
NONDETERMINISTIC AND NONCONCURRENT COMPUTATIONAL
SEMANTICS FOR BB+ AND RELATED LOGICS

SHAY ALLEN LOGAN

Abstract. In this paper, we provide a semantics for a range of positive substructural logics,
including both logics with and logics without modal connectives. The semantics is novel
insofar as it is meant to explicitly capture the computational flavor of these logics, and
to do so in a way that builds in both nondeterministic and nonconcurrent computational
processes.

1. Introduction

In their paper ‘Combinators and Structurally Free Logic’ ([6]) Dunn and Meyer give
an interpretation of the ternary-relational semantics for relevant logics in computational
terms. As they note in a footnote, ‘[t]here is an alternative “operational semantics” that
[they] could be using’. In the same footnote, they briefly gesture in the direction one might
go to find such a semantics. They then drop the matter, save for a brief reference in a
footnote on the very next page.

As one would expect given the authors of the paper, the claims made are technically
unimpeachable. But it turns out that there’s some value to be had in actually spelling out
the operational semantics in more detail, and the purpose of this paper is to demonstrate
that this is so.

We should note that Dunn and Meyer examine a good deal more in their paper, includ-
ing correspondences between (on one hand) propositional logics, their proof theory, and
their their semantics and (on the other hand) combinators, combinatory logics, and typing
systems. We will not have space in this paper to effect these extensions; that said, I think
they are possible and plan to explore them in future work. Just as for Meyer and Dunn,
so also here these extensions will turn the intuitive/philosophical analogy with computa-
tional systems into a more robust correspondence mediated by the lambda calculus (in its
combinatory guise).

Putting aside future work for now, here’s the plan of the current paper. In the following
section, we work out the computational metaphor at the heart of this paper and compare
it to the one gestured to by Dunn and Meyer in theirs. Intuitive motivation in hand, we
turn in §3 to producing the promised semantics. In §4 we prove soundness of BB+ for this
semantics; §5 is dedicated to completeness of the same. In §6 and §7, we turn to exploring
extensions—first to include structural rules then to include modalities. The final section
concludes.

2. The Computational Interpretation

Dunn and Meyer’s semantics—like the semantics we give in this paper—is a loosely
Kripke-style semantics. By this we don’t mean anything particularly fancy—just that
models consist of a set of points at which formulas are evaluated together with machin-
ery connecting up and operating on the points. In the case of Dunn and Meyer, a crucial

1

2 SHAY ALLEN LOGAN

piece of the machinery that decorates states is a ternary relation, R, which they frequently
interpret as an indexed set of binary relations, Ra in the obvious way; viz. Rabc =d f Rabc.
They then point out that this affords a type of flexibility:

a set of states can be simultaneously regarded as a set of relations on
states, i.e., as a set of possible actions. As we said, a proposition describ-
ing a computer can be interpreted as a set of states. But depending on
which state the computer is in, it is ready to execute any number of pos-
sible actions. A possible action can be viewed as a state transition, and
this can be viewed abstractly as just a binary relation between states. [6,
p. 507]

Meyer and Dunn’s key insight was that this flexibility raises the possibility of using
ternary relation semantics to give a semantics for the untyped λ-calculus. The connec-
tion between λ-calculi and the above observation about ternary-relational semantics is the
following:

The problem in interpreting the (untyped) λ-calculus of [2], or the com-
binatorylogic [sic] of [4], has always been how to interpret an expression
such as MM, which treats M as simultaneously standing for both a func-
tion and an argument. . . .

The discussion above of the ternary relation showed how to achieve
the efect of a similar type-defying interpretation: a proposition B can be
simultaneously thought of as both a set of states and a set of relations
between states . . . Where ρ is a relation and B is a set, the ρ image of
B = {χ : ∃β ∈ B (ρβχ)}. Going up a type-level, where A is a set of
relations it is natural to define a corresponding image AB = {χ : ∃ρ ∈
A,∃β ∈ B (ρβχ)}, and to think of this as a kind of application. Now
regarding ρ as simultaneously a relation and a state, we stick in the ternary
relation R . . . rewriting this as

AB = {χ : ∃ρ ∈ A,∃β ∈ B(Rρβχ)} = A ◦ B

Returning to the computer metaphor, A◦B is the set of states that can be
reached from states in B by applying one of the actions in A. [6, p. 507ff]

The computational interpretation we offer in this paper is, in broad strokes, much the
same as the computational interpretation on offer in Dunn and Meyer’s paper. There are
only a handful of differences worth pointing out.

The first concerns the correction of two type-mismatches that occur in the transition
between Dunn and Meyer’s semantics and its intended interpretation. The first type mis-
match concerns application. Dunn and Meyer interpret A ◦ B as “the set of states that can
be reached from states in B by applying one of the actions in A”. This sounds (and the
use of ‘◦’ looks) like a binary operation mapping pairs of states to a set of states. But they
model it not with a binary function from pairs of points to sets of points but with a ternary
relation among the points.

Of course, there is at best a hair’s breadth of difference between a three-place relation
and a two-place function with a set of outputs. That said, there’s something wrong-way-
rubbing about giving the intuitive explanation of one’s semantics in terms of one of these
things and using the other in the formal machinery. In the semantics below, I correct
this type mismatch by giving a theory in which the semantic correlate of the application
operation ‘◦’ is an operation that maps pairs of semantic indices to sets of indices.

COMPUTATIONAL SEMANTICS FOR BB+ 3

The second type-mismatch concerns Dunn and Meyer’s choice to use sets of indices to
model individual states. Of course, there are well known Stone-ish reasons to talk in terms
of sets of points (sometimes called ‘UCLA propositions’) instead of points.1 Nonetheless,
there’s some amount of cognitive dissonance here—one expects the semantic analogue of
an individual state to be an individual member of the set of indices, not a subset of the set
of indices. This is also corrected in the semantics I present below.

The reader might wonder whether a switch from wrong-way-rubbing to right-way-
rubbing in the semantics is enough payoff to justify making these changes. It is. As
evidence of this, I’ll point out that, once we type-match, we see that there is good reason to
explore a broader family of logics than the family Dunn and Meyer examined. In particu-
lar, what we will see once we parse the computational metaphor along the lines suggested
above is that the bottom-level logic worth looking at isn’t the basic relevant logic B that
Dunn and Meyer end their analysis at, but the yet-weaker relevant logic BB.2

The basic difference between these logics is that where B takes conjunction introduction
as an axiom in the following form:

((A→ B) ∧ (A→ C))→ (A→ (B ∧C))

the logic BB instead takes it to be a rule:
A→ B A→ C

A→ (B ∧C)
The interpretation Dunn and Meyer give of their semantics is, I claim, most naturally im-
plemented in a system that makes exactly this rule-for-axiom swap. I speculatively suggest
that the reason they didn’t notice this is because the ternary-relational/sets-of-indices-for-
states setup they used obscured the semantic interpretation just enough to make it seem
plausible that the system to include the axiom rather than the rule.

More to the point, consider the interpretation they offer: A → B is verified by a state
s just if we always can reach a state containing B when we apply s to a state containing
A. So the logic will verify the conjunction introduction axiom just if we always can reach
a state containing A → (B ∧ C) by applying logic to a state containing both A → B and
A → C. But this isn’t (as I’ll now turn to arguing) the sort of thing that ought to follow
from logic alone!

If we’re given a state s that contains both A→ B and A→ C, then what we know about
the state is just this: if we apply s to a state containing A, then one of the things we can do
is arrive at a state t1 containing B and another of the things we can do is arrive at a state t2
containing C. But there’s no reason to think that t1 and t2 will be the same state and thus no
reason to think that by applying s to a state containing A we can arrive at a state containing
B ∧C.

In fact, here’s a good reason for thinking that in general, the computational metaphor
doesn’t lead us to systems that allow this inference. The system I have in mind is arranged
thus:

input 1

''OO
OOO

O

user
choice

//
2-tape

universal
Turing

machine
input 2

33ggggggggggggggggg

1See [24] and [13], for example.
2For more on BB, the reader should consult e.g. [14] and, more recently, [25].

4 SHAY ALLEN LOGAN

We suppose some encoding of Turing machines as strings in a given alphabet. Input 1 and
input 2 are both strings in this same alphabet, and the 2-tape universal Turing machine is a
universal Turing machine for machines encoded in this way; it thus takes a pair of strings
s and t as input and outputs the result of running the Turing machine encoded by s on the
string t. We can suppose that strings not encoding Turing machines are treated as, e.g. the
identity machine or some such.

The ‘user choice’ node here represents an intervention: the user selects one machine
to run from among the machines encoded on input 1. It’s in this sense—and in only this
sense—that the picture represents, as suggested in the title of the paper, a nondeterministic
semantics. Finally, let’s imagine that the inputs are literally written on strips of paper and
that the user feeds them into an actual machine that destroys them in the course of doing
its computation.

The observation to make, then, is this: a user can be presented with data to use as input
1 that

• supports a machine that turns tapes with data of type A into tapes with data of type
B, and

• supports a machine that turns tapes with data of type A into tapes with data of type
C, but nonetheless
• doesn’t support a machine that turns tapes with data of type A into tapes with data

of type B ∧C.

