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Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular
approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they
might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for
assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework
is used to map couples of signals exploiting their cross recurrence plots (CRPs) to compare the trajectories of the interacting
systems. A synchronization metric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional
communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-
related fMRI data of a cohort of healthy subjects and applied a modularity algorithm in order to determine the community structures
of the networks. The within-group similarity of communities is evaluated to verify whether such new metric is robust enough against
noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to
better reflect the functional brain organization during the specific task.

1. Introduction

The human brain, as many biological systems, can be seen
as a complex network of interacting components whose
integration leads to a hierarchical architecture of highly
specialized modules [1]. A network formulation simplifies
the analysis of a complex system by providing mathematical
tools able to capture different aspects of its organization in
a compact and straightforward manner. Graph theoretical
methods have been extensively applied to many neuroimag-
ing datasets in order to describe the topological properties of
both functional and structural networks [2, 3].

In particular, over the past few years, there has been
an increasing interest in inferring connectivity properties
from fMRI data. Functional connectivity analysis aims at
assessing the strength of functional coupling between the
signal responses in distinct brain areas [4]. According to the
complex network framework, the anatomical regions of inter-
est are the nodes of the network, connected by edges resulting
from the adopted interregional interaction metrics. Pairwise
fMRI time series connections are usually estimated through
zero-lag correlation metrics, leading to a weighted network
whose links quantify the statistical similarity between pairs
of regions. Different preprocessing techniques and strategies
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are also applied in order to extract only relevant information
from the functional network, for example, by considering
only a range of weights or by applying several thresholds
to filter out weak connections [3]. Functional connectiv-
ity studies have revealed interesting insights on normal
functional brain organization such as property of small-
worldness [5], modularity and presence of hub nodes [6], and
the existence of critical alterations of low-frequency neural
activity patterns in pathological conditions [7]. Among the
proposed strategies, some techniques are more established
than others, even if there is still no agreement on which ones
are the most effective or appropriate.

A number of important questions regarding the identifi-
cation of networks have to be addressed before considering
any analysis technique. Recent studies have demonstrated
that different edge definitions could affect the topological
properties of brain networks obtaining variable findings [8,
9]. Thus, properties like time resolution of the physiological
time series under investigation, the effect of the observational
noise, and the presence of nonlinear effects should been taken
into account for selecting measures for edge definition. The
low temporal resolution of fMRI data limits the number of
methods that can be used to assess the statistical interactions
between the time series. Linear correlation metrics, including
Pearson’s correlation and partial correlation, have been used
in simulation environment and resting state studies, showing
good performances in estimating functional connections in
both cases [9, 10]. On the other hand, nonlinear phenomena
in the human brain have been explored at various scales,
revealing complex coupling mechanisms in both resting
state and task-based neural activity [11, 12]. Most of the
functional connectivity studies are focused on configurations
of intrinsic connectivity networks (ICNs) and therefore did
not assess complex connectivity patterns that can arise in the
presence of a cognitive task. Indeed, even if a steady intrinsic
network architecture has been found at rest and across a
large number of tasks and conditions, task-evoked changes of
functional connectivity have been also documented, proving
the existence of task-specific network configurations [13].
Exploring topological changes in functional networks when
the neural activity is modulated by a cognitive task could
improve the understanding of some important mechanisms
of human cognition, for example, the dynamic balancing of
specialization and integration of brain regions for support-
ing different cognitive loads [4] and the trade-off between
connection cost and topological efficiency in information
processing [14]. Assessing functional interactions during
external tasks should require metrics that (i) are sensitive
to nonlinear coupling between time series and (ii) are more
robust with respect to noise.

In this work, we propose a novel approach for quan-
tifying functional coupling between fMRI time series and
constructing functional brain networks. We use a phase space
framework to map pairs of signals in their reconstructed
phase space, that is, a topological representation of their
behavior under all possible initial conditions [15]. This
method assumes that each signal represents a projection of
a higher-dimensional dynamical system evolving in time,
whose trajectories are embedded into a manifold, that is, a
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region of its phase space. Cross recurrence plots (CRPs) [16]
are then employed to reduce the dimensionality of the phase
space and compare the trajectories of the interacting systems.
A synchronization metric is finally extracted from the CRP to
assess the coupling behavior of the time series.

