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Abstract 

The aim of this paper is to introduce a new member of the family of the modal interpretations of 

quantum mechanics.  In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum 

system plays a decisive role in the property-ascription rule that selects the definite-valued 

observables whose possible values become actual.  We show that this interpretation is effective 

for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue 

for the physical relevance of the property-ascription rule by applying it to well-known physical 

situations.  Moreover, we explain how this interpretation supplies a description of the elemental 

categories of the ontology referred to by the theory, where quantum systems turn out to be 

bundles of possible properties. 
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1.  Introduction 

In one of its meanings, realism is the philosophical position according to which the aim of 

scientific theories is to describe reality.  From this realist viewpoint, the purpose of an 

interpretation of a scientific theory is to say how reality would be if the theory were true. 

During a long period after the first formulations of quantum mechanics, the orthodox 

interpretational framework was tied to an instrumentalist reading of the theory; from this 

perspective, quantum features were discussed only in terms of possible measurements results.  

But in the last decades, the traditional instrumentalist position has begun to loose its original 

strength, and several realist interpretations of quantum mechanics have been proposed.  In this 

context, modal interpretations aim at assigning properties to physical systems on the basis of the 

quantum-mechanical formalism, without attributing a special role to measurement: quantum 

measurements are conceived as ordinary physical interactions, and measurements outcomes as 

properties of measurement apparatuses.  Therefore, modal interpretations are realist, non-

collapse interpretations, according to which the quantum state of a system describes the possible 

properties of the system rather than the properties that it actually possesses. 

Modal interpretations can be viewed as a family, whose members differ to each other 

mainly in the specific rule designed to ascribe actually possessed properties to quantum systems.  

In this paper we want to propose a new member of this family: we have called it “modal-

Hamiltonian interpretation” due to the central role played by the Hamiltonian both in the 

definition of quantum systems and subsystems and in the selection of the actual properties.  We 

shall argue for the fruitfulness of this interpretation by stressing its physical relevance and by 

showing how it solves the difficulties into which some modal interpretations run when faced with 

non-ideal measurements.  Moreover, we shall show that our actualization rule supplies a 

satisfactory answer to the problem of the classical limit of quantum mechanics.  Finally, we shall 

discuss the ontological picture suggested by this interpretation, pointing out its philosophical 

foundations and its conceptual advantages. 
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2.  Why modal? 

The roots of the modal interpretations can be found in the works of Bas van Fraassen (1972, 

1973, 1974), where the distinction between the quantum state and what he called the value state 

of the system is introduced: the quantum state tells us what may be the case, that is, which 

physical properties the system may possess; the value state represents what actually is the case.  

The relationship between the quantum state and the value state is probabilistic.  Therefore, the 

quantum state is the basis for modal statements, that is, statements about what possibly or 

necessarily is the case.1 

On the basis of this original idea, in the 1980s several authors presented realist 

interpretations which, in retrospect, can be regarded as elaborations or variations on van 

Fraassen’s modal themes (for an overview and references, see Dieks & Vermaas, 1998).  

However, each one of them proposed its own rule of property-ascription.2  For instance, in the so-

called Kochen-Dieks modal interpretation (Kochen, 1985; Dieks, 1988), the biorthogonal 

(Schmidt) decomposition of the pure quantum state of the system picks out the definite-valued 

observables.3  The Vermaas-Dieks version (Vermaas & Dieks, 1995), a generalization of the 

Kochen-Dieks interpretation to mixed states, is based on the spectral resolution of the reduced 

density operator: the range of the possible properties of a system and their corresponding 

probabilities are given by the non-zero diagonal elements of the spectral resolution of the 

system’s reduced state, obtained by partial tracing.  In turn, the so-called atomic modal 

interpretation (Bacciagaluppi & Dickson, 1999) is based on the assumption that there exists a 

special set of disjoint systems, which are the building blocks of all other systems, and that set 

fixes a preferred factorization of the Hilbert space; the properties of a system supervene on the 

properties ascribed to its “atomic” subsystems.  More recently, and as a response to some 

difficulties in the account of non-ideal measurements, Gyula Bene and Dennis Dieks (2002) have 

developed a perspectival version of the modal interpretation, according to which properties are 

                                                      
1 Although van Fraassen does not endorse scientific realism (from his “constructive empiricism”, the aim of science 

is only empirical adequacy), he admits that a meaningful account of reality is necessary for a scientific theory to be 
intelligible. 

2 Bub (1992, 1994) classifies modal interpretations on the basis of the preferred observables that acquire definite 
values in each one of them. 

3 There is, however, a relevant difference between Kochen’s and Dieks’ positions.  For Kochen, the properties are 
not possessed by the system absolutely, but only when it is “witnessed” by another system.  By contrast, for Dieks 
in those first works, the properties ascribed to the system do not have a relational character. 
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not monadic but have a relational character: following the original idea of Kochen (1985), 

systems have properties “as witnessed” by a larger system. 

In this section we are not interested in the differences among the members of the modal 

family, but rather in the features that they share.  In particular, all the modal interpretations agree 

on the following points (for a clear summary, see Dieks, 2007, Section 1): 

• The interpretation is based on the standard formalism of quantum mechanics. 

• The interpretation is realist, that is, it aims at describing how reality would be if quantum 

mechanics were true. 

• Quantum mechanics is a fundamental theory, which must describe not only elementary particles 

but also macroscopic objects. 

• Quantum mechanics describes single systems: the quantum state refers to a single system, not 

to an ensemble of systems. 

• The quantum state of the system (pure state or mixture) describes the possible properties of the 

system and their corresponding probabilities, and not the actual properties (given by van 

Fraassen’s value state).  The relationship between the quantum state and the actual properties of 

the system is probabilistic. 

• Systems possess actual properties at all times, whether or not a measurement is performed on 

them. 

• A quantum measurement is an ordinary physical interaction.  There is no collapse: the quantum 

state always evolves unitarily according to the Schrödinger equation. 

• The Schrödinger equation gives the time evolution of probabilities, not of actual properties. 

If these are the features that make an interpretation qualify as a member of the modal 

family, then our interpretation also belongs to this family.  As we shall see, the main difference 

between our proposal and the previous modal versions consists in the central role played by the 

Hamiltonian of the quantum system in the selection of the actual properties.4 

                                                      
4 In Section 8 we shall also take a definite position about the ontological picture arising from our interpretation.  The 

question about the categories of the ontology referred to by quantum mechanics in the light of a particular 
interpretation has not been widely discussed in the literature about modal interpretations. 
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3.  Structure and content of quantum mechanics 

The first step of our proposal is the explicit presentation of what we shall consider the formal 

structure and the physical content of quantum mechanics.  This step might seem superfluous for 

the specialist; however, if we want to build a new interpretation, we have to be clear about our 

theoretical commitments from the very beginning.  This is particularly relevant due to the fact 

that our interpretation moves away from the traditional Hilbert space formulation of the theory, 

by adopting the algebraic formalism of quantum mechanics as a departing point.  Although this 

might seem a minor formal detail, it will play a central role in the ontological picture arising from 

our interpretation (see Section 8).  Moreover, since we shall argue for the physical relevance of 

our proposal (see Section 5), we have to show how the formal structure of the theory is endowed 

with a physical meaning. 

Let us begin by stressing that we should distinguish between the mathematical language 

(self-adjoint operators, functionals, eigenstates and eigenvalues of an operator, etc.) and the 

physical language (observables, states, values of the observables, etc.): each term of the 

mathematical language refers to a physical item whose name belongs to the physical language.  It 

is this physical interpretation of the mathematical formalism what turns it into the formalism of a 

physical theory.  However, since this distinction would make the reading long and tedious, we 

shall follow the usual presentations, where both languages are mixed under the assumption that 

the reader knows the difference between mathematical and physical terms.  Nevertheless, this 

difference will be explicit in the table included at the end of Section 4. 

3.1  Formal structure 

According to the algebraic formalism of quantum mechanics (see Haag, 1993), given a *-algebra 

A  of operators, (i) the set of the self-adjoint elements of A  is the space O , whose elements 

represent observables, O O∈ , and (ii) states are represented by functionals on O , that is, by 

elements of the dual space 'O , 'Oρ∈ .  In this theoretical framework, the observables are the 

basic elements of the theory, and states are secondary elements, defined in terms of the basic ones 

(we shall return on this point in Section 8). 

We shall adopt a C*-algebra of operators to formulate the quantum postulates.  As it is well 

known, a C*-algebra can be represented by a Hilbert space H  (GNS theorem) and, in this 



 

 7

particular case, 'O�O= ; therefore, O  and 'O  are represented by ⊗H H .  The first quantum 

postulate gives the definition of a quantum system. 

QP1: A quantum system S is defined by a pair ( , )H⊆ ⊗O H H  where: (i) the 

observables O of S are represented by self-adjoint operators belonging to the space of 

observables O , O∈ ⊆ ⊗O H H , and (ii) H  is a particular observable called 

Hamiltonian of S, H ∈ ⊆ ⊗O H H . 

This definition of quantum system (as well as the next quantum postulates), even if 

corresponding to the C*-algebra case, could be rephrased for different *-algebras under the 

necessary conditions for the representation of the algebra.5  

QP2: Given a quantum system : ( , )S H⊆ ⊗O H H , and the observable 

i ii
O o P= ∈∑ O , where i jo o≠  for i j≠  and the iP ∈O  are projector observables 

(eigenprojectors of O ), each eigenvalue io  of O  is one of the possible values of O . 

QP3: Given a quantum system : ( , )S H⊆ ⊗O H H , its initial state 0ρ  is 

represented by a self-adjoint functional belonging to 'O  (the dual space of O ) 

included in ⊗H H , 0 'ρ ∈ ⊆ ⊗O H H , such that (i) 0Tr( )=1ρ  (normalization 

condition), and (ii) 0 0u uρ ≥  for any u ∈H  (non-negativeness condition). 

QP4 (Dynamical Postulate): Given a quantum system : ( , )S H⊆ ⊗O H H  with 

initial state 0 'ρ ∈O , the state of S  at time t , ( )t 'ρ ∈O , is given by the Schrödinger 

equation (in its von Neumann version): 0( ) iHt / iHt /t e e−ρ = ρ= = . 

The Born Rule introduces the probabilistic ingredient in the theory.  In the instrumentalist 

readings of quantum mechanics, the rule is conceived as assigning probabilities to the results of 

measurements; this requires that “measurement” be conceived as a primitive concept of the 

theory.  Since from our perspective measurement is an ordinary physical interaction that has to be 

accounted for by the theory with its interpretation, the Born Rule is endowed with a realist 

content: it assign probabilities to events in which observables acquire values.  If we use the 

symbol ( : )kA a  to denote the event that an observable A  acquires the value ka , the Born Rule 

can be expressed as follows. 

                                                      
5 For instance, by means of a generalization of the GNS theorem (Iguri & Castagnino, 1999) it can be proved that a 

nuclear algebra can be represented by a rigged Hilbert space. 
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QP5 (Born Rule): Given a quantum system : ( , )S H⊆ ⊗O H H  with initial state 

0 'ρ ∈O , and considering an observable 
i

i i i i ii i
A a P a i, i,

µ
= = µ µ ∈∑ ∑ ∑ O , 

where i ja a≠  for i j≠ , the Born probability BP  of the event ( : )kA a  at time t  can 

be computed as 

BP ( : , ( )) ( ( ) ) ( )
k

k k k kA a t Tr t P k , t k ,
µ

ρ = ρ = µ ρ µ∑  

where kP ∈ ⊗H H  is the eigenprojector of A  that projects on the subspace spanned 

by all the kk ,µ  corresponding to i ka a= . 

In particular, since the projectors P∈ ⊗H H  ( 2P P= ) represent observables with eigenvalues 

1 1p =  and 2 0p = , the Born probability of the event ( :1)P  results 

     BP ( :1, ( )) ( ( ) )P t Tr t Pρ = ρ     (3-1) 

If the Born probability BP  is computed over all the projector observables P∈ ⊗H H , the 

resulting probability function does not satisfy the definition of probability of Kolmogorov, since 

such a definition applies on a Boolean algebra whereas the set of the events corresponding to the 

projectors P  does not have a Boolean structure.  For this reason, some authors define a 

generalized probability function (non-Kolmogorovian) over the orthoalgebra of quantum events 

(for instance, Hughes, 1989; Cohen, 1989).  On the contrary, we shall preserve the 

Kolmogorovian character of probability by defining different probability functions on the Hilbert 

space H .  Let us define a context as a complete set of orthogonal projectors (CSOP) { }αΠ , with 

1α =  to M , such that  

      
1

M
Iα

α=

Π =∑      and     α β αβ αΠ Π = δ Π    (3-2) 

where I  is the identity operator in ⊗H H .6  All the projectors of the form JJ
P = Π∑ , where 

the { }J CSOP αΠ ∈ Π  and { }J 1, ,M∈ ⊂ "J , define a Boolean algebra ( 0 1)B , , , , ,α α= ∩ ∪P , 

where { }{ }J Jx / xα = = Π∪P .  Then, through the Born Rule, a state 'ρ ∈O  defines on αP  a 

probability function [ ]: 0 1f ,α α
ρ →P  that satisfies the axioms of Kolmogorov: 

• ( ) 1f α
ρ =U  

• ( ) 0f α
ρ ∅ =  

• If X ,Y α∈P  and X Y∩ =∅ , then ( ) ( ) ( )f X Y f X f Yα α α
ρ ρ ρ∪ = +  

                                                      
6 It is clear that, if { }α  is a basis of the Hilbert space, the set { }αΠ = α α  is a CSOP. 
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As a consequence, given a { }CSOP αΠ  and the projectors JJ
P = Π∑ : 

• The probability ( :1)f Pα
ρ  ascribed to the event ( :1)P  is computed with the Born Rule as 

       B( :1) P ( :1, ) ( )f P P Tr Pα
ρ = ρ = ρ     (3-3) 

• For any observable i ii
A a P= ∑ , the probability ( : )kf A aα

ρ  ascribed to the event ( : )kA a  is 

identified with the probability ( :1)kf Pα
ρ  ascribed to the event ( :1)kP : 

       ( : ) ( :1) ( )k k kf A a f P Tr Pα α
ρ ρ= = ρ     (3-4) 

Summing up, since Booleanity is retained in each context, we can say that the state ρ  

defines a different probability function on each context, but each one of these probability 

functions satisfies the definition of Kolmogorov. 

3.2  Physical content 

In the previous subsection we have presented what is usually called “the formal structure of 

quantum mechanics.”  As Ballentine (1998) points out, although such a structure is a necessary 

basis for the formulation of the theory, it has by itself very little physical content.  When concrete 

physical problems are to be solved, the relevant observables of the system, endowed with a clear 

physical meaning, have to be identified.  Those observables are closely related to space-time 

transformations. 

A continuous transformation T  with parameter s  acts on observables and state vectors as 

     1
s sA A' U AU −⎯⎯→ =     (3-5) 

     s' Uϕ ⎯⎯→ ϕ = ϕ     (3-6) 

where sU  is the family of unitary operators that describe the transformation T .  If s  is allowed 

to become infinitesimally small, the infinitesimal unitary operator sU  can be expressed as 

      iKs
sU e=      (3-7) 

where K� is the generator of the transformation T .  In turn, when the state vector is represented 

as a function of space-time coordinates x , there is an inverse relation between transformations 

on function space and transformations on coordinates: 

            ( ) ( )sx U x'ϕ = ϕ      (3-8) 

As it is well known, each physical theory has a corresponding group of symmetry 

transformations, in the sense that the dynamical law of the theory is covariant under the 
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transformations of the group.7  In particular, the group corresponding to quantum mechanics is 

the Galilean group, defined by ten symmetry generators associated to ten parameters: one time-

displacement, three space-displacements, three space-rotations and three boost-velocity 

components.  Those symmetry generators represent the basic physical observables of the theory 

(see Ballentine, 1998): the energy H  (time-displacement), the momentum ( )x y zP P ,P ,P=�  

(space-displacement), the total angular momentum ( )x y zJ J ,J ,J=�  (space-rotation), and the 

position ( )x y zQ Q ,Q ,Q=�  (boost-transformation, whose generator is mQ� , where m  is the 

mass).8  Moreover, the commutation relations for these observables can be obtained on the basis 

of the properties of the group: for instance, [ ] 0P ,Pα β = , [ ] 0P ,Hα = , [ ] 0J ,Jα β ≠ , [ ] 0J ,Hα = , 

etc.  The observables corresponding to the mass M mI= , where I  is the identity operator, the 

internal energy 2 2W H P / m= −� , and 2S , where S J P Q= − ×  is the spin angular momentum 

(or simply “spin”), are the Casimir operators of the group.9 

As we have seen, there is an inverse relation between transformations on function space 

and transformations on coordinates (see eq.(3-8)).  In the case of time-displacement, the 

transformation x x'→�  is 0 0t t→ + τ� , and sU  is ( )i H /U e τ
τ =

=  since the Hamiltonian H  (strictly 

speaking, H / = , see Note 8) is the generator of the transformation: 

             ( )
0 0( ) ( + )i H /t e tτϕ = ϕ τ=     (3-9) 

Making 0 0t =  and tτ = , we obtain 

      ( )( ) (0)i H / tt e−ϕ = ϕ=     (3-10) 

which has the form of the Schrödinger equation.  However, it has to be noted that eq.(3-10) can 

be obtained only when the Hamiltonian H  is independent of t : if H  is a function of t , in 

general no simple closed form can be given for Uτ  and, as a consequence, H  cannot be 

conceived as the generator of time-displacements (see Ballentine, 1989, p. 89).  This means that 

the time-independence of the Hamiltonian is what endows the Schrödinger equation with a clear 

                                                      
7 We are using the following notion of covariance.  Let 1 nQ , ,Q…  be quantities that are functions of space-time 

coordinates, and 1 nQ' , ,Q'…  the result of applying a certain group of transformations.  A physical law 
1( ) 0nL Q , ,Q =…  is covariant under that group if it preserves its form under the transformations of the group: 

1( ) 0nL Q' , ,Q' =… . 
8 Strictly speaking, the generators are proportional to these observables with a factor 1 / = .  For instance, the time-

displacement generator is K H /τ = = . 
9 The Galilean group is a Lie group, and an operator commuting with all the elements of a Lie group is said to be the 

Casimir operator of the group (see Tung, 1985).  Since covariance under boost-transformatons holds, a quantum 
system with constant velocity can be described in the frame of reference of the center of mass, where 0P = ; in 
this case, W H= , and the Hamiltonian becomes a Casimir operator of the Galilean group. 
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physical meaning (precisely, that of expressing time-displacements) and, at the same time, what 

makes the Schrödinger equation strictly applicable to closed systems.  This result is what 

implicitly supports the orthodox formulation of quantum mechanics, where the quantum system 

is conceived as a closed, constant-energy system, unitarily evolving according to the Schrödinger 

equation; the Hamiltonian (the energy of the system) only changes with time as the result of the 

interaction with other systems, described by means of an interaction Hamiltonian.  Our 

interpretation will be based on this orthodox version of the theory.10 

Although in a −closed− quantum system the Hamiltonian H  is time-independent and, then, 

invariant under time-displacements, it may have the remaining space-time symmetries or not.  To 

say that the Hamiltonian is invariant under a certain symmetry transformation with generator K  

and parameter s  means that (see eq.(3-5)) 

    iKs iKse H e H− = ,   then    [ ] 0H ,K =     (3-11) 

This implies that, when H  is invariant under a certain continuous transformation, the generator 

of that transformation is a constant of motion of the system: each symmetry of the Hamiltonian 

defines a conserved quantity.  For instance, the invariance of H  under space-displacements in 

any direction implies that the momentum P  is a constant of motion; the invariance of H  under 

space-rotations in any direction implies that the total angular momentum J  is a constant of 

motion.  If, on the contrary, H  is invariant under space-displacements only in one direction, say 

x , only the component xP  of P  is a constant of motion. 

In turn, we know that the invariance under space-time transformations follows from the 

properties of space and time: invariance under time-displacements expresses the homogeneity of 

time, invariance under space-displacements expresses the homogeneity of space, invariance 

under space-rotations expresses the isotropy of space.  We also know that the Schrödinger 

equation has to be covariant under the full Galilean group.  The covariance of the Schrödinger 

equation under time-displacements is guaranteed by the time-independence of the Hamiltonian, 

and this expresses the homogeneity of time.  However, in quantum mechanics, fields are not 

quantized; they are treated as classical fields that act on the quantum system by breaking the 

homogeneity and/or the isotropy of space.  But, in spite of this, the dynamical law of the theory, 

( ) (0)iHt /t e−ϕ = ϕ= , must remain covariant under space-displacements and space-rotations.  

                                                      
10 An example of a non-orthodox approach is the position of Nancy Cartwright (1983), who proposes to consider the 

non-unitary generalized master equation for open quantum systems as the dynamical postulate of quantum 
mechanics instead of the Schrödinger equation. 
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Therefore, the breaking of the homogeneity and/or the isotropy of space resulting from the action 

of fields on the quantum system has to be “contained” in the form of the Hamiltonian: the non-

homogeneity of space implies the non-invariance of H  under space-displacements and, then, the 

fact that P  (or one of its components) is not a constant of motion; the non-isotropy of space 

implies the non-invariance of H  under space-rotations and, then, the fact that J  (or one of its 

components) is not a constant of motion.  Summing up, the privileged status of the Hamiltonian 

follows from its role in the Schrödinger equation: H  has to embody the space asymmetries in 

each particular situation in order to preserve the covariance of the dynamical law of the theory. 

As we have seen, the study of the space-time symmetry transformations serves a dual 

purpose: the identification of the fundamental physical magnitudes of the theory, and the 

explanation of the central role played by the Hamiltonian in the selection of the constants of 

motion of the system.  In other words, space-time symmetries endow the formal skeleton of 

quantum mechanics with the physical flesh and blood that allow the theory to be applied to 

concrete physical situations. 