And the reason for this is simple: in order for the user to get from data of type A to data
of type B ∧ C, she would need to somehow run both the program turning A-data into B-
data and the program turning A-data into C-data at the same time. But this isn’t possible
on the setup as presented. That is, the issue that is preventing our adopting the axiom
in question is that, in general, we are allowing room for models of computation that are
deeply nonconcurrent: they allow for only one computational process to be implemented
at a time. Thus the ‘nonconcurrent’ in the title of the paper.
Sidenote: The ‘typing’ language used here is meant to remain at an intuitive level. But

it seems likely that there’s a generalization of the theory of what’s known as intersection
types—see e.g. [3], [5] and §9.2 of [1]—on offer here. It’s incredibly tempting to derail
the paper to pursue this—indeed, at several points below the reader is likely to note I have
to tie myself in knots to avoid pursuing it—but I think it’s best to instead save the matter
for another day. The paper contains enough that’s new in it already. End Sidenote

A natural question now arises: given the nonconcurrency, why should we accept even
the rule form of conjunction introduction? Shouldn’t we be throwing out both?

The answer is no; we shouldn’t. The rule form of conjunction introduction is fine.
Here’s why: theorems represent things that are true of all computational systems meeting
the conditions of our models. As we will see below, this can actually be generalized a bit:
within a given model, the validities of that model represent the things that are true of all
computational systems modeled by that particular model.

So, for example, let’s suppose that (perhaps as a result of the particular encodings cho-
sen) in the above setup every time we run a machine on an input tape that has data of type
A on it, the result is an output of type B and every time we run a machine on an input tape
that has data of type A on it, the result is an output of type C. That is, suppose that both
A → B and A → C are validities in the system modeling this type of computation. Then
if we run our machine on an input tape that has data of type A on it, the result will be an

COMPUTATIONAL SEMANTICS FOR BB+ 5

output that is simultaneously of type B and of type C.3 Thus, it follows from both A → B
and A→ C being validities that A→ (B ∧C) is as well.

So much for motivation. It’s now time to get to the work of presenting our actual
semantics.

3. The Semantics

We will be working initially in a language we call L that is formed from the set At =
{ai}

∞
i=1 of atomic formulas/propositional variables and the connectives ∧, ∨, and → with

the usual formation rules.
We take a frame to be a 5-tuple F = ⟨TF ,⊓F ,⊔F ,NF ,⊗F⟩, where
• ⟨TF ,⊓F ,⊔F⟩ is a lattice. We write ⊑F for the ordering induced by this lattice in

the usual way.
• NF is a nonempty subclass of TF .
• ⊗F : TF × TF −→ 2TF .

When it’s not needed—and it almost always isn’t—we leave off the subscripts.
Each model as a whole represents the space of possible information states reachable

using a certain computational architecture. So, for example, there would be a model repre-
senting the information states reachable using the ‘2-tape universal Turing machine’ setup
outlined above. Here by ‘information state’ we mean to gesture in the direction of the
fact that we take the states to not merely be arrangements of bits and bytes, but to in fact
be interpreted. So, e.g., states that contain ‘A ∧ B’ will necessarily contain both A and
B since, on interpretation, we cannot include the former in the information supported by
the state without including the latter. This distinction is necessarily a bit metaphorical and
loose—this is yet another place where the right way to manage is to move to a proper
typing discipline; we avoid doing so for the same reasons as above.

That said, we think of the parts of a model as follows:
• We will think of TF as the class of reachable information states. Intuitively, this

means that each member of TF is finitely generated and each will be a theory in
the sense that it will be closed under the logic of the space F.
• ⊓F is intended to be the intersection of theories and ⊔F to be the (closed) union of

theories.
• NF we think of as the class of normal theories—that is, those that are contained in

the logic.
• ⊗F is the (in general nondeterministic and nonconcurrent as described above) ap-

plication operation.
We require that the components of a frame satisfy the following conditions:

F1: If n ∈ N and m ⊑ n, then m ∈ N.
F2: If n ∈ N and m ∈ N, then n ⊔ m ∈ N.
F3: For all t ∈ T there is n ∈ N so that t ∈ n ⊗ t.
F4: If n ∈ N and u ∈ n ⊗ t, then u ⊑ t.
F5: If s ⊑ t ∈ u ⊗ v, then s ∈ u ⊗ v as well.
F6: For all t ∈ T , if u ⊑ w, then t ⊗ u ⊆ t ⊗ w and u ⊗ t ⊆ w ⊗ t.
F7: (t ⊗ u) ∩ (s ⊗ u) ⊆ (t ⊓ s) ⊗ u
F8: For all s and t, {u : s ∈ u ⊗ t} is nonempty and contains a least element.

The philosophical intuitions behind these requirements are as follows:

3For those worried about ‘inconsistent types’ here, we again gesture in the direction of intersection type
theory.

6 SHAY ALLEN LOGAN

For F1: NF is meant to represent the class of finitely generated subtheories of the
logic. F1 then forces us to say something we ought to want to say anyways;
viz. that finitely generated subtheories of finitely generated subtheories of the logic
are finitely generated subtheories of the logic.

For F2: Since n and m are in N, each represents a finitely generated subtheory of the
logic. Their closed union, intuitively, is the theory generated by the union of their
generators. So, as required by F2, it too should be a finitely generated subtheory
of the logic—which is to say that it should be a member of N.

For F3: A finitely generated theory is generated by the conjunction of its generators.
Also, since even the trivial computational process (the one that does nothing at all)
supports every instance of p→ p, the theory generated by the instance of ‘p→ p’
where p is the conjunction of the generators of t ought to be a subtheory of the
logic of each frame F (and hence be a member of each NF). Finally, applying
this theory to t should result in a class of theories containing t, since t contains the
conjunction of its generators. F3 demands exactly this.

For F4: To be a theory at all is to be closed under the logic. If n ∈ N and u ∈
n ⊗ t, then u is the result of applying some part of the logic to t. So u should, as
demanded by F4, already be contained in t.

For F5: If s ⊑ t, then intuitively t supports the generators of s. Now suppose that
t ∈ u ⊗ v. It follows that some program in u, when run on the data provided by v,
gives us data that supports t. But as already noted, t supports the generators of s.
But since we have a program and data that can get us to something that contains
support for s, we can interpret this program and data as something provides us
with data that supports s. F5 requires that the models obey this sort of reasoning.

For F6: If s1 ⊑ s2, then intuitively there are no fewer programs in s2 than there are
in s1. So we ought to get out of s2 ⊗ t at least all the things we get out of s1 ⊗ t. A
similar intuition motivates the other case.

For F7: Let v ∈ (t ⊗ u) ⊓ (s ⊗ u). Then there is a program πt in t and data µt ∈ u so
that πt, when applied to µt, produces a set of generators for v. Similarly, there is a
program πs in s and data µs ∈ u so that πs, when applied to µs, produces a set of
generators for v. But since each π, when applied to the corresponding µ, produces
generators for v, each of them returns v-data. And since each µ is in u, π returns
v-data on being supplied u-data. So each π is the type of program that can return
generators for v on being supplied generators for u. So there is such a program in
the meet of s and t as well, and thus v will also be in (t ⊓ s) ⊗ u.

For F8: Suppose t is generated by T and s by S . Then any u containing a program
that returns S on being supplied T will demonstrate nonemptyness. F8 simply
requires that there always be such, which is not unreasonable. The minimality
assumption amounts to the claim that we can always produce a program that es-
sentially does this and no more.

Before moving on, let’s pause to do a bit of philosophy of logic. A natural question—
asked by, among other venerable persons, the referees—is this: how are we to understand
the philosophical intuitions above? My preference is that they be read as simultaneously
doing all of the following:

• specifying the domain being modeled by my models;
• specifying how the domain in question is being modeled by my models; and
• ensuring that the domain so-specified is in fact modeled in the specified way by

my models.

COMPUTATIONAL SEMANTICS FOR BB+ 7

Thus, e.g., in the explanation for F5, I am simultaneously informing the reader that we are
only modeling computational systems and situations in which the curtailment in question
can be performed and also explaining that the restriction in question ensures that ⊗—
read as the operation of nonconcurrently, nondeterministically applying a program to some
data—in my models in fact models such processes and situations.

Returning to the thread: a model M on a frame F is a function T −→ 2At satisfying, for
all t and u in T , the following two equations:

M(t ⊓ u) = M(t) ∩ M(u)
M(t ⊔ u) = M(t) ∪ M(u)

In addition, we require that a model satisfy the following condition:
M1: For all a ∈ At, {t : a ∈ v(t)} is nonempty and contains a least element.
M1 captures the intuition that for each atom a, there is a theory generated just by a.

Our semantic clauses are then as follows:
• t ⊨ a iff a ∈ v(t).
• t ⊨ A1 ∧ A2 iff there are ui with ui ⊨ Ai and u1 ⊔ u2 ⊑ t.
• t ⊨ A1 ∨ A2 iff there are ui with ui ⊨ Ai and u1 ⊓ u2 ⊑ t.
• t ⊨ A1 → A2 iff for all u, if u1 ⊨ A1, then u2 ⊨ A2 for some u2 ∈ t ⊗ u1.