The proposed metric and Pearson’s correlation coefficient
are applied to the fMRI data of a cohort of healthy subjects
acquired during performing a working memory task to
construct weighted networks.

At macroscopic level, functional related brain regions
exhibit similar BOLD responses. These groups of regions
form dense communities that reflect the functional organi-
zation of the brain and whose properties can be linked to
the topological features of the task-evoked network config-
uration [17, 18]. The analysis carried out in this work aims
at investigating some properties of the modular structure
of task-evoked functional networks obtained with Pearson’s
correlation metric and the proposed synchronization index
in order to understand which index can better highlight the
functional organization of distinct subsystems involved in
the specific working memory task. Therefore, a modularity
algorithm is used to determine the community structure
of each functional network. The within-group similarity of
communities is evaluated and exploited to verify whether the
metrics are sufficiently robust against noise and effective in
revealing correlation even in presence of external stimuli.
The rationale underlying this choice is that community
structure of a group of healthy subject is expected to be highly
consistent in presence of the same task.

2. Materials

2.1. Subjects. We studied 50 healthy subjects (age: mean =
25, standard deviation SD = 6; 24 females) in the analysis.
All of them were evaluated using the Non-Patient Structured
Clinical Interview for DSM-IV [19] to exclude any psychiatric
condition. Other exclusion criteria were a significant history
of drug or alcohol abuse, active drug abuse in the previous
year, experience of a head trauma with loss of consciousness,
and any other significant medical condition. Socioeconomic
status (Hollingshead Four Factor Index, [20]), handedness
(Edinburgh Inventory) [21], and total IQ (WAIS-R [22])
were also measured (see Table 1). The present study was
approved by the local ethics committee (Comitato Etico
Locale Indipendente Azienda Ospedaliera Ospedale Poli-
clinico Consorziale Bari). Written informed consent was
obtained by all participants after a complete description of the
procedures, in accordance with the Helsinki Declaration.

2.2. fMRI Task. Participants performed the N-Back working
memory task, in which a sequence of stimuli is presented
and the subject has to remember the stimulus from “N” steps
earlier. The stimuli consisted of numbers (1-4) presented in
random sequence and displayed at the points of a diamond-
shaped box. The control condition (0-back) simply required
the subjects to identify the current stimulus. In the working
memory condition, the task required the collection of a
stimulus seen two stimuli earlier (2-back). The task was
organized in a block design, consisting of eight alternating
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TaBLE 1: Demographic data of the healthy cohort (mean + standard
deviation).

Demographic Data
Age (years) 25+6
Gender (M/F) 26/24
Handedness 0.60 + 0.55
Socioeconomic status 39+17
1Q 114+4

0-back and 2-back conditions, each lasting 30 seconds. Each
30 sec. block includes 14 n-back trials with an interstimuli
interval of 2000 ms. Each run lasted 4 minutes and 8 seconds,
from which dummy scans were acquired and discarded,
obtaining 120 volumes.

2.3. fMRI Data. Echo planar imaging blood oxygenation
level dependent fMRI data were acquired on a GE Signa 3T
scanner (GE Healthcare) equipped with a standard quadra-
ture head coil. A gradient-echo planar imaging sequence
(repetition time, 2000 ms; echo time, 30 ms; thickness, 4 mm;
gap, 1 mm; flip angle, 90°%; field of view, 24 cm; and matrix, 64x
64) was used to acquire images while the subjects performed
the tasks.

Images were preprocessed using Statistical Parametric
Mapping 8 software (SPMS8; http://www.fil.ion.ucl.ac.uk/
spm). Images were realigned to the first volume in the time
series to correct for head motion (<2 mm translation, <1°
rotation), resampled to a 2 mm isotropic voxel size, spatially
normalized into a standard stereotactic space (Montreal Neu-
rological Institute template) using a 12-parameter nonlinear
warping, and smoothed to minimize noise and residual
differences in gyral anatomy with a Gaussian filter, set at
6 mm full-width at half-maximum.

3. Methods

3.1. Network Construction. The brain volume of each subject
was divided into 246 nonoverlapping anatomical regions of
interest (ROIs) according to the Brainnetome Atlas [23].
Thirty regions from the most ventral part of the brain not
acquired during scans were discarded and are not included in
the following analysis. For each of the 216 remaining ROlIs, a
single time series was extracted by averaging the fMRI time
series over all the voxels within the ROI. The time series were
high-pass filtered (cutoft frequency 1/128 s). For each subject,
functional connectivity between all pairwise combinations of
ROI time series was assessed:

(i) by calculating their Pearson’s correlation coeflicient;

(ii) by computing their CRP and then by calculating their
synchronization (SYNC) index as described in the
following subsection.