4.  The modal-Hamiltonian interpretation 

As we have pointed out, from a realist perspective, to interpret a theory amounts to saying how 

reality would be if the theory were true.  Although, in general, physicists agree in their use of the 

physical language, it is not a self-evident matter what the relation between physical language and 

reality is: physical theories do not provide their own interpretations.  Therefore, if we want to 

give an interpretation for quantum mechanics, we have to formulate interpretational postulates 

which define the ontological reference of each one of the theoretical elements introduced by the 

quantum postulates.  In other words, we have to specify which kind of items in the ontology 

(objects, properties, facts, etc.) is represented by each physical term in the postulates QP 

(systems, observables, states, etc.).  In this way we shall be able to say what ontological 

categories populate the quantum mechanical reality.  For this reason, although we have been not 

very careful in the mathematical-physical language distinction, we shall pay a special attention to 

the ontological language: the task of fixing the ontological reference of the physical language is 

unavoidable if we want to understand the picture of reality supplied by our interpretation. 

In this section, we shall introduce our modal-Hamiltonian interpretation without discussing 

its advantages over other proposals.  The arguments that support it will become clear in the 
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following sections, where we shall argue for its physical relevance and we shall apply it to solve 

some traditional interpretational challenges. 

4.1  Properties, systems and subsystems 

The first step consists in identifying the basic elements of the quantum ontology by means of 

interpretational postulates. 

IP1: Given a quantum system : ( , )S H⊆ ⊗O H H , the observables O∈O  

ontologically represent type-properties [ ]O , and their corresponding eigenvalues io  

ontologically represent case-properties [ ]: iO o  of the type-property [ ]O .  In 

particular, the projectors P∈O  are observables that ontologically represent type-

properties [ ]P  with case-properties [ ]: 1P  and [ ]: 0P . 

Of course, any quantum system can be decomposed into parts in many ways; however, not any 

decomposition leads to parts which are, in turn, quantum systems.  This will only be the case 

when the components’ behaviors are dynamically independent to each other, and this dynamical 

independence follows from the non-interaction among them (see Harshman & Wickramasekara, 

2007a, b).  On this basis, we shall adopt the following interpretational postulates. 

IP2 (System Decomposition): A quantum system : ( , )S H⊆ ⊗O H H  with initial 

state 0 'ρ ∈O  is composite when two quantum systems 1 1 1 1 1: ( , )S H⊆ ⊗O H H  

and 2 2 2 2 2: ( , )S H⊆ ⊗O H H  can be defined, such that  

(i) 1 2= ⊗ ⊆ ⊗O O O H H , where 1 2= ⊗H H H , and 

(ii) 1 2 1 2H H I I H= ⊗ + ⊗ ∈O , where 1I  and 2I  are the identity operators in 
1 1⊗H H  and 2 2⊗H H  respectively. 

In this case, the initial states 1 1
0 'ρ ∈O  and 2 2

0 'ρ ∈O  of 1S  and 2S , respectively, are 

obtained as 1
0 (2) 0Trρ = ρ  and 2

0 (1) 0Trρ = ρ , where ( ) 0iTr ρ  is a partial trace of 0ρ , that 

is, the operation that traces over the Hilbert space of iS . 

In this case we shall say that 1S  and 2S  are subsystems of the composite system 1 2S S S= ∪ .  

When a quantum system is not composite, we shall call it elemental system.  Therefore, the 

System Decomposition postulate supplies a precise criterion to distinguish between elemental 

and composite systems, and such a criterion is based on the system's Hamiltonian. 

It is worth stressing that this definition of composite system does not imply that the initial 

state 0ρ  of S  is the tensor product 1 2
0 0ρ ⊗ ρ : this factored or uncorrelated state is a very special 
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kind of state, used in practice to describe independently prepared systems (see IP3 below).  On 

the contrary, in general the initial state is a correlated or entangled state 0 'ρ ∈O ; nevertheless, 

since there is no interaction between 1S  and 2S , 1 2 1 2 0⎡ ⎤⊗ ⊗ =⎣ ⎦H I ,I H  and, then,  

   [ ] 1 2⎡ ⎤ ⎡ ⎤− = − −⎣ ⎦ ⎣ ⎦= = =exp iHt / exp iH t / exp iH t /    (4-1) 

Therefore,  

   
1 1 1 11 1

(2) (2) 0 (2) 0 0( ) ( ) − − −⎡ ⎤ ⎡ ⎤ρ = ρ = ρ = ρ = ρ⎣ ⎦⎣ ⎦
= = = = = =iHt / iHt / iH t / iH t / iH t / iH t /t Tr t Tr e e e Tr e e e  

            (4-2) 

   
2 2 2 22 2

(1) (1) 0 (1) 0 0( ) ( ) − − −⎡ ⎤ ⎡ ⎤ρ = ρ = ρ = ρ = ρ⎣ ⎦⎣ ⎦
= = = = = =iHt / iHt / iH t / iH t / iH t / iH t /t Tr t Tr e e e Tr e e e  

            (4-3) 

This means that, in spite of the correlations, the subsystems 1S  and 2S  are dynamically 

independent: each one of them will evolve under the action of its own Hamiltonian. 

Harshman and Wickramasekara (2007a, b) call “tensor product structure” (TPS) any 

partition of the whole system S , represented in the Hilbert space = ⊗H H HA B , into parts 

represented in HA  and HB .  They point out that quantum systems admit a variety of TPSs, each 

one of which leads to a different entanglement between those parts: separability and 

entanglement are TPS-dependent.  However, they also note that there is a particular TPS that is 

dynamically invariant and, as a consequence, the resulting entanglement is also dynamically 

invariant: that particular TPS corresponds to our decomposition of the composite system into 

subsystems.  Therefore, when 1S  and 2S  are subsystems of the composite system S  and, then, 

dynamically independent, we have a robust notion of entanglement: although 0ρ  evolves in time, 

its entanglement is dynamically invariant. 

IP3 (System Composition): Given two quantum systems 1 1 1 1 1: ( , )S H⊆ ⊗O H H  

and 2 2 2 2 2: ( , )S H⊆ ⊗O H H , with initial states 1 1
0 'ρ ∈O  and 2 2

0 'ρ ∈O  

respectively, a quantum system : ( , )S H⊆ ⊗O H H  with initial state 0 'ρ ∈O  can 

always be defined, such that  

(i) 1 2= ⊗ ⊆ ⊗O O O H H , where 1 2= ⊗H H H ,  

(ii) 1 2 1 2
int= ⊗ + ⊗ + ∈OH H I I H H , where intH  is usually called interaction 

Hamiltonian, and  

(iii) 1 2
0 0 0ρ = ρ ⊗ ρ ∈O ' . 

Although we have called IP3 “System Composition” postulate, two cases have to be 

distinguished: 
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 If int 0H =  ( 1S  and 2S  do not interact), 1S  and 2S  are subsystems of the composite system 
1 2S S S= ∪ : they satisfy the System Decomposition postulate IP2.  In this case, the initial 

states ( )1 1 2
0 (2) 0 (2) 0 0Tr Trρ = ρ = ρ ⊗ ρ  and ( )2 1 2

0 (1) 0 (1) 0 0Tr Trρ = ρ = ρ ⊗ ρ  evolve unitarily 

according to the Schrödinger equation, as required by the Dynamical Postulate QP4  (see 

eqs.(4-2) and (4-3)). 

 If int 0H ≠  ( 1S  and 2S  interact), since the time 0t  when the interaction begins, 1S  and 2S  are 

not subsystems of the system S : they do not satisfy the System Decomposition postulate IP2.  

In fact, the initial states 1
0 (2) 0Trρ = ρ  and 2

0 (1) 0Trρ = ρ  do not evolve unitarily.  Therefore, 

strictly speaking, since that time 0t , 1S  and 2S  are not quantum systems to the extent that they 

do not satisfy the Dynamical Postulate QP4. 

IP4: Given a composite quantum system 1 2: ( , )S S S H= ∪ ⊆ ⊗O H H , where 
1 1 1 1 1: ( , )S H⊆ ⊗O H H  and 2 2 2 2 2: ( , )S H⊆ ⊗O H H , and given the observables 
1 1A ∈O  of 1S , 2 2A O∈  of 2S , and the observables 1 2A A I O= ⊗ ∈  and 

( )1 2 1 2fA f A I ,I A O= ⊗ ⊗ ∈  of S , where f  is an analytical function, then,  

(i) the observables A  and 1A  ontologically represent the same type-property 

[ ] 1A A⎡ ⎤= ⎣ ⎦  with the same case-properties 1 1 1: :i iA a A a⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , where the 1
ia  are 

the eigenvalues of both A  and 1A . 

(ii) the observable fA  ontologically represents a type-property fA⎡ ⎤⎣ ⎦  with case-

properties ( )1 2:f
i jA f a ,a⎡ ⎤

⎣ ⎦ , where the 1
ia , 2

ja  are the eigenvalues of 1A  and 2A  

respectively; fA⎡ ⎤⎣ ⎦  is equivalent to the combination between 1 2A I⎡ ⎤⊗⎣ ⎦  and 
1 2I A⎡ ⎤⊗⎣ ⎦ , represented by the function f . 

The interpretational postulate IP4 expresses the usual quantum assumption according to which 

the observable 1A  of a subsystem 1S  and the observable 1 2A A I= ⊗  of the composite system 
1 2S S S= ∪  represent the same property.  On the other hand, this postulate establishes the 

necessary connections between the properties of the composite system and the properties of its 

subsystems.  The assumption of these connections is not a specific feature of quantum mechanics, 

but is also usual in classical mechanics where we consider, for instance, the energy of a two-

particles composite system as a particular combination (expressed by the sum) of the energies of 

the component subsystems. 
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4.2  Possible facts and propensities 

Up to this point we have identified properties in the ontology.  But properties are not facts: 

properties and facts belong to different ontological categories.  In our case, possible facts will be 

defined as the possible occurrence of certain case-properties, and probabilities will be applied to 

them. 

IP5: Given a quantum system : ( , )S H⊆ ⊗O H H , 

(i) if P∈O  is a projector observable, the possible fact [ ]F P  is the possible 

occurrence of the case-property [ ]: 1P  corresponding to the type-property [ ]P . 

(ii) if i ii
A a P= ∈∑ O , where i ja a≠  for i j≠  and the iP ∈O  are the 

eigenprojectors of A , the possible fact [ ]F : kA a  is the possible occurrence of 

the case-property [ ]: kA a  corresponding to the type-property [ ]A . 

IP6: Given an elemental quantum system : ( , )S H⊆ ⊗O H H , a { }CSOP αΠ , 

with 1α =  to M , and the projectors JJ
P = Π ∈∑ O , where { }J αΠ ∈ Π  and 

{ }J 1, ,M∈ ⊂ "J , then 

(i) the possible fact [ ]F P  is equivalent to the disjunction of the possible facts 

[ ]JF Π : 

               [ ] [ ]J JF FP ≡ ΠV  

(ii) if i ii
A a P= ∈∑ O , where i ja a≠  for i j≠  and the iP ∈O  are the 

eigenprojectors of A , the possible fact [ ]F : kA a  is equivalent to the possible 

fact [ ]F kP : 

[ ] [ ]F : Fk kA a P≡  

It is clear that, given a { }CSOP αΠ , the projector observables JJ
P = Π ∈∑ O  lead to a set 

of possible facts [ ]{ }/ Fx x Pα = =F  that is isomorphic to the set { }{ }J Jx / xα = = Π∪P ; 

then, αF  also defines a Boolean algebra.  As a consequence, in each elemental quantum system 

the probability function f α
ρ , defined by the state ρ  over the set αP , can be ontologically 

interpreted as a Kolmogorovian measure of an ontological propensity, defined by the state ρ  

over the set αF . 

IP7: Given an elemental quantum system : ( , )S H⊆ ⊗O H H  in a state 'ρ∈O , 

and the set of possible facts αF  defined by the { }CSOP αΠ , with 1α =  to M , the 

probability function [ ]: 0 1f ,α α
ρ →P  ontologically represents a measure of the 

ontological propensity to actualization of the corresponding possible facts, 
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[ ]: 0 1p ,α α
ρ →F , a measure that satisfies the axioms of Kolmogorov expressed in 

terms of the Boolean connectives ¬ , ∧  and ∨ . 

As a consequence, given a { }CSOP αΠ  and the projectors JJ
P = Π∑ : 

• For a possible fact [ ]F P  (see eq.(3-3)): 

       [ ]( F ) ( :1) ( )p P f P Tr Pα α
ρ ρ= = ρ     (4-4) 

• For a possible fact [ ] [ ]F : Fk kA a P≡  (see eq.(3-4)): 

   [ ]( F : ) ( : ) ( )k k kp A a f A a Tr Pα α
ρ ρ= = ρ     (4-5) 

IP8: Given an elemental quantum system : ( , )S H⊆ ⊗O H H , its state 'ρ∈O  

codifies the ontological propensities to actualization of the possible facts 

corresponding to the properties of S , and the time evolution of ρ  given by the 

Schrödinger equation ontologically represents the time evolution of those ontological 

propensities. 

4.3  Actual facts 

Up to this point we have talked of possible facts with their corresponding propensities to 

actualization.  Now we have to introduce the ontological category of actual facts, resulting from 

the actualization of possible facts. 

IP9: The actual fact [ ]F P  (or [ ]F : kA a ) results from the actualization of the possible 

fact [ ]F P  (or [ ]F : kA a ) and, therefore, it is the actual occurrence of the 

case-property [ ]: 1P  (or [ ]: kA a ) corresponding to the type-property [ ]P  (or [ ]A ). 

With this terminology, we can read: 

• [ ]F i : “the possible fact [ ]F i  is actual” 

• [ ]F¬ i : “the possible fact [ ]F i  is not actual” 

The theorem of Kochen and Specker (1967) teaches us that, at a single time t , the 

actualization of the possible facts belonging to all the sets αF , defined by all the CSOP’s of the 

system, is not permitted by the theory.  Therefore, actualization must be restricted in some way; 

we shall introduce such a restriction by means of the following interpretational postulate. 
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IP10: Given an elemental quantum system : ( , )S H⊆ ⊗O H H  such that 0H ≠ ,11 

there is a preferred context, that is, a preferred { }p CSOP αΠ  that determines a 

preferred set of possible facts [ ]{ }p / Fx x P= =F  (with p
JJ

P = Π ∈∑ O , 

{ }p p
J αΠ ∈ Π  and { }J 1, ,M∈ ⊂ "J ) where actualization occurs, in the sense that: 

(i) one and only one of the possible facts p pF α⎡ ⎤Π ∈⎣ ⎦ F , say pF Ω⎡ ⎤Π⎣ ⎦ , is 

also an actual fact pF Ω⎡ ⎤Π⎣ ⎦ . 

(ii) if pF Ω⎡ ⎤Π⎣ ⎦ , then all the possible facts [ ] p p
J JF FP ⎡ ⎤≡ Π ∈⎣ ⎦ FV  (see IP6 

(i)), such that p
ΩΠ  is one of the p

JΠ , are also actual facts [ ]F P . 

(iii) if [ ]F kP , then the possible fact [ ] [ ] pF : Fk kA a P≡ ∈F  (see IP6 (ii)) is 

also an actual fact [ ]F : kA a . 

Since quantum mechanics is a probabilistic theory, in general it does not determine which 

possible facts become actual.  The actualization or non actualization of a possible fact belonging 

to the preferred set pF  is determined only when the measure of the propensity to actualization of 

such a fact is 1 or 0, respectively. 

IP11: Given an elemental quantum system : ( , )S H⊆ ⊗O H H  and the preferred 

set pF  of possible facts, if at time t  the state ρ  ascribes a propensity to 

actualization with measure 1 (measure 0) to the possible fact [ ] pF ∈i F , then 

such a possible fact is (is not) actual: 

    If [ ]p( F ) 1pρ =i , then [ ]F i  

    If [ ]p( F ) 0pρ =i , then [ ]F¬ i  

4.4  Actualization rule 

In the interpretational postulates IP10 and IP11, the preferred context has been presupposed.  

Now we have to supply a rule for identifying it: this task is usually the most delicate step of any 

modal interpretation.  In fact, since quantum mechanics does not account for actualization due to 

its probabilistic nature, the rule cannot be inferred from the formalism, but has to be introduced 

as an interpretational assumption.  Therefore, the adequacy of the Actualization Rule has to be 

assessed in the light of its physical relevance and its ability to solve the interpretation problems 

                                                      
11 The Hamiltonian equal to zero or equal to a multiple of the identity are physically equivalent situations, since they 

only differ in a time-displacement: H k I=  only modifies the phase of a state vector.  So, for simplicity, from now 
on we shall only mention the case 0H =  on the basis of that equivalence. 
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of the theory.  But before introducing the rule, we want to discuss the conceptual motivations 

lying behind its adoption. 

During the last decades, the research on the mathematical properties of the formal structure 

of quantum mechanics has shown a great advance: many results, unknown by the founding 

fathers of the theory, have been obtained, and this work has greatly improved the understanding 

of the deep obstacles that any interpretation must face. However, this interest in the features of 

the formalism has led to forget the physical content of the theory: in the last times, usually the 

arguments rely on mathematical results and discussions center around the formal models of the 

quantum measurement.  But quantum mechanics is a physical theory that has been applied to 

many well-known systems and by means of which an impressive amount of experimental 

evidence has been accounted for.  Therefore, a ''good'' interpretation of quantum mechanics 

should not only face the traditional interpretational challenges of the theory, but also show its 

agreement with the orthodox practice of physics.  In this sense, our proposal moves away from 

the present trend in the subject by placing an element with a clear physical meaning, the 

Hamiltonian of the system, at the heart of the interpretation: the content of the Actualization Rule 

will be based on the structure of the Hamiltonian. 

Although in the previous section we have only considered invariances under space-time 

transformations, the Hamiltonian may have other symmetries.  Precisely, the so-called 

“Schrödinger group” is the group of transformations that leave the Hamiltonian invariant (see 

Tinkham, 1964).  Since each symmetry of the Hamiltonian leads to an energy degeneracy (Meijer 

& Bauer, 2004, pp. 110-114), much valuable information on the energy spectrum of the system 

can be obtained by applying the machinery of the group theory to the study of the symmetries of 

the Hamiltonian.  In fact, if H  is invariant under a symmetry transformation with generator K , 

then [ ], 0H K =  (see eq.(3-11)).  Therefore, if nH n n= ω ,  

   nK H n K n= ω  ⇒ nH K n K n= ω    (4-6) 

This means that any vector K n  obtained by applying the operator K  to the eigenvector n  is 

also an eigenvector of H  with the same eigenvalue nω .  If H  is expressed as n nn
H P= ω∑ , 

where nP  is the eigenprojector corresponding to the eigenvalue nω , we can write explicitly the 

index nk  corresponding to the degeneracy of nω  in such a way that 

         , ,n n nH n k n k= ω  ⇒ , ,
n

n n n
n k

H n k n k= ω∑ ∑   (4-7) 

         , ,
nn k nK n k n k= κ  ⇒ , ,

n

n

k n n
n k

K n k n k= κ∑∑   (4-8) 
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The degeneracies with origin in symmetries are called “normal” (Tinkham, 1964) or “systematic” 

(Cohen-Tannoudji, Diu & Lalöe, 1977). On the contrary, degeneracies that have no obvious 

origin in symmetries are called “accidental”.  However, deeper study usually shows either that 

the accidental degeneracy is not exact, or else that a hidden symmetry in the Hamiltonian can be 

found which explains the degeneracy.12  For this reason it is assumed that, once all the 

symmetries of the Hamiltonian have been considered, a basis for the Hilbert space of the system 

is obtained and the “good quantum numbers” are well defined.  This strategy is what underlies 

the group approach to quantum mechanics, where the physical features of the quantum system 

are studied by analyzing the symmetry properties of its Hamiltonian (Weyl, 1950; Hamermesh, 

1962; Tinkham, 1964; Tung, 1985).13 

Now we have all the conceptual elements necessary to present our Actualization Rule.  The 

basic idea can be expressed by the classical Latin maxim “Ubi lex non distinguit, nec nos 

distinguere debemus”: where the law does not distinguish, neither ought we to distinguish.  The 

Hamiltonian of the system, with its symmetries, is what rules actualization; then, none observable 

whose eigenvalues would distinguish among eigenvectors corresponding to a single degenerate 

eigenvalue of the Hamiltonian has to acquire definite values, since the actualization of the 

possible facts corresponding to that observable would introduce in the system an asymmetry not 

contained in the Hamiltonian.  Once this basic idea has been clearly understood, the 

Actualization Rule can be formulated in a very simple way. 

IP12 (Actualization Rule): Given an elemental quantum system 

: ( , )S H⊆ ⊗O H H , 

(i) if 0H = , there is no actualization, that is, none possible fact becomes actual. 

(ii) if 0n nn
H P= ω ≠∑ , the preferred { }pCSOP αΠ  is { }nP , where each nP  is an 

eigenprojector of H , which projects onto the subspace spanned by the 

eigenvectors corresponding to nω . 

                                                      
12 A classical example is the degeneracy, in the hydrogen atom, of states of different angular momentum l  but the 

same principal quantum number n , for instance, of 2s  and 2 p  functions.  In this case, Fock (1935) showed that 
the degeneracy arises from a four-dimensional rotational symmetry of the Hamiltonian in momentum space. 

13 More general group approaches supply generic mathematical strategies for identifying the symmetries of the 
Hamiltonian.  Precisely, the quantum system is defined by a group G  generated by the algebra of observables A .  
If the subgroup chains 1 2 n

α α α α≡ ⊃ ⊃ ⊃"S G G G  of the group G  are defined, the symmetries of the 
Hamiltonian are manifested by the fact that H  can be expressed in terms of the Casimir operators k iCα  of any 
subgroup chain, where k iCα  is the i th−  Casimir operator of the subgroup k

αG  of the chain αS  (see Barut & 
Raczka, 1987; Zhang, Feng, Yuan & Wang, 1989). 
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In other words, since the degeneracies of the Hamiltonian define a sort of “coarse-grained basis” 

of the Hilbert space, actualization must not introduce a finer discrimination that would break the 

symmetries due to the Hamiltonian. 

In the modal interpretations discussed in the literature, the problem of identifying the 

actualization context is usually posed in terms of deciding which observables are definite-valued.  

Let us see how the rule works in those terms, for different cases: 

(a) The Hamiltonian H  does not have symmetries: it is non-degenerate.  In this case, 

     nH n n= ω          with 'n nω ≠ ω    (4-9) 

where { }n  is a basis of the Hilbert space H .  Since in this case the preferred CSOP is 

{ }n n , we can call { }n  “preferred basis”.  Therefore, n  is the only good quantum 

number: the definite valued observables of the system are H  and all the observables 

commuting with H . 