It’s worthwhile to comment on the apparent upside-down-ery of the conjunction and dis-
junction clauses. On this subject we first note that the inspiration for these clauses is due
to the semantics Humberstone presented in [12]. On the other hand, it’s not too hard (and
is a useful exercise, the solution to which can be found among the lemmas below) to see
that the intersection of finitely generated theories t and u is the theory generated by the
disjunctions of the generators of t and u. And it’s entirely clear that the closed union of t
and u will contain each conjunction of generators of t and u. This, together with a small
amount of elbow grease, will give what’s needed to accept these clauses. The conditional
clause, on the other hand, we take to be a transparent semantification of the motivating
intuitions raised in the introduction.

To complete our semantic journey, say that A is valid in M iff n ⊨ A for some n ∈ N and
that A is valid in a class of frames C iff A is valid in M for all M ∈ C.

Lemma 1 (Heredity). If s ⊑ t, and s ⊨ A, then t ⊨ A.

Proof. By induction on A. For atoms the result is immediate. For conjunctions and disjunc-
tions, the shape of the corresponding semantic clause makes the result almost immediate.
For entailments, it follows from F6. □

Lemma 2. t ⊨ A1 ∧ A2 iff t ⊨ A1 and t ⊨ A2.

Proof. Suppose t ⊨ A1 ∧ A2. Then there are ui ⊨ Ai with u1 ⊔ u2 ⊑ t. But then u1 ⊑ t and
u2 ⊑ t. So by Heredity, t ⊨ A1 and t ⊨ A2.

The converse is immediate from the fact that t ⊔ t = t. □

Lemma 3. For all A, TA := {t : t ⊨ A} is nonempty and contains a least element iA.

Proof. For atomic A, this is immediate from M1.
Suppose A = A1 ∧ A2. By the inductive hypothesis, TA j contains a least element, iA j . So

iA j ⊨ A j, and thus iA1 ⊔ iA2 ⊨ A1 ∧ A2. So TA1∧A2 is nonempty. Now let t ∈ TA1∧A2 . Then
there are u j ⊨ A j with u1 ⊔ u2 ⊑ t. Thus each u j ⊑ t, so by heredity t ⊨ A j. It follows that
iA j ⊑ t and thus that iA1 ⊔ iA2 ⊑ t. So iA1 ⊔ iA2 is a lower bound for TA1∧A2 . Since it’s also
contained in TA1∧A2 , it’s immediately a least element as well.

8 SHAY ALLEN LOGAN

Essentially the same argument, mutatis mutandis, works if A = A1 ∨ A2.
Suppose A = A1 → A2. By the inductive hypothesis, TA j contains a least element, iA j .

By F8, {i : iA2 ∈ u ⊗ iA1 } contains a least element, i. We first show that TA1→A2 is nonempty
by showing that it contains i as a member. To see this, suppose w ⊨ A1. Then iA1 ⊑ w. So
i⊗ iA1 ⊆ i⊗w. Thus since iA2 ∈ i⊗ iA1 , iA2 ∈ i⊗w. So since iA2 ⊨ A2, i ⊨ A1 → A2 and thus
i ∈ TA1→A2 .

Now let t ∈ TA1→A2 . Then since iA1 ⊨ A1, for some v ∈ t ⊗ iA1 , v ⊨ A2. So iA2 ⊑ v. Thus
by F5, iA2 ∈ t ⊗ iA1 . So i ⊑ t by the definition of i. Thus i is a lower bound for TA1→A2 . □

In the remainder, we use the notation given in the statement of this Lemma and let iA be
the least element of TA := {t : t ⊨ A}.

Lemma 4. If t1 ⊨ A and t2 ⊨ A, then t1 ⊓ t2 ⊨ A.

Proof. By induction on A. For atoms, it follows from v being a lattice homomorphism.
Suppose A = A1 ∧ A2. Then there are ui

j ⊨ Ai so that u1
j ⊔ u2

j ⊑ t j. Thus clearly
(u1

1 ⊔ u2
1) ⊓ (u1

2 ⊔ u2
2) ⊑ t1 ⊓ t2, but also

(u1
1 ⊔ u2

2) ⊓ (u1
2 ⊔ u2

2) = [(u1
1 ⊓ u1

2) ⊔ (u2
1 ⊓ u1

2)]︸ ︷︷ ︸
v1

⊔ [(u1
1 ⊓ u2

2) ⊔ (u2
1 ⊓ u2

2)]︸ ︷︷ ︸
v2

By the inductive hypothesis, ui
1⊓ui

2 ⊨ Ai. So by heredity, vi ⊨ Ai. Thus t1⊓ t2 ⊨ A1∧A2.
Suppose A = A1 ∨ A2. Then there are ui

j ⊨ Ai so that u1
j ⊓ u2

j ⊑ t j. Thus clearly
(u1

1 ⊓ u2
1)⊓ (u1

2 ⊓ u2
2) ⊑ t1 ⊓ t2, but also (u1

1 ⊓ u2
1)⊓ (u1

2 ⊓ u2
2) = (u1

1 ⊓ u1
2)⊓ (u2

1 ⊓ u2
2). By the

inductive hypothesis, ui
1 ⊓ ui

2 ⊨ Ai. Thus t1 ⊓ t2 ⊨ A1 ∨ A2.
Finally, suppose A = A1 → A2. Then for all u, if u ⊨ A1, then there is vi ∈ ti ⊗ u so that

vi ⊨ A2. It follows by the inductive hypothesis that v1 ⊓ v2 ⊨ A2. And since v1 ⊓ v2 ⊑ vi, F5
gives that v1 ⊓ v2 ∈ ti ⊗ u. So by F7, v1 ⊓ v2 ∈ (t1 ⊓ t2) ⊗ u. So t1 ⊓ t2 ⊨ A1 → A2 □

Lemma 5. A→ B is valid in M iff for all t ∈ M, if t ⊨ A, then t ⊨ B.

Proof. Suppose A → B is valid in M. Then for some n ∈ N, n ⊨ A → B. Let t ⊨ A. Then
u ⊨ B for some u ∈ n ⊗ t. But since u ∈ n ⊗ t, u ⊑ t. Thus by heredity, t ⊨ B.

Now suppose for all t ∈ M, if t ⊨ A then t ⊨ B. By Lemma 3, TB has a least element, iB.
By F3, there is n ∈ N so that iB ∈ n ⊗ iB. I claim that n ⊨ A → B. To see this, let t ⊨ A.
Then t ⊨ B. So iB ⊑ t. Thus n ⊗ iB ⊆ n ⊗ t. So since iB ∈ n ⊗ iB, iB ∈ n ⊗ t as well. And
since iB ⊨ B, this finishes the job. □

4. Soundness

BB+ is axiomatized as follows:

Axioms:
(1) A→ A
(2) (A ∧ B)→ A; (A ∧ B)→ B
(3) A→ (A ∨ B); B→ (A ∨ B)
(4) [A∧(B∨C)]→ [(A∧B)∨(A∧

C)]
Rules:

(1) A A→ B
B

(2) A B
A ∧ B

(3) A→ B C → D
(B→ C)→ (A→ D)

(4)
A→ B1 A→ B2

A→ (B1 ∧ B2)

(5)
A1 → B A2 → B

(A1 ∨ A2)→ B

Theorem 6. All theorems of BB+ are valid in the class of all frames.

COMPUTATIONAL SEMANTICS FOR BB+ 9

Proof. Fix a model M. We show by induction on the derivation of the theorem in question
that it is valid in M. Recall that by F3, for all t ∈ T , there is n ∈ N so that t ∈ n ⊗ t.

A1 Case: Let iA ∈ n ⊗ iA. Let t ∈ TA. Then iA ⊑ t. Thus n ⊗ iA ⊆ n ⊗ t. So iA ∈ n ⊗ t,
from which it follows that n ⊨ A → A. The A2 and A3 cases are essentially the
same.

A4 Case: Let i(A∧B)∨(A∧C) ∈ n ⊗ i(A∧B)∨(A∧C). Let t ⊨ A ∧ (B ∨ C). Then there are
u1 ⊨ A and u2 ⊨ B ∨ C so that u1 ⊔ u2 ⊑ t. Since u2 ⊨ B ∨ C, there are u3 ⊨ B and
u4 ⊨ C so that u3 ⊓ u4 ⊑ u2. It follows that

u1 ⊔ (u3 ⊓ u4) = (u1 ⊔ u3) ⊓ (u1 ⊔ u4) ⊑ u1 ⊔ u2 ⊑ t

But also u1⊔u3 ⊨ A∧B and u1⊔u4 ⊨ A∧C. So (u1⊔u3)⊓ (u1⊔u4) ∈ T(A∧B)∨(A∧C).
Thus

i(A∧B)∨(A∧C) ⊑ (u1 ⊔ u3) ⊓ (u1 ⊔ u4) ⊑ t.