Finally, for each subject, we identified two undirected
weighted networks, whose edges resulted from

(1) the signed pairwise Pearson’s correlation coeflicients;
(2) the SYNC indexes.

3.2. Synchronization Index. A state of a system is defined
by the values of the variables that describe it at a given
time. When such system evolves in time, the sequence of
all its states forms a trajectory in the phase space, that is,
a multidimensional space whose dimension depends on the
number of the variables of the system. Starting from different
initial conditions, a real physical dissipative system tends to
evolve in similar ways, such that its trajectories converge in
a region of the phase space called attractor which represents
the steady-state behavior of the system [15].

In experimental contexts, where the time series {1},
obtained from the sampling of a single observable variable
is available, it is possible to reconstruct the phase space of
the system under investigation by means of Takens’s Theorem
[24]. Accordingly, a state in the reconstructed phase space
is given by a m-dimensional time delay embedded vector
obtained from time delayed versions of the output signals as

71’ = (U Uiy - ’ui+(m—1)‘r) > @
where m is the embedding dimension and 7 is the time delay.

Both parameters have to be properly selected to avoid
redundancy in the phase space. The dimension m of the
reconstructed phase space should be large enough to preserve
the properties of the dynamical system (m > 2D + 1, where
D is the correlation dimension of the original phase space).
The correct time delay 7 should be chosen by determining
when the samples of the time series are independent enough
to be useful as coordinates of the time delayed vectors. For
the estimation of the embedded parameters m and 7 several
techniques have been proposed. As an example, the first
local minimum of average mutual information algorithm [25]
can be used to select the proper time delay. The minimum
embedding dimension is usually estimated through the false
nearest-neighbors (FNN) algorithm [26].

The trajectories of two distinct systems with the same
embedded parameters can be compared in a CRP [16], a
matrix whose entries include information on the degree of
closeness of each state of the first system with each state of
the second system. In detail, for two systems with trajectories,
respectively, %, (i = 1,...,N) and7j (j = 1,...,N), the
CRP is defined as

CR;;(e) =0 (e~ [¥:-7]), )

where © is the Heaviside function, € is a threshold for
closeness, N is the number of considered states for each
system, and | - || is a norm function. A generic entry CR; jin
the resulting N x N array is set to one if the distance between
the points X; and y j is smaller than the threshold € or to zero
elsewhere.

The value of the parameter € must be estimated carefully,
as it influences the creation of structures in the plot. The
selection of an appropriate value for the threshold € can be
made by taking into account the influence of the observa-
tional noise that could affect the experimental measures and
the minimum distance between the trajectories of the two
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systems. In general, choosing € equal to few percent of the
maximum phase space diameter could ensure a sufficient
number of structures in the cross recurrence plot [27], while
the appearance of artifacts could be avoided by considering
the signal-to-noise ratio for the underlying physical systems
[28].

A CRP exhibits characteristic patterns that show local
time relationships of the segments of the trajectories of
the two interacting systems. Typical structures include sin-
gle dots, diagonal lines, and vertical and horizontal lines.
Diagonal lines occur when the evolution of the states is
similar at different times and their lengths are related to the
periods during which the two systems move in similar ways
remaining close to each other [29]. A CRP can also exhibit
the main diagonal known as line of synchronization (LOS).
The presence of LOS implies the identity of the states of
the two systems in the same time intervals, that is, the (i, 7)
states, so its structure can be analyzed to extract information
about the synchronization of the two time series [30]. In
particular, the presence of LOS suggests that the two time
series are fully synchronized, while discontinuities appear
when the two signals do not have the same frequency and
the same phase. Hence, the synchronization time (SYNC) has
been defined as a metric to quantify the mean period during
which the two systems are synchronized in order to reflect the
dynamical synchronization behavior of the series throughout
the observation period. SYNC is proportional to the ratio of
the sum of the lengths of the subsegments /; along the LOS to
the total number of samples N:

1 2
SYNC = — == (3)
N, N

where N, is the total number of subsegments.