(b) The Hamiltonian H  has certain symmetries that lead to energy degeneracy.  In this case, H  

can be written as 

         , ,n n nH n i n i= ω    ⇒   , ,
n

n n n n n
n i n

H n i n i P= ω = ω∑ ∑ ∑   (4-10) 

where 'n nω ≠ ω  and the index ni  expresses the degeneracy of the energy eigenvalue nω .  Let 

us consider an observable of the form 

     
,

, , , ,
n n

n n n n n n n n
n i n i n

A a n i n i a n i n i a P= = =∑ ∑ ∑ ∑   (4-11) 

where 'n na a≠   It is clear that [ ], 0H A = .  Moreover, A  has the same degeneracy as H  

since they have the same eigenprojectors: the subspace spanned by the degenerate 

eigenvectors corresponding to na  is the same as that spanned by the degenerate eigenvectors 

corresponding to nω .  In other words, A  has the same symmetries as H .  Therefore, all the 

observables A  commuting with H  and having the form of eq.(4-11) are definite-valued.  On 

the contrary, for instance, observables of the form 

     ,
,

, ,
n

n

n i n n
n i

B b n i n i= ∑     (4-12) 

in spite of commuting with H , do not acquire definite values, since any of the actual facts 

F :
nn ,iB b⎡ ⎤⎣ ⎦  would discriminate among the eigenvectors corresponding to a single degenerate 

eigenvalue nω  of H : they would distinguish where the Hamiltonian does not distinguish. 
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(c) An interesting particular case arises when all the eigenvalues nω  have the same -i fold 

degeneracy: the index i , that expresses the energy degeneracy, is not a function of n .  Then, 

in this case eq.(4-10) becomes 

            , ,nH n i n i= ω      (4-13) 

As a consequence, the Hamiltonian can be decomposed as 

   , , ND D
n n

n i n i
H n i n i n n i i H I= ω = ω ⊗ = ⊗∑ ∑ ∑ ∑  (4-14) 

This decomposition expresses the partition of the original system S  into two non-interacting 

subsystems NDS  and DS : 

∗ The system NDS  is represented in the Hilbert space HND , with basis { }n , and its 

Hamiltonian NDH  is non-degenerate. 

∗ The system DS  is represented in the Hilbert space HD , with basis { }i , and its 

Hamiltonian is 0DH = . 

Therefore, the original system S  is a composite system ND DS S S= ∪  such that  

  H H H= ⊗ND D    ,   int
ND D ND D ND DH H I I H H H I= ⊗ + ⊗ + = ⊗  (4-15) 

where int 0DH H= = .  As a consequence, the Actualization Rule has to be applied to each 

elemental subsystem:  

∗ In NDS  the preferred basis is { }n : the definite-valued observables are NDH  and all the 

observables belonging to H H⊗ND ND  and commuting with NDH . 

∗ In DS  there is no actualization because 0DH = : the observables of DS  do not acquire 

definite-values. 

Summing up, in general we can say that, according to the Actualization Rule, the definite-

valued observables of the system are the Hamiltonian H , and the observables commuting with 

H  and having, at least, the same symmetries as H .  It is clear that our interpretation follows the 

lines of standard modal interpretations in the sense of dropping the so-called “eigenstate-

eigenvalue link”, according to which an observable possesses a definite value if and only if the 

system’s state is an eigenvector of that observable. 

Up to this point, by means of our Actualization Rule we have identified the observables 

that receive definite values in elemental quantum systems.  It is easy to see that, when the 

elemental system is a subsystem of a composite system, the definite-valued observables of the 

composite system can also be identified.  In fact, according to IP4, given a composite quantum 

system 1 2S S S= ∪ , if the observable 1 1A ∈O  of 1S  acquires the definite value 1aΩ , the same 
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happens for the observable 1 2A A I= ⊗ ∈O  of S , since 1A  and A  represent the same type-

property [ ]1A A⎡ ⎤ =⎣ ⎦  with the same case-properties 1 1 1: :i iA a A a⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , where the 1
ia  are the 

eigenvalues of both 1A  and A .  Moreover, also according to IP4, if the observable 1 1A ∈O  of 
1S  acquires the definite value 1aΩ  and the observable 2 2A O∈  of 2S  acquires the definite value 
2aΦ , any observable ( )1 2 1 2fA f A I ,I A O= ⊗ ⊗ ∈  of S , representing the type-property fA⎡ ⎤⎣ ⎦  

with case-properties ( )1 2:f
i jA f a ,a⎡ ⎤

⎣ ⎦ , is also definite-valued and acquires the definite value 

( )1 2f a ,aΩ Φ . 

In some modal interpretations (e.g. Kochen-Dieks, Vermaas-Dieks), in general the rule of 

property-ascription does not assign the same value to 1A  and 1 2A A I= ⊗ ; this fact contradicts 

the usual physical assumption −based on the observational indistinguishability of 1A  and A− 

according to which both observables represent the same property.  This trouble has led to many 

discussions (see Dieks & Vermaas, 1998, pp. 109-115), and to different strategies directed to 

avoid it (see, for instance, the perspectival version of Bene & Dieks, 2002).  In our interpretation 

the trouble does not arise since that usual assumption is imposed as an interpretational postulate 

(IP4).  But it must be noted that this postulate can be formulated because we have a precise 

criterion to distinguish between elemental systems and composite systems.  Without such a 

criterion, the definition of subsystems and composite systems would be relative to the arbitrary 

partition (to the particular TPS, in terms of Harshman and Wickramasekara, 2007a, b) chosen in 

each case; therefore, the Actualization Rule (or the rule for property-ascription in other modal 

interpretations) should apply to any quantum system, both subsystems and composite systems, 

and the above difficulty would arise.  In our case, on the contrary, the precise criterion to 

distinguish between elemental systems and composite systems is given by IP2.  Once the 

elemental quantum systems have been univocally identified, there is no problem in applying the 

Actualization Rule only to them and picking up the definite-valued observables of the composite 

system by means of the interpretational postulate IP4. 

It is worth stressing that, in contrast with other interpretations, the preferred context where 

actualization occurs is not a function of time, since it depends on the Hamiltonian: the definite-

valued observables always commute with the Hamiltonian and, therefore, they are constants of 

motion of the system.  In other words, the observables that receive definite values are the same 

during all the “life” of the quantum system as such −precisely, as a closed system−: there is no 

need of accounting for the dynamics of the actual properties (we shall return on this point in 

Subsection 8.3). 
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Our Actualization Rule is not based on purely mathematical results (e.g. Schmidt theorem, 

spectral theorem); on the contrary, it bestows a central role on the Hamiltonian of the system. In 

fact, the rule is inspired by physical motivations that will become clear in the next section, when 

it will be applied to well-known physical models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  The physical relevance of the interpretation 

As we have said, a ''good'' interpretation of quantum mechanics should not only face the 

traditional interpretational challenges of the theory, but also show its agreement with the 

orthodox practice of physics.  In this section we shall argue for the physical relevance of our 

modal-Hamiltonian interpretation by applying it to very well-known models and experimental 

results. 

5.1  Free particle 

The Hamiltonian of the free particle reads 
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2 2
x y zP P PPH

m m
+ +

= =     (5-1) 

where P  is the momentum observable, with components x y zP ,P ,P , and m  is the mass of the 

particle.  The particle is said to be “free” because there are not fields acting on it: then, space is 

homogeneous and, as a consequence, H  is invariant under space-displacements in any direction 

(an analogous argument could be given in terms of the isotropy of space).  The components 

x y zP ,P ,P  are the generators of the symmetry and, at the same time, constants of motion of the 

system.  Therefore, the Hamiltonian is degenerate. 

According to our Actualization Rule, H  acquires a definite value, and also 2P  since it is 

proportional to H  and, then, has the same space-displacement symmetry ( 2P  is the Casimir 

operator of the group generated by x y zP ,P ,P ). Nevertheless, x y zP ,P ,P  are not definite-valued 

because, being the generators of the symmetry, the actualization of any of the possible facts 

corresponding to their eigenvalues would break the symmetry of the free particle, in the sense of 

introducing an asymmetry non contained in the Hamiltonian. 

Of course, the three components P  can be used for the theoretical description of the free 

particle; in fact, usually any two of them are added to H  to constitute a complete set of 

commuting observables (CSCO), { }x yH ,P ,P , { }y zH ,P ,P  or { }x zH ,P ,P , that defines a basis of 

the Hilbert space (given the functional dependence among the four magnitudes, the CSCO 

{ }x y zP ,P ,P  can be equivalently used).  But this fact does not mean that those observables have to 

be considered definite-valued.  On the contrary, the application of our interpretation to this 

system agrees with the non empirical accessibility to the values of x y zP ,P ,P  in the free particle.  

If we wanted to know these values, we would have to perform a measurement on the particle. But 

a measurement always involves an interaction with the measured object, which breaks the 

symmetry of the original system by modifying its Hamiltonian (for instance, consider a screen 

acting as a potential barrier that breaks the homogeneity of space).  This means that, under 

measurement, the particle is no longer free: the symmetry breaking introduced by the interaction 

with the measuring apparatus is what allows us to have empirical access to an observable that 

was a symmetry generator of the original free system. 

5.2  Free particle with spin 

The spin S  is an internal contribution to the total angular momentum and, therefore, adds further 

degrees of freedom to the particle: the Hilbert space is now ��H H H= ⊗f s , where Hf  is the 
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Hilbert space of the free particle and Hs  is the Hilbert space of the spin.  In this case, the 

Hamiltonian is 

        
2

02
PH E
m

= +      (5-2) 

where 0E  can only be a multiple of 2S  and, then, may be conceived as an internal contribution to 

the energy (see Ballentine, 1989). 

According to our interpretation, in this case the system is composite, because it can be 

decomposed into two non-interacting subsystems (see IP2): a free particle without spin, 

represented in �Hf  and with Hamiltonian 2 2fH P / m= , and a spin system, represented in Hs  

and with Hamiltonian 2
sH k S= , with k const.=   Then, the Actualization Rule has to be applied 

independently to each elemental subsystem. 

The rule applies to the free particle subsystem as explained in the previous subsection.  On 

the other hand, in the spin subsystem sH  is invariant under space-rotation: the generators of this 

symmetry are the three components x y zJ ,J ,J  of the total angular momentum J .  But since in 

this case the orbital angular momentum L  is zero, the total angular momentum J L S= +  turns 

out to be simply J S= , and the three components x y zS ,S ,S  of the spin S  are the generators of 

the space-rotation symmetry.  Analogously to the case of the free particle, according to our 

Actualization Rule, in this case sH  acquires a definite value, and also 2S  since it is proportional 

to sH  ( 2S  is the Casimir operator of the group generated by x y zS ,S ,S ); nevertheless, x y zS ,S ,S  

are not definite-valued since they are the generators of the symmetry of the Hamiltonian 
2

sH k S= . 

Again, this conclusion agrees with the fact that we have no empirical access to the spin 

components of the free particle with spin.  If we want to know the value of those components, we 

have to perform a measurement on the system: we have to introduce a magnetic field B  of 

modulus B  in some direction, say z , which breaks the isotropy of space and, as a consequence, 

the original space-rotation symmetry.  Under the action of B , the Hamiltonian sH  is not 

invariant under space-rotation anymore, because now it includes the interaction zB S−γ  that 

privileges a particular direction of space.  In other words, we can have experimental access to the 

spin component zS  only by means of a measurement that breaks the space-rotation symmetry of 

the original Hamiltonian and, therefore, makes the system no longer free.  This is the usual way 

in which a spin component is measured in a Stern-Gerlach experiment (the experiment will be 

described in detail in Subsection 6.3). 
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5.3  Harmonic oscillator 

By definition, a harmonic oscillator is a system with a quadratic potential energy, which produces 

a restoring force against any displacement from equilibrium that is proportional to the 

displacement.  In one dimension, the Hamiltonian of this system is 

        
2 2 2

2 2
P m QH
m

Ω
= +      (5-3) 

where Q  is the position observable and Ω  is the frequency of oscillation.  If the dimensionless 

position and momentum operators, ( )1 2/q m / Q= Ω =  and ( )1 21 /p / m P= Ω= , are introduced in 

eq.(5-3), the Hamiltonian reads 

       ( )2 21
2

H q p= Ω +=     (5-4) 

In turn, if the observable number of modes †N a a=  is used,  

   †

2 2
q ip q ipN a a − +⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
    ⇒    1

2
H N⎛ ⎞= Ω +⎜ ⎟

⎝ ⎠
=   (5-5) 

As it is well known, in this case the spectra of H  and N  can be obtained algebraically: 

           nH n n= ω      (5-6) 

           N n n n=      (5-7) 

The non-degeneracy of H  expresses the fact that it has no symmetries: the CSCO { }H  defines 

the basis { }n  of the Hilbert space of the system. 

According to our Actualization Rule, since in this case the Hamiltonian is non-degenerate, 

the preferred CSOP is { }n n : the definite-valued observables of the system are H  and all the 

observables commuting with H .  In particular, the number of modes N  acquires a definite value 

because [ ] 0H ,N = . 

The harmonic oscillator has a central relevance in quantum mechanics because it provides a 

model for many kinds of vibrating systems.  In particular, the electromagnetic field can be 

decomposed in terms of linearly independent modes, each one of which behaves as an harmonic 

oscillator that is usually associated to a particle; in this case, N  is conceived as the observable 

number of particles.  But it is worth emphasizing that the particle-picture of the system, with a 

definite number of particles, is not generic: it can only be metaphorically retained when the 

observable N  meets the requirements imposed by the Actualization Rule (we shall return on this 

point in the discussion of ontological matters, in particular, in Subsection 8.6). 



 

 28

Another point to stress here is that, in all of those vibrating phenomena, the energy of the 

system (and its functions, as N ) is the relevant physical magnitude of the system, whose value is 

assumed to be definite.  Our interpretation agrees with this usual assumption, since it selects the 

non-degenerate Hamiltonian as the observable that defines the basis of actualization. 

5.4  Free hydrogen atom 

In the physical literature, the hydrogen atom is described as a two-particles system consisting of 

an electron and a proton interacting to each other by means of a Coulombian interaction. In this 

case, the Hamiltonian reads 

       
22 2

2 2
pe

e p e p

PP eH
m m Q Q

= + +
−

    (5-8) 

where the subindexes e  and p  refer to the electron and the proton respectively, and e  is the 

electric charge of the electron.  The usual strategy for solving the energy eigenvalue equation in 

coordinate representation is to refer the Hamiltonian to the center of mass of the system by means 

of a canonical transformation, and to write the resulting equation in spherical coordinates 

( )r, ,θ φ .  As it is well known, with this strategy the solution of the equation can be expressed as 

the product of two functions, one only dependent on the radial coordinate and the other only 

dependent on the angular coordinates: ( ) ( ) ( )r, , R r Y ,Ψ θ φ = θ φ .  By solving the radial and the 

angular equations, three ''good'' quantum numbers are obtained: the principal quantum number n , 

the orbital angular momentum quantum number l  and the magnetic quantum number lm .  These 

quantum numbers correspond to the eigenvalues of the observables H , 2L  and zL  respectively, 

where L  is the orbital angular momentum, and xL , yL , zL  are its components: 

     , , , ,l n lH n l m n l m= ω     (5-9) 

     2 2, , ( 1) , ,l lL n l m l l n l m= + =    (5-10) 

     , , , ,z l l lL n l m m n l m= =     (5-11) 

with 0,1,2,n = … , l n< , and ll m l− ≤ ≤ .  In particular, the energy eigenvalues are computed as 

      
4

2 22n
e
n

µ
ω = −

=
     (5-12) 

where ( ) 1
1/ 1/e pm m

−
µ = +  is the reduced mass of the atom.  Therefore, the hydrogen atom is 

described in terms of the basis { }, , ln l m  defined by the CSCO { }2
zH ,L ,L : the quantum 

numbers n , l , and lm  label the solutions 
lnlmΨ  of the energy eigenvalue equation. 
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In this case, the Hamiltonian is degenerate due to its space-rotation invariance.  When the 

spin of the electron is not considered (for the effect of the spin, see below, Subsection 5.6), the 

total angular momentum J L S= +  is simply J L= .  Then, the three components xL , yL , zL  of 

L  are the generators of the symmetry group, and 2L  is the Casimir operator of the group.  As a 

consequence, although l , and lm  are good quantum numbers in the sense of collaborating in the 

definition of a basis of the Hilbert space, the eigenvalues nω  of the Hamiltonian do not depend 

on them: due to the symmetry of H , the values of 2L  and zL  have no manifestations in the 

energy spectrum.  According to our Actualization Rule, as the result of the degeneracy of H , the 

observables 2L  and zL  do not acquire definite values: the only definite-valued observables of the 

system are H  and the observables having, at least, the same space-rotation symmetry (at least, 

the same degeneracy) as H . 

The fact that our interpretation does not confer definite values to 2L  and zL  should agree 

with experimental evidence, in particular, with the data coming from spectroscopy.  Let us 

consider each observable in detail: 

a) In quantum chemistry, the states 
lnlmΨ  of the atom (orbitals) are labeled as Xα , where X  is 

the principal quantum number n , and α  is replaced with , , ,s p d f , etc., that is, with letters 

corresponding to the value of the angular momentum quantum number l : 1s : 2s , 2 p , 3s , 3p , 

3d , etc.  As we can see, the magnetic quantum number lm  is not included in those labels 

because, although 
lnlmΨ  depends on the three quantum numbers, the space-rotation symmetry of 

the Hamiltonian makes the selection of zL  a completely arbitrary decision: since space is 

isotropic, we can choose xL  or yL  to obtain an equally legitimate description of the free atom.  

The arbitrariness in the selection of the z -direction is manifested in spectroscopy by the fact that 

the spectral lines give no experimental evidence about the values of zL : we have no empirical 

access to the number lm .  Our interpretation, that does not assign a definite value to zL , agrees 

with those experimental results.  Analogously to the case of the free particle with spin 

(Subsection 5.2), if we want to know the value of zL , we have to introduce a magnetic field that 

breaks the isotropy of space (we shall describe this situation in detail in the next subsection).  

b) On the contrary, the value of the quantum number l  is included in the traditional orbitals’ 

labels as s , p , d , etc.  Moreover, the value of l  can be inferred from the observed energy 

spectrum of the hydrogen atom, and it plays a role in the explanation of the well-known spectral 

series (Paschen, Balmer, Lyman, etc.).  These facts might be interpreted as a symptom of the 

definite-valuedness of 2L  in the free hydrogen atom.  However, the manifestation of the value of 
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l  requires the interaction between the atom and an electromagnetic field.  The usual explanation 

runs as follows.  Since energy transitions involve the absorption or emission of a photon (spin 1), 

conservation of the angular momentum forces the atom to experience a change of 1  in its orbital 

angular momentum L .  For this reason, when a photon is absorbed by an atom in an s  orbital, 

the atom acquires orbital momentum and makes a transition to a p  orbital; when absorbed by an 

atom in a p  orbital, the orbital momentum increases ( p d→  transition) or decreases ( p s→  

transition), depending on the relative orientations of the photon and the atom angular momenta.  

But transitions s d→  or p f→  are forbidden.  From this explanation, it is clear that the 

manifestation of the value of l  is the result of an interaction; but, then, the system is not the free 

hydrogen atom anymore.  The new system has a Hamiltonian of the form 

          intat emH H H H= + +     (5-13) 

where atH  is the Hamiltonian of the free hydrogen atom (see eq.(5.8)), and emH  is the 

Hamiltonian of the electromagnetic field, which can be computed as the infinite sum of the 

Hamiltonians of the independent harmonic oscillators corresponding to the infinite modes of the 

field (see eq.(5.5)).  In turn, intH  is the interaction Hamiltonian, that depends on the dipole 

moment of the atom and on the electric field (see Ballentine, 1989, pp. 548-549).  The interaction 

breaks the original symmetry in 2L  and, as a consequence, removes the energy degeneracy in the 

quantum number l : now the energy eigenvalues nlω  turn out to be functions of both the quantum 

numbers n  and l .  This fact is what leads to the manifestation of the value of l  in the energy 

spectrum, and allows 2L  to become a definite-valued observable in the new, non-free system. 

The fact that 2L  is not a definite-valued observable in the free hydrogen atom does not 

mean that it never acquires a definite value in a free atom.  The particular features of the 

hydrogen atom strongly depend on the Coulombian potential, conceived as generated by its one-

proton nucleus.  In more complex atoms, the potential in not perfectly Coulombian, and this 

asymmetry removes the degeneracy in l  of the Hamiltonian: the energy eigenvalues nlω  are 

functions of both n  and l  with no need of interaction (see Ballentine, 1989, p. 280).  This means 

that 2L  does no longer discriminate among the different eigenvectors corresponding to a single 

degenerate energy eigenvalue, but rather removes the degeneracy of the symmetric Coulombian 

case.  According to our Actualization Rule, this implies that 2L  is a definite-valued observable 

for free atoms with non-Coulombian potential. 
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5.5  Zeeman effect 

As it is well known, when an external magnetic field is applied to the atom, the spectral lines 

split into multiple closely spaced lines. First observed by Pieter Zeeman in 1896, this 

phenomenon is known as Zeeman effect.  

In the previous subsection we have seen that, either in the Coulombian or in the non-

Coulombian potential case, the Hamiltonian is endowed with a space-rotation symmetry that 

makes the energy eigenvalues to be independent of the magnetic quantum number lm , that is, to 

be degenerate in lm .  It is precisely due to this symmetry that the selection of zL  for completing 

the basis of the Hilbert space is the result of an arbitrary decision.  The arbitrariness of choosing 

the z -direction agrees with the fact that there is no experimental evidence about the value of lm  

in the energy spectrum. 