It follows that i(A∧B)∨(A∧C) ∈ n⊗ t, so that t ⊨ (A∨ (B∧C))→ ((A∧ B)∨ (A∧C)).
R1 Case: Let A and A → B be valid in M and suppose in particular that n1 ⊨ A and

n2 ⊨ A→ B. Then for some u ∈ n2 ⊗ n1, u ⊨ B. But since n1 ∈ N and u ∈ n2 ⊗ n1,
F4 gives that u ⊑ n1. Thus by F1, u ∈ N. So B is valid.

R2 Case: Let A and B be valid in M and suppose in particular that n1 ⊨ A and n2 ⊨ B.
Then clearly n1 ⊔ n2 ⊨ A ∧ B. And by F2, n1 ⊔ n2 ∈ N. Thus A ∧ B is valid.

R3 Case: Suppose A → B and C → D are valid in M and suppose in particular that
n1 ⊨ A → B and n2 ⊨ C → D. By Lemma 5, it suffices to show that if t ⊨ B→ C,
then t ⊨ A → D. So let t ⊨ B → C and u ⊨ A. Then v ⊨ B for some v ∈ n1 ⊗ u.
Since n1 ∈ N, F4 then gives that v ⊑ u. Thus t ⊗ v ⊆ t ⊗ u.

Also, since v ⊨ B, there is w ∈ t ⊗ v ⊆ t ⊗ u so that w ⊨ C. And since w ⊨ C,
there is x ∈ n2 ⊗ w so that x ⊨ D. But since n2 ∈ N, F4 again gives that x ⊑ w. So
since w ∈ t ⊗ u, x ∈ t ⊗ u as well. Thus t ⊨ A → D. The R4 case is essentially the
same.

R5 Case: Suppose Ai → B are valid, and in particular that ni ⊨ Ai → B. Let
t ⊨ A1 ∨ A2. Then there are ui ⊨ Ai so that u1 ⊓ u2 ⊑ t. Since ui ⊨ Ai, there are
vi ∈ ni ⊗ ui with vi ⊨ B. Since ni ∈ ni ⊗ ui, vi ⊑ ui. So vi ⊓ v2 ⊑ u1 ⊓ u2. And since
vi ⊨ B, v1 ⊓ v2 ⊨ B. Thus t ⊨ B as well, by heredity. By Lemma 5, this finishes the
job.

□

5. Completeness

We prove completeness by constructing a canonical model. Some definitions are needed:

• Given a set of formulas X, and a logic L we say that X is a formal L-theory when
the following two conditions are met:

– If A ∈ X and B ∈ X, then A ∧ B ∈ X.
– If A ∈ X and A→ B ∈ L, then B ∈ X.

• For X a set of formulas, we write [X]L for the set of formulas L-generated by X,
which we define to be {B : there are Ai ∈ X with (A1 ∧ · · · ∧ An)→ B ∈ L}.

Lemma 7. [X]BB+ is a formal BB+-theory for any set X.

Proof. Let B1 ∈ [X] and B2 ∈ [X]. Then there are A j
i ∈ X for which (A1

i ∧ · · ·∧Ani
i)→ Bi ∈

BB+. But then ((A1
1 ∧ · · · ∧ An1

1)∧ (A1
2 ∧ · · · ∧ An2

2))→ (B1 ∧ B2) ∈ BB+. So B1 ∧ B2 ∈ [X].

10 SHAY ALLEN LOGAN

Now let B ∈ [X] and B → C ∈ BB+. Since B ∈ [X], there are Ai ∈ X so that
(A1∧· · ·∧An)→ B ∈ BB+. But then since B→ C ∈ BB+ as well, so also is (A1∧· · ·∧An)→
C. Thus C ∈ [X]. □

If X = {C} is a singleton, we write [C]L rather than [{C}]L. Formal theories of the form
[C]L are called principal formal theories. From here on, when it can be determined by
context we will drop the subscripted ‘L’s.

We define the canonical frame FC to be the tuple ⟨ThBB+
prin ,∩,∪,BB+prin,⊗C⟩ where

• ThBB+
prin is the set of principal formal BB+-theories

• ∩ is ordinary intersection,
• t ∪ s = [t ∪ s],
• BB+prin is the set of principal formal subtheories of BB+.
• s ⊗C t = {[B] : for some A ∈ t, A→ B ∈ s}

In general we will omit the subscripted ‘C’ in t ⊗C u, where t and u are principal formal
theories, taking it to be understood from context.

Lemma 8. [A] ∩ [B] = [A ∨ B].

Proof. Containment right-to-left being clear, it suffices to demonstrate containment left-
to-right. For this, suppose C ∈ [A] and C ∈ [B]. Then A → C ∈ BB+ and B → C ∈ BB+.
So by R5, (A ∨ B)→ C ∈ BB+, and thus C ∈ [A ∨ B]. □

Lemma 9. [A] ∪ [B] ⊆ [A ∧ B]

Proof. Immediate from the definitions. □

Lemma 10. The induced order in the canonical frame is containment.

Proof. Recalling that the induced order on a lattice ⟨L,⊓,⊔⟩ is defined by s ⊑ t iff s = s⊓ t,
this is essentially immediate from the definitions involved. □

Lemma 11. [S] ⊆ [T] iff T → S ∈ BB+

Proof. Let [S] ⊆ [T]. Then S ∈ [T]. So T → S ∈ BB+.
Let T → S ∈ BB+ and S ′ ∈ [S]. Then S → S ′ ∈ BB+. So T → S ′ ∈ BB+. Thus

S ′ ∈ [T], so [S] ⊆ [T]. □

Lemma 12. The canonical frame is a frame.

Proof. We must verify first that ⟨ThBB+
prin ,∩,∪⟩ is a lattice, then that FC satisfies F1-F8.

Given the prior lemmas, to show that we’ve got a lattice on our hands it suffices to
observe that each of the following is a theorem:

• A→ (A ∨ (A ∧ B)) (by A3)
• (A ∨ (A ∧ B))→ A (by A1, A2, and R5)
• (A ∧ (A ∨ B))→ A (by A2)
• A→ (A ∧ (A ∨ B)) (by A1, A2, and R4)

We deal with the remaining conditions individually:
F1: Immediate.
F2: Immediate from the lemmas.
F3: Let t = [T]. Then n = [T → T] does the job.
F4: Let n ∈ BB+prin. If u = [U] ∈ n ⊗ t, then for some A ∈ t, A→ U ∈ n ⊆ BB+. But

then since A→ U ∈ BB+, U ∈ t, so [U] ⊆ t, as required.

COMPUTATIONAL SEMANTICS FOR BB+ 11

F5: Let [S] ⊆ [T] ∈ [U] ⊗ [V]. Then for some V ′ ∈ [V], V ′ → T ∈ [U]. Since
[S] ⊆ [T], T → S ∈ BB+. Thus (by A1 and R3) (V ′ → T) → (V ′ → S) ∈ BB+.
So V ′ → S ∈ [U]. So [S] ∈ [U] ⊗ [V].

F6: Immediate.
F7: Let [S] ∈ (t1⊗ [U])∩ (t2⊗ [U]). Then there are Ui ∈ [U] with Ui → S ∈ ti. Since

Ui ∈ [U], U → Ui ∈ BB+. Thus (Ui → S) → (U → S) ∈ BB+. So U → S ∈ ti,
and thus U → S ∈ t1 ∩ t2. So [S] ∈ (t1 ∩ t2) ⊗ [U].

F8: Let s = [S] and t = [T]. Then clearly s ∈ [T → S] ⊗ [T]. So {u : s ∈ u ⊗ t} is
nonempty. Also, if [S] ∈ u ⊗ [T], then T → S ∈ u, and thus [T → S] ⊆ u. So
[T → S] is minimal.

□

The canonical model augments the canonical frame with the function MC : t 7→ t ∩ At.
To see that this satisfies M1, it suffices to observe that for all a ∈ At, [a] clearly contains a
and is minimal among theories that contain a. Thus the canonical model is a model on the
canonical frame.

Lemma 13. MC , t ⊨ A iff A ∈ t.

Proof. By induction on A. For atoms it is immediate from the definition of MC .
Suppose A = A1 ∧ A2 and MC , t ⊨ A. Then there are ui so that ui ⊨ Ai and u1 ∪ u2 ⊆ t.

By the inductive hypothesis, since ui ⊨ Ai, Ai ∈ ui. Thus A1 ∧ A2 ∈ u1 ∪ u2 and thus
A1 ∧ A2 ∈ t. On the other hand, if A ∈ t, then clearly [A1] ∪ [A2] = [A] ⊆ t. And, by
the inductive hypothesis, [Ai] ⊨ Ai, finishing the job. Mutatis mutandis, the same argument
works if A = A1 ∨ A2 as well.

Finally, let A = A1 → A2 and suppose A ∈ t and u ⊨ A1. Then by the inductive
hypothesis, A1 ∈ u. Thus [A2] ∈ t ⊗ u. And, again by the inductive hypothesis, [A2] ⊨ A2.
So t ⊨ A1 → A2.

If instead A1 → A2 < t, then I claim that [A2] < t ⊗ [A1]. Notice that by the inductive
hypothesis, it follows from this that t ⊭ A1 → A2, so this will suffice.