For a visual reference, see Figure 1. In Figure 1(a),
two fMRI unsynchronized time series are compared and in
Figure 1(b) are shown two fully synchronized fMRI time
series. It is worth noting that in the first case there are
discontinuities of LOS, while in the second case the LOS is
continuous. Their SYNC values are, respectively, 0.05 and
1.

3.3. Modularity Detection. Several community detection
methods have been proposed to find an optimum partition of
the nodes into nonoverlapped communities, that is, clusters
of nodes that are more densely connected to each other than
to other nodes in the network [31-33]. All these methods aim
at maximizing a modularity metric that evaluates the quality
of a partition by comparing the density of connections within
a community to that expected in a random network. Here, the
Louvain algorithm [33] has been used to find communities of
ROIs in the two functional networks obtaining two partitions
for each subject. The Louvain method is divided into two
phases that are repeated iteratively. The first step favors local
optimizations of modularity, while during the second step
the communities found in the first step define a new coarse-
grained network to be evaluated. This algorithm was chosen
because it is fast and seems to be less affected by the resolution
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limit problem (i.e., the capability to detect modules smaller
than a certain size) thanks to its multilevel nature. This
method optimizes the modularity function defined as

. Kk,
Q= %Z |:Ai,j_2_m]]8(ci’cj)’ (4)

where A; ; is the link between nodes i and j, k; is the sum of
the weights of the links attached to node i, ¢; is the community
assigned to the node 7, m is the sum of all of the links of the
networks, and § is the & function.

3.4. Statistical Analysis of Modularity. A statistical framework
was adopted in order to compare the partitions of all the
subjects for each functional network [34].

The normalized mutual information (NMI) [35] was used
to assess the similarity between a couple of community
partitions. For two networks with partitions, respectively, A
and B, it is defined as

(A, B)

NMI(A,B) =2——— >,
[H (A) + H (B)]

(5)

where I(A, B) is the mutual information between the two
partitions and H(A) and H(B) are the entropy of A and B.
This metric ranges between zero (if A and B are completely
independent) and one (if A and B are identical).

The statistical relevance of the within-group community
structure similarity was evaluated through a permutation test.
First, a randomly rewired version of each functional net-
work was generated preserving weights, density, and degree
sequence, resulting in two groups of networks: the actual
and its randomized matching network. Then, the NMI was
calculated between all the possible pairs of network partitions
within each group. A null distribution was generated by
randomizing group labels 10000 times and by calculating
the permuted within-group mean NMI at each permutation.
Finally, a p value was assigned as the number of times that
the permuted within-group mean-similarity was greater than
the actual within-group similarity, divided by the number of
permutations.

In order to inspect the consistency of node assignments
to specific functional communities, we carried out further
analyses on the networks. Since the labels of modules are
arbitrarily assigned by the community detection algorithm at
each iteration, it is necessary to match the partition values
across the subjects for visualizing the group level community
structure. This problem can be overcome by finding a tem-
plate partition as a reference and by reassigning the labels
of communities to match the template, while preserving
the distinctions between different modules in each partition
[34]. In this work, the partitions of each network for both
metrics were matched to the most representative network
partition of the group, that is, the median determined by
pairwise NMI. Once the labels of partitions are reassigned,
it is possible to assess the within-group consistency of each
ROI in community membership by counting the number of
occurrences with which a ROI appears with a particular label.
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FIGURE I: Pairs of fMRI time series and their CRPs for (a) occipital inferior L and frontal medial orbital L (SYNC = 0.05); (b) occipital superior

L and occipital superior R (SYNC =1).

4. Results

4.1. CRP Parameters. We randomly selected a subset of 5000
BOLD time series from the whole dataset and applied the
FNN algorithm for estimating the embedded dimension and
the first local minimum of the averaged mutual information
for selecting the proper time delay. We obtained m = 5.2 +
0.75and 7 = 1.4 £ 0.66, so the embedded parameters were
settom = 6 and T = 1. Following the criteria reported in
[27, 28], we identified the range [1.2-1.8] for the threshold
€. The analysis was carried out with the average value of the
range, setting € = 1.5.