Analogously to the measurement on a free particle with spin (Subsection 5.2), a magnetic 

field B  along the z -axis breaks the isotropy of space and, as a consequence, the space-rotation 

symmetry of the Hamiltonian.  In this case, the breaking of the symmetry removes the energy 

degeneracy in lm : now zL  is not arbitrarily chosen but selected by the direction of the magnetic 

field.  But, in turn, this implies that the atom is no longer free: the Hamiltonian of the new system 

is approximately (see Ballentine, 1989, p. 326) 

     
2at

e

eH H BL
m e

= +      (5-14) 

where, again, atH  is the Hamiltonian of the free atom.  As a consequence, the original 

degeneracy of the ( )2 1l + -fold multiplet of fixed n  and l  is now removed: the energy levels 

turn out to be displaced by an amount 

       
2lnlm l

e

e B
m

m c
∆ω =

=
     (5-15) 

This means that the Hamiltonian, with eigenvalues 
lnlmω , is now non-degenerate: it constitutes by 

itself the CSCO { }H  that defines the preferred basis { }, , ln l m .  According to our Actualization 

Rule, in this case H  and all the observables commuting with H  are definite-valued: since this is 

the case for 2L  and zL , in the physical conditions leading to the Zeeman effect both observables 

acquire definite values. 

5.6  Fine structure 

When the spectral lines of the hydrogen atom corresponding to 1n >  are examined at a very high 

resolution, they are found to be closely spaced doublets.  This splitting was one of the first 
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experimental evidences of the electron spin.  This phenomenon is usually explained by saying 

that the energy levels of the atom are affected by the “coupling” between the electron spin S  and 

the orbital angular momentum L .  Now the Hamiltonian of the system reads 

     at s s oH H H H −= + +      (5-16) 

where atH  is again the Hamiltonian of the free atom, 2
sH k S=  is the Hamiltonian of the spin, 

and s oH −  is the Hamiltonian representing the spin-orbit interaction, function of the product L S⋅ . 

When the spin-orbit interaction is neglected ( 0s oH − = ), the system is composite (see 

Subsection 5.2) and can be described in terms of the basis { }, , , , , , ,l s l sn l m s m n l m s m= ⊗ , 

where the 2( 1)s s + =  are the eigenvalues of 2S , and the sm =  are the eigenvalues of zS .  But 

when the spin-orbit interaction is taken into account, the observables zL  and zS  no longer 

commute with H  and, therefore, they are not constants of motion of the system: it is usually said 

that lm  and sm  are not good quantum numbers anymore.  Nevertheless, the Hamiltonian is still 

invariant under space-rotation: the components xJ , yJ , zJ  of the total angular momentum J  

are the generators of the symmetry group, and 2J  is the Casimir operator of the group, with 

eigenvalues 2( 1)j j + = .  In turn, J  is the sum of the orbital angular momentum L  and the spin 

angular momentum S : 

           J L S= +               j l sm m m= +    (5-17) 

where jm  corresponds to the eigenvalue of zJ .  So, now jm  is a good quantum number.  But we 

also know that 

           ( )22J L S= +       ⇒       
2 2 2

2
J L SL S − −

⋅ =    (5-18) 

This means that s oH −  is a function of 2J , 2L  and 2S , and the corresponding quantum numbers 

j , l  and s  are also good quantum numbers. As a consequence, the eigenvalues of the total 

Hamiltonian have the general form 

         ( ) ( ) ( )( ) 1 1 1nljs nl nl j j l l s sω = ω + ξ + − + − +⎡ ⎤⎣ ⎦   (5-19) 

where the nlω  represent the energy eigenvalues with no spin-orbit coupling, and ξ  is a function 

of nl  (see Tinkham, 1964, pp. 181-183).  Then, the basis { }, , , , jn l j s m  of the Hilbert space of 

the system is defined by the CSCO { }2 2 2, , , , zH L J S J . 

It is quite clear that the spin-orbit coupling removes the original degeneracy of the 

eigenvalues nlω  of the atom with no coupling.  Therefore, in this case our Actualization Rule 

selects 2L , 2J  and 2S  as definite-valued observables, because all of them commute with H  and 
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have the same degeneracy in jm  as H .  But the space-rotation symmetry still present in the 

system leads to a degeneracy of H , manifested by the fact that the energy eigenvalues nljsω  do 

not depend on jm .  Then, according to our Actualization Rule, although in this case jm  is a good 

quantum number, zJ  does not acquire a definite value, and this result agrees with the 

arbitrariness of  the selection of the z -direction for zJ . 

When a magnetic field is applied to the atom, the spectral lines split in different ways.  The 

“normal” Zeeman effect, explained in the previous subsection, is observed in spin 0  states 

where, obviously, the spin-orbit coupling has no effect. In the states where the spin-orbit 

coupling is effective, the action of the magnetic field produces a further splitting of the energy 

levels known as “anomalous” Zeeman effect.  Nevertheless, the explanation of the anomalous 

effect is the same as that of the normal effect: the action of the magnetic field along the z -axis 

breaks the space-rotation symmetry of the Hamiltonian by privileging the z -direction, and this 

leads to the removal of the original degeneracy of the Hamiltonian in the quantum number jm  

(instead of in the quantum number lm  as in the normal effect).  In this case, our Actualization 

Rule prescribes that zJ  will be also definite-valued. 

5.7  The Born-Oppenheimer approximation 

Our Actualization Rule endows the Hamiltonian of the system with the role of selecting the 

preferred context and, therefore, the energy of the system always acquires an actual definite 

value.  But this does not mean that the momentum is a definite-valued observable in any case, 

since it does not always commute with the Hamiltonian.  In fact, when a system is affected by a 

scalar field, its Hamiltonian has the general form 

        ( )
2

2
PH V Q
m

= +      (5-20) 

If the mass of the system is small, the kinetic term prevails over the potential term, and the 

Hamiltonian approximately commutes with 2P .  In turn, for very large masses, the kinetic term 

can be neglected and H  approximately commutes with ( )V Q .  So, the Actualization Rule 

supports the usual claim that “small” systems approximately actualize in momentum and “large” 

systems approximately actualize in position.  In this sense, our interpretation agrees with the 

physical assumption that electrons have definite momentum but not definite position, and the 

nucleus has definite position but not definite momentum.  In general, our rule explains the fact 
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that macroscopic systems, with their large masses, −approximately− posses a definite value of 

position. 

This point has a particular relevance in molecular chemistry, where the description of 

molecules is based on the adiabatic separation of electron and nuclear motions.  As it is well 

known, the Born-Oppenheimer approximation conceives the nuclei as classical-like particles, that 

is, as precisely localized objects.  This approximation strategy of holding the nucleus at rest in a 

definite position can be thought off as formally arising from making the masses of the nuclei 

infinite.  However, from a strictly quantum-mechanical viewpoint, without a rule for selecting the 

definite-valued observables of the system, the assumption of infinite nuclear masses does not 

explain yet why the nucleus can be treated as having a definite value of position.  As Primas says, 

“we hardly understand why the Born-Oppenheimer picture is compatible with the concepts of 

quantum mechanics'' (Primas, 1983, p. 13; see also Woolley, 1978; Amann, 1992). 

Our interpretation provides an answer to this conceptual problem.  For large masses, the 

Hamiltonian is −approximately− invariant under boost transformation and, therefore, it 

approximately commutes with position.  As a consequence, according to the Actualization Rule, 

the position observable acquires a definite value: this provides a conceptual justification to the 

Born-Oppenheimer assumption.  Of course, masses are never infinite: this is what makes the 

Born-Oppenheimer strategy an approximation and not a precise method.  But also in this sense 

our interpretation agrees with the usual assumption: since the Hamiltonian perfectly commutes 

with position only in the infinite mass limit, only in this limit we can say with absolute precision 

that position acquires an actual definite value.  In real situations, the definite-valued observable 

will generally be an observable very “similar” to position, but which becomes indistinguishable 

from position for increasing masses. 

The problem of justifying the Born-Oppenheimer approximation is a particular case of the 

so-called “problem of the classical limit of quantum mechanics”, which consists in explaining 

how the classical description of a macroscopic system may arise from quantum mechanics.  As 

we shall see in Section 7, under certain definite conditions, in macroscopic systems for which 

/ 0S →= , where S  is the characteristic action of the system (a more precise limit than the limit 

m →∞  of the Born-Oppenheimer approximation), the definite-valued observables manifest 

themselves as classical-like magnitudes in the classical description. 
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6.  The quantum measurement problem 

In the standard von Neumann model, a quantum measurement is conceived as an interaction 

between a system S  and a measuring apparatus M .  Before the interaction, M  is prepared in a 

ready-to-measure state 0r , eigenvector of the pointer observable R  of M , and the state of S  is 

a superposition of the eigenstates ia  of an observable A  of S .  The interaction introduces a 

correlation between the eigenstates ia  of A  and the eigenstates ir  of R : 

      0 0i i i i i
i i

c a r c a rψ = ⊗ → ψ = ⊗∑ ∑    (6-1) 

The problem consists in explaining why, being the state ψ  a superposition of the i ia r⊗ , the 

pointer R  acquires a definite value. 

In the orthodox collapse interpretation, the pure state ψ  is assumed to “collapse” to a 

mixture cρ : 

           2c
i i i i i

i
c a r a rρ = ⊗ ⊗∑     (6-2) 

where the probabilities 2
ic  are given an ignorance interpretation.  Then, in this situation it is 

supposed that the measuring apparatus is in one of the eigenvectors ir  of R , say kr , and 

therefore R  acquires a definite value kr , the eigenvalue corresponding to the eigenvector kr , 

with probability 2
kc .  In the modal interpretations, the problem is to explain the definite reading 

of the pointer with its associated probability, without assuming the collapse hypothesis.  In our 

case, the Actualization Rule is what must accomplish this task. 

We shall begin our argument by framing the von Neumann model in the context of the 

measurement practices.  In fact, due to the probabilistic nature of quantum mechanics, the 

maximum information about a quantum system is always obtained by means of repeated 

measurements on the same system or on identical systems.  Therefore, it is necessary to 

distinguish among: 

• Single measurement: It is a single process, in which the reading of the pointer is registered.  A 

single measurement, considered in isolation, does not supply yet relevant information about the 

state of the system S . 

• Frequency measurement: It is a repetition of identical single measurements, whose purpose is 

to obtain the values 2
ic  on the basis of the frequencies of the pointer readings in the different 

single measurements.  A frequency measurement supplies relevant information about the state 

of S , but is not yet sufficient to completely identify such a state. 
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• State measurement: It is a collection of frequency measurements, each one of them with its 

particular experimental arrangement.  Each arrangement correlates the pointer R  of the 

apparatus M  with an observable iA  of the system, in such a way that the iA  are not only 

different, but also non-commuting to each other.  The information obtained by means of such a 

collection of frequency measurements is sufficient to reconstruct the state of S  (we shall return 

on this point in Subsection 6.6). 

The von Neumann model addresses the quantum measurement problem in the framework 

of the single measurement.  This is completely reasonable to the extent that, if we do not have an 

adequate explanation of the single case, we cannot account for the results obtained by the 

repetition of single cases.  Nevertheless, although we shall mainly analyze the single 

measurement case, we shall not forget that a single measurement is always an element of a 

measurement procedure by means of which, finally, frequencies are to be obtained. 

6.1  Ideal measurement 

In the von Neumann model and, in general, in the discussions about the quantum measurement 

problem, the Hamiltonians involved in the process are usually not taken into account.  In our 

interpretation, where the Hamiltonians plays a central role, we have to provide a more detailed 

model of the measurement process.  Thus, we shall say that a single measurement is a three-stage 

process: 

• Stage I ( 0t ≤ ): The system S and the apparatus M  do not interact. 

• Stage II ( 10 t t< < ): During this stage, S and M  interact, and the interaction establishes the 

correlation. 

• Stage III ( 1t t≥ ): The interaction ends at 1t t= . 

Stage I: Let us suppose that the single measurement is an element of a state measurement whose 

purpose is to obtain the coefficients of the state of the elemental quantum system 

: ( )S S S SS ,H⊆ ⊗O H H .  Let us also consider a non-degenerate observable A∈ SO : 

     i i iA a a a= ,   where { }ia  is a basis of SH    (6-3) 
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At a time 0 0t = , the state of S  reads14 

    0( 0)S i i S
i

t c aψ = = ∈∑ H      (6-4) 

For simplicity, we shall assume that the Hamiltonian S SH ∈O  of S  is non-degenerate:15 

     S Si Si SiH ω = ω ω ,   where { }Siω  is a basis of SH   (6-5) 

The measuring apparatus is an elemental quantum system : ( )M M M MM ,H⊆ ⊗O H H  having an 

observable MR∈O , which has to possess different and macroscopically distinguishable 

eigenvalues in order to play the role of the pointer: 

     i i iR r r r= ,   where { }ir  is a basis of MH    (6-6) 

At time 0 0t = , the apparatus M  is prepared in a ready-to-measure state 0r , eigenvector of R : 

        0 0( )M Mt rψ = ∈H      (6-7) 

For simplicity, we shall assume that the Hamiltonian M MH ∈O  of M  is non-degenerate:16 

     M M i M i M iH ω = ω ω ,   where { }M iω  is a basis of MH  (6-8) 

For the reading of the pointer to be possible, the eigenvectors ir  of R  have to be stationary.  

Thus, the apparatus M  is constructed in such a way that R  commutes with MH : 

       [ ], 0M M i i M i M i iH R r H r r= ⇒ ω = ⇒ = ω    (6-9) 

Then, 

   0 0 0( 0) ( )M M M Mt r t tψ = = = ψ + ∆ = ψ ∈H    (6-10) 

Therefore, according to the System Composition postulate IP3, at time 0 0t =  the state of the 

composite system : ( , )S M H∪ ⊆ ⊗O H H  will be 

         I 0 0 0( 0) ( 0)S M i i
i

t t c a rψ = = ψ = ⊗ ψ = ⊗ ∈∑ O   (6-11) 

where S M= ⊗O O O  and S M= ⊗H H H . Since during Stage I there is no interaction between S  

and M , then int 0H =  and the total Hamiltonian of S M∪  is 

                                                      
14 If the state of S  is prepared at a time 0 0t t< = , it will evolve up to 0 0t =  under the action of the Hamiltonian 

SH ; then, we shall not measure the prepared state but the state at 0 0t =  resulting from the evolution.  If we want 
to measure the state of S  as originally prepared, the Hamiltonian SH  must be zero or a multiple of the identity 
(see Note 11) and, therefore, completely degenerate. 

15 From the complete explanation of the measurement process, it will turn out to be clear that the degeneracy of SH  
does not modify the final result (see Note 17). 

16 We shall discuss this assumption in Subsection 6.5, where the conditions for a single measurement will be 
presented in detail. 
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    S M S MH H I I H= ⊗ + ⊗ ∈O     (6-12) 

According to the System Decomposition postulate IP2, this means that S  and M  are subsystems 

of the composite system S M∪ . 

Stage II: In this second, interaction stage, the systems S  and M  interact through an interaction 

Hamiltonian intH .  This means that the composite system : ( , )S M H∪ ⊆ ⊗O H H  becomes the 

system II II: ( , )S H⊆ ⊗O H H , whose Hamiltonian reads 

       II int intS M S MH H I I H H H H= ⊗ + ⊗ + = + ∈O    (6-13) 

In turn, the state I 0( 0)tψ =  of S M∪  in Stage I turns out to be the initial state II 0( 0)tψ =  of 

IIS  in Stage II.  According to the Dynamical Postulate QP4, such a state evolves to a state 

II 1( )tψ  after a 1t t∆ = : 

             II 1 II 1/ /
II 1 II 0 I 0( ) ( 0) ( 0)iH t iH tt e t e t− −ψ = ψ = = ψ = ∈= = H   (6-14) 

It can be proved that, if the interaction Hamiltonian intH  is 

     ( )int
1

RH A P
t
λ

= − ⊗
=      (6-15) 

where λ  is a constant and RP  is the observable conjugate to R , , RR P i⎡ ⎤ =⎣ ⎦ = , then the final 

state of IIS  in Stage II is (see Mittelstaedt, 1998) 

    II 1( ) i i i
i

t c a rψ = ⊗ ∈∑ H     (6-16) 

Stage III: At time 1t t=  the interaction ends: the system IIS  becomes the original composite 

system S M∪ , whose Hamiltonian is again S M S MH H I I H= ⊗ + ⊗ ∈O  (see eq.(6-12)).  Since 

in this stage int 0H = , according to the System Decomposition Postulate IP2, S  and M  turn out 

to be again subsystems of the composite system S M∪ .  In turn, the state II 1( )tψ  of IIS  in 

Stage II becomes the initial state III 1( )tψ  of S M∪  in Stage III:   

         III 1 II 1( ) ( )t tψ = ψ ∈H      (6-17) 

Since in this stage S  and M  are quantum systems (they evolve unitarily under their 

corresponding Hamiltonian) and they also are elemental, we can apply the Actualization Rule to 

each one of them: 

(a) The system : ( )S S S SS ,H⊆ ⊗O H H , with initial state 1 ( ) III 1( ) ( )ρ = ρ =S Mt Tr t  

( ) III 1 III 1( ) ( )= ψ ψMTr t t , evolves unitarily under the action of SH  according to the 

Dynamical Postulate QP4.  However, the preferred CSOP { }Si Siω ω  is time-invariant since 
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it is defined by the eigenbasis of the −by assumption− non-degenerate SH .17  Here we have to 

distinguish two cases: 

(a.1) if [ ], 0SH A = , then Si iaω = .  This means that both SH  and A  are definite-valued. 

(a.2) if [ ], 0SH A ≠ , then Si iaω ≠ .  As a consequence, the observable A  is not definite-

valued. 

(b) The system : ( )⊆ ⊗O H HM M M MM ,H , with initial state 1 ( ) III 1( ) ( )ρ = ρ =M St Tr t  

( ) III 1 III 1( ) ( )= ψ ψSTr t t , evolves unitarily under the action of MH  according to the 

Dynamical Postulate QP4.  However, the preferred CSOP is time-invariant since it is defined 

by the eigenbasis of the non-degenerate MH .  In turn, [ ], 0MH R =  in order to guarantee the 

stationarity of the ir  (see eq.(6-9)).  Therefore, in the apparatus M  the preferred CSOP is 

{ }M i M i i ir rω ω = , and this means that both MH  and R  are definite-valued. 

Due to the perfect correlation between the ir  and the ia , the ideal quantum 

measurement is usually interpreted as if the reading of a particular value rΩ  of the apparatus’ 

pointer R  were the univocal indication of the corresponding value aΩ  of the system’s observable 

A .  However, according to our interpretation this is not the case in situation (a.2), where A  is 

not a definite-valued observable.  This fact, which may sound bizarre, turns out to be a non-

problematic result when the difference between classical measurement and quantum 

measurement is clearly understood.  The traditional interpretation of the ideal quantum 

measurement is modeled under the paradigm of classical measurements, based on the correlation 

between the actual values of an apparatus’ pointer and of an observable to be measured.  But in 

quantum measurements the final goal is not to “discover” the actual value of a system’s 

observable, but to reconstruct the state of the system just before the beginning of the 

measurement process.  Therefore, the only relevant fact is the definite reading of the apparatus’ 

pointer: the task consists in explaining how the repetition of single measurements where the 

pointer is definite-valued allows us to reconstruct the state of the measured system.  As we have 

shown, according to our interpretation, no matter whether the system’s observable A  acquires a 

definite value or not, in each single measurement the apparatus’ pointer is always definite-

                                                      
17 If 0≠SH  were degenerate, then the preferred CSOP of S  would be { }

SiP , where the SiP  are the 
eigenprojectors of SH .  Therefore, the definite-valuedness of A  would require that [ ], 0SH A =  and that A  had, 
at least, the same degeneracy as SH ; then, if A , as assumed, is non-degenerate, then it does not acquire a definite 
value.  In the case that 0=SH  (or a multiple of the identity, see Note 11), actualization in S  does not occur. 



 

 40

valued.  Now we shall show that the repetition of single measurements in a frequency 

measurement provides us with the correct coefficients of the system’s state. 

Propensities and actualization: The preferred CSOP { }M i M i i ir rω ω =  of the apparatus M  

defines the set of possible facts pF .  Now we can compute the measure of the propensity to 

actualization of each possible fact pF i ir r ∈⎡ ⎤⎣ ⎦ F  (see eq.(4-4)): 

        ( ) ( )
1

p
1 1( ) F ( ) ( )

M i i M i i i M itp r r Tr t r r r t rρ = ρ = ρ⎡ ⎤⎣ ⎦   (6-18) 

where the initial state 1( )M tρ  of M  in Stage III is given by (see eqs.(6-16) and (6-17)) 

   1 ( ) III 1 III 1( ) ( ) ( )ρ = ψ ψ = ∑ *
M S i j i j

ij

t Tr t t c c r r    (6-19) 

Therefore, 

                     ( )1

2p
( ) F

M i i itp r r cρ =⎡ ⎤⎣ ⎦     (6-20) 

Since each possible fact F i ir r⎡ ⎤⎣ ⎦  is equivalent to the possible facts [ ]F :M MiH ω  and 

[ ]F : iR r  (see IP6), then, 

                     [ ]( )1

2p
( ) F :

M M Mi itp H cρ ω =     (6-21) 

                     [ ]( )1

2p
( ) F :

M i itp R r cρ =     (6-22) 

As we can see, the measures of the propensities so obtained agree with the probabilities assigned 

to the different readings of the pointer by the collapse interpretation.  Moreover, those measures 

turn out to be constant with time, a reasonable result for guaranteeing the repeatability of the 

single measurement. 

Of course, if we want to experimentally obtain the 2
ic , we have to repeat the single 

measurement under the same conditions for the propensities to manifest themselves as 

frequencies in the resulting frequency measurement.  But in each single measurement, one and 

only one possible fact F i ir r⎡ ⎤⎣ ⎦  will become actual (see IP10), say F r rΩ Ω⎡ ⎤⎣ ⎦ .  

Therefore, 

• [ ]F :M MH Ωω : the case-property [ ]:M MH Ωω  corresponding to the type-property [ ]MH  actually 

occurs (the Hamiltonian MH  actually has the value MΩω ). 

• [ ]F :R rΩ : the case-property [ ]:R rΩ  corresponding to the type-property [ ]R  actually occurs (the 

pointer R  actually has the value rΩ ). 

Moreover, in the composite system S M∪  (see IP4) the case-property [ ]:SI R rΩ⊗  

corresponding to the type-property [ ]SI R⊗  actually occurs, since [ ] [ ]SR I R= ⊗ .  In turn, for 
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the same reason we know that [ ]:S M SH I Φ⊗ ω  actually occurs in S M∪  when [ ]:S SH Φω  

actually occurs in S , and that [ ]:S M MI H Ω⊗ ω  actually occurs in S M∪  when [ ]:M MH Ωω  

actually occurs in M . Therefore, in the composite system S M∪ , where 

( ),S M S M S M S MH f H I I H H I I H= ⊗ ⊗ = ⊗ + ⊗ , the case-property [ ]:( )S MH Φ Ωω + ω  

corresponding to the type-property [ ]H  also actually occurs: the total Hamiltonian H  actually 

has the value ( )S MΦ Ωω + ω .  In other words, the total energy of the composite system is the sum 

of the energies of the component subsystems, as always assumed in practice. 

