same example later in the paper.

Example 3: Consider the following formula:

(r ∧ (s→ p))→ ((p→ q) ∨ (q→ r))

Note that, for the same reasons as in Example 2, this is a theorem of
classical logic. If we apply both parse tree procedures at once in a natural
way, the end result is the following tree:

(r ∧ (s→ p))→ ((p→ q) ∨ (q→ r))
+0

uujjjjjjjjj
**UUUUUUUUUU

r ∧ (s→ p)
+0

������
��7777

(p→ q) ∨ (q→ r)
+0

!!BBBBB

}}{{{{{

r
+0

�
�

s→ p
+0

�����
��&

&&
p→ q
+0

��&
&&

�����

q→ r
+0

��&
&&

�����

r
+0

s
−1

p
+1

p
−1

q
+1

q
−1

r
+1

From this we can see that the formula does share a signed variable between
antecedent and consequent because r has a positive occurrence in each.
And it does share a variable at the same depth between antecedent and
consequent because p has a depth 1 occurrence in each. But no variable
has an occurrence that is simultaneously at the same depth and of the same
sign in both antecedent and consequent.

Thus while neither the Strong Belnap Theorem nor the Weak Brady
Theorem nor their conjunction will rule this theorem of classical logic out
as a theorem of DR, the Strong Brady Theorem does. End Example

That’s not to say that Strong Brady is somehow perfect. It’s not—just as with all the other
theorems we’re discussing, it gives a necessary but not sufficient condition for membership
in the class of theorems in question. For example, if we switch s and p in the antecedent of
the formula in Example 3, the resulting formula remains a theorem of classical logic and
does have a negative, depth 1 occurrence of p in both antecedent and consequent despite
not being a theorem of R (or of any of its sublogics).

So the Brady Theorems—and especially the Strong Brady Theorem—while still not
perfect, are nonetheless useful. It’s thus unfortunate that the proofs we have of them are
not as nice as the proofs we have of the Belnap Theorems. In particular, the proofs we
have rely on evaluating formulas not in individual assignments of values to variables, but in
slightly more than infinitely long sequences (ω + 1 sequences, to be precise) of assignments
of values to variables, and then relying on something vaguely supervaluation-looking to
wrap them all up into a single value.

However, because it’s not necessary for the paper to be self-contained, and because it
would take up to much space, I won’t go into any more detail here. The interested reader is
instead referred to [3] and [5]. In the remainder of the paper, I instead provide an alternative,
and much simpler proof of a result to which the Strong Brady Theorem (and thus the Weak
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Brady Theorm as well) is a straightforward corollary. The proof I give has another virtue
as well: it shows that the Brady Theorems are, in a sense we can make precise, a natural
extension of the Belnap Theorems to the setting of sufficiently weak logics.

5. Depth Substitutions

Our initial inspiration comes from an observation Brady makes in the course of proving
the Weak Brady Theorem:

The depth relevance condition suggests that there are levels of implication
corresponding to the depths of sentential variable occurrences in a formula
and that implication differs from level to level.[3, p. 65]

Personally, I find it hard to see either Brady Theorem showing this. The Weak Brady
Theorem says that when A → B is provable, A and B share a variable at some depth.
According to the Strong Brady Theorem, we can take this variable to have the same sign
in both occurrences. I’ll grant that these say something about how depth and implication
interact. But so far as I can tell, they say nothing about there being different depths or
‘levels’ of implication.

For my money, for a system to recognize different ‘levels of implication’, it would need
to be the case that if some formula C occurs as a subformula of A twice, once at one depth
and once at some other depth, then these two occurrences of C would have to be seen—or
at least ‘seen for the purposes of implication—as occurrences not of the same formula at
different depths, but in some sense as occurrences of two entirely different formulas. This is
clearly a very loose idea, not least because I’m not all sure what it means for a logic to “see”
things as different or the same. But, taken to the extreme, this loose idea becomes usable.

What I have in mind is this: rather than talking about different occurrences of an
arbitrary subformula C, let’s focus on the simplest and most fundamental case: occurrences
of variables. Here the loose notion outlined above becomes this: a system recognizes
different ‘levels of implication’ when any time some variable p occurs as a subformula of
A at two different depths, these two occurrences of p are seen as occurrences of different
formulas. This, like I said, is something I think we can make sense of. We’ll need a few
definitions first, beginning somewhere quite familiar:

● A uniform substitution is a function mapping each variable to a formula.
● If f is a uniform substitution and A is a formula, A[ f ] is the formula that we get by

replacing each occurrence of p in A with an occurrence of f (p).
Typically, we require formal logics to be closed under uniform substitutions in the sense
that whenever we have that ⊢L A, we also have that ⊢L A[ f ] for all uniform substitutions f .
The basic thought to have is this: we require this of formal logics because we require them
to ‘see’ variables as schematic formulae.2

Thus, intuitively, a logic that ‘sees’ an occurrence of the same variable at two different
depths as occurrences of two different variables should, by analogy, allow substitutions that
vary depending on depth. To make this concrete we need a couple more definitions:

● A depth substitution is a function mapping pairs ⟨p,n⟩ with p a variable and n ∈ N
to formulas.

