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STRONG DEPTH RELEVANCE

SHAY ALLEN LOGAN

Abstract. Relevant logics infamously have the variable sharing prop-
erty: they only validate conditionals that share some propositional vari-
able between antecedent and consequent. This property has been strength-
ened in a variety of ways over the last half-century. Two of the more
famous of these strengthenings are the strong variable sharing property
and the depth relevance property. In this paper I demonstrate that an
appropriate class of relevant logics has a property that might naturally
be characterized as the supremum of these two properties. I also show
how to use this fact to demonstrate that these logics seem to be con-
structive in previously unknown ways.

1. Some Setup

Recall that Routley and Meyer’s basic logic B is given by the following
axioms and rules:1

A1: A→ A

A2: (A ∧B)→ A/B

A3: A/B → (A ∨B)

A4: ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C))

A5: ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

A6: (A ∧ (B ∨ C))→ ((A ∧B) ∨ (A ∧ C))

A7: ¬¬A→ A

R1: A A→ B
B

R2: A B
A ∧B

R3: A→ ¬B
B → ¬A

R4:
A→ B C → D

(B → C)→ (A→ D)

Following [3], call any set of formulas containing these axioms and closed
under these rules a logic. For the purposes of this paper, there are two
particularly important logics to single out.

1See [13, 11, 12] and [6].
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The first, DR−, is a fragment of the logic called DR in [2].2 It adds the
following two axioms and one rule to B:

A8: ((A→ B) ∧ (B → C))→ (A→ C)
A9: (A→ ¬B)→ (B → ¬A)

R5:
A

¬(A→ ¬A)

The second, R, is the logic that adds the following four axioms to B:

A10: (A→ ¬B)→ (B → ¬A)
A11: (A→ B)→ ((B → C)→ (A→ C))
A12: A→ ((A→ B)→ B)
A13: (A→ (A→ B))→ (A→ B)

We note that this is a redundant axiomatization of R; in particular R3 and
R4 are no longer independent of the remaining system.

R is famously a relevant logic. DR− is a sublogic of R. So DR− is relevant
as well. What exactly relevance amounts to is, of course, a matter of some
debate. But one natural way of cashing out what makes relevant logics
relevant is that they prove A → B only if the ‘content’ of A is somehow
related to the content of B. So a natural-enough place to look for formal
symptoms of relevance is in the propositional variables that occur in A and
B, respectively.

Of course, any propositional-variable-related condition can at best give a
necessary but not sufficient condition for a logic’s being relevant. Be that as
it may, there’s enough intuitive oomph to the connection between variable
sharing and relevance that it’s worthwhile to be precise about various types
of variable sharing that might be of interest. To that end, we will borrow
the following vocabulary from [1, p. 240]:

Definition 1. We specify the antecedent parts (aps) and consequent parts
(cps) of the formula A as follows:

• A is a cp of A.
• If B ∧ C is a cp (ap) of A, then B is a cp (ap) of A and C is a cp

(ap) of A.
• If B ∨ C is a cp (ap) of A, then B is a cp (ap) of A and C is a cp

(ap) of A.
• If B → C is a cp (ap) of A, then B is an ap (cp) of A and C is a cp

(ap) of A.
• If ¬B is a cp (ap) of A, then B is an ap (cp) of A.

And, borrowing now from [2, p. 64], we also introduce the following vo-
cabulary:

2The reason for choosing only a fragment of DR rather than all of DR is somewhat
embarrassing: the proof technique used in this paper requires a great deal of bookkeeping
and I quite simply could not keep track of all the details when it came to the disjunctive
rules in DR.
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Definition 2. Each occurrence of C as a subformula of a given formula is
assigned a number called its depth as follows:

• C occurs at depth 0 in its unique occurrence in the formula C.
• If C occurs at depth n in A, then the corresponding occurrence of
C in ¬A, in A ∧ B, in B ∧ A, in A ∨ B, and in B ∨ A are all depth
n occurrences of C as well.
• If C occurs at depth n in A, then the corresponding occurrence of
C in A→ B and in B → A is a depth n+ 1 occurrence of C.

With these definitions in hand, we will single out three ‘flavors’ of variable
sharing for formulas:

• A→ B has the variable sharing property iff some variable that occurs
in A also occurs in B.
• A→ B has the strong variable sharing property iff either some vari-

able occurs as an ap of both A and B or some variable occurs as a
cp of both A and B.
• A→ B has the depth relevance property iff for some natural number
d and variable p, p occurs at depth d in A and in B.