6.2  Non-ideal measurement 

Two kinds of non-ideal measurements are usually distinguished in the literature: 

• Imperfect measurement (first kind): 

0i i ij i j
i ij

c a r d a r⊗ → ⊗∑ ∑      where, in general, 0ijd ≠  with i j≠  (6-23) 

• Disturbing measurement (second kind): 

0
d

i i i i i
i i

c a r c a r⊗ → ⊗∑ ∑       where, in general, d d
i j ija a ≠ δ   (6-24) 

However, the disturbing measurement can also be expressed as an imperfect measurement by a 

change of basis: 

    d
i i i ij i j

i ij
c a r d a r⊗ = ⊗∑ ∑     (6-25) 

In certain modal interpretations (Kochen-Dieks, Vermaas-Dieks), the rule of property-

ascription, when applied to non-ideal measurements, leads to results that disagree with those 

obtained in the orthodox collapse interpretation (see Albert & Loewer, 1990, 1993).  If the 

properties ascribed by a modal interpretation are different from those ascribed by the collapse 

interpretation, the question is how different they are.  In the case of an imperfect measurement, it 

can be expected that the 0ijd ≠ , with i j≠ , be small; then, the difference might be also small.  

But in the case of a disturbing measurement, the 0ijd ≠ , with i j≠ , need not be small and, as a 

consequence, the disagreement between the properties ascribed by the modal interpretation and 

those ascribed by collapse might be unacceptable (see a full discussion in Bacciagaluppi & 

Hemmo, 1996).  This fact has been considered by Harvey Brown as a “silver bullet” for killing 

the modal interpretations (cited in Bacciagaluppi & Hemmo, 1996). 
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We shall not distinguish between the two kinds of non-ideal measurements because the 

result of the application of our Actualization Rule does not depend on the values of the off-

diagonal terms ijd .  As we shall see, according to our interpretation, the observable R  that plays 

the role of the apparatus’ pointer acquires a definite value in any case. 

Stages I to III: In a non-ideal measurement, Stage I is characterized in the same way as in the 

ideal case.  The difference begins at Stage II, where the correlation introduced by the interaction 

Hamiltonian intH  is not perfect.  Therefore, the final state II 1( )tψ  of Stage II, which is the 

initial state III 1( )tψ  of Stage III, reads 

    III 1 II 1( ) ( ) ij i j
ij

t t d a rψ = ψ = ⊗∑    (6-26) 

Since in Stage III int 0H = , according to the System Decomposition postulate IP2, S  and M  are 

again subsystems of the composite system S M∪ .  As we have discussed in the case of the ideal 

measurement, we are not interested in the definite-valued observables of S ; so, we shall analyze 

the result of the process in the apparatus M . 

The system M  begins Stage III in an initial state 

 1 ( ) III 1 ( ) III 1 III 1 III 1 III 1( ) ( ) ( ) ( ) ( ) ( )ρ = ρ = ψ ψ = ψ ψ∑M S S n n
n

t Tr t Tr t t a t t a   (6-27) 

Then, 

             1( )ρ = ρ∑M Mij i j
ij

t r r     (6-28) 

where 

         ρ = ∑ *
Mij ni nj

n

d d      (6-29) 

Although M  evolves unitarily under the action of MH  according to the Dynamical Postulate 

QP4, the preferred CSOP is time-invariant since it is defined by the eigenbasis of MH .  In turn, 

since MH  commutes with R , the preferred CSOP is again { }M i M i i ir rω ω = , and this means 

that both MH  and R  are definite-valued. 

Propensities and actualization: In this case, the time-invariant measure of the propensity to 

actualization of each possible fact pF i ir r ∈⎡ ⎤⎣ ⎦ F  is given by  

  ( )1

2 2 2p
1( ) F ( )

M i i i M i Mii ni ii nit
n n i

p r r r t r d d dρ
≠

= ρ = ρ = = +⎡ ⎤⎣ ⎦ ∑ ∑  (6-30) 

As we can see, if the coefficients nid , with n i≠ , of the off-diagonal terms of the initial state in 

Stage III are zero (see eqs.(6-23) or (6-26)), we are in the ideal measurement case, where 
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2 2
Mii ii id cρ = = .  If the coefficients nid , with n i≠ , are not zero, we are in the non-ideal 

measurement case.  However, in this case two situations have to be distinguished: 

• If the nid , with n i≠ , are small in the sense that 2 2
ni ii

n i
d d

≠
∑ �  (see eq.(6-30)), then 

2 2
Mii ii id cρ � � .  This means that, in the frequency measurement performed by repetition of 

this single measurement, the coefficients 2
ic  can be approximately obtained. 

• If the nid , with n i≠ , are not small, then 2
Mii iidρ �  does not hold.  Therefore, the result 

obtained by means of the frequency measurement will be non reliable. 

Nevertheless, no matter whether the result of the frequency measurement is reliable or not, in 

each single measurement one and only one possible fact F i ir r⎡ ⎤⎣ ⎦  will become actual, say 

F r rΩ Ω⎡ ⎤⎣ ⎦ .  Therefore, we can guarantee that, in the measuring apparatus M , 

       [ ]F :M MH Ωω       and     [ ]F :R rΩ     (6-31) 

Moreover, if [ ]F :S SH Φω  is an actual fact in the system S , then in the composite system S M∪ , 

[ ]F :( )S MH Φ Ωω + ω  and [ ]F :SI R rΩ⊗  (see the last paragraph of Subsection 6.1). 

Summing up, Albert and Loewer (1990, 1993) are right in claiming that the ideal 

measurement is a situation that can never be achieved in practice: the interaction in Stage II never 

introduces a completely perfect correlation; in spite of this, physicists usually perform successful 

measurements.  Our account of the measurement process clearly shows that perfect correlation is 

not a necessary condition for “good” measurements: the coefficients of the system’s state at the 

beginning of the process can be approximately obtained even when the correlation is not perfect, 

if the reliability condition of small off-diagonal terms is satisfied.  Nevertheless, both in the 

reliable and in the non reliable frequency measurement, in each single measurement a definite 

reading of the pointer R  is obtained: our interpretation is immune to Brown’s “silver bullet”. 

6.3  The Stern-Gerlach experiment 

Since the Stern-Gerlach experiment is the paradigm of quantum measurement, it is worth while 

to see how all the elements of our general account of measurement can be found in this case. 

The experiment is usually described as follows.  A neutral free particle with spin,18 with 

constant velocity in the y -direction, passes between the poles of a magnet that produces an 

                                                      
18 The deflection of a charged particle by the Lorentz force would obscure the spin dependence of the deflection. 
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inhomogeneous magnetic field B , with components 0x yB B= =  and 'zB zB= , where 'B  is the 

field gradient.  The particle is described in the plane zy , and in a frame of reference moving 

uniformly in the y -direction, where 0yP = .  The gradient of the magnetic field produces a force 

that deflects the particle in the z -direction: the deflection depends on the component of spin in 

that direction. 

As we have seen in Subsection 5.2, the free particle with spin is a composite system 

s fS S∪ .  In this measurement situation: 

 the spin subsystem sS , represented in Hs  and with Hamiltonian 2
sH k S= , is the system 

under measurement S . 

 the free particle without spin fS , represented in Hf  and with Hamiltonian 2 2f zH P / m= , has 

to be a part of a measuring apparatus M  such that [ ], 0M zH P = : this guarantees that the 

eigenvectors of zP  are stationary and, then, zP  can play the role of the pointer (see the 

discussion of this point in Subsection 6.5). 

On this basis, at Stage I we find that: 

• The observable A  is the spin in z -direction, z S S SS ∈ ⊆ ⊗O H H : 

    z zS s , S s↑ ↓↑ = ↑ ↓ = ↓     (6-32) 

where ( )1 2s s /↑ ↓= − = = . 

• The momentum in z -direction plays the role of the pointer, z M M MP ∈ ⊆ ⊗O H H : 

            00 0z z zP p , P p , P p+ −+ = + − = − =    (6-33) 

where { }0, ,+ −  is a basis of MH .19 

• The states of S  and M  are, respectively, 1 2S c cψ = ↑ + ↓  and 0Mψ = .  Then, 

    I 0 1 2( 0) 0 0t c cψ = = ↑ ⊗ + ↓ ⊗    (6-34) 

• As we have said, the Hamiltonian of S  is 2
SH k S= , and the Hamiltonian of M  is such that 

[ ], 0M zH P = .  Therefore,  

         00 0M M MH , H , H+ −+ = ω + − = ω − = ω   (6-35) 

Ideal measurement: At Stage II, the total Hamiltonian II intMH H H= +  introduces a perfect 

correlation.  Then, the initial state of S M∪  in Stage III is 

    III 1 1 2( )t c cψ = ↑ ⊗ + + ↓ ⊗ −     (6-36) 

                                                      
19 Again, here we are assuming that { }0, ,+ −  is a basis of MH  and that MH  is non-degenerate for simplicity.  

We shall discuss these assumptions in Subsection 6.5. 
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The initial state of the subsystem M  then reads 

    2 2
1 ( ) III 1 III 1 1 2( ) ( ) ( )ρ = ψ ψ = + + + − −M St Tr t t c c   (6-37) 

The preferred CSOP of M  is given by the eigenbasis of the Hamiltonian MH  and, then, it is 

{ }0 0, ,+ + − − .  Since [ ], 0M zH P = , both the Hamiltonian MH  and the momentum zP  in 

z -direction are definite-valued.  The measure of the propensity to actualization of the possible 

facts corresponding to zP  can be computed as 

   ( )1

2p
1 1( ) F ( )

M Mtp t cρ + + = + ρ + =⎡ ⎤⎣ ⎦    (6-38) 

   ( )1

2p
1 2( ) F ( )

M Mtp t cρ − − = − ρ − =⎡ ⎤⎣ ⎦    (6-39) 

   ( )1

p
1( ) F 0 0 0 ( ) 0 0

M Mtp tρ = ρ =⎡ ⎤⎣ ⎦     (6-40) 

As expected, these measures are time-invariant: they do not depend on the time when the reading 

of the point is performed, that is, on the precise position where the detectors are placed in Stage 

III.  If the measures of those propensities depended on the instantaneous state of the system, the 

result of the frequency measurement would be extremely sensitive to the precise location of the 

detectors: any imperceptible perturbation would substantially modify the frequencies so obtained, 

making the frequency measurement physically unrealizable.  In turn, since the possible facts with 

measure zero do not become actual (see IP11), only one of the following two situations will be 

actual: 

    [ ]F :MH +ω    and   [ ]F :zP p+      (6-41) 

    [ ]F :MH −ω    and   [ ]F :zP p−      (6-42) 

Non-ideal measurement: In this case, IIH  does not introduce a perfect correlation.  The initial 

state of S M∪  in Stage III is, then, 

     III 11 12 21 22d d d dψ = ↑ ⊗ + + ↑ ⊗ − + ↓ ⊗ + + ↓ ⊗ −   (6-43) 

The initial state of the subsystem M  reads 

     1 11 12 21 22( )ρ = ρ + + + ρ + − + ρ − + + ρ − −M M M M Mt   (6-44) 

where 

     
2

1=
ρ = ∑ *
Mij ni nj

n

d d      (6-45) 

In other words, 

       
2 2

11 21 11 12 21 22
1 2 2

12 11 22 21 12 22

( )
⎛ ⎞+ +
⎜ ⎟ρ =
⎜ ⎟+ +⎝ ⎠

* *

M * *

d d d d d d
t

d d d d d d
   (6-46) 
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The preferred CSOP of M  is again given by the eigenbasis of the Hamiltonian MH  and, since 

[ ], 0M zH P = , both the Hamiltonian MH  and the momentum zP  in z -direction are definite-

valued.  But now the measure of the propensity to actualization of the corresponding possible 

facts results 

   ( )1

2 2p
1 11 21( ) F ( )

M Mtp t d dρ + + = + ρ + = +⎡ ⎤⎣ ⎦   (6-47) 

   ( )1

2 2p
1 22 12( ) F ( )

M Mtp t d dρ − − = − ρ − = +⎡ ⎤⎣ ⎦   (6-48) 

   ( )1

p
1( ) F 0 0 0 ( ) 0 0

M Mtp tρ = ρ =⎡ ⎤⎣ ⎦     (6-49) 

In this non-ideal case, the frequency measurement resulting from the repetition of this single 

measurement will be reliable if 2 2
21 11d d�  and 2 2

12 22d d� ; if not, the frequency 

measurement will not supply the necessary information for the reconstruction of the original state 

of the measured system.  Nevertheless, the observable zP  acquires a definite value in any case, 

and this is the prediction that can be directly tested in each single measurement. 

This analysis of the Stern-Gerlach experiment allows us to point out a feature of the 

quantum measurement that cannot be noticed in the merely formal treatments of the process.  In 

fact, in the von Neumann model, the observable A  of the system S  under measurement is 

considered in formal terms and deprived of its physical content.  Then, the interaction between S  

and the measuring apparatus M  is endowed with the only role of introducing the correlation 

between A  and the pointer R .  However, the varied physical situations described in Section 5 

show that we have no empirical access to the observables that are generators of the symmetries of 

the system’s Hamiltonian; in the context of measurement, A  may be one of those observables.  

This is precisely the case in the Stern-Gerlach experiment, where zS  is a generator of the space-

rotation symmetry of 2
sH k S= .  It is the interaction with the magnetic field zB B=  what breaks 

the isotropy of space by privileging the z -direction and, as a consequence, breaks the space-

rotation symmetry of sH  (see Subsection 5.2).  This physical account of the measurement shows 

that, when the observable A  is a generator of a symmetry of the Hamiltonian SH  of S , the 

interaction with the apparatus M  breaks that symmetry and, at the same time, establishes the 

correlation between A  and R .  Therefore, from a physical viewpoint, in these cases 

measurement can be conceived as a process that breaks the symmetries of the system to be 
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measured and, in this way, allows us to reconstruct its state in terms of an otherwise empirically 

inaccessible symmetry-generator observable.20 

6.4  Infinite tails 

An argument that stresses the difficulties introduced by non-ideal measurements is that posed by 

Elby (1993) in the context of the Stern-Gerlach experiment.  This argument points to the fact that 

the wavefunctions in z -variable typically have infinite ''tails'' that introduce non-zero cross-

terms; therefore, the ''tail'' of the wavefunction of the ''down'' beam may produce detection in the 

upper detector, prepared to detect p+ , and vice versa. 

Let us consider this new argument in detail by supposing that the imperfection is due to a 

non-perfect collimation of the incoming beam.  In this case, with the magnetic field still turned 

off, we would obtain a diffuse spot instead of a definite point on the screen.  Therefore, the 

perfect ready-to-measure state 0 0r =  has to be replaced with a narrow Gaussian 0( )zϕ .  As a 

consequence, the measurement process turns out to be expressed as 

    ( )I 1 2 0 III 1 2( ) ( ) ( )c c z c z c z+ −ψ = ↑ + ↓ ⊗ ϕ → ψ = ↑ ⊗ ϕ + ↓ ⊗ ϕ  (6-50) 

where now ( )z+ϕ  and ( )z−ϕ  are Gaussians that do not need to be as narrow as the initial one.  

Let us call the widths of the upper and the lower detectors z+∆  and z−∆  respectively.  Thus, the 

long tail of the Gaussian ( )z+ϕ  arrives to z−∆  and the long tail of the Gaussian ( )z−ϕ  arrives 

to z−∆ .  We can compute the probabilities corresponding to the four possible cases: 

  ( ) ( ) 2 22 2
III 1 11( ) ( )

z
p , z c z dz c

+
+ +∆

↑ + = ↑ ⊗ ϕ ψ = ϕ =∫   (6-51) 

  ( ) ( ) 2 22 2
III 1 12( ) ( ) ( )

z
p , z c z z dz c

−
− − +∆

↑ − = ↑ ⊗ ϕ ψ = ϕ ϕ =∫  (6-52) 

  ( ) ( ) 2 22 2
III 2 21( ) ( ) ( )

z
p , z c z z dz c

+
+ + −∆

↓ + = ↓ ⊗ ϕ ψ = ϕ ϕ =∫  (6-53) 

  ( ) ( ) 2 22 2
III 2 22( ) ( )

z
p , z c z dz c

−
− −∆

↓ − = ↓ ⊗ ϕ ψ = ϕ =∫   (6-54) 

where 

       ( ) ( ) ( )
1

2 2p
11 21( ) F , ,

M tp p p c cρ + + = ↑ + + ↓ + = +⎡ ⎤⎣ ⎦   (6-55) 

       ( ) ( ) ( )
1

2 2p
22 12( ) F , ,

M tp p p c cρ − − = ↓ − + ↑ − = +⎡ ⎤⎣ ⎦   (6-56) 

                                                      
20 The idea is that the formal von Neumann model of quantum measurement can be complemented by a physical 

model in terms of which measurement is a symmetry breaking process that renders a symmetry generator of the 
system’s Hamiltonian empirically accessible.  Although this idea seems plausible, it should be supported by the 
analysis of further physical measurement processes; this analysis is beyond the limits of the present paper and will 
be the object of a future study. 
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According to Elby’s argument, these cases can be read as follows: 

∗ 2
11c  is the probability that ↑  be detected by z+∆  

∗ 2
12c  is the probability that ↑  be detected by z−∆  (tail) 

∗ 2
21c  is the probability that ↓  be detected by z+∆  (tail) 

∗ 2
22c  is the probability that ↓  be detected by z−∆  

Our interpretation shows that, if the reliability condition 2 2
21 11c c�  and 2 2

12 22c c�  

holds, then the collimation, even if not perfect, is good enough for measurement, since 
2 2

11 1c c�  and 2 2
22 2c c� .  If the original Gaussian is not very narrow or the screen is placed 

too far from the magnet, the measurement will be non-reliable since the ijc , with i j≠ , are not 

small enough.  Nevertheless, according to the Actualization Rule, since the preferred CSOP is 

defined by the eigenbasis of MH  and the pointer commutes with MH , we obtain a definite 

reading of the pointer, that is, a definite detection in z+∆  or z−∆ . 

6.5  Defining measurement 

On the basis of this analysis of the quantum measurement, now we can explicitly formulate the 

conditions that a quantum process must satisfy to be considered a single measurement: 

(i) There must be two quantum systems: a system to measure, : ( )S S S SS ,H⊆ ⊗O H H , and a 

measuring apparatus, : ( )M M M MM ,H⊆ ⊗O H H , which do not interact at 0t < . 

(ii) The apparatus M  must be constructed in such a way to have an observable MR O∈  such 

that [ ] 0MH ,R = , R  has, at least, the same degeneracy as MH , and its eigenvalues are 

different and macroscopically distinguishable. 

(iii) Since 0t =  and during a period 1t t∆ = , S  and M  must interact through an interaction 

Hamiltonian int 0 S MH ≠ ∈ ⊗O O .  The interaction is intended to introduce a correlation 

between an observable SA∈O  of S  and the observable R  of M . 

Let us note that we have not included the requirement of perfect correlation as a defining 

condition of single measurement.  In fact, even if the correlation is not perfect, in Stage III the 

energy of the system M  is always definite-valued and, as a consequence, the pointer R  always 

acquires a definite value.  However, in spite of the fact that we always obtain a definite reading 

of the pointer in each single measurement, the frequency measurement resulting from the 

repetition of single measurements is not always reliable.  If the interaction Hamiltonian 

introduces an imperfect correlation in such a way that 
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   I 0 IIIi i ij i j
i ij

c a r d a rψ = ⊗ → ψ = ⊗∑ ∑    (6-57) 

then, 

• the frequency measurement will be reliable only when the ijd , with i j≠ , are small enough to 

make 2 2
ii id c� . 

• when the ijd , with i j≠ , are not small enough, the frequency measurement will be non 

reliable, because the obtained frequencies do not give us the values 2
ic . 

Nonetheless, in both cases each element of the frequency measurement is legitimately a single 

measurement, where a definite reading of the pointer is obtained. 

In spite of the fact that in the previous subsections we assumed that the Hamiltonian MH  

was non-degenerate, this assumption can be relaxed in such a way that 

     M M i Mi
i

H P= ω∑      (6-58) 

where the eigenprojectors MiP  do not need to be one-dimensional.  In this case, the preferred 

CSOP is { }MiP .  Then, the definite-valuedness of the pointer requires that R  have, at least, the 

same degeneracy −the same symmetries− as MH : 

         i Mi
i

R r P= ∑      (6-59) 

However, in the effective practice of physics, the apparatus is a macroscopic system, whose 

Hamiltonian is the result of the interaction among a huge number of degrees of freedom.  Since in 

general symmetries are broken by interactions, the symmetry of the Hamiltonian decreases with 

the complexity of the system.  Then, a macroscopic system having a Hamiltonian with 

symmetries is a highly exceptional situation: in the generic case, the energy is the only constant 

of motion of the macroscopic system.  As a consequence, in practice MH  is non-degenerate, and 

{ }M iω  is a basis of the Hilbert space MH  of the apparatus.  On the other hand, the pointer R  

cannot have a so huge number of eigenvalues as MH , because the experimental physicists have 

to be able to discriminate among them (see, for instance, zP  in the Stern-Gerlach experiment, 

with its three eigenvalues).  This means that, in general, R  is a “collective” observable (see 

Omnés, 1994; 1999), that is, a highly degenerate observable whose eigenprojectors introduce a 

sort of “coarse-graining” in MH .  Nevertheless, given that [ ] 0MH ,R = , and since R  has more 

degeneracies than MH  (which is non-degenerate), R  will be a definite-valued observable.  