To prove the claim, suppose to the contrary that [A2] ∈ t⊗[A1]. Then for some A′1 ∈ [A1],
A′1 → A2 ∈ t. But since A′1 ∈ [A1], A1 → A′1 ∈ BB+. It follows that (A′1 → A2) → (A1 →

A2) ∈ BB+. Thus A1 → A2 ∈ t, which is a contradiction. □

Theorem 14. If A is valid in the class of all BB+ frames, then A is provable in BB+.

Proof. Suppose A isn’t provable in BB+. Then A isn’t in BB+. So A is in no principle
formal subtheory of BB+. Thus A isn’t valid in the canonical model. □

6. Extensions 1: Structural Rules

There are a variety of structural rules we might add to the system. Each of these cor-
responds to more-or-less plausible conditions on the computation system in question. The
extensions we’ll examine (together with the corresponding frame conditions) are the ‘pos-
itive’ members of the ones Fine examined in [7] together with clauses that get us up from
BB+ to B+. To state the frame conditions concisely, it helps to extend ⊗ in two ways: to
a function T × 2T −→ 2T and to a function 2T × T −→ 2T . We do so by stipulating that
t ⊗ S =

⋃
s∈S t ⊗ s and similarly that S ⊗ t =

⋃
s∈S s ⊗ t.

Lemma 15. Let t, u, and v be formal L-theories for some L extending BB+. Then if
[B]L ∈ t ⊗ (u ⊗ v), then there is A→ B ∈ t with [A]L ∈ u ⊗ v.

12 SHAY ALLEN LOGAN

Proof. If [B]L ∈ t⊗(u⊗v), then for some A′ → B ∈ t, there is [A]L ∈ u⊗v so that A′ ∈ [A]L.
But then A→ A′ ∈ L. So (A′ → B)→ (A→ B) ∈ L. Thus A→ B ∈ t □

Lemma 16. Let t, u, and v be formal L-theories for some L extending BB+. If [B]L ∈

(t ⊗ u) ⊗ v, then there is A ∈ v with [A→ B]L ∈ t ⊗ u.

Proof. Let [B]L ∈ (t ⊗ u) ⊗ v. Then for some [C]L ∈ t ⊗ u, there is A → B ∈ [C]L with
A ∈ u. Since [C]L ∈ t ⊗ u, there is D → C ∈ t with D ∈ u. And since A → B ∈ [C]L,
C → (A → B) ∈ L. So (D → C) → (D → (A → B)) ∈ L as well. So D → (A → B) ∈ t,
and thus [A→ B] ∈ t ⊗ u. □

Theorem 17. In the following chart, the logic that extends BB+ with one of axioms (1)-
(7) is sound and complete for the class of frames satisfying the (universal closure of the)
constraint listed on the right.

(1) ((A→ B) ∧ (B→ C))→ (A→ C) t ⊗ (t ⊗ u) ⊆ t ⊗ u
(2) (A→ B)→ ((B→ C)→ (A→ C)) t ⊗ (u ⊗ v) ⊆ (u ⊗ t) ⊗ v
(3) (B→ C)→ ((A→ B)→ (A→ C)) t ⊗ (u ⊗ v) ⊆ (t ⊗ u) ⊗ v
(4) (A ∧ (A→ B))→ B If u ∈ t ⊗ t, then u ⊑ t
(5) (A→ (B→ C))→ ((A ∧ B)→ C) (t ⊗ u) ⊗ u ⊆ t ⊗ u
(6) A⇒ (A→ B)→ B If n ∈ N and u ∈ t ⊗ n, then u ⊑ t
(7) A→ ((A→ B)→ B) t ⊗ u = u ⊗ t
(8) ((A→ B) ∧ (A→ C))→ (A→ (B ∧C)) If vi ∈ t ⊗ u then v1 ⊔ v2 ∈ t ⊗ u
(9) ((A→ C) ∧ (B→ C))→ ((A ∨ B)→ C) (t ⊗ v1) ∩ (t ⊗ v2) ⊆ t ⊗ (v1 ⊓ v2)

Proof. We consider each axiom individually. Since in each case we are considering a
subclass of the class of all frames, each of Lemmas 1-5 still holds. We write Fn for the
class of frames satisfying condition n, and BB+n for the logic axiomatized by BB+ together
with the nth axiom. We leave it to the reader to verify that Lemmas 7-11 hold when
replacing BB+ with BB+n .

(1): Soundness part: By Lemma 5, it suffices to show that in any model based on a
frame satisfying the condition, if t ⊨ (A → B) ∧ (B → C), then t ⊨ A → C. So
suppose t ⊨ (A → B) ∧ (B → C). Then by Lemma 2, t ⊨ A → B and t ⊨ B → C.
Now let u ⊨ A. Then v ⊨ B for some v ∈ t ⊗ u. Thus w ⊨ C for some w ∈ t ⊗ v. But
then w ∈ t ⊗ (t ⊗ u). So w ∈ t ⊗ u. So t ⊨ A→ C.

Completeness part: suppose [C]BB+1 ∈ t ⊗ (t ⊗ u). By Lemma 15, there is
B → C ∈ t with [B]BB+1 ∈ t ⊗ u. But since [B]BB+1 ∈ t ⊗ u, there is A → B ∈ t
with A ∈ u. So then A → B and B → C are in t and thus since t is a BB+1 -theory,
A→ C ∈ t. So [C]BB+1 ∈ t ⊗ u.

The arguments for (2) and (3) are similar.
(4): Soundness part: By Lemma 5, it suffices to show that in any model based on

a frame satisfying the condition, if t ⊨ A ∧ (A → B), then t ⊨ B. So suppose
t ⊨ A ∧ (A → B). Then by Lemma 2, t ⊨ A and t ⊨ A → B. So there is u ∈ t ⊗ t
with u ⊨ B. But since u ∈ t ⊗ t, u ⊑ t. So by heredity, t ⊨ B as well.

Completeness part: suppose [B]BB+4 ∈ t ⊗ t and B′ ∈ [B]BB+4 . Then since [B] ∈
t ⊗ t, there is A → B ∈ t with A ∈ t. So A ∧ (A → B) ∈ t. Thus B ∈ t. And since
B′ ∈ [B], B→ B′ ∈ BB+4 . So B′ ∈ t, and thus [B] ⊆ t.

(5): Soundness part: By Lemma 5, it suffices to show that in any model based on a
frame satisfying the condition, if t ⊨ A → (B → C), then t ⊨ (A ∧ B) → C. So
suppose t ⊨ A→ (B→ C) and let u ⊨ A ∧ B. Then by Lemma 2, u ⊨ A and u ⊨ B.

COMPUTATIONAL SEMANTICS FOR BB+ 13

Since u ⊨ A, for some v ∈ t ⊗ u, v ⊨ B→ C. Thus for some w ∈ v ⊗ u, w ⊨ C. But
then w ∈ (t ⊗ u) ⊗ u ⊆ t ⊗ u. So t ⊨ (A ∧ B)→ C.

Completeness part: suppose [C]BB+5 ∈ (t ⊗ u) ⊗ u. Then by Lemma 16, there is
B ∈ u with [B → C]BB+5 ∈ t ⊗ u. So there is A ∈ u with A → (B → C) ∈ t. But
then (A ∧ B)→ C ∈ t. And since A ∈ u and B ∈ u, Lemma 2 gives that A ∧ B ∈ u.
Thus [C]BB+5 , and thus (t ⊗ u) ⊗ u ⊆ t ⊗ u.

(6): Soundness part: consider a model based on a frame satisfying the condition.
Suppose N ∋ n ⊨ A. By Lemma 5, to show that (A → B) → B is also valid in the
model, it suffices to show that if t ⊨ A → B, then t ⊨ B. So, let t ⊨ A → B. Then
u ⊨ B for some u ∈ t ⊗ n. But then u ⊑ t. So t ⊨ B as well.

Completeness part: let n ∈ N and [B]BB+6 ∈ t ⊗ n. Then there is A ∈ n with
A → B ∈ t. But since A ∈ n, A ∈ BB+6 . Thus (A → B) → B ∈ BB+6 . So since
A→ B ∈ t, B ∈ t. So [B]BB+6 ⊆ t.

(7): Soundness part: By Lemma 5, it suffices to show that in any model based on a
frame satisfying the condition, if t ⊨ A, then t ⊨ (A→ B)→ B. So let t ⊨ A and let
u ⊨ A→ B. Then v ⊨ B for some v ∈ u ⊗ t = t ⊗ u. So t ⊨ (A→ B)→ B.

Completeness part: Let [B]BB+7 ∈ t ⊗ u. Then there is A ∈ u with A → B ∈ t.
But since A ∈ u, (A → B) → B ∈ u as well. So [B]BB+7 ∈ u ⊗ t. The converse
containment is established with essentially the same argument.