● If d is a depth substitution and A is a formula, A[d] is the formula that we get by
replacing each depth-n occurrence of p with an occurrence of d(p,n).

2This plausibly follows from taking logics to be either 2-formal or 3-formal in the sense of [6]. Given the
content of what I’m about to say, there’s clearly something very interesting and worthwhile to investigate here.
Equally clear, however, is that such an investigation is beyond the scope of this particular paper.



DEPTH RELEVANCE AND HYPERFORMALISM 11

Following the convention above, say that a set of formulas S is closed under depth substi-
tutions when for any depth substitution d, if φ ∈ S then φ[d] ∈ S as well. Note that each
uniform substitution f is naturally seen as a degenerate depth substitution d f where we take
d f (p,n) = f (p) for all n. Thus, any set of formulas that is closed under depth substitutions
is also closed under uniform substitutions. Since closure under uniform substitution is an
analogue of formality, we will call any logic that is closed under the more inclusive class of
depth substitutions a hyperformal logic.

A rather unexpected result is that an enormous array of weak relevant logics, including
DR− and the sublogics of DR− that are typically considered in the literature, are hyperformal.
To be a bit more concrete, we make the following observations.

Lemma 5. Let S be a set of formulas and S + be the smallest set that contains S and also
contains the conclusion of each instance of R1-R6 whose premises it also contains (in other
words, let S + be the closure of S under R1, R2, R3, R4, and R7). Then if S is closed under
depth substitutions, so is S +.

Proof. If B+ ∈ S +, then for some n ≥ 0, B+ is the result of applying n instances of the rules
in question to some B ∈ S . We prove by induction on n that for any depth substitution d,
B+[d] ∈ S +.

The result holds by assumption for n = 0. The induction step splits into six cases
depending on the last rule applied. We consider only the R2 (modus ponens) case, the others
being either similar or simpler. So, suppose the last instance of a rule we applied was the
following:

A,A→ B+ ⇒ B+

Let d be a depth substitution. Our goal is to show B+[d] ∈ S +. Define the depth substitution
d − 1 as follows:

(d − 1)(p,n) = {
p if n = 0

d(p,n − 1) otherwise

Note that (A → B+)[d − 1] = A[d] → B+[d]. By the inductive hypothesis, for any depth
substitutions e and e′, A[e] ∈ S + and (A → B+)[e′] ∈ S +. Thus in particular A[d] and
(A→ B+)[d − 1] = A[d]→ B+[d] are in S +. So B+[d] ∈ S + as required. �

From this we have the following corollary:

Corollary 6. Let L be a logic generated from the set of axioms Ax using the set of rules
Ru. Then if Ax is closed under depth substitutions and Ru ⊆ {R1,R2,R3,R4,R7}, then L is
hyperformal.

Corollary 7. DR− is hyperformal.

Proof. By inspection, DR−’s axioms are closed under depth substitutions, so the previous
corollary gives the result. �

Say that a subsystem of a logic L is a logic generated from some subset of L’s axioms
and rules. We then have

Theorem 8. If L is a subsystem of DR−, then L is hyperformal.

6. What’sWrongWith DR?

In the original version of this paper, I claimed the above results held for all of DR. Tore
Fjetland Øgaard pointed out in correspondence that this is incorrect. The problems stem
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from the disjunctive rules R4, R5, and R6. The argument I give above does not generalize
to the disjunctive rules R4-R6.

In a bit more detail, suppose we have a derivation D of length n + 1 ending at B and the
last step in D looks like this:

A A→ B
B

Choose a depth substitution d. By the inductive hypothesis both A[d] and (A→ B)[d − 1]
are in DR. But then so are both A[ f ] and A[d]→ B[d]. Thus since DR is closed under R2,
B[d] is in DR.

The same argument does not work in the case of R4: (C ∨ A)[d] = C[d] ∨ A[d], but
(C ∨ (A→ B))[d − 1] = C[d − 1] ∨ (A[d]→ B[d]). But the first disjuncts of the resulting
formulas don’t match so R4 no longer applies.