Moreover, the time-invariant measures of the propensities of the possible facts [ ]F : iR r  can 
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be computed in terms of the eigenprojectors MiP  of R  (see eq.(6-59)): 

[ ]( ) ( )p F :
M i Mip R r Tr Pρ = ρ  (see eq.(4-5)).21 

The discussion of the previous point, in turn, allows us to clarify a matter that still remains 

rather obscure in the present-day literature on quantum measurement.  During the last decades, 

and under the influence of the works of Zurek and his collaborators (see, for instance, Paz & 

Zurek, 2002; Zurek, 2003), the claim that the measuring device necessarily interacts with its 

environment has become a commonplace.  However, such a claim, that expresses the main basis 

of the environment-induced approach to decoherence (we shall return on this point in Section 7), 

faces the conceptual challenge of supplying a precise definition of quantum system, a challenge 

that has not been solved in the context of that theoretical framework: “In particular, one issue 

which has been often taken for granted is looming big, as a foundation of the whole decoherence 

program.  It is the question of what are the ‘systems’ which play such a crucial role in all the 

discussions of the emergent classicality.  This issue was raised earlier, but the progress to date 

has been slow at best” (Zurek, 1998, p. 122).  We have argued elsewhere (Castagnino, Laura & 

Lombardi, 2007) that this account of decoherence is misleading, since it hides the fact that a 

single, unitary evolving, quantum system can be partitioned in many different ways on the basis 

of the observables considered “relevant” and “irrelevant” in each case (see also Harshman & 

Wickramasekara, 2007a, b; Omnés, 1999): each partition leads to non-unitarily evolving parts 

which may or may not decohere.  Therefore, decoherence is a phenomenon relative to the space 

of the relevant observables selected in each particular situation. 

In contrast to Zurek’s view, our interpretation offers a definition of quantum system that is 

precise and, at the same time, does not contradict the Dynamical Postulate of quantum 

mechanics.  On the basis of this definition, the measuring apparatus cannot be conceived as a 

material, macroscopic device surrounded by a “bath” of particles interacting with it.  The 

measuring apparatus is the entire quantum system M  that interacts with the measured system S : 

it is that system what has a pointer R  commuting with its, in general, non-degenerate 

Hamiltonian MH .  As we have pointed out, in the generic case M  is a macroscopic system with 

a huge number of degrees of freedom, and R  must be a “collective” and empirically accessible 

observable to play the role of the pointer; it is for this reason that the many degrees of freedom 

corresponding to the degeneracies of R  are conceived as an “internal environment” by the 

                                                      
21 We are grateful to one of the referees for urging us to discuss the assumption of the non-degeneracy of the 

apparatus’ Hamiltonian. 
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environment-interaction approach (see Omnés, 1994; 1999).  In turn, the requirement 

[ ] 0MH ,R =  has a clear physical meaning: it is essential to guarantee the stationary behavior of 

R .  If it did not hold because of the uncontrollable interaction between the macroscopic device 

and an external “bath”, the reading of R  would constantly change and measurement would be 

impossible.  It is precisely at this point that the skills of the experimental physicist play a central 

role: he has to be capable of designing an experimental arrangement such that the uncontrollable 

degrees of freedom of the complete system interacting with the measured system do not affect 

significantly the stationary character of the pointer.  This goal may be achieved by different 

means: by shielding enough the macroscopic device, by making the Hamiltonian of the device 

much greater than the sum of the Hamiltonian corresponding to the external environment and the 

interaction Hamiltonian, etc.  But, in any case, the measurement has to be a controlled situation 

where the behavior of the observable R  can be used to obtain meaningful information about the 

measured system S . 

6.6  Ensembles and state measurement 

According to the ensemble interpretations of quantum mechanics, the theory does not describe 

single systems, but ensembles of systems: probability assignments only make sense on ensembles 

(see Ballentine, 1970).  It is quite clear that we do not endorse this kind of interpretations.  From 

our modal-Hamiltonian perspective, the quantum state, either a pure state or a mixture, refers to a 

single system, and the probabilities introduced by the theory measure the ontological propensity 

to actualization of the possible facts involving that single system. 

However, it is also clear that probabilistic predictions can only be tested by means of 

frequencies on collection of identical systems, that is, on ensembles: a frequency measurement, 

whose purpose is to obtain the values 2
ic  of the measured state, is a repetition of single 

measurements on an ensemble.  In general, the statistical predictions of the theory, as the 

expectation value of an observable in a given state, can be empirically tested only on ensembles 

(we shall return on this point in Subsection 7.3). 

When the concept of ensemble comes into play, not only the frequency measurement, but 

also the state measurement can be properly understood.  In fact, up to this point we have analyzed 

single and frequency measurements in the case where the system S  is initially in a pure state 

Sψ : 

     S i i
i

c aψ =∑      (6-60) 
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In this case, the frequency measurement, if reliable, will supply −at least, approximately− the 

values 2
ic .  But the same analysis can be made in the general case, where the initial state of S  is 

expressed as Sρ  (pure state or mixture): 

     S ij i j
ij

a aρ = ρ∑      (6-61) 

In this case, the frequency measurement, if reliable, will supply −at least, approximately− the 

values of the coefficients iiρ of the main diagonal of Sρ  in the basis { }ia  (where 2
ii icρ =  if 

S S Sρ = ψ ψ ).  For this purpose, the observable A  of S  is used: 

     i i i
i

A a a a=∑      (6-62) 

and the apparatus M , with a Hamiltonian MH  and a pointer R  such that [ ], 0MH R = , interacts 

with the system S  through an interaction Hamiltonian intH  (see eq.(6-15): 

     ( )int
1

RH A P
t
λ

= − ⊗
=      (6-63) 

But if we also want to know −at least, approximately− the remaining coefficients ijρ  with 

i j≠ , we have to perform further frequency measurements, where the observables ijB  and ijC  of 

S  are used (see Ballentine, 1998):   

  ( ) ( )1/ 2 , 1/ 2ij i j j i ij i j j iB a a a a C a a a a= + = −   (6-64) 

since22 

   ( ) ( ) ( )S 1/ 2 Re
S

ij ij ij ji ijB Tr B
ρ
= ρ = ρ +ρ = ρ    (6-65) 

   ( ) ( ) ( )S 1/ 2 Im
S

ij ij ij ji ijC Tr C
ρ
= ρ = ρ −ρ = ρ    (6-66) 

In this case, all the frequency measurements are performed on the same ensemble, that is, on a 

collection of identical systems in the same state Sρ .  However, each frequency measurement 

requires its own experimental arrangement.  In particular, the apparatus M  has to be constructed 

in such a way that it interacts with the system S  through interaction Hamiltonians int
BijH  or int

CijH  

such that 

   ( ) ( )int int
1 1

,Bij R Cij R
ij ijH B P H C P

t t
λ λ

= − ⊗ = − ⊗
= =    (6-67) 

                                                      
22 The computation of the iiρ  can also be viewed under this perspective, considering the observable A  of eq.(6-62) 

as ii iiA a A= ∑ , where ii i iA a a= .  Then, ( )S S
S

ii ii i i iiA Tr A a a
ρ
= ρ = ρ = ρ , namely, a particular case of 

eq.(6-65). 
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These interaction Hamiltonians introduce the desired correlation between the eigenstates of the 

observables ijB  and ijC  of S , respectively, and the eigenstates of the pointer observable R  of 

M . 

Summing up, if we want to reconstruct the state Sρ  of a system S , we have to perform a 

state measurement on an ensemble of systems identical to S .  Such a state measurement consists 

of a collection of frequency measurements, each one of which relies on the correlation between 

the pointer observable of the apparatus M and a particular observable of S , where the 

observables of S  used for this purpose are not only different, but also non-commuting to each 

other.  The information obtained by means of this state measurement is sufficient to reconstruct 

the state Sρ  of S . 

7.  Upstairs: the classical limit of quantum mechanics 

In the previous section we have given an account of the quantum measurement, where the 

definite value of the pointer is explained in terms of the actualization of one of the possible facts 

defined by the apparatus’ preferred context.  But a measurement is a controlled situation, where 

the experimental physicist is able to select the set of possible facts where actualization occurs by 

manipulating the apparatus M , in particular, its Hamiltonian MH .  However, in nature certain 

possible facts become actual with no human intervention.  Moreover, in certain situations 

quantum systems have features that admit a classical description.  As we announced at the end of 

Subsection 5.7, the problem of the classical limit is to explain how and under what conditions a 

classical description arises from an underlying quantum description. 

At present, there is broad agreement about the idea that the classical behavior of quantum 

systems arises after the process called decoherence.  According to the orthodox view, known as 

environment induced decoherence (EID), decoherence is the result of the interaction of an open 

quantum system with its environment, which selects the candidates to classical states (Paz & 

Zurek, 2002; Zurek, 2003).  In previous works we have presented a different approach, called 

self-induced decoherence (SID), according to which a closed quantum system may decohere 

under well-defined conditions (Castagnino & Laura, 2000; Castagnino & Ordóñez, 2004; 

Castagnino & Lombardi, 2004, 2005a).  On this basis, we have developed a precise account of 

the classical limit of quantum mechanics, which shows that, if the system is macroscopic enough, 
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after self-induced decoherence it can be described as a classical-statistical system (Castagnino & 

Lombardi, 2003, 2005b; Castagnino, 2005; Castagnino & Gadella, 2006). 

In this section we shall recall the main results of the SID approach and of our account of 

the classical limit, in order to give them a new reading in the light of the modal-Hamiltonian 

interpretation just introduced. 

7.1  Self-induced decoherence 

The SID approach is not based on the C*-algebraic framework; rather, the starting point of its 

formalism is a nuclear algebra A , in terms of which the space of observables O  is defined. 

Let us consider a quantum system ( ): ,S H⊂O A  with initial state 0 'ρ ∈O�.  Here we are 

interested in the classical limit, that is, the classical behavior manifested by macroscopic systems.  

In turn, we have stressed that, due to the huge number of degrees of freedom of a macroscopic 

system, the non-degeneracy of its Hamiltonian is highly generic (see Subsection 6.5).  Therefore, 

here we shall consider the case of a non-degenerate Hamiltonian with no loss of generality.  If H  

has a continuous spectrum, it reads 

     
0

H d
∞

= ω ω ω ω∫      (7-1) 

In the eigenbasis { }ω  of H , any observable O  belonging to the van Hove space VH
O ⊂V O  (see 

van Hove, 1955; Castagnino & Lombardi, 2004) can be expressed as 

   ) )
0 0 0

( ) ( , ') , ' 'O O d O d d
∞ ∞ ∞

= ω ω ω+ ω ω ω ω ω ω∫ ∫ ∫    (7-2) 

where )ω = ω ω  and ), ' 'ω ω = ω ω  are the generalized eigenvectors of the observable O , 

) ){ }, , 'ω ω ω  is a basis of VH
OV , ( )O ω  is a generic distribution and ( , ')O ω ω  is a regular 

function.  In turn, the initial state 0ρ  is a linear functional belonging to VH
SV , the dual space of 

VH
OV , and it can be expressed as 

   ( (0 0 0 0
( ) ( , ') , ' 'd d d

∞ ∞ ∞
ρ = ρ ω ω ω+ ρ ω ω ω ω ω ω∫ ∫ ∫    (7-3) 

where ( ({ }, , 'ω ω ω  is the basis of VH
SV  (that is, the cobasis of ) ){ }, , 'ω ω ω ), and ( )ρ ω  and 

( , ')ρ ω ω  are regular functions.  Thus, the expectation value of any observable VH
OO∈V  in a state 

/ / VH
0( ) iHt iHt

St e e−ρ = ρ ∈= = V  is computed as 

  ( ') /
( ) 0 0 0

( ) ( ) ( , ') ( , ') 'i t
tO O d O e d d

∞ ∞ ∞ − ω−ω
ρ

= ρ ω ω ω+ ρ ω ω ω ω ω ω∫ ∫ ∫ =  (7-4) 
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Under these conditions, we can apply the Riemann-Lebesgue theorem according to which, for 

t →∞ , the second term of the right-hand side of eq.(7-4) vanishes; thus, 

    
*( ) 0

lim ( ) ( )tt
O O d O

∞

ρ ρ→∞
= ρ ω ω ω=∫    (7-5) 

where 

     (* 0
( ) d

∞
ρ = ρ ω ω ω∫      (7-6) 

Summing up, according to this approach, self-induced decoherence is a process that leads the 

expectation value of any observable VH
OO∈V  to a value that can be computed as if the system 

were in a state represented by the “diagonal” functional *ρ :23 

             
*( )lim tt

O O
ρ ρ→∞

=      (7-7) 

Strictly speaking, the SID approach applies when the Hamiltonian H  has continuous 

spectrum.  Nevertheless, it is easy to prove that approximate decoherence can be obtained under 

conditions of quasi-continuity, that is, in discrete models where (i) the energy spectrum is quasi-

continuous, i.e., has a small discrete energy spacing, and (ii) the functions of energy used in the 

formalism are such that the sums in which they are involved can be approximated by Riemann 

integrals (see, for instance, Casati & Chirikov, 1995a, 1995b; Gaioli, García Alvarez & Guevara, 

1997).   

7.2  The classical limit 

According to our account of the classical limit, the classical description of a quantum system 

requires two elements: decoherence, as explained by the SID approach, and macroscopicity, 

meaning that the characteristic action S  of the system is much greater than = .  Then, the task is 

to represent the diagonal functional *ρ  resulting from decoherence in the corresponding phase 

space by means of the Wigner transformation (see Hillery, O’Connell, Scully & Wigner, 1984), 

and to apply the macroscopic limit 0→=  (strictly speaking, 0/ S →= ): 

     
0

( ) lim Wc
*→

ρ φ = ρ
=

     (7-8) 

where 1 1 1 1( , ) ( , , , , , )N Nq q p p+ +φ = = " "q p  is a point of the phase space 2( 1)N+Γ = \  and W  is 

the Wigner transformation, whose definition has to be adequately extended to be applicable to 

                                                      
23 The SID approach provides a method for computing the decoherence time Dt , that is, the relaxation time of the 

decoherence process.  In particular, Dt  can be obtained in terms of the poles of the analytical continuation of the 
resolvent of H  (see Castagnino & Lombardi, 2005a).  In a free evolving system, whose Hamiltonian has no poles, 

Dt → ∞  and decoherence is only nominal. 
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singular distributions.  When this task is undertaken, it can be proved that the function ( )cρ φ  has 

the following form (see Castagnino, 2005; Castagnino & Gadella, 2006): 

      ( )( ) ( ) ( )c H d
ω

ρ φ = ρ ω δ φ − ω ω∫     (7-9) 

where ( )H φ  is the Wigner transformation of the Hamiltonian H , ( ) WH Hφ = .  In other words, 

( )cρ φ  is an infinite sum of classical densities ( )( )Hδ φ − ω , averaged by the corresponding value 

of the function ( )ρ ω .  In turn, ( )ρ ω  is a normalized and non-negatively defined function due to 

its origin, since it represents the diagonal elements of the functional 0ρ ; this fact is what permits 

it to be interpreted as a probability function.  Therefore, the classical distribution ( )cρ φ  defined 

on the phase space 2( 1)N+Γ = \  can be conceived as an infinite sum of classical densities, defined 

by the global constant of motion ( )H φ = ω, and weighted by their corresponding probabilities 

( )ρ ω  given by the initial state 0ρ .24  This means that the Hamiltonian turns out to be a classical 

global constant of motion in the description resulting from the classical limit.  Moreover, the 

basis where the time-invariant functional *ρ  becomes diagonal corresponds precisely to the 

preferred CSOP { }ω ω  where actualization occurs. 

Once ( )cρ φ  has been obtained, we can explain the classical limit in the phase space 

language.  As we have seen, self-induced decoherence implies the convergence of the expectation 

value of any observable VH
OO∈V  to a final value 

*
O

ρ
 (see eq.(7-5)).  In turn, we know that the 

Wigner transformation has the property of preserving expectation values: 

      ( ) ( , )( )t tO O
ρ ρ φ

= φ             
* * ( )( )O O
ρ ρ φ
= φ    (7-10) 

where ( ) WO Oφ = , ( , ) W ( )t tρ φ = ρ  and * *( ) Wρ φ = ρ .  But we also know that the limit 0→=  

turns *Wρ  into ( )cρ φ  (see eq.(7-8)).  Therefore, in the macroscopic limit, the expectation value 

of any observable VH
OO∈V  converges to a final value that can be computed in classical terms as 

    ( ) ( , ) ( )lim lim ( ) ( ) ct tt t
O O O

ρ ρ φ ρ φ→∞ →∞
= φ = φ    (7-11) 

where 

             ( )( )( ) ( ) ( ) ( )cO O H d
ρ φ ω

φ = ρ ω ω δ φ − ω ω∫    (7-12) 

This means that the state ( , )tρ φ  weakly converges to ( )cρ φ : 

        ( )lim ( , ) ( ) ( ) ( )c

t
w t H d

ω→∞
− ρ φ = ρ φ = ρ ω δ φ − ω ω∫   (7-13) 

                                                      
24 Since here the dimension of the Wigner phase space is 2( 1)N +  and the classical description has the energy as 

the only global constant of motion, the system is non-integrable, as expected due to its macroscopic nature.  As we 
have showed in previous works (Castagnino & Lombardi, 2006, 2007), if g  is the number of global constants of 
motion, in the non-integrable case ( 1)N g+ −  local constants of motion can be defined, which permit the 
characterization of the lower levels of the quantum ergodic hierarchy. 
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7.3  The ontological interpretation of the classical limit 

When we explained the measurement process, we distinguished between single measurement and 

frequency measurement.  In the first case, the actualization of one of the possible facts 
pF i ir r ∈⎡ ⎤⎣ ⎦ F  defined by the preferred CSOP { }M i M i i ir rω ω =  is what accounts for 

the definite value of the pointer.  But for propensities to manifest themselves as frequencies it is 

necessary to perform a frequency measurement by repeating the single measurement under the 

same conditions: only in this way can the probabilistic predictions of the theory be tested.  In the 

case of the classical limit, the situation is analogous.  Each single elemental quantum system 

satisfies the Actualization Rule and, as a consequence, one possible fact pF ω ω ∈⎡ ⎤⎣ ⎦ F  

defined by the preferred CSOP { }ω ω  becomes actual; therefore, H  and all the observables 

commuting with H  acquire their definite values.  However, only when we work with an 

ensemble of quantum systems, statistical predictions can be empirically tested.  When these 

considerations are taken into account, the classical limit can be endowed with a precise 

ontological meaning in the light of the modal-Hamiltonian interpretation. 

Let us consider an elemental quantum system ( ): ,S H⊂O A , with initial state 0 'ρ ∈O�, 

such that its classical limit is explained as in the previous subsection.  If we now consider an 

ensemble of quantum systems identical to S , in each member of the ensemble: 

• At time 0t t= , each possible fact F ω ω⎡ ⎤⎣ ⎦  has a propensity to actualization whose 

measure is given by the diagonal terms of 0ρ  expressed in the preferred basis { }ω : 

( )p F ( )pρ ω ω = ρ ω⎡ ⎤⎣ ⎦  (see IP7). 

• Since the preferred CSOP is { }ω ω , one and only one of the possible facts F ω ω⎡ ⎤⎣ ⎦ , 

say F Ω Ωω ω⎡ ⎤⎣ ⎦ , is also an actual fact F Ω Ωω ω⎡ ⎤⎣ ⎦  (see IP10). 

• If F Ω Ωω ω⎡ ⎤⎣ ⎦  is an actual fact, H  and all the observables IR  commuting with H  

indeterministically acquire definite values Ωω  and IrΩ , respectively: [ ]F :H Ωω , [ ]I IF :R rΩ . 

Since this holds for each member of the ensemble, the propensity whose measure is given by 

( )ρ ω  manifests itself as a frequency of actual facts in the ensemble. 

Now we can endow the expectation values involved in the classical limit with a precise 

ontological interpretation.  For this purpose we have to distinguish between two cases: the case of 

the observables that acquire definite values and the case of the remaining observables. 
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a) The definite-valued observables are diagonal in the energy basis, corresponding to the 

preferred CSOP.  This means that their expectation values are time-independent (see eq.(7-4)): 

        
* *( ) ( )0

( ) ( )tH d H H
∞

ρ ρ ρ φ
= ρ ω ω ω = = φ∫    (7-14) 

        
* *

I I I I( ) ( )0
( ) ( )tR r d R R

∞

ρ ρ ρ φ
= ρ ω ω = = φ∫    (7-15) 

and, in the macroscopic limit 0→= , they can be computed as (see eq.(7-12)) 

   ( )( ) ( )( ) ( ) ( )ctH H H d
ρ ρ φ ω

= φ = ρ ω ω δ φ −ω ω∫    (7-16) 

   ( )I I I( ) ( )( ) ( ) ( )ctR R r H d
ρ ρ φ ω

= φ = ρ ω δ φ − ω ω∫    (7-17) 

In each system of the ensemble, H  and the IR  indeterministically acquire definite values Ωω  

and IrΩ  with a propensity measured by ( )Ωρ ω .  Therefore, the time-independent expectation 

values ( ) ( )( ) ctH H
ρ ρ φ

= φ  and I I( ) ( )( ) ctR R
ρ ρ φ

= φ  measure the expectation values 

corresponding to the definite values actually acquired by the observables H  and IR  in the 

members of the ensemble, expectation values that can be computed in terms of the frequencies in 

the ensemble. 

b) Let us now consider any observable A  non commuting with H .  According to our 

interpretation, it does not acquire a definite value in this system.  Nevertheless, since each 

possible fact [ ]F : iA a  corresponding to A  has its propensity to actualization, whose measure 

depends on the system’s state (see IP7), the expectation value A
ρ

 can be computed (and even 

tested when the state is measured by means of a state measurement, see Subsection 6.6).  And 

since the state, that codifies the propensities, changes with time, such an expectation value also 

changes with time.  However, the classical limit shows that, if the system is macroscopic enough, 

after decoherence ( )tA
ρ

 settles down in a constant value that can be computed as ( )( ) cA
ρ φ

φ , 

where ( ) WA Aφ =  and ( )cρ φ  is a classical distribution (see eqs.(7-12) and (7-13)).  This means 

that, in the classical limit and from the viewpoint of the expectation values, the quantum ensemble 

can be described as a classical-statistical ensemble in spite of the fact that, in each system of the 

quantum ensemble, the observable A  does not acquire a definite value. 