(8): Soundness part: By Lemmas 2 and 5, it suffices to show that in any model
based on a frame satisfying the condition, if t ⊨ A → B and t ⊨ A → C, then
t ⊨ A→ (B∧C). So suppose t ⊨ A→ B and t ⊨ A→ C. Let u ⊨ A. Then there are
vi ∈ t ⊗ u so that v1 ⊨ B and v2 ⊨ C. But then by assumption v1 ⊔ v2 ∈ t ⊗ u and by
Lemma 2, v1 ⊔ v2 ⊨ B ∧C. So t ⊨ A→ (B ∧C).

Completeness part: Let vi ∈ t⊗u, and suppose vi = [Vi]BB+8 . Then there are Ai ∈

u with Ai → Vi ∈ t. But since (A1∧A2)→ Ai ∈ BB+8 and Vi → Vi ∈ BB+8 , it follows
by rule (3) that (Ai → Vi) → ((A1 ∧ A2) → Vi) ∈ BB+8 . So since Ai → Vi ∈ t, we
also have that (A1 ∧ A2) → Vi ∈ BB+8 . So (A1 ∧ A2) → (V1 ∧ V2) ∈ BB+8 . Finally,
since Ai ∈ u, clearly A1 ∧ A2 ∈ u. Thus [V1 ∧ V2] = [V1] ⊔ [V2] = v1 ⊔ v2 ∈ t ⊗ u.

(9): Soundness part: By Lemma 2 and 5, it suffices to show that in any model based
on a frame satisfying the condition, if t ⊨ A → C and t ⊨ B → C, then t ⊨
(A ∨ B) → C. So suppose t ⊨ A → B and t ⊨ A → C. Let u ⊨ A ∨ B. Then
there are vi with v1 ⊓ v2 ⊑ u and v1 ⊨ A and v2 ⊨ B. Then there are wi ∈ t ⊗ vi

with wi ⊨ C. Since w1 ⊓ w2 ⊑ wi, it follows by F5 that w1 ⊓ w2 ∈ t ⊗ vi. So
w1 ⊓ w2 ∈ (t ⊗ v1) ∩ (t ⊗ v2). It follows then that w1 ⊓ w2 ∈ t ⊗ (v1 ⊓ v2). But by
Lemma 4, since wi ⊨ C, w1 ⊓ w2 ⊨ C. So t ⊨ (A ∨ B)→ C, as required.

Completeness Part: Let w = [W] ∈ (t ⊗ v1) ∩ (t ⊗ v2). Then there are Ai ∈ vi

with Ai → W ∈ t. So (A1 → W) ∧ (A2 → W) ∈ t. Thus (A1 ∨ A2) → W ∈ t. And
since Ai ∈ vi, it follows that A1 ∨ A2 ∈ v1 ∩ v2. Thus [W] = w ∈ t ⊗ (v1 ∩ v2) as
required.

□

Before turning to the next sort of extension, we’ll pause first to think about the compu-
tational interpretation of each of the above extensions. We’ll work our way from the top to
the bottom. It’s useful, in doing so, to consider and add notation for a natural operation on
programs. In particular, where p1 and p2 are programs, we’ll write comp(p2, p1) for the
‘composite’ program we get by first running program p1, then running program p1. With
this in hand, here are the computational interpretation of the semantic restrictions required
to effect each of the above extensions of the logic:

14 SHAY ALLEN LOGAN

For (1): choose v ∈ t ⊗ (t ⊗ u). Then there is a program p1 in t that generates v
when applied to data in t ⊗ u. Thus in fact there are programs p1 and p2 in t such that,
if p2 is applied to data in u and p1 is applied to the data that results, we wind up with
data that supports v. If the result is already in t ⊗ u, then t must support comp(p1, p2).
Stated more simply, the computational interpretation of the semantic condition is this: data
supporting any two programs p1 and p2 also supports the program we get by composing
these programs. One way to understand this in the case of systems like the one examined in
§1 is as an increase in the complexity of the instructions the user can provide to the system:
instead of only giving instructions ‘run this program on that data’, we’re now allowing the
user to give instructions of the form ‘run this program on that data, then run the following
program on the resulting data’.

For (2) and (3), the change amounts to a restriction in the behavior of programs when
applied to programs. More to the point, what’s required for (2) is that each program p be
such that, when it is applied to a program q, the result is always a program that executes
comp(q, p), while (3) instead requires that the result be comp(p, q). Each of these is a
natural-enough sort of restriction one might adopt on the kinds of programs one might
consider.

Restrictions (1), (2), and (3) each correspond to modifications of the computational
metaphor that keep its rough structure in tact. The remaining restrictions, however, push
the bounds of plausibility on the metaphor a bit past the breaking point.

For (4), we are demanding a restriction to something that either corresponds to a type
of saturation or a type of omniscience. In either event, what’s required is that any data that
supports both a program and a piece of information also support the result of executing the
program on the information. This can be seen as requiring that we only consider ‘saturated’
bodies of data—bodies of data that only include programs if they also include all data that
result from running that program on the data. Alternatively, it might be taken to require a
type of ‘computational omniscience’; that is, on assuming that being presented with both
a program and data just is being presented with the result of running the program on the
data.

(5) then takes these notions of saturation/omniscience to the natural next step: given data
that support a program and (possibly different) data that support information just is being
presented with data that support all the programs that result from running the program on
the information. Thus, I require not just that data be saturated with respect to itself, but
with respect to all the other data around as well. Or, in terms of omniscience, it requires
that every time I can generate programs from data, those programs appear to me as already
included in the data.

Accommodating (6) and (7) in the computational metaphor is yet more difficult. In
some sense, each requires what seem like quite drastic and unnatural restrictions on the
data one considers. For (7), for example, what’s required is this: a given program p can
turn something in u into data d iff u can turn the program p into data d. Thus, u can’t
contain anything that could, by some program p, be manipulated into something that u
couldn’t produce when applied to p. (6) requires something similar, but only for data that
forms a subset of the logic.

(8) and (9) both (as should be expected) explicitly break the nonconcurrency at the heart
of the semantics. This is easier to see in (8) than in (9); (8) basically says that if there are
programs pi in t that generate vi, then there is a program—the program that runs p1 and p2
concurrently—that generates v1 ⊔ v2. (9) on the other hand says that if we are given two
different ways of generating data d—say by running p1 on e1 or by running p2 on e2—then

COMPUTATIONAL SEMANTICS FOR BB+ 15

if we already support both p1 and p2, we can generate d by running a program π that we
already support on any data that supports the meet of e1 and e2. To see how this builds in
concurrency, one has to ask what π should be. The answer isn’t that π should be a program
that can take either e1 or e2 and return d because such a program can’t be guaranteed to
generate d whenever it is run on data that support the meet of e1 and e2—the meet of e1
and e2 might, after all, contain neither e1 nor e2. What’s needed instead is something that
can run on the sort of disjunctive data one expects to find in the meet of e1 and e2. Now
having a look at the axiom supported by (9), we see what the answer is: what we need is
a program that concurrently runs both the program that returns d from e1 and the program
that returns d from e2, and does this when applied to the ‘disjunction’ e1 ∨ e2.

6.1. With Modalities. A different way to extend BB+ is by adding modalities to it. We do
this by first adding a new unary connective ‘□’ to the language. From here, the ‘obvious’
thing to do is to augment our models with a meet-preserving map ′ : T −→ T . That is, we
require that (t ⊓ s)′ = t′ ⊓ s′. It follows that ′ is also order-preserving, since t ≤ s =de f

t ⊓ s = t, and thus if t ⊑ s, then t′ ⊓ s′ = (t ⊓ s)′ = t′ so that t′ ⊑ s′. In addition—and this
time unlike Fine—we must require that this function satisfy the following constraint:

• For all t ∈ T , {s ∈ T : t ⊑ s′} is nonempty and contains a least element.4

The semantic clause for □ is then defined by t ⊨ □A iff t′ ⊨ A. Call the set of formulas valid
in the resulting semantics BB□+.

The problem with this route to providing a semantics for modals is that the completeness
proof relies on a conjecture I cannot prove at this time. The conjecture is this:

Conjecture: If t is a principal BB□+-theory, then so too is {A : □A ∈ t}.

Clearly we need to verify this for the expected ‘priming’ function in the canonical model
to actually be well-defined. Showing that the conjecture holds, however, seems to rely on
some fairly subtle features of BB□+-proofs, so will have to await further work.

What we’ll do instead is replace the function ′ : T −→ T that we want with a function
′′ : T −→ 2T that does the job. This new function intuitively maps each theory t to the set
of finitely generated subtheories of what we wanted to map to. That is ′′ maps to the set of
principal subtheories of the ‘unboxing’, t′, of t.

A note: in spite of entirely replacing the single-priming function with the double-
priming function, we’ll retain the double-priming notation since the single-priming func-
tion is, in the completeness parts of the metatheory below, useful to have around.

What we explicitly require is that the function ′′ have all the following features:

• (t ⊓ s)′′ = t′′ ∩ s′′.
• If s ∈ t′′ and u ⊑ s, then u ∈ t′′.
• If si ∈ t′′, then s1 ⊔ s2 ∈ t′′.