The definition of the variable sharing property is due to Anderson and Bel-
nap. While they never explicitly define what I’ve here called the strong
variable sharing property, they do in fact prove (see below) theorems con-
cerning it. The term ‘strong variable sharing property’, however, is due (as
far as the author knows) to [8]. The depth relevance property was defined
by Brady in [2].

We say a logic L has one of these properties when `L A→ B just if A→ B
has the property. We are now in position to state some fairly well-known
results:

Theorem 1 (Anderson and Belnap, 1975). Sublogics of R have the strong
variable sharing property. It follows that sublogics of R have the (weak)
variable sharing property as well.

Theorem 2 (Brady, 1984). Sublogics of DR− have the depth relevance prop-
erty.

Brady in fact proved a stronger result, namely that sublogics of DR have
the depth relevance property. DR, in turn, is a logic that extends DR− by
including several additional disjunctive rules and axioms.

Strong variable sharing and depth relevance can be fairly naturally ‘hy-
bridized’ as it were. More to the point, say that A→ B has the strong depth
relevance property just if either

• For some natural number d and variable p, p occurs at depth d as
an ap of A and p occurs at depth d as an ap of B or
• For some natural number d and variable p, p occurs at depth d as a

cp of A and p occurs at depth d as a cp of B.
Australasian Journal of Logic (18:6) 2021, Article no. 3



648

As before, say that L has the strong depth relevance property when `L A→
B only if A→ B has the strong depth relevance property. The main purpose
of this paper is to prove the following theorem:

The Strong Depth Relevance Theorem Sublogics of DR− have the
strong depth relevance property.

In outline, here is how the remainder of the paper will go: first, be-
fore actually proving the Strong Depth Relevance Theorem, we will give
an application of it. The point is to show that the theorem is of more than
‘merely technical’ interest.3 The application we provide shows that sublogics
of DR− are constructive in ways that, to my knowledge, had not previously
been known. Only after demonstrating that the Strong Depth Relevance
Theorem has this application will we then turn to proving it.

2. An Application

Before we turn to the application itself, a bit of discussion is in order.
To begin, recall that a logic L has the disjunction property when `L A ∨B
just if `L A or `L B. Just as variable sharing in its various forms is a
formal symptom of relevance, the disjunction property is a formal symptom
of constructiveness. Given this, it’s unsurprising that we have the following:

Theorem 3 (Gödel, 1932). Intuitionistic logic has the disjunction property.4

Perhaps more surprising is the following:

Theorem 4 (Slaney, 1984). The usual contractionless relevant logics have
the disjunction property.5

A natural question to ask, then, is this: of the various formal symptoms
of constructiveness exhibited by intuitionistic logic, which of them are also
exhibited by (perhaps weak members of) the family of contractionless rele-
vance logics?6

There’s reason to think we won’t get much from this sort of an inves-
tigation. After all, apart from the disjunction property, the most famous
formal symptom of constructivity is probably the rejection of double nega-
tion elimination, and every logic we’re looking at here takes double negation
elimination as an axiom!

Be that as it may, the fact that the contractionless relevant logics seem to
exhibit at least the disjunction-related symptoms of constructiveness gives
us reason to look at other such symptoms. That is, it gives us reason to look

3Other forms of variable sharing have also been shown to have interesting applications;
see e.g. [9] and [10].

4See [4].
5See [14].
6There are other reasons to be interested in constructive members of the family of

relevant logics. See [15] for more discussion of this point.
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into what are known as generalized disjunction properties; the most famous
of which is Harrop’s rule:

Definition 3. We say that L obeys Harrop’s rule when for all formulas A
that lack disjunctions as consequent parts, `L A→ (B∨C) just if `L A→ B
or `L A→ C.

Theorem 5 (Harrop, 1960). Intuitionistic logic obeys Harrop’s rule.7

Our goal in this section is to prove that sublogics of DR− obey a certain
weak form of Harrop’s rule, demonstrating at least one other symptom of
constructiveness that they exhibit. As we will see, the proof of this result
relies crucially on the Strong Depth Relevance Theorem.

Before getting more precise about the theorem we’ll prove, let’s first set
up all the rest of the machinery we’ll need in the proof.

Definition 4. An intensional elementary conjunction (iec) is a finite con-
junction each of whose conjuncts is either a propositional variable, the nega-
tion of a propositional variable, a formula of any complexity whose main con-
nective is an arrow, or the negation of a formula of any complexity whose
main connective is an arrow.