This peculiar feature of the quantum ensembles allows us to understand other statistical 

properties described by quantum mechanics.  In particular, according to our interpretation, the 

uncertainty principle does not refer to single systems but to quantum ensembles.  When we say 

that [ ]A,B iC=  ( 0C ≠ ) and, therefore, 1 2A B / C∆ ∆ ≥  (see Ballentine, 1998, pp. 223-224), 

both A∆  and B∆  can be computed in terms of the respective expectation values A
ρ

 and B
ρ
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in the quantum ensemble.  However, the dispersions A∆  and B∆  have no meaning in each single 

system since A  or B , but not both, may be definite-valued. 

Moreover, in the classical limit both expectation values can be computed as the expectation 

values of the classical observables ( ) WA Aφ =  and ( ) WB Bφ =  in a classical-statistical ensemble 

described by ( )cρ φ  (see eq.(7-12)).  This is what allows us to treat the quantum ensemble with 

the theoretical tools of classical-statistical mechanics: we can imagine that we are working with a 

classical-statistical ensemble where the classical observables ( )A φ  and ( )B φ  have definite values 

in each classical member of the ensemble, with dispersions A∆  and B∆  in the ensemble, 

respectively.25  But this classical description is valid only when the theory is applied to an 

ensemble and, as a consequence, it cannot be used to draw ontological conclusions about single 

systems. 

Summing up, the fact that our interpretation conceives quantum mechanics as describing 

single systems does not imply to ignore the statistical results referring to ensembles supplied by 

the theory.  But those statistical results are not taken as the starting point of the interpretation, as 

in the case of the ensemble interpretations.  On the contrary, their meaning is explained in terms 

of the ontological interpretation of the basic elements of the theory, which are referred to single 

quantum systems. 

8.  Downstairs: the structure of the ontology 

In general, the discussions about the modal interpretations of quantum mechanics are concerned 

with the traditional conceptual problems of the theory; for instance, one of the main purposes is 

to solve the measurement problem overcoming the challenges posed by the no-go theorems.  Of 

course, this task is hard enough to concentrate the attention of the participants in the discussion.  

But these preoccupations should not lead us to forget certain relevant ontological issues, in 

particular, the questions about the nature of the items referred to by quantum mechanics. 

In this section we shall explicitly address the philosophical question about the structure of 

the ontology referred to by quantum mechanics, in particular, about the basic categories of such 

an ontology.  Roughly speaking, we want to know which kinds of items can be assumed to exist 

as described by the theory, without contradicting its formal structure and its physical content. 
                                                      
25 Of course, if we want to test these predictions, we have to perform different frequency measurements on the 

ensemble, each one of which will measure one observable with the adequate interaction Hamiltonian, as explained 
in Subsection 6.6. 
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8.1  Possibilities 

The nature of possibility has been one of the most controversial issues in the history of 

philosophy.  However, two general conceptions can be identified, both of which find their roots 

in Antiquity.  One of them, which is usually called “actualism”, is the conception that reduces 

possibility to actuality.  This was the position of Diodorus Cronus; in Cicero’s words, “Diodorus 

defines the possible as that which either is or will be” (cited in Kneale & Kneale, 1962, p. 117).  

This view survived over the centuries up to our time; for instance, for Bertrand Russell 

“possible” means “sometimes”, whereas “necessary” means “always” (Russell, 1919).  The other 

conception, called “possibilism”, conceives possibility as an ontologically irreducible feature of 

reality.  From this perspective, the stoic Crissipus defined possible as “that which is not 

prevented by anything from happening even if it does not happen” (cited in Bunge, 1977, p. 172).  

In present day metaphysics, the debate actualism-possibilism is still alive.  For the actualists, the 

adjective “actual” is redundant: non-actual possible items (objects, properties, facts, etc.) do not 

exist, they are nothing.  According to the possibilists, on the contrary, not every possible item is 

an actual item: possible items −possibilia− constitute a basic ontological category (see Menzel, 

2007). 

As we have seen, according to modal interpretations, the formalism of quantum mechanics 

does not determine what actually is the case, but rather describes what may be the case, that is, 

possible facts with their corresponding probabilities.  Once the definite-valued observables (type-

properties) are selected by a certain rule of property-ascription, the actual occurrence of a 

particular value of such observables (a case-property) is an essentially indeterministic 

phenomenon which, as a consequence, cannot be determined by the theory.  This means that, for 

each definite-valued observable, among all the possibilities described by the theory, only one is 

actually realized: the remaining possibilities do not become actual, and they might never become 

actual in the particular system under consideration.  Nonetheless, from the realist perspective 

underlying modal interpretations, if quantum mechanics were true, it would describe reality.  So, 

which is the reality accounted for by the theory?  Certainly, not actual reality: if quantum 

mechanics is about what may be the case, it describes possible reality. 

On this basis, in our interpretation of quantum mechanics ontological propensities embody 

a possibilist, non-actualist possibility: a possible fact does not need to become actual to be real.  

This possibility is defined by the postulates of quantum mechanics and is not reducible to 

actuality.  This means that reality spreads out in two realms, the realm of possibility and the 
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realm of actuality.  In Aristotelian terms, being can be said in different ways: as possible being or 

as actual being.  And none of them is reducible to the other. 

The items populating the realm of possibility belong to different ontological categories: 

type-properties with their corresponding case-properties, possible facts and propensities.  In a 

particular elemental quantum system (see the table at the end of Section 4): 

• The case-properties [ ]: iO o  of each type-property [ ]O  are the properties that may occur. 

• The possible facts [ ]F : iO o  are the possible occurrence of the case-properties [ ]: iO o . 

• The propensities to actualization measured by [ ]( F : )ip O oα
ρ , since applied to the possible 

facts [ ]F : iO o , are second-order type-properties and their corresponding values are second-

order case-properties. 

Many authors reject an ontology of non-actual possibilia claiming that there is no non-

trivial criterion of identity for non-actual items (see, e.g. Quine, 1953).  In order to face this 

challenge, possibilists have developed different strategies directed to the identification of 

possibilia: possible worlds, subsistence as different than existence, etc.  Vulcano, as the 

innermost planet between Sun and Mercury, or Julius Caesar having a sixth finger in his right 

hand are the kind of possible objects considered in the discussions.  It is clear that these are not 

the cases involved in our conception of possibility: we are not proposing an all-embracing theory 

of possibilia that should be applied to any modal sentence.  Our possibilist conception only 

applies to possibility in quantum mechanics, where the possible facts are clearly defined by the 

structure of the quantum system.  In other words, the criterion of identity for possible items is 

given by the theory, which also fixes the space of admissible possibilities.  In fact, the 

ontological structure of the realm of possibility is embodied in the definition of the elemental 

quantum system : ( , )S H⊆ ⊗O H H , with its initial state 0 'ρ ∈O : 

• The space of observables O  identifies: 

− All the type-properties with their corresponding case-properties. 

− All the possible facts and the equivalence relationships among them. 

− All the Boolean sets of possible facts. 

• The initial state 0ρ  codifies the measures of the propensities to actualization of all the possible 

facts at the initial time.  These propensities evolve deterministically according to the 

Schrödinger equation. 
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From this perspective, the realm of possibility is not less real than the realm of actuality: a 

possible fact exists as possible even if it never becomes actual.  Propensities are real second-

order properties that follow a deterministic evolution independently of which possible facts 

become actual. 

The fact that propensities belong to the realm of possibility does not mean that they do not 

have physical consequences in the realm of actuality.  On the contrary, propensities produce 

definite effects on actual reality even if they never become actual.  An interesting manifestation 

of such effectiveness is the case of the so-called “non-interacting experiments” (Elitzur & 

Vaidman, 1993; Vaidman, 1994), where non-actualized possibilities can be used in practice, for 

instance, to test bombs without exploding them (Penrose, 1994).  This shows that possibility is a 

way in which reality manifests itself, a way independent of and not less real than actuality. 

We might ask ourselves what logical framework would be the formalism adequate to 

express this notion of possibility.  As it is well known, traditional systems of modal logic are 

extensions of the classical propositional logic: they are based on the classical calculus but extend 

it by adding modal operators with their corresponding inference rules (Haack, 1974, 1978).  But 

the set of quantum propositions does not have the Boolean structure of classical propositional 

logic and, of course, the addition of modal operators does not cancel that non-Boolean character 

and the resulting contextual nature of quantum mechanics (Domenech, Freytes & de Ronde, 

2006).  Our interpretation favors an ontological strategy to face this difficulty.  As we have seen, 

each propensity measured by pα
ρ  applies to its corresponding set αF  of possible facts defined by 

the CSOP { }αΠ ; then, given two different CSOP’s { }αΠ  and { }βΠ , pα
ρ  and pβ

ρ  measure 

different propensities.  From an ontological viewpoint, this means that pα
ρ  and pβ

ρ  represent the 

measure of different second-order type-properties, whose corresponding case-properties 

−values− are assigned to the possible facts belonging to two different sets, αF  and βF  

respectively.  Therefore, if we want to introduce modalities to quantum propositions, it seems 

reasonable to do it in each context: each set αF  of possible facts will have its own modal 

operators to be applied to the corresponding propositions; in particular, the modal operator of 

possibility of the context defined by the CSOP { }αΠ  will express the physical possibility −the 

propensity− measured by pα
ρ .  But since all the sets of possible facts preserve their Boolean 

structure, the traditional systems of modal logic can be used for this purpose.  Of course, this 

move restrains us from making modal assertions with propositions coming from non-commuting 

contexts.  Nonetheless, this does not imply a limitation to generality, because we know the 
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context where actualization occurs since the very beginning.  From our perspective, in the modal 

proposition “It is possible that the observable A  has the value 1a  or the observable B  has the 

value 1b ”, where A  and B  do not commute, the use of the term ‘possible’ is ambiguous since it 

refers to different second-order properties, that is, to the different propensities of the possible 

facts corresponding to [ ]1:A a  and [ ]1:B b .  As a consequence, that modal proposition cannot 

even be meaningfully formulated, and this is perfectly consistent with the fact that there is no 

single measurement by means of which a truth value may be assigned to that proposition.  In 

other words, since any quantum system univocally defines its own preferred context, we do not 

need to extend modalities beyond the limits of each context. 

Summing up, our interpretation provides an ontological picture where the realm of 

possibility is as real as the realm of actuality: it is populated by properties, possible facts and 

propensities related to each other in a well-defined structure.  It is precisely this feature what 

endows our modal interpretation with a modal character that is not merely semantical or 

epistemic, but mainly ontological. 

8.2  Probabilities 

It is usually said that our modern conception of probability has had a dual nature since its 

emergence in the mid-seventeenth century (see Hacking, 1975).  In its epistemic sense, it 

measures the extent to which evidence supports a given hypothesis.  In its ontological sense, it 

describes regularities exhibited in nature. 

In the twentieth century, two widely recognized analyses of epistemic probability have 

been proposed, one called “logical” −the tradition of Keynes (1921) and Carnap (1950)−, and the 

other called “subjective” −represented by Ramsey (1926) and de Finetti (1974).  In turn, 

ontological probability was originally identified with limiting relative frequencies in infinite 

sequences −e.g. Reichenbach (1949) and von Mises (1957).  But since the 1950’s, the idea of 

interpreting ontological probabilities as propensities −Popper (1957, 1959)− began to be 

considered by a number of philosophers as an alternative to the frequentist interpretation. 

As we have seen, in our interpretation of quantum mechanics probability measures the 

ontological propensity to actualization of a possible fact.  Therefore, it is not defined by 

epistemic notions as evidence or hypothesis: the concept of probability is endowed with an 

ontological meaning.  In turn, from our perspective probability is the measure of a possibilist, 
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non-actualist possibility, whose real character does not depend on its actualization, and which 

applies to single quantum systems.  As a consequence, the modal-Hamiltonian interpretation does 

not favor a frequentist reading of probability, which is rooted in an actualist conception of 

probability and is unable to face the problem of the single-case probability assignment. 

Certainly, a theory does not fix its own interpretation, and this is also the case for the 

interpretation of the probability involved in quantum mechanics.  In fact, van Fraassen has 

combined a modal reading of quantum mechanics with an epistemic interpretation of probability.  

Nevertheless, theoretical and philosophical commitments make an interpretation more plausible 

than the others.  As Giere (1976) claims, those who have addressed the problem of interpreting 

the probabilities that appear in quantum mechanics have generally taken one of three courses.  

One of them, sometimes ascribed to Heisenberg, allows probabilities to refer to a single system 

but maintains that these probabilities are epistemic.  The other view, usually adopted by the 

ensemble interpretation, conceives quantum probabilities as relative frequencies and, thus, 

considers that the equations of quantum mechanics refer not to single systems but to ensembles 

of systems.  The third alternative is the propensity interpretation of probability, which proposes a 

new metaphysical category that can be applied to single-cases, that is, to a single quantum 

system.  According to Giere (1976, p. 344), “of these three interpretations, only the propensity 

interpretation takes seriously the ‘no hidden variables’ position regarding quantum phenomena.  

More precisely, both the epistemological and the frequency interpretations are compatible with 

the existence of deterministic hidden variables.  The propensity interpretation is not.  It requires 

that the stochastic variables in quantum theories describe ultimate and irreducible features of at 

least some physical systems.”  As we have said in Section 2, for modal interpretations quantum 

mechanics is a fundamental theory that describes single systems: there are not hidden variables 

that explain an underlying, more fundamental level of reality.  If we agree with Giere, this means 

that single-case propensities represent the conception of quantum probabilities more compatible 

with the basic tenets of modal interpretations.26 

The fact that we endorse a propensity interpretation of quantum probabilities does not 

imply that we accept Popper’s position as a whole.  Whereas Popper seems to have endowed the 

propensity interpretation with the power to resolve almost all the conceptual puzzles of the 

foundations of quantum mechanics, we admit that much more work is needed: in particular, the 

                                                      
26 Moreover, it does not seem easy to see how the epistemic and the frequency interpretations would account for the 

“non-interacting experiments”, since in this case non-actual possibilities have physical effects on actual reality. 
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preferred context where actualization occurs has to be carefully defined.  For Popper, 

propensities are not monadic properties of isolated quantum systems, but relational properties of 

quantum entities and experimental set-ups.  For us, on the contrary, although propensities can 

only be revealed through measurements, they are independent of such interactions; as Suarez 

(2004) points out, an electron in a one-electron universe may be in a certain quantum state, and 

thus possesses all the propensities described by that state.27 

Of course, this account of our conception of quantum probabilities does not amount to a 

full analysis of the nature of propensities: this task deserves a deep discussion that is beyond the 

limits of the present paper.  Nevertheless, even if not complete, the above considerations provide 

the basis for characterizing the structure of the ontology referred to by quantum mechanics, and 

allow us to understand certain usual claims about quantum probabilities from the viewpoint of 

our interpretation.  For instance, sometimes it is said that, according to modal interpretations, 

quantum probabilities quantify the ignorance of the observer about the actual values acquired by 

the system’s observables (see, e.g., Dieks, 2007, p. 303).  This is certainly true, but it does not 

mean that quantum probabilities have to be endowed with an epistemic, “ignorance” reading.  

When a theory, as quantum mechanics, assigns probabilities to fundamental, irreducible 

indeterministic phenomena, our ignorance about the possible fact that becomes actual is a 

necessary consequence of the indeterministic nature of the system.  Such ignorance cannot 

decrease by means of additional information because there is no additional information: quantum 

mechanics is a fundamental theory that describes ultimate probabilities which are not defined in 

terms of ignorance −in epistemic terms−, but on the basis of ontologically indeterministic 

regularities.  On the contrary, when we are dealing with deterministic phenomena, our ignorance 

about the underlying behavior of the system is contingent and, as a consequence, it can be 

modified by the addition of further information.  This is the classical case of the Laplacean 

conception of probabilities, which makes sense in a completely deterministic world.  It is clear 

that, since we conceive quantum mechanics as a fundamental theory and probabilities as 

irreducible measures of ontological propensities, our epistemic ignorance is not involved in the 

definition of probabilities, but turns out to be an unavoidable consequence of the indeterministic 

nature of the quantum ontology. 

                                                      
27 In this case we would say “an elemental system in a one-system universe” since, as we shall argue in Subsection 

8.6, according to our interpretation the talk of particle-like entities can only be retained in a metaphorical sense and 
in very particular circumstances. 
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8.3  Actuality 

As we have seen, according to the modal-Hamiltonian interpretation the elemental quantum 

system defines by itself the preferred context, that is, the preferred CSOP { }αΠ  that determines 

the set of possible facts where actualization occurs.  We also know that, among the possible facts 

[ ]F αΠ  belonging to that set, one and only one becomes actual.  But, as a consequence of its 

intrinsic probabilistic nature, quantum mechanics does not determine which one of those possible 

facts is the actual one.  Nevertheless, in spite of the indeterministic character of actualization, our 

interpretation allows us to describe the ontological structure of the realm of actuality, which 

includes the following ontological categories: 

• “Actual” type-properties, each one of them with its corresponding “actual” case-property, that 

is, the case-property whose occurrence gives rise to an actual fact. 

• Actual facts. 

Of course, not all the type-properties belonging to the realm of possibility also inhabit the realm 

of actuality: the “actual” type-properties are only those selected by the preferred context. 

Any interpretation that postulates the actualization of certain facts as a non merely 

epistemic but objective phenomenon is committed to specifying when actualization occurs.  In 

some versions of the Copenhagen interpretation, the collapse of the wavefunction is conceived as 

a sort of actualization linked to the act of measurement: collapse happens when the quantum 

system interacts with a macroscopic device or when a conscious being becomes aware of the 

result of the measurement.  In the GRW version of quantum mechanics (Ghirardi, Rimini & 

Weber, 1986), collapse is a physical indeterministic phenomenon that repeatedly and 

spontaneously occurs with a probability 1 / τ  per second, where τ  is a new constant of nature.  In 

our realist interpretation, according to which actualization is an objective physical fact, the 

problem of deciding when such a fact occurs also cries for an answer.  Nevertheless, a simple 

solution can be given when the definition of the preferred context is taken into account. 

Let us recall that, according to our Actualization Rule, the preferred context depends 

exclusively on the features of the quantum system; so, it is univocally fixed once the quantum 

system comes into being as such.  On the other hand, we know that the preferred CSOP is defined 

by the eigenprojectors of the system’s Hamiltonian and, as a consequence, it is time-invariant.  

Therefore, the definite-valued observables, all of which commute with the Hamiltonian, are the 

same at all times.  This means that, with the exception of propensities that continuously evolve 

according to the Schrödinger equation, nothing changes during the “life” of the system, since its 
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initial “birth” time, when it arises as a quantum system, up to its final “death” time, when it 

disappears by interacting with another system.  In other words, the realm of actuality is time-

invariant; the dynamics of the system is confined to the realm of possibility.  On this basis, it is 

reasonable to suppose that actualization occurs only once, at the time of the constitution of the 

quantum system as such, and since that time there is no change in the realm of actuality: the 

definite-valued observables with their corresponding definite values and the actual facts remain 

unmodified during the entire life of the system. 

The same idea can be expressed from a different viewpoint.  According to our 

interpretation, the Hamiltonian of the system is a definite-valued observable in any case and, 

therefore, the energy is completely definite in all quantum systems.  But we also know that, 

although it cannot be strictly said that energy “does not commute” with time −since time is not 

represented by an operator in quantum mechanics (see discussion in Ballentine, 1998, pp. 343-

347)−, it is widely accepted that if the energy of the quantum system is completely definite, time 

is completely indefinite.  So, the question about the precise time when energy acquires a definite 

value −about the time when one of the possible facts [ ]F : iH ω  becomes actual− seems to 

make no sense.  From this perspective, it is plausible to conceive the time-invariance of the realm 

of actuality as the “timeless” nature of actual reality: time passes only in the realm of possibility, 

where propensities evolve; in the realm of actuality nothing changes and, thus, there is no time 

other than the time of the constitution of the quantum system as such. 

It is interesting to compare our interpretation with other modal interpretations with respect 

to this point.  For instance, in the Kochen-Dieks and the Vermaas-Dieks interpretations, the 

preferred context depends on the instantaneous state of the system, which continuously changes 

in time.  This means that actualization is a phenomenon that repeatedly occurs at each instant.  

This interpretational position leads to the need of accounting for the dynamics of actual 

properties (see Vermaas, 1996).  In our interpretation, on the contrary, this step is unnecessary 

since the dynamics of actual properties is trivial. 

8.4  Ontology of properties 

One of the main areas of controversy in contemporary metaphysics is the problem of the nature 

of individuals or particular objects: is an individual a substratum supporting properties or a mere 

“bundle” of properties? (for a survey, see Loux, 1998).  The idea of a substratum acting as a 

bearer of properties and/or as the principle of individuation has pervaded the history of 
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philosophy.  For instance, it is present under different forms in Aristotle’s “primary substance”, 

in Locke’s doctrine of “substance in general” or in Leibniz’s monads.  Nevertheless, many 

philosophers belonging to the empiricist tradition, from Hume to Russell, Ayer and Goodman, 

have considered the posit of a characterless substratum as a metaphysical abuse.  As a 

consequence, they have adopted some version of the “bundle theory”, according to which an 

individual is nothing but a bundle of properties: properties have metaphysical priority over 

individuals and, therefore, they are the fundamental items of the ontology.   

The assumption of an ontology of substances and properties is implicit in the quantum 

physicists’ everyday discourse.  Anchored in the ordinary language of subjects and predicates, 

they usually speak about electrons as having a certain momentum or photons as having a certain 

polarization, as if there existed an underlying “something” to which properties are “stuck”.  But 

perhaps the ordinary language is not the only factor that favors an ontological picture containing 

the categories of substance and of property.  In the discourse of physics, states are what “label” 

the quantum systems and identify them; observables are “applied” to the states and are conceived 

as representing the properties of the system.  In the orthodox formalism of quantum mechanics, 

the Hilbert space is taken as the basic formal element of the theory: states, represented by vectors 

of the Hilbert space, are logically prior; observables, in turn, are logically posterior since they are 

represented by operators acting on those previously defined vectors.  When the logical priority of 

states over observables embodied in the Hilbert space formalism is endowed with an ontological 

content, the assumption of an ontology of substances and properties, with the traditional 

ontological priority of substances over properties, turns out to be “natural”. 

Our modal interpretation, on the contrary, adopts an algebraic approach as its formal 

starting point.  In this formalism, the basic element of the theory is the space of observables; 

states are logically posterior since they are represented by functionals over the space of 

observables.  If this logical priority of observables over states is transferred to the ontological 

domain, the space of observables turns out to embody the representation of the elemental items of 

the ontology and the way in which they are arranged in a structure.  In fact, the space of 

observables defines: 

• All the type-properties with their corresponding case-properties. 