In the case of R5, (C ∨ ¬(A → ¬A))[d] = C[d] ∨ ¬(A[d + 1] → ¬A[d + 1]). But from
C ∨ A being provable we can only guarantee that (C ∨ A)[d + 1] = C[d + 1] ∨ A[d + 1] and
(C∨A)[d] = C[d]∨A[d] are provable. The first of these shows that C[d+1]∨¬(A[d+1]→
¬A[d + 1]) is provable; the second that C[d] ∨ ¬(A[d] → ¬A[d]) is provable. Neither
suffices for showing that (C ∨ ¬(A→ ¬A))[d] is provable. An exactly parallel observation
shows a problem with the R6 clause in the induction.

Indeed, as Øgaard observed, not only does my argument not work, there are in fact
counterexamples to the results stated in the original paper. As an example, ¬p∨¬(p→ ¬p)
is a theorem of DR but ¬q ∨ ¬(p→ ¬p), which is clearly a depth-substitution instance of it,
is not. Thus the claim that DR is closed under depth-substitutions is false.

Finally, Øgaard also points out that the fact that DR has the depth-relevance property
but is not hyperformal is itself a useful observation, as it demonstrates that hyperformality
is a strictly stronger condition than depth-relevance. I suspect (but as of this writing have
not proved) that in fact DR has the strong depth-relevance property. If so, DR would
also serve to demonstrate that hyperformality is a strictly stronger condition than strong
depth-relevance.

7. Connecting the Pieces

In the introduction we said that we’d give simplified proofs of results that subsumed
Brady’s results for DR−. It’s time to make good on this promise.

The basic idea is simple enough: the fact that DR− is hyperformal lets us transform
any purported violation of the Strong Brady Theorem in DR into a violation of the Strong
Belnap Theorem in DR and any purported violation of the Weak Brady Theorem in DR−

into a violation of the Weak Belnap theorem in DR−. But DR− is a sublogic of R. So by the
Belnap Theorems there can be no such violations. QED.

The proof we give will give below is actually a proof of the contrapositive result.
Nonetheless, the idea that Brady-counterexamples give rise to Belnap-counterexamples is at
its heart.

In spite of how long you’ve been waiting, I won’t dive straight into the proof here. This
is because the proof is actually quite straightforward, provided the idea of it is completely
clear. So it’s useful to spend a moment working through some nice, concrete examples to
see the idea in action.

To help in the discussion, we will first define the following phrases:

● We say that A→ B has the variable sharing property when some variable p occurs
in both A and B.
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● We say that A→ B has the strong variable sharing property when some variable p
occurs in both A and B with the same sign

● We say that A→ B has the depth relevance property when some variable p occurs
at the same depth in both A and B.

● We say that A→ B has the strong depth relevance property when some variable p
occurs at the same depth in both A and B with the same sign.

Thus the Weak Belnap Theorem amounts to the claim that every provable conditional of
every sublogic of R has the variable sharing property; the Strong Belnap Theorem to the
claim that every provable conditional of every sublogic of R has the strong variable sharing
property; the Weak Brady Theorem to the claim that every provable conditional in every
sublogic of DR has the depth relevance property; and the Strong Brady Theorem to the
claim that every provable conditional in every sublogic of DR has the strong depth relevance
property.

It will also help our discussion to settle on a particular injective (i.e. one-one) depth
substitution whose range includes only variables. For this purpose, we will use the function
d that is defined as follows:

p1 p2 p3 p4 p5 p6 . . .

0 p1 p3 p6 p10 p15 p21 . . .
1 p2 p5 p9 p14 p20 . . .
2 p4 p8 p13 p19 . . .
3 p7 p12 p18 . . .
4 p11 p17 . . .
5 p16 . . .
⋮ ⋮

The claim I want to defend is that whenever A → B lacks the depth relevance property,
(A → B)[d] will lack the variable sharing property and that whenever A → B lacks the
strong depth relevance property, (A→ B)[d] will lack the strong variable sharing property.
As mentioned, it’s useful to first look at some examples. But first a note: unlike in our
discussion of the Belnap Theorems, when we apply a depth substitution to a conditional
formula, we do not ignore the arrow in the middle. Thus, as a rather elementary example,
while p1[d] = p1, (p1 → p1)[d] = p2 → p2.

Example 4: Consider first the bane of the Strong Belnap Theorem: p1 →

(p2 → p1). This formula has the strong variable sharing property, since p1
occurs positively in both its antecedent and its consequent. But it lacks the
depth relevance property, since p1 is a depth 0 subformula of the antecedent
but not of the consequent.