Definition 5. An intensional disjunctive normal form (idnf) is a finite
disjunction of iecs.

Lemma 1 (See, e.g. §26.3 of [1]). In any logic, every formula is equivalent
to an idnf.8

Before the next lemma, we note the following abbreviations: we will write
‘(d)ap’ for ‘depth d ap’, and similarly for (d)cp. We will also write (d)p for
‘depth d part’ (though this won’t come up for a while).

Lemma 2. Suppose L is a sublogic of DR−. Then

• If p is a (0)cp of A, then for some formula A′ either
(i) `L A↔ p, or
(ii) `L A↔ (p ∧A′), or
(iii) `L A↔ (p ∨A′); also
• If p is a (0)ap of A, then for some formula A′ either

(i) `L A↔ ¬p, or
(ii) `L A↔ (¬p ∧A′), or
(iii) `L A↔ (¬p ∨A′); also

The proof, which is rather straightforward and left to the reader, is by
simultaneous induction over the complexity of A on both parts of the result.
And now at last, we turn to the promised pseudo-Harrop’s rule:

Theorem 6. If L is a sublogic of DR− and P is a propositional variable
or the negation of a propositional variable, then `L P → (A ∨ B) only if
`L P → A or `L P → B.

7See [5].
8Note here that we are using ‘logic’ in the technical sense introduced above.
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Proof. We give only the case where P = p is a propositional variable; the
other case being essentially the same. By Lemma 1 we can safely assume
both A and B are idnfs. The proof is by induction on the total complexity
of A∨B. The base case is trivial. By the Strong Depth Relevance Theorem,
since `L p → (A ∨ B), p is a (0)cp of A ∨ B. Without loss of generality,
assume that p is a (0)cp of A. So by Lemma 2, either

(i) `L A↔ p, or
(ii) `L A↔ (p ∨A′), or
(iii) `L A↔ (p ∧A′).

In the first two cases, we are done. In the third case, we clearly have
`L A → (p ∧ A′), and thus `L A → p as well. Since A is an idnf, there
are iec’s C1, . . . , Cm so that A = C1 ∨ · · · ∨ Cm. Since `L A→ p, it follows
that `L Ci → p for 1 ≤ i ≤ m. So by the Strong Depth Relevance Theorem
again, p is a (0)cp of each Ci. Since each Ci is an iec, it follows that each Ci

in fact contains p as a conjunct. So each Ci either is p or (without loss of
generality) has the form p ∧ C ′i for some iec C ′i that is strictly less complex
that Ci. Note that if for some i, Ci = p, then clearly `L p→ A and we are
done. So we assume that we can write A in the form (p∧C ′1)∨· · ·∨ (p∧C ′m)
with each C ′i strictly less complex than Ci. Thus, letting C∗ = C ′1∨· · ·∨C ′m,
we see that (a) C∗ is strictly less complex than A and (b) `L A↔ (p∧C∗).
So since `L p → (A ∨ B), we also have that `L p → ((p ∧ C∗) ∨ B). So
`L p→ ((p∨B)∧(C∗∨B)). Thus `L p→ (C∗∨B). Since C∗ is strictly less
complex than A, induction then gives that either `L p→ C∗ or `L p→ B.
In the latter case we are done. In the former, we observe that since `L p→ p
as well, we quickly have that `L p→ A. �

3. Proving the Strong Depth Relevance Theorem

The basic idea of my proof of the Strong Depth Relevance Theorem is this:
I adapt the proof of what is called the antecedent-parts and consequent-parts
theorem in [1, §22.1.3] using the ‘supervaluational’ trick Brady used in the
proof of Theorem 2 given in [2].9 More to the point, we follow [1, §18.4] in

9I suspect that the tricks and tools in [8] and [7] would allow the proof I give to be
simplified and possibly extended, but I haven’t actually checked to see whether this is
true.
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calling the lattice with the following Hasse diagram M0:

+3

CC
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CC
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{{
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+1

CC
CC

CC
CC

−0

{{
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{{
{{

CC
CC

CC
CC

+2

{{
{{
{{
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−1

CC
CC

CC
CC

+0 −2

{{
{{
{{
{{

−3

Still following [1], we recognize four functions m¬, m∧, m∨, and m→ defined
as follows:

• m¬ : ±i 7→ ∓i.
• m∧ : (x, y) 7→ inf(x, y).
• m∨ : (x, y) 7→ sup(x, y).