4.2. Statistical Analysis of Modularity. Permutation tests
reveal significant differences of modularity structures
between all the functional networks and their randomly
rewired versions (p = 0 for both the couples), indicating
different modular decompositions compared to the null
models. However, as shown in Figure 2(a), Pearson’s
networks exhibit within-group NMI values much lower than
those obtained by means of the SYNC metric (see Table 2

TABLE 2: Mean and median (interquartile range) quantities of NMI
and Q distributions for the metrics synchronization and Pearson’s
correlation.

Distributions NMI Q
Synchronization 0.24;0.23 (0.11) 0.17;0.17 (0.04)
Pearson 0.15;0.14 (0.15) 0.11;0.11 (0.07)

for mean, median, and interquartile range quantities).
The nonparametric Wilcoxon rank sum test confirmed
significant differences between NMI values of SYNC and
those of Pearson’s metric (p < 0.0001, « = 0.05). The ranges
of NMI values of SYNC networks are also comparable to
those found among control healthy subjects in resting studies
at different threshold values of network density [34]. These
results suggest that the functional networks constructed with
the SYNC metric share more modularity structures than
Pearson’s networks and exhibit also a higher signal-to-noise
ratio.

In addition, we evaluated the modularity index Q. This
index ranges between 0 and 1 and measures the density
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of links inside communities as compared to links between
communities. As shown in Figure 2(b), the two distributions
are significantly different from their random versions (per-
mutation tests: p = 0 for both pairings) and the modularity
index of the networks obtained with the SYNC metric is
higher than that of Pearson’s networks ( p value resulting from
the nonparametric Wilcoxon rank sum test p = 3.52 - 107%,
a = 0.05).

4.3. Comparison of Modular Partitions in SYNC and Pear-
son’s Networks. Since we computed connectivity measures
on a time series derived from a working memory task,
we expected to find modules related to working memory
performance involving the frontoparietal network [36] to
motor activity related to the 0-back task [37] and to the
default mode network, which is deactivated when performing
the task [38]. Figure 3 shows the five modules detected
by the Louvain algorithm at group level. The first module
includes areas critical for visuospatial memory and closely
resembles the classical frontoparietal network. In contrast,
the second module includes more medial regions, with nodes
belonging to both the anterior and the posterior default mode
networks [39, 40]. The third module overlaps widely with
the sensory-motor network, including pre- and postcentral
nodes, but also areas of the temporal lobe involved in auditory
perception. Interestingly, the fourth and fifth module map
almost exclusively to subcortical regions, including the dorsal
basal ganglia and the thalamus with the ventral striatum,
respectively. These regions are involved in working memory
performance [41, 42], but it is intriguing to notice that the
technique here employed parsed the connectivity of cortical
and subcortical regions based on the time series of activation,
yielding anatomic information just based on functional activ-
ity patterns. Figure 4 shows the two communities identified
at group level for Pearson’s networks. The first module
comprises most of the ROIs mapped in the first community

of the SYNC networks, while the rest of the ROIs are included
in the second module.

The consistency of the assignment of brain regions to
functional modules for the SYNC networks is shown in
Figure 5. As can be seen, all the ROIs within the frontoparietal
network are the most consistent among the subjects; in
contrast, some nodes from the medial temporal lobes, insular
gyrus, and globus pallidus are assigned less uniformly to
the same community across the subjects. These findings are
in line with the crucial involvement of the frontal parietal
network in working memory processing [43]. As this map
resembles closely an activity group map, these findings
highlight that the connectivity assessment we developed is
sensitive to the functional role of the modules identified.
Overall, the network parsing obtained by the novel technique
we reported reveals a pattern of coupling between brain
regions consistent with known models of activation and
deactivation during task performance. In Figure 6 is shown
the within-group consistency of each ROI in community
membership for Pearson’s networks. Although the overall
consistency seems generally higher due to the lower number
of communities (two versus five), a direct comparison with
the SYNC networks is possible only for the first module. The
one-sided hypothesis Wilcoxon rank sum test confirmed a
greater consistency of the ROIs within the first module for
the SYNC matrices (median values of consistency: my,,. =
85.5, Myearson 82, p = 0.0096, « = 0.0) proving a
better identification of the frontoparietal network across the
subjects in such matrices.

5. Discussion

In the current study, a modularity analysis is applied to
networks defined with both the proposed SYNC index and
Pearson’s correlation coeflicient in order to investigate the
task-related functional organization of the brain. Modularity
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FIGURE 3: The five group level functional communities detected in SYNC networks. In each row, a single community is shown in four brain

views (left side, right side, top side, and bottom side).
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FIGURE 4: The two group level functional communities detected in Pearsons networks. In each row, a single community is shown in four
brain views (left side, right side, top side, and bottom side).