Now let’s apply d to it:

(p1 → (p2 → p1))[d] = d(p1,1)→ (d(p2,2)→ d(p1,2))

= p2 → (p8 → p4)

As promised, this formula lacks the variable sharing property. End Example
Example 5: Now consider (a version of) the formula we used to show that
the Strong Brady Theorem was stronger than the conjunction of the Weak
Brady Theorem and the Strong Belnap Theorem:

(p1 ∧ (p2 → p3))→ ((p3 → p4) ∨ (p4 → p1))

As we mentioned in Example 3, this formula has both the strong variable
sharing property and the depth relevance property. But it lacks the strong
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depth relevance property. While I’ll leave it to the reader to check my
work, when we apply d to this formula the result is the following:

(p2 ∧ (p8 → p13))→ ((p13 → p19) ∨ (p19 → p4))

This formula does have the variable sharing property because p13 occurs
in both the antecedent and the consequent. But it does not have the strong
variable sharing property—the instance of p13 in the antecedent occurs
positively as a subformula of the antecedent while the instance in the
consequent is negative as a subformula of the consequent. Thus, as claimed,
applying d to a formula that lacked the strong depth relevance property
resulted in a formula that lacked the strong variable sharing property. End
Example

In order to turn these examples into an actual proof, we need to make a few observa-
tions. First, notice that applying a depth substitution to a formula leaves the skeleton of
that formula—roughly speaking, the arrangement of connectives and parentheses in the
formulas—intact. Second, note that when I apply d, each instance of a variable in the image
is the image of an instance of a variable with the same sign in the original formula. For ex-
ample, looking at example 4, notice that the instance of p8 in the image of p1 → (p2 → p1)

under d—that is to say, in p2 → (p8 → p4)—is the image of p2. And, just as p8 occurs
negatively in p2 → (p8 → p4), so also p2 occurs negatively in p1 → (p2 → p1). It’s not
hard to see that in fact this is always the case. These observations will suffice for the proof.

Theorem 9. Provable conditionals in hyperformal sublogics of R have the strong depth
relevance property.

Proof. Suppose L is a hyperformal sublogic of R and ⊢L A→ B. Consider (A→ B)[d]. By
our above observations, for some C and D, (A→ B)[d] will have the form C → D. Since L
is hyperformal, ⊢L (A→ B)[d], which is to say that ⊢L C → D. Since L is a sublogic of R,
it follows from the Strong Belnap Theorem that some variable q occurs with the same sign
σ in both C and D.

Since q occurs in C with sign σ, there is a variable rA that occurs at depth nA with sign
σ in A such that d(rA,nA + 1) = q.3 Similarly, since q occurs in D with sign σ, there is a
variable rB that occurs at depth nB with sign σ in B such that d(rB,nB + 1) = q. But then
d(rA,nA + 1) = q = d(rB,nB + 1). So by the injectivity of d, rA = rB and nA = nB. Thus some
variable r = rA = rB occurs with sign σ at the same depth, n = nA = nB in both A and B. So
A→ B has the strong depth relevance property. �

As a corollary we have

Corollary 10 (The Strong Brady Theorem). If L is a sublogic of the logic DR− and
⊢L A→ B, then some variable p occurs at the same depth and with the same sign in both A
and B.

Proof. Clearly if L is a sublogic of DR− and ⊢L A → B, then ⊢DR− A → B as well. By
Corollary 7, DR− is hyperformal. So by Theorem 9, if ⊢DR− A → B, then A → B has the
strong depth relevance property, which was what we wanted to show. �

Finally, note that we managed this result without any of the odd machinery required in
the proof of the Brady Theorems. I take this to be an advantage.

3Since rA occurs at depth nA in A it occurs at depth nA + 1 in A→ B.
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8. Conclusion

The Belnap Theorems say something about relevance qua variable sharing. So do the
Brady Theorems. The Brady Theorems are stated for sublogics of DR−. But the sublogics of
DR− we are mostly interested in are all subsystems of DR−. And it turns out that subsystems
of DR− are hyperformal. In the presence of hyperformality, the Brady Theorems reduce
to the Belnap Theorems in the sense that any violation of the former can be turned into a
violation of the latter. It follows that, for such logics, the Brady Theorems are in a sense the
natural hyperformal analogue of the Belnap Theorems.

What remains is to plumb the philosophical significance of hyperformality. Prior to
stating and proving the Strong Belnap Theorem in [1], Anderson and Belnap say that it shows
that ‘if A→ B is provable. . . then A and B share intensional content, in the sense that they
share a variable.’ (emphasis added). Presumably the Brady Theorems thus demonstrate that
A and B share something stronger than whatever ‘intensional content’ means to Anderson
and Belnap. It seems that hyperformality could shed light on what, exactly this strong
shared-something is. I haven’t yet thought hard enough about it to say whether this intuition
is correct. But DR− is fairly close to Brady’s logic of meaning containment MC (see [4])
which is in turn explicitly designed to capture the notion of intensional content. Thus, a
plausible way we might shed light on this subject is by examining MC.
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