m→ −3 −2 −1 −0 +0 +1 +2 +3
−3 +3 +3 +3 +3 +3 +3 +3 +3
−2 −3 +2 −3 +2 −3 −3 +2 +3
−1 −3 −3 +1 +1 −3 +1 −3 +3
−0 −3 −3 −3 +0 −3 −3 −3 +3
+0 −3 −2 −1 −0 +0 +1 +2 +3
+1 −3 −3 −1 −1 −3 +1 −3 +3
+2 −3 −2 −3 −2 −3 −3 +2 +3
+3 −3 −3 −3 −3 −3 −3 −3 +3

We take an M0 assignment to be a function mapping propositional vari-
ables into M0 and an M0 valuation to be an infinite sequence of M0 assign-
ments.10 Corresponding to an M0 valuation α = v0, v1, . . . , we construct
an infinite family v+0 , v

+
1 , . . . of functions from arbitrary formulas to M0 by

using the following clauses:

(1) v+i (p) = vi(p) for any i and any propositional variable p.

(2) v+i (¬A) = m¬(v+i (A)).

(3) v+i (A ∧B) = m∧(v+i (A), v+i (B)).

(4) v+i (A ∨B) = m∨(v+i (A), v+i (B)).

(5) v+0 (A→ B) = +2.
(6) v+j+1(A→ B) = m→(v+j (A), v+j (B))

We then say that α(A) = infi<ω(v+i (A)). We say that A is true on α when
α(A) is positive. We say that A is valid when A is true on all valuations.

Theorem 7. Every theorem of DR− is valid.

10Taking assignments to be mere ω-sequences of valuations rather than ω+1-sequences
of such is a significant but easy-to-overlook difference between the proof I give and the
proof Brady gives.
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Proof. By induction on the complexity of the proof. For the base case, look,
for example at A8. For i = 0, v+i (((A→ B)∧ (B → C))→ (A→ C)) = +2,

for i = 1, v+i (((A→ B)∧(B → C))→ (A→ C)) = m→(m∧(+2,+2),+2) =
+2 and for i > 2 we instead get

m→(m∧(m→(v+i−2(A), v+i−2(B)),m→(v+i−2(B), v+i−2(C))),m→(v+i−2(A), v+i−2(C))).

Observe that we are evaluating each of A, B, and C at the same ‘level’;
namely, i − 2. But Belnap’s proof already showed that every theorem of
R is true on every M0 assignment, which then gives us what we need. By
inspection, we see that in every other axiom, the same thing will be true.
Thus every axiom of DR− is valid.

That the rules preserve validity is straightforward though tedious to check;
we show only R4. To that end, suppose A→ B and C → D are valid. The
discussion will be aided by adopting the following abbreviations:

• ai := v+i (A), and similarly for bi, ci, and di.

• wi := v+i ((B → C)→ (A→ D)).

Our goal is to show that infi<ω wi is positive. We do this by showing that
for all i, wi is positive. To begin, note that w0 = v+0 ((B → C) → (A →
D)) = +2 by definition. For w1 we compute as follows:

w1 = v+1 ((B → C)→ (A→ D)) = m→(v+0 (B → C), v+0 (A→ D))

= m→(+2,+2)

= +2

For i ≥ 2 we have that

wi = v+i ((B → C)→ (A→ D)) = m→(m→(bi−2, ci−2),m→(ai−2, di−2))

Since by assumption i ≥ 2, v+i−1(A → B) = m→(ai−2, bi−2) and v+i−1(C →
D) = m→(ci−2, di−2). Thus it suffices to verify that wheneverm→(ai−2, bi−2)
andm→(ci−2, di−2) are both positive, so is wi = m→(m→(bi−2, ci−2),m→(ai−2, di−2)).
This, in turn, we prove by cases.

To begin, suppose m→(ai−2, bi−2) = +3. Then by inspection we see that
either ai−2 = −3 or bi−2 = +3. In the former case, m→(ai−2, di−2) = +3, so
wi = +3 as well. In the latter case, we have two subcases: either ci−2 = +3
or m→(bi−2, ci−2) = −3. In the second subcase, it is immediate that wi =
+3. In the first subcase, note that since m→(ai−2, bi−2) and m→(ci−2, di−2)
are both positive, it follows that ai−2 = bi−2 = ci−2 = di−2 = +3. But then
again wi = +3. If m→(ci−2, di−2) = +3, a very similar argument gives the
same result.