From the first point it follows (as we leave to the reader to verify) that if t ⊑ s, then t′′ ⊆ s.
We then adopt the following frame constraint:

F10 For all t ∈ T , {s ∈ T : t ⊑ u for some u ∈ s′′} is nonempty and contains a least
element.

The semantic clause for □, on the other hand, becomes the following: t ⊨ □A iff u ⊨ A for
some u ∈ t′′.

4In [7], no mention is actually made of the need for ′ to be order-preserving, but since Fine relies on heredity
just as much as I do, it seems we should charitably take this to be an essentially typographical error.

16 SHAY ALLEN LOGAN

With regard to the computational metaphor, we can understand the double-prime func-
tion (and thus the box) as a call to a family of libraries. The call is, initially, very weak—
just a pointer in fact.5 As we strengthen the semantics, the call will get stronger. For
example, the axiom □A→ A strengthens the call from a pointer to an import—all the data
one calls is loaded as additional data. Thus, in an analogy that is particularly poignant
as I struggle to compile this document, when so-augmented □A behaves a bit like the
LATEX command \includepackage{A}.

Our first task is to verify that all our requisite lemmas still work.

Lemma 18. Suppose M is a modal model. Then all of the following hold:

(a) If s ⊑ t, then if s ⊨ A then t ⊨ A.
(b) t ⊨ A1 ∧ A2 iff t ⊨ A1 and t ⊨ A2.
(c) For all A, TA is nonempty and contains a least element.
(d) If t1 ⊨ A and t2 ⊨ A, then t1 ⊓ t2 ⊨ A.
(e) A→ B is valid in M iff for all t ∈ M, if t ⊨ A, then t ⊨ B.

Proof. We need only examine (a), (c), and (d) to get the rest. And in these cases, we need
only examine the new clause in the corresponding inductions.

For (a), suppose s ⊑ t and s ⊨ □A. Then u ⊨ A for some u ∈ s′′. But since s ⊑ t, s′′ ⊆ t′′.
Thus t ⊨ □A as well.

For (c), suppose A = □A1. By the inductive hypothesis, TA1 has a least element, iA1 . By
F10, {s ∈ T : iA1 ⊑ u for some u ∈ s′′} is nonempty and has a least element, j. Thus, for
some u ∈ j′′, iA1 ⊑ u. So u ⊨ A1, and thus j ⊨ □A1, so j ∈ TA. Now suppose t ∈ TA. Then
t ⊨ □A1, so for some u ∈ t′′, u ⊨ A1. So iA1 ⊑ u. Thus j ⊑ t, from which it follows that j is
a least member of TA.

For (d), suppose ti ⊨ □A. Then there are ui ∈ ti with ui ⊨ A. By the inductive hypothesis,
u1 ⊓ u2 ⊨ A. But u1 ⊓ u2 ⊑ ui, so u1 ⊓ u2 ∈ t′′i , and thus u1 ⊓ u2 ∈ t′′1 ∩ t′′2 = (t1 ⊓ t2)′′. Thus
t1 ⊓ t2 ⊨ □A. □

Theorem 19. BB□+ is axiomatized by BB plus the following axiom and rule:

• (□A ∧ □B)→ □(A ∧ B)
•

A→ B
□A→ □B

Proof. Soundness part: By Lemma 18(e), to show that (□A ∧ □B) → □(A ∧ B) is valid in
the above semantics it suffices to show that if t ⊨ □A ∧ □B, then t ⊨ □(A ∧ B). So suppose
t ⊨ □A∧□B. Then by Lemma 18(b), t ⊨ □A and t ⊨ □B. So there are u ∈ t′′ and v ∈ t′′ with
u ⊨ A and v ⊨ B. But then u ⊔ v ∈ t′′ as well and clearly u ⊔ v ⊨ A ∧ B. Thus t ⊨ □(A ∧ B).

Now suppose that n ⊨ A → B. By Lemma 18(e), to show that □A → □B is valid, it
suffices to show that if t ⊨ □A, then t ⊨ □B. So let t ⊨ □A. Then u ⊨ A for some u ∈ t′′.
Thus there is v ∈ n ⊗ u so that v ⊨ B. But since v ∈ n ⊗ u, v ⊑ u. So v ∈ t′′ as well. Thus
t ⊨ □B.

For completeness, we define the canonical model mostly as before, but add that t′′C =
{[A] : [A] ⊆ t′C } where t′C = {B : □B ∈ t}. It then suffices to establish the following:

• (t ∩ s)′′C = t′′C ∩ s′′C .
• If s ∈ t′′C and u ⊆ s, then u ∈ t′′C .
• If si ∈ t′′C , then s1 ∪ s2 ∈ t′′C .

5Perhaps in this weakest case, it’s best to think of ‘□’ as the ‘citation modal’—it points to other work without
directly including that work in the work at hand.

COMPUTATIONAL SEMANTICS FOR BB+ 17

• For all t ∈ ThBB□+
prin , {s ∈ ThBB□+

prin : t ⊆ u for some u ∈ s′′C } is nonempty and contains
a least element.
• For all t ∈ ThBB□+

prin , t ⊨ □A iff □A ∈ t.

From the first four it will follow that the canonical model is a model, and the last will allow
us to augment the proof of Lemma 13 as expected. From there we finish the job in the
expected way. Throughout the rest of this proof, we omit for the sake of readability the
subscripted ‘C’s.

For the first point, let [U] ∈ ([T] ∩ [S])′′. Then [U] ∈ [T ∨ S]′′, so [U] is a principal
subtheory of [T ∨ S]′ = {A : (T ∨ S)→ □A ∈ BB□+}. Thus, there are Ai ∈ [T ∨ S]′ so that
(A1∧ · · ·∧An)→ U ∈ BB□+. But then (T ∨S)→ □Ai ∈ BB□+, and thus T → □Ai ∈ BB□+
and S → □Ai ∈ BB□+. So [U] is a principal subtheory of [T]′ and of [S]′ as well. So
[U] ∈ [T]′′ ∩ [S]′′.

For the other direction, suppose [U] ∈ [T]′′ ∩ [S]′′. Then [U] is a principal subtheory
of [T]′ and a principal subtheory of [S]′. So T → □U ∈ BB□+ and S → □U ∈ BB□+. It
follows that (T∨S)→ □U ∈ BB□+, so [U] is a principal subtheory of [T∨S]′ = ([T]∩[S])′

as well. So [U] ∈ ([T] ∩ [S])′′.
The second and third points follow almost immediately from the definitions.
For the fourth point, again let t = [T] and consider the theory [□T]. Clearly T ∈ [□T]′,

and thus [T] ∈ [□T]′′. So t ⊆ u for some u ∈ [□T]′′. Thus the set is nonempty. Now
suppose s is in the set. Then for some u ∈ s′′, t ⊆ u. So T ∈ u. So T ∈ s′, and thus □T ∈ s.
So [□T] ⊆ s, so [□T] is minimal.

For the final point, note that t ⊨ □A iff u ⊨ A for some u ∈ t′′ iff (by the inductive
hypothesis) A ∈ u iff □A ∈ t. □

We can naturally extend ′′ to a function 2T −→ 2T by defining S ′′ =
⋃

s∈S s′′. Using
this, we can then give semantic characterizations of the same extensions of the basic modal
logic BB□+ as above. As with Theorem 17, we will pause after proving the theorem to give
computational interpretations of each extension.

Theorem 20. In the following chart, the logic that extends BB□+ with one of axioms (10)-
(13) is sound and complete for the class of frames satisfying the (universal closure of the)
constraint listed on the right.

(10) □A→ A if u ∈ t′′, then u ⊑ t
(11) □A→ □□A t′′ ⊆ (t′′)′′

(12) □(A→ B)→ (□A→ □B)
⋃
v∈t′′
w∈u′′

v ⊗ w ⊆ (t ⊗ u)′′

(13) A
□A N ⊆ N′′.

Proof. We again consider each axiom individually

(10): Soundness part: By Lemma 18(e), it suffices to show that in any model based
on a frame satisfying the condition, if t ⊨ □A, then t ⊨ A. So let t ⊨ □A. Then
u ⊨ A for some u ∈ t′′. But then u ⊑ t, so Lemma 18(a) gives that t ⊨ A.

Completeness part: suppose A ∈ u ∈ [T]′′CBB□+8
. Then □A ∈ t. So since □A →

A ∈ BB□+8 , A ∈ t. So u ⊆ t.
(11): Soundness part: By Lemma 18(e), it suffices to show that in any model based

on a frame satisfying the condition, if t ⊨ □A, then t ⊨ □□A. So let t ⊨ □A. Then
there is u ∈ t′′ so that u ⊨ A. But since t′′ ⊆ (t′′)′′, it follows that for some v ∈ t′′,
u ∈ v′′. So since u ⊨ A, v ⊨ □A and thus t ⊨ □□A.

18 SHAY ALLEN LOGAN

Completeness part: [U]BB□+9
∈ t′′C . Then □U ∈ t. So since □U → □□U ∈

BB□+9 , □□U ∈ t as well. Thus, [□U] ∈ t′′C . And since [U] ∈ [□U]′′C , it follows
that [U] ∈ (t′′C)′′C .