• All the possible facts and the equivalence relationships among them. 

• All the Boolean sets of possible facts. 
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In other words, whereas an ontology of substances and properties seems to be the natural 

reference of the theory in the Hilbert space formalism, the algebraic approach favors the 

assumption of an ontology of properties, where the ontological category of substance is absent. 

Of course, with the above considerations we are not ignoring the well-known mathematical 

equivalence between the Hilbert space and the algebraic formalisms.  We also know that a 

formalism does not fix its own interpretation.  Nevertheless, it is difficult to deny that, given two 

mathematically equivalent formal systems, each one of them may favor a different ontological 

picture.28  Consider, for instance, the mathematical theory of natural numbers according to 

Peano’s axioms and according to the set formulation of Russell: although both are 

mathematically equivalent, in Peano’s axiomatic natural numbers can be easily interpreted from a 

realistic, even Platonist viewpoint, whereas Russell’s formulation is friendlier to a nominalistic 

reading of natural numbers, according to which the really existent entities are individuals (and, 

eventually, classes, but not natural numbers).  Analogously in our case, although the structure of 

the quantum ontology cannot be read off from the mathematical formalism, the two formalisms 

favor different pictures.  The Hilbert space formalism suggests an ontology of substances and 

properties: substances labeled by their states represented by vectors of the Hilbert space −states 

that in quantum mechanics are not mere collection of the properties of the system as in classical 

mechanics−; properties represented by observables “applied” to states −operators acting onto 

vectors−.  In the algebraic formalism, the logical priority of observables over states is friendlier 

to an ontology where properties are the basic items and quantum objects are the result of the 

convergence of those properties. 

It is precisely for this reason that, in our interpretation, we have avoided any reference to 

“objects” as bearers of properties.  A possible fact is not the result of the assignment or ascription 

of a property to a particular object.  A possible fact has been characterized as the possible 

occurrence of a case-property: there is no substance acting as the substratum where the case-

property inheres.  This explains what might have been perceived as a certain artificiality in our 

presentation of the interpretational postulates, where we have talked of “occurrence of 

properties” instead of “systems having properties”.  It is our ordinary language, typically 

structured in subjects and predicates, what leads to this artificiality when used to describe an 

                                                      
28 It is also well-known that two empirically equivalent scientific theories may involve different ontological 

commitments. 



 

 70

ontology lacking one of the ontological categories supposedly referred to by those semantic 

categories. 

In conclusion, our interpretation provides us the picture of an ontology of properties, which 

does not contain the ontological category of substance: quantum systems are bundles of 

properties.29  But, as we have seen, our quantum ontology is twofold, since it includes the realm 

of possibility and the realm of actuality. Therefore, it is necessary to specify what kind of 

properties, possible or actual, constitute the bundles to be identified with the quantum systems. 

8.5  Bundles of possible properties 

According to the traditional versions of the bundle theory, an individual is the convergence of 

certain case-properties, under the assumption that the type-properties corresponding to that 

individual are all determined in terms of a definite case-property.  For instance, a particular 

billiard ball is the convergence of a definite value of position, a definite shape, say round, a 

definite color, say white, etc.  So, in the debates about the metaphysical nature of individuals, the 

problem is to decide whether this individual is a substratum in which definite position, roundness 

and whiteness inhere, or it is the mere bundle of those case-properties.  But in both cases the 

properties taken into account are actual properties.  In other words, bundle theories identify 

individuals with bundles of actual properties. 

The fact that our interpretation adopts an ontology of properties as the reference of 

quantum mechanics does not mean that it identifies the quantum system with a bundle of 

properties in the same sense as in traditional bundle theories, designed under the paradigm of 

classical individuals.  We know that not all the possible type-properties give rise to actual facts; 

only the type-properties selected by the preferred context lead to actual facts when one of their 

case-properties enter the realm of actuality.  Of course, in each context one could insist on the 

classical idea of type-properties with their definite actual case-properties with no contradiction.  

In other words, the picture of a bundle of actual case-properties that defines a classical individual 

could be retained in each context.  But as soon as we try to extend this ontological picture to all 

the contexts by conceiving the individual as a bundle of bundles, the Kochen-Specker theorem 

imposes an insurmountable barrier: it is not possible to actually ascribe the case-properties 

                                                      
29 When temporal position is conceived as a property of the bundle, bundle theories run into troubles in the account 

for the identity of the individual over time.  Here we shall not consider this problem because, in quantum 
mechanics, time is not a quantum observable, but the parameter of the evolution. 
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corresponding to all the type-properties to the system in a non-contradictory manner.  Therefore, 

the classical idea of a bundle of bundles of actual properties does not work in the quantum 

ontology. 

From our perspective, if the quantum ontology unfolds into two irreducible realms, the 

realm of possibility has to be taken into account when deciding what kind of properties 

constitutes the quantum bundle.  In our interpretation, the quantum system is identified by its 

space of observables: its elements ontologically represent items belonging to the realm of 

possibility: the space of observables defines all the “possible” type-properties with their 

corresponding “possible” case-properties.  Moreover, the realm of possibility is as real as the 

realm of actuality.  From this viewpoint, it seems reasonable to conceive a quantum system as the 

bundle of all the “possible” case-properties defined by the space of observables.  This reading has 

the advantage of being immune to the challenge represented by the Kochen-Specker theorem, 

since this theorem imposes no restriction on possibilities.  In other words, from our perspective 

the quantum system is not a bundle of actual case-properties as in the traditional bundle theories, 

but a bundle of possible case-properties: it inhabits the realm of possibility. 

It is worth noting that, when the quantum system is conceived in this way, the account of 

its identity over time poses no difficulty: the space of observables remains invariant during the 

entire “life” of the system; the dynamics of the system is given only by the time evolution of 

propensities, which are second-order properties.  On the other hand, nothing happening in the 

realm of actuality modifies the identity of the quantum system: it is the same no matter what 

possible facts becomes actual. 

According to this interpretation, then, the quantum system inhabits the realm of possibility, 

where the basic ontological category is that of property.  Now it has to be decided if the bundles 

of properties identified with quantum systems can be conceived as individuals as in the 

traditional bundle view. 

8.6  Quantum systems as non-individuals 

In their recent book on identity and individuality in physics, Steven French and Decio 

Krause (2006) note that the category of individual requires some “principle of individuality” that 

makes an individual to be that individual and not another.  The metaphysical question is, then, 

what confers individuality to individuals.  The answers to this question can be broadly divided 
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into two kinds: (i) those that appeal to a “trascendental individuality” (Post, 1963), that is, 

something over and above some set of properties of the individual, like, for instance, substance, 

and (ii) those that appeal to some subset of the properties of the individual, together with some 

further principle which ensures that no other individual must posses that subset.  The second 

answer typically corresponds to the bundle conception, where the properties that confer 

individuality are usually spatio-temporal properties under the assumption of impenetrability, 

which guarantees that two individuals cannot occupy the same spatial location at the same time.  

In the previous subsections we have argued for the view of quantum systems as bundles of 

possible properties.  Now we have to decide if those bundles are to be conceived as individuals. 

In the discussions about the ontological commitments of quantum mechanics, several 

authors have pointed out the serious challenge posed by the theory to the notion of individual.  

Already in the 60s, Heinz Post (1963) argued that elementary particles cannot be regarded as 

individuals, but they must be seen as “non-individuals” in some sense.  Paul Teller (1998) 

addresses the problem in terms of “haecceity”, that is, what makes an object to be different from 

all others in some way that trascends all properties.  According to this author, quantum 

mechanics provides good reasons for rejecting any aspect of quantum entities that might be 

thought to do the job of haecceity: “I suggest that belief in haecceities, if only tacit and 

unacknowledged, plays a crucial role in the felt puzzles about quantum statistics” (Teller, 1998, 

p. 122).  In turn, quantum non-separability leads Tim Maudlin to assert that the world cannot be 

conceived as just a set of separate and localized objects, externally related only by space and time 

(Maudlin, 1998, p. 60).  All these authors stress the fact that the notion of individual, either in the 

substratum-properties picture or in the bundle picture, does not fit in the structure of quantum 

mechanics (see also French & Krause, 2006, and references therein). 

The quantum feature that has given rise to a deep skepticism about the notion of individual 

is the indistinguishability of “identical particles”, which is introduced in the formalism of 

quantum mechanics as a restriction on the set of states: non-symmetric states are rendered 

inaccessible.  Steven French (1998) considers that such a restriction is consistent with the 

ontological view of particles as individuals: quantum statistics is recovered by regarding those 

states as possible but never actually realized.  However, the restriction on the non-symmetric 

states has an unavoidable ad hoc flavor in the context of the theory.  In this sense, Michael 

Redhead and Paul Teller (1992) reject the talk of individuals by claiming that the posit of 

inaccessible non-symmetric states amounts to the introduction of a surplus structure in the 
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formalism.  When, on the other hand, indistinguishability is understood in terms of the 

identification of the complexions resulting from the permutations of identical particles, the notion 

of individual runs into troubles.  In fact, the idea of a substance or “haecceity” that identifies the 

particle seems non applicable when there is no way of individuating the particles by labeling 

them. 

Our position moves away from the usual arguments involved in the debate about “identical 

particles” in a relevant sense.  In the proposal of a structure for the ontology referred to by 

quantum mechanics, our starting point is not the particular problem of the indistinguishability 

between two or more systems (“particles”), but the purpose of supplying an interpretation 

compatible with the constraints imposed by the Kochen-Specker theorem: the problem of 

contextuality raised by this theorem, since arising in a single elemental system, is logically 

previous than any problem invoking more than one system.  For this reason, we consider that the 

solution to the problem of indistinguishability should derive from an adequate ontological answer 

to the problem of contextuality, as one of its consequences.   

As we have seen, the problem of contextuality is what led us to discard the idea of a bundle 

of actual properties and to conceive the quantum system as a bundle of possible properties.  But 

when we restrict our attention to the realm of possibility, it is difficult to see what subset of the 

properties of the bundle may confer individuality to the quantum system: whereas, for instance, 

impenetrability can be argued for in the actual domain, there is no obstacle to two systems having 

the same possible spatial position at the same time.  For this reason, instead of insisting on the 

hard search for some principle of individuality applicable to the possible realm, we prefer to 

endorse the idea that quantum systems are not individuals: they are strictly bundles, and there is 

no principle that permits them to be subsumed under the ontological category of individual.  

Therefore, Leibniz’s Principle of Identity of Indiscernibles is not applicable to them: two 

quantum systems may agree in all their properties and, nevertheless, they may still be two 

systems, only numerically different. 

On this basis, the logical theories proposed to deal with “indistinguishable particles” do not 

provide an adequate logico-mathematical framework for our ontology.  The semiextensional 

quasisets theory, developed by Newton da Costa and Decio Krause (1994, 1997, 1999; see also 

Krause, 1992, and da Costa, French & Krause, 1992), and the intensional quasets theory, 

developed by Maria Luisa dalla Chiara and Giuliano Toraldo di Francia (1993, 1995), describe 

collections of objects having cardinality but not order type, that is, objects to which the concept 
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of individual of classical logic does not apply.  Nevertheless, although in both theories quantum 

particles are objects subject to certain constraints that render them intrinsically indistinguishable, 

those objects still belong to the ontological category of individual and, as such, constitute the 

range of individual variables as in classical set theory.  Our approach, on the contrary, offers an 

ontological picture where possible properties are the elemental items, and they do not constitute 

individuals.  Such a picture does not seem to be adequately captured by any formal theory whose 

elemental symbols are individual variables referring to objects, whether countable or not.  An 

ontology populated by bundles of possible properties cries for a “logics of predicates” in the 

spirit of the “calculus of relations” proposed by Tarski (1941), where individual variables are 

absent.30  Of course, the development of such a system of logic is far beyond the scope of the 

present paper; here we only want point out, from a general viewpoint, the logical perspective 

favored by our interpretation. 

When the non-individuality of quantum systems is taken seriously, the problem of 

indistinguishability can be approached from a new perspective.  In the discussions about 

“identical particles”, the arguments are usually tied to the Hilbert space formalism, where vectors 

are the basic mathematical entities representing states which, in turn, are assumed to be applied to 

particles.  In fact, the problem is posed in terms of considering the distribution of two particles, 1 

and 2, over two states a  and b , and the question is: how many combinations (complexions) 

are possible for obtaining the state of the composite system?  The classical answer is given by the 

Maxwell-Boltzmann statistics, according to which there are four possible combinations: in spite 

of the indistinguishability of the two component systems, the principle of individuation, no 

matter which one, makes particle 1 in a  and particle 2 in b  a different combination than 

particle 1 in b  and particle 2 in a .  The problem is, then, to explain why a permutation of the 

particles does not lead to different complexions in quantum statistics.   

Our conception of quantum systems as non-individual bundles of possible properties, based 

on the algebraic formalism, leads to a different reading of the problem from the very beginning.  

In fact, we can no longer talk about particles: we have two quantum systems 1S  and 2S , that is, 

two bundles which, being identical, are represented by the same space of observables 
1 2= =O O O .  If the two systems are subsystems of a composite system 1 2S S S= ∪ , S  is a new 

bundle of possible properties, represented by the space of observables 1 2⊗ = ⊗O O O O .  But 

                                                      
30 We are thinking in a calculus of relations with the modifications required to account for quantum peculiarities.  

We are grateful to Decio Krause for drawing our attention to Tarski’s work. 
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now there is no principle of individuality that preserves the individuality of the component 

systems in the composite system, precisely because they are not individuals.  Therefore, to the 

extent that the composite system is a single bundle, there seems to be no reason for assigning two 

complexions to this case.   

Moreover, from this perspective, the restriction of non-symmetric states is no longer an ad 

hoc addition to the theory, but turns out to be a consequence of the ontological interpretation.  

Let us consider the observables 1 1 1A ,B ∈O  of 1S  and 2 2 2A ,B ∈O  of 2S , and their respective 

type-properties 1A⎡ ⎤⎣ ⎦ , 1B⎡ ⎤⎣ ⎦ , 2A⎡ ⎤⎣ ⎦ and 2B⎡ ⎤⎣ ⎦ .  Since 1 2= =O O O , 1A⎡ ⎤⎣ ⎦  and 2A⎡ ⎤⎣ ⎦  are labels for 

the same property [ ]A , which belongs to both bundles; then, [ ]1 2A A A⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  and, 

analogously, [ ]1 2B B B⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ .  As a consequence, 1 2A B⊗  and 1 2B A⊗  belonging to ⊗O O  

represent the same type-property, 1 2 1 2A B B A⎡ ⎤ ⎡ ⎤⊗ = ⊗⎣ ⎦ ⎣ ⎦ , with the same case-properties, 
1 2 1 2: :i iA B a b B A b aα α⎡ ⎤ ⎡ ⎤⊗ = ⊗⎣ ⎦ ⎣ ⎦ .  This ontological consequence is what justifies 

symmetrization in the mathematical representation, now not of states but of observables: the 

properties of the composite system have to be represented by operators 1 2A B⊗  and 1 2B A⊗  

such that the corresponding eigenvalues satisfy i ia b b aα α= . 

It is not difficult to see that, since states are functionals on observables, ( ) ( )O Tr Oρ = ρ , 

the ontologically motivated symmetry of observables leads to symmetric states as its 

consequence.  In fact, the observable 1 2A B⊗  (analogously for 1 2B A⊗ ) is mathematically 

represented by a tensor with components ijc αβ⎡ ⎤⎣ ⎦  such that 0ijc αβ =  for i j≠  or α ≠ β  and 

ij ijc cαβ αβ= , where ii i i iic a b a b cαα α α αα= = = : the tensor is symmetric with respect to the 

permutation between the subindexes ( )i, j  and ( ),α β .  In turn, ρ  is also a tensor, with 

components ijαβ⎡ ⎤ρ⎣ ⎦ .  As it is well known, any tensor can be decomposed into a symmetric part 

and an antisymmetric part, S A+ρ = ρ ρ , where the S
ijαβ⎡ ⎤ρ⎣ ⎦  are such that S S

ij ijαβ αβρ = ρ , and the 
A
ijαβ⎡ ⎤ρ⎣ ⎦  are such that A A

ij ijαβ αβρ = −ρ .  We also know that, if A  is a symmetric tensor, ij ijA Aαβ αβ= , 

and B  is an antisymmetric tensor, ij ijB Bαβ αβ= − , then ( )=0Tr AB .  So, when the functional ρ  is 

applied to the symmetric operator 1 2A B⊗ , we obtain  

       ( ) ( ) ( ) ( )1 2 S 1 2 A 1 2 S 1 2 0A B A B A B A Bρ ⊗ = ρ ⊗ +ρ ⊗ = ρ ⊗ +   (8-1) 

This means that the antisymmetric part of the state has no effect in its application onto symmetric 

observables and, therefore, it is superfluous.  In turn, in the particular case of pure states, the 

symmetric ρ = ϕ ϕ  may be expressed in terms of a symmetric state vector, 

( )S 1 2 2 11 2/ϕ = ϕ = ϕ ⊗ ϕ + ϕ ⊗ ϕ , or in terms of an antisymmetric state vector, 
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( )A 1 2 2 11 2/ϕ = ϕ = ϕ ⊗ ϕ − ϕ ⊗ ϕ .  In this way, the symmetrization and the 

antisymmetrization of states vectors lose their ad hoc flavor: they are a consequence of the 

symmetry of the observables of the composite system which, in turn, is a consequence of the 

ontological picture supplied by the interpretation.31 

Of course, there are still several open problems, both theoretical and philosophical, that 

have to be considered to supply a full response to the ontological questions raised by quantum 

statistics.  From a theoretical viewpoint, the simplified argument about symmetrization sketched 

above has to be developed in its formal details to become a complete account of quantum 

statistics.  From the philosophical viewpoint, the nature of properties (as multiply-instantiable 

universals, as tropes, etc.) deserves a further research.  Nevertheless, if the traditional assumption 

of “objects” that preserve their individuality when considered in collections is the main obstacle 

to explain quantum statistics, the conception of the quantum system as a non-individual bundle of 

possible properties seems to offer a promising starting point in the search for a solution of the 

problem. 

Summing up, from our interpretational perspective, the talk of individual entities as 

electrons or photons and their interactions can be retained only in a metaphorical sense.  In fact, 

in the quantum framework even the number of particles is represented by an observable N , 

which is subject to the same theoretical constraints as any other observable of the system; this 

leads, specially in quantum field theory, to the possibility of states that are superpositions of 

different particle numbers (see discussion in Butterfield, 1993).  Therefore, the number of 

particles N  has a definite value only in some cases (see Subsection 5.3), but it is indefinite in 

others.  This fact, puzzling from an ontology populated by individuals, is deprived of mystery 

when viewed from our ontological perspective.  The quantum system is not an individual but a 

bundle of possible properties.  The particle picture, with a definite number of particles, is only a 

contextual picture valid exclusively when the possible facts involving the observable N  are 

picked out by the preferred context.  In this case, we could metaphorically retain the idea of a 

composite system composed of individual particles that interact to each other.  But in the 

remaining cases, this idea proves to be completely inadequate, even in a metaphorical sense. 

                                                      
31 We are grateful to one of the referees for urging us to stress the difference between our approach and the 

traditional arguments involved in the debate about “identical particles”.  In spite of these differences, it would be 
interesting to review those arguments (for instance, as presented in French and Krause, 2006) in the light of our 
interpretation, in order to see how many difficulties survive under the “ontology of properties” reading, and what 
new difficulties arise; but this task will be the purpose of a further work. 
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9.  Conclusions 

In the long history of the interpretation of quantum mechanics, the Hamiltonian of the system has 

usually been the absent character of the play.  This sounds strange when we recall the crucial role 

played by the Hamiltonian in mechanics, both classical and quantum: as a two-faced Janus, the 

Hamiltonian represents both the conserved magnitude of the system and the element governing 

the dynamics.  It should not be surprising, then, that in quantum mechanics it also has a decisive 

role in the selection of the actualization context and the definite-valued observables. 

In this paper we have taken this basic idea as the starting point of an interpretation that 

intends to supply an adequate answer to several traditional puzzles raised by quantum mechanics.  

In particular, our interpretation proposes an Actualization Rule that univocally selects a time-

independent preferred context where possible facts become actual.  This interpretation has proved 

to be effective in two senses: (i) the application of the rule to several concrete physical situations 

shows its agreement with theoretical commitments and empirical evidence coming from the 

practice of physics (Section 5), and (ii) when applied to quantum measurement, the rule not only 

explains the definite reading of the pointer both in the ideal and in the non-ideal case, but also 

accounts for the difference between reliable and non-reliable measurements, in accordance with 

experimental practice (Section 6).  On the other hand, the problem of the classical limit acquires 

a precise reading in the light of his interpretation.  In fact, the modal-Hamiltonian framework 

explains how a quantum ensemble can be described in classical-statistical terms in spite of the 

fact that not all the observables of the members of the ensemble are definite-valued (Section 7).  

Finally, our interpretation decidedly faces the ontological questions posed by quantum 

mechanics, by describing the elemental categories of the ontology referred to by the theory.  On 

the basis of the algebraic formalism, this realist interpretation introduces an ontology with two 

irreducible and equally real realms, the realm of possibility and the realm of actuality.  In this 

ontology, quantum systems belong to the realm of possibility and are identified with bundles of 

possible properties (Section 8).  Moreover, since this interpretation is based on the algebraic 

formalism, appeals to the results of group theory and gives up the ontological category of 

individual, it might be expected that it could be appropriately adapted to quantum field theory 

with no serious obstacles. 
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As we have said at the beginning of the paper, the purpose of an interpretation of quantum 

mechanics is to say how reality would be if the theory were true.  In this sense, we consider to 

have provided a coherent interpretation by proposing a definite ontology as the referent of 

quantum mechanics.  As one might have expected, the resulting ontological picture is far from 

being classical.  Nevertheless, such a picture allows us to give non-contradictory answers to the 

questions about the items that populate the quantum reality, as well as about the structure of this 

reality.  Of course, this presentation does not claim to exhaust all the challenges raised by 

quantum mechanics.  Nevertheless, we think that, on the basis of the answers offered here, the 

modal-Hamiltonian interpretation deserves to be considered for further research. 
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