Next suppose m→(ci−2, di−2) = +0. Then either ci−2 = di−2 = −0 or
ci−2 = di−2 = +0. If ci−2 = di−2 = +0, inspecting the m→-matrix reveals
that the following subcases are exhaustive:

• bi−2 = −3 and m→(bi−2, ci−2) = +3.
• bi−2 = ci−2 = di−2 = +0 and m→(bi−2, ci−2) = +0.
• m→(bi−2, ci−2) = −3.
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In the third subcase we immediately see that wi = +3. In the first subcase,
since m→(ai−2, bi−2) is positive, m→(ai−2, bi−2) = +3 so we reduce to a
previous case. In the second subcase, since m→(ai−2, bi−2) is positive, either
ai−2 = bi−2 = ci−2 = di−2 = +0 and thus wi = +0 or ai−2 = −3 and thus
m→(ai−2, bi−2) = +3 and we reduce to a previous case. If instead ci−2 =
di−2 = −0, then m→(bi−2, v

+
i−2C) = −1 · bi−2 and m→(ai−2, v

+
i−2D) = −1 ·

ai−2. Thus since the m→-matrix is symmetric about the bottom-left to top-
right diagonal and m→(ai−2, bi−2) is positive, so is wi. If m→(ai−2, bi−2) =
+0, a very similar argument gives the result.

This leaves four cases to examine: m→(ai−2, bi−2) = m→(ci−2, di−2) =
+2; m→(ai−2, bi−2) = m→(ci−2, di−2) = +1; m→(ai−2, bi−2) = +2 and
m→(ci−2, di−2) = +1; and m→(ai−2, bi−2) = +1 and m→(ci−2, di−2) = +2.
As is probably expected from the symmetries of M0, the first two cases are
essentially the same, as are the last two cases. So we do only the first and the
third. For the first, we resort to simply examining each of the 25 available
options directly:

For m→(ai−2, bi−2) = m→(ci−2, di−2) = +2, we compute as follows:

ai−2 bi−2 ci−2 di−2 m→(bi−2, ci−2) m→(ai−2, di−2) wi

−2 −2 −2 −2 +2 +2 +2
−2 −2 −2 −0 +2 +2 +2
−2 −2 −2 +2 +2 +2 +2
−2 −2 +0 +2 −3 +2 +3
−2 −2 +2 +2 +2 +2 +2
−2 −0 −2 −2 −3 +2 +3
−2 −0 −2 −0 −3 +2 +3
−2 −0 −2 +2 −3 +2 +3
−2 −0 +0 +2 −3 +2 +3
−2 −0 +2 +2 −3 +2 +3
−2 +2 −2 −2 −2 +2 +2
−2 +2 −2 −0 −2 +2 +2
−2 +2 −2 +2 −2 +2 +2
−2 +2 +0 +2 −3 +2 +3
−2 +2 +2 +2 +2 +2 +2
+0 +2 −2 −2 −2 −2 +2
+0 +2 −2 −0 −2 −0 +2
+0 +2 −2 +2 −2 +2 +2
+0 +2 +0 +2 −3 +2 +3
+0 +2 +2 +2 +2 +2 +2
+2 +2 −2 −2 −2 −2 +2
+2 +2 −2 −0 −2 −2 +2
+2 +2 −2 +2 −2 +2 +2
+2 +2 +0 +2 −3 +2 +3
+2 +2 +2 +2 +2 +2 +2
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For m→(ai−2, bi−2) = +2,m→(ci−2, di−2) = +1, the situation is easier. Since
m→(ai−2, bi−2) = +2, bi−2 ∈ {−2,−0,+2}. Since m→(ci−2, di−2) = +1,
ci−2 ∈ {−1,+0,+1}. As it turns out, in all nine options this leaves us with,
m→(bi−2, ci−2) = −3, from which wi = +3 immediately follows:

bi−2 ci−2 m→(bi−2, ci−2)

−2 −1 −3
−2 +0 −3
−2 +1 −3
−0 −1 −3
−0 +0 −3
−0 +1 −3
+2 −1 −3
+2 +0 −3
+2 +1 −3

�

Suppose A → B lacks the strong depth relevance property. Then for all
natural numbers d and variables p, if p occurs as a (d)ap of A, then p does
not occur as a (d)ap of B and if p occurs as a (d)cp of A, then p does not
occur as a (d)cp of B. Our goal will be to show that A → B is invalid
from which, in conjunction with Theorem 7, it follows that A→ B is not a
theorem of DR−. Contraposing will then give the Strong Depth Relevance
Theorem as desired.