(12): Soundness part: By Lemma 18(e), it suffices to show that in any model based
on a frame satisfying the condition, if t ⊨ □(A → B), then t ⊨ □A → □B. So let
t ⊨ □(A → B) and u ⊨ □A. Then v ⊨ A → B for some v ∈ t′′ and w ⊨ A for some
w ∈ u′′. Thus x ⊨ B for some x ∈ v⊗w. So since

⋃
v∈t′′
w∈u′′

v⊗w ⊆ (t ⊗ u)′′, x ∈ (t ⊗ u)′′

as well. It follows that for some y ∈ t ⊗ u, x ∈ y′′. And since x ⊨ B, y ⊨ □B. So
t ⊨ □A→ □B.

Completeness part: Let [X]BB□+10
∈ v ⊗ w for some v ∈ t′′C and w ∈ u′′C . Then

there is Y ∈ w for which Y → X ∈ v. Since v ∈ t′′C , v ⊆ t′C . And since w ∈ u′′C ,
w ⊆ u′C . Thus □(Y → X) ∈ t and □Y ∈ u. And since □(Y → X) → (□Y →
□X) ∈ BB□+10 , we then get that □Y → □X ∈ t and thus that [□X]BB□+10

∈ t ⊗ u. So
[X]BB□+10

∈ (t ⊗ u)′′C .
(13): Soundness part: Suppose we have a model satisfying the condition. Let n ⊨ A

for some n ∈ N. Then since N ⊆ N′′, n ∈ m′′ for some m ∈ N. So m′′ ⊨ □A.
Completeness part: suppose [A]BB□+11

∈ N. Then since BB□+11 is closed under the
rule, [□A]BB□+11

∈ N. So [A]BB□+11
∈ N′′C .

□

The first two axioms have very natural computational interpretations: (10) requires that
library called by □ be actually loaded—that is, that its contents be made part of the current
theory. (11) requires that libraries called by libraries be called. Together (10) and (11) then
demand that we load libraries and that we load libraries loaded by libraries.

(12)’s computational interpretation is fairly straightforward as well. It requires (essen-
tially) that application be extended piecewise to libraries. That is, anything I can get by
applying some part of the library t calls to some part of the library u calls must be part
of the library of something I can get by applying t to u. There is a certain sort of con-
currency being baked in here—intuitively, when applying t plus libraryt to u plus libraryu,
what (12) requires is that we apply something in t to u and simultaneously apply part of
libraryt to libraryu. This is, of course, unsurprising since (12) is a modal analogue of the
concurrency-destroying (8).

Finally, (13) is probably best thought of as a restriction on the notion of abnormality.
Explicitly, (13) requires that each normal theory must be part of the library called by some
(not necessarily distinct) normal theory. Thus, nothing that counts as normal is such that
calling it as a library immediately makes a theory abnormal. Computationally, the idea is
that a call to something that implements the support relation cannot be the sort of thing that
guarantees one is looking at data that is not implementing the support relation.

Conclusion and FutureWork

The computational metaphor first pointed out by Dunn and Meyer in 1997 is, it seems,
still ripe for exploration. We’ve clearly just scratched the surface here, and we already
see that it naturally extends in a way that incorporates nondeterministic and nonconcurrent
types of computation. The resulting semantic theory—which seems to more smoothly
incorporate Dunn and Meyer’s motivating intuitions—naturally captures the very weak
relevant logic BB+. And straightforward restrictions on the class of models then give rise

COMPUTATIONAL SEMANTICS FOR BB+ 19

to various well-known strengthenings of this logic. Altogether this suggests a rich and
powerful new semantics for an interesting class of logics.

On the modal front, while the semantics is certainly capable of handling everything
we’ve thrown at it, the metaphor seems a bit more fragile. In particular, while it seems
that modalities obeying (10), (11), and (13) are all compatible with the computational
metaphor we’ve been examining, modalities obeying (12) are not. We’re left then with
six of the thirteen axioms we’ve examined—axioms (1)-(3) and axioms (10), (11), and
(13)—that can plausibly be added without doing damage to the computational metaphor in
play. Intuitively, adding any collection of these axioms should also be compatible with the
computational metaphor. This leaves us with a whopping 36 computationally interesting
logics worth exploring already. And of course, we’ve only looked at the low-hanging fruit
here—axioms that have been considered already in other contexts. That said, the fact
that the same semantic paradigm works across such a broad range of different extensions
suggests that the computational metaphor underlying the semantics is fairly robust. It also
suggests novel ways of interpreting several systems that have heretofore seen very little
exploration.

Of course, the elephants in the room are (a) negation and (b) the conjecture. On (a),
given the computational perspective I’ve advocated here, intuitionistic-style negations are
quite natural, but what exactly it means for a negation to be ‘intuitionistic’ in the setting at
hand is less than clear (though some useful thoughts in this direction can be found in [19]).
It would also be interesting to examine a range of other negations, including both relevant
negations and the ‘boolean’ negations that have been explored in the relevant literature in
various places (see e.g. [17] and the ‘relevant’ chapters in [10] to start).

Two other natural extensions worth examining are the extension to quantificational log-
ics and the extension to justification logics, whose study in the relevant realm is in its
infancy (see [21] and [23] for the state of the art). In the former case, it will be inter-
esting to see whether, how, and to what extent the well-known difficulties relevant logics
face with Tarksian quantification (see [9] for the locus classicus) arise here. On the latter
front, there’s hope for Curry-Howard-ish things (see e.g. [11]) to push the computational
metaphor further. In particular, to the extent that justification terms record proofs and
proofs just are programs, one would expect that we might be able to say something more
concrete about the computational content of the semantics at hand.

Also worth examining is the extent to which the semantics I’ve given here is amenable
to non-canonical models. One has the sense that models of the sort specified will be very
close to being canonical. But it isn’t clear (a) how to measure ‘closeness’ to the canonical
model nor (b) how to go about even trying to construct non-canonical models. I think both
of these actually present rather interesting lines to explore in this area, but will have to
leave them to later work.

References

[1] Katalin Bimbó. Combinatory logic: Pure, applied and typed. CRC Press, 2011.
[2] Alonzo Church. The Calculi of Lambda-Conversion. Princeton, NJ, USA: Princeton University Press, 1941.
[3] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality theory for the
λ-calculus. Notre Dame journal of formal logic, 21(4):685–693, 1980.

[4] Haskell B. Curry and Robert Feys. Combinatory Logic, vol. I. Amsterdam (North Holand), 1972.
[5] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, and Betti Venneri. The “relevance” of intersection and

union types. Notre Dame Journal of Formal Logic, 38(2):246–269, 1997.
[6] J Michael Dunn and Robert K Meyer. Combinators and structurally free logic. Logic Journal of IGPL,

5(4):505–537, 1997.
[7] Kit Fine. Models for entailment. Journal of Philosophical Logic, pages 347–372, 1974.

20 SHAY ALLEN LOGAN

[8] Kit Fine. Semantics for quantified relevance logic. Journal of Philosophical Logic, pages 27–59, 1988.
[9] Kit Fine. Incompleteness for quantified relevance logics. In Directions in relevant logic, pages 205–225.

Springer, 1989.
[10] Dov M Gabbay and Heinrich Wansing. What is negation? Springer, 1999.
[11] William A Howard. The formulae-as-types notion of construction. To HB Curry: essays on combinatory

logic, lambda calculus and formalism, 44:479–490, 1980.
[12] IL Humberstone. Operational semantics for positive R. Notre Dame J. Formal Log., 29(1):61–80, 1988.
[13] Peter T Johnstone. Stone spaces, volume 3. Cambridge university press, 1982.
[14] Peter Lavers. Generalising tautological entailment. Logique et Analyse, 37(147/148):367–377, 1994.
[15] Shay Allen Logan. Deep fried logic. Erkenntnis, 87(1):257––286, 2022.
[16] Shay Allen Logan. The universal theory tool building toolkit is substructural. In Alasdair Urquhart on

Nonclassical and Algebraic Logic and Complexity of Proofs, pages 261–285. Springer, 2022.
[17] Graham Priest. Boolean negation and all that. Journal of Philosophical Logic, 19(2):201–215, 1990.
[18] Stephen Read. Relevant logic. Oxford: Blackwell, 1988.
[19] Gemma Robles and José M Méndez. Routley-Meyer ternary relational semantics for intuitionistic-type

negations. Academic Press, 2018.
[20] Richard Routley, Val Plumwood, Robert K Meyer, and Ross T Brady. Relevant logics and their rivals. 1982.
[21] Nenad Savic and Thomas Studer. Relevant justification logic. FLAP, 6(2):397–412, 2019.
[22] John Slaney. A general logic. Australasian Journal of Philosophy, 68(1):74–88, 1990.
[23] Shawn Standefer. Weak relevant justification logics. Journal of Logic and Computation, 2022.
[24] Marshall H Stone. The theory of representation for boolean algebras. Transactions of the American Mathe-

matical Society, 40(1):37–111, 1936.
[25] Andrew Tedder. Information flow in logics in the vicinity of BB. The Australasian Journal of Logic, 18(1):1–

24, 2021.