0 100

FIGURE 5: Consistency of the assignment of brain regions to modules measured as the frequency of occurrence of the node with a specific
label (in percent) for SYNC networks.
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FIGURE 6: Consistency of the assignment of brain regions to modules measured as the frequency of occurrence of the node with a specific

label (in percent) for Pearson’s networks.

is implicitly related to significant self-regulating mechanisms
of the human brain: efficient dense within-module processing
and sparse fast integration among subsystems reduce noise
propagation and latency [44]. Thus, this feature is strictly
connected to critical functional organization between brain
systems that are specialized to carry out different tasks:
modularity is expected to be greater for optimal system
organizations, while decreased modularity implies that there
are less intramodular edges than intermodular edges [45].
A low level of modularity would not be compatible with a
fast adaptation of the human brain in response to external
stimuli. Indeed, lack of highly specialized modules may not
allow a rapid execution of complex cognitive task [45, 46].
Consistently, a decreased modularity has been associated
with brain disorders characterized by abnormal cognitive
processing and has been found as a marker of abnormal brain
network development [47-49]. Moreover, there is evidence
that while the adaptation speed of the functional organiza-
tion of the brain is not critical among healthy individuals
that perform a specific task, modularity is stable across
time, suggesting the existence of latent specific task-related
modular configurations [17, 50]. The statistical analysis of

modularity reveals that a greater structure homogeneity and
a higher number of functional communities activated during
the working memory task seem to be better identified in
SYNC networks, while Pearson’s correlation does not reflect
such features expected in a healthy population. In detail,
the SYNC networks showed both higher NMI and Q values
thus indicating that the extracted modular partitions are
more similar to each other across the population and exhibit
a clearer division into communities. Indeed the modular-
ity index Q statistically quantifies the goodness of a hard
partition as its value is related to the difference between
the within-module interactions and the between-module
interactions [51]. Furthermore, the consistency analysis in
which the partition of each subject is compared with the
median partition of the population points out two results:
(i) both networks show at the group level a similar first
community that resembles the frontoparietal network, but
in the SYNC networks other modules that map to systems
engaged during working memory performance are detected;
(ii) the statistical comparison of the ROIs within the first
module highlights a greater consistency of such task-related
regions in SYNC networks. These findings suggest that a
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problem of community resolution is evident in Pearson’s
networks, whereas all the regions not included in the first
module are identified in a single community without distinc-
tion among sensory-motor network, default mode network,
and subcortical areas and even the frontoparietal network is
identified more weakly across the population.

In our framework, the same community detection algo-
rithm was applied to both kinds of networks. Since the
algorithm generates a node partition of a connectivity matrix,
some properties of the index used to identify the network
such as sensitivity to noise and to complex interaction mech-
anisms occurring among the brain regions could affect the
degree of partition of the network into communities. Several
brain connectivity metrics have been proposed as alternatives
to Pearson’s correlation coefficient. Coherence and partial
coherence analysis were applied to fMRI data to extend linear
metrics of zero-lag correlation. These spectral measures
estimate the linear time-invariant relationship between time
series by using phase and magnitude information for all the
time lags [8]. Both coherence and partial coherence were
proved effective in overcoming an important limitation of the
zero-lag correlation, that is, its sensitivity to the shape of the
regional hemodynamic response function that could result
in spurious correlations of the underlying neural activity.
In the last two decades, there has been a growing interest
in developing new connectivity metrics sensitive to both
linear and nonlinear interactions in human brain. In fact, the
spatiotemporal nonlinearity was shown to be an important
feature of the BOLD signal that should be considered to
properly characterize the complex interactions between brain
regions. In [52] a phase space multivariate approach was
adopted to investigate the nonlinear properties of resting state
fMRI data. The dynamics of the signals were reconstructed
by using the time delay embedding of some principal com-
ponents of the fMRI data and the correlation dimension and
the spatiotemporal Lyapunov exponents were calculated to
assess the nonlinear fractal property and the chaotic dynamic
behavior of the signals. A surrogate data test confirmed an
inherent deterministic nonlinear behavior in fMRI fluctua-
tions. Other methods for exploring the dynamic behavior of