Taking our lead from Brady’s proof in [2], let M be the maximum depth
at which any variable occurs in A → B. We define what amounts to a
depth-sensitive version of the assignment given in [1, §22.1.3]. In particular
we use the assignment α = v0, v1, . . . defined as follows:

• If p is a (d)cp of B, then

vM−d−1(p) =

{
−3 if p is a (d)ap of A
+2 otherwise

• If p is not a (d)p of B, then

vM−d−1(p) =

{
+1 if p is a (d)ap of A
−1 otherwise

• Otherwise,

vM−d−1(p) =

{
+3 if p is a (d)cp of A
−2 otherwise

Lemma 3. If C is a (d)cp of B, then v+M−d−1(C) ∈ {±2,−3}, and if C is

a (d)ap of B, then v+M−d−1(C) ∈ {±2,+3}.

Proof. By induction on the complexity of C. Suppose C = p is a variable and
a (d)cp of B. Then by the definitions, vM−d−1(p) ∈ {−3,+2} ⊆ {±2,−3}.
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Suppose instead that C = p is a variable and a (d)ap of B. We consider two
cases:

(1) p also a (d)cp of B.
(2) p is not a (d)cp of B.

In case (1), note that since p is a (d)ap of B, p is not a (d)ap of A. Thus
vM−d−1(p) = +2, while in case (2), since p is a (d)p of B but is not a (d)cp
of B, we see that vM−d−1(C) ∈ {−2,+3} ⊆ {±2,+3}.

The negation, conjunction, and disjunction cases are straightforward and
left to the reader.

For conditionals, note that if C = D1 → D2 is a (d)cp of B, then D1 is
a (d + 1)ap of B and D2 is a (d + 1)cp of B. Note that it follows from B
having (d + 1)p’s at all that d + 1 ≤ M − 1 since M − 1 is the maximum
depth at which any formula can occur in B. Thus 1 ≤M − d− 1.

By the inductive hypothesis v+M−(d+1)−1(D1) = v+M−d−2(D1) ∈ {±2,+3}.
Similarly, v+M−d−2(D2) ∈ {±2,−3}. Finally, notice that since M − d − 1 >

0, v+M−d−1(D1 → D2) = m→(v+M−d−2(D1), v
+
M−d−2(D2)). By inspecting

the m→-matrix, we see it follows that v+M−d−1(C) ∈ {±2,−3}. Mutatis
mutandis, the same argument works when D1 → D2 is a (d)ap of B instead.

�

Lemma 4. If C is a (d)cp of A, then v+M−d−1(C) ∈ {±1,+3}, and if C is

a (d)ap of A, then v+M−d−1(C) ∈ {±1,−3}.

Proof. By induction on the complexity of C. Only the base cases differ from
the previous proof in any interesting way. For the base case, suppose C = p
is a variable and a (d)cp of A. Then p is not a (d)cp of B. We consider two
cases:

(1) p not a (d)p of B at all.
(2) p is a (d)ap of B.

In case (1), we immediately have that v+M−d−1(p) ∈ {±1} ⊆ {±1,+3}. In

case (2), v+M−d−1(p) = +3 ∈ {±1,+3}.
Now suppose instead that C = p is a variable and a (d)ap of A. Then p

is not a (d)ap of B. We consider two cases:

(1) p not a (d)p of B at all.
(2) p is a (d)cp of B.

In case (1), we immediately have that v+M−d−1(p) = +1 ∈ {±1,−3}. In case

(2), v+M−d−1(p) = −3 ∈ {±1,−3}. �

Lemma 5. A→ B is not valid.

Proof. A is a (0)cp of A. So v+M−1(A) ∈ {±1 + 3}. B is a (0)cp of B. So

v+M−1(B) ∈ {±2,−3}. Inspecting the m→-matrix finishes the job. �

By contraposing, the Strong Depth Relevance Theorem is proved.
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[4] Kurt Gödel. Zum intuitionistischen aussagenkalkul. Anzeiger Akademie der Wis-

senschaften Wien, mathematisch-naturwissenschaftliche Klasse, 69:65–66, 1932.
[5] Ronald Harrop. Concerning formulas of the types A → B ∨ C, A → (Ex)B(x) in

intuitionistic formal systems. Journal of Symbolic Logic, 25(1):27–32, 1960.
[6] Robert K Meyer and Richard Routley. Algebraic analysis of entailment i. Logique et

analyse, 15(59/60):407–428, 1972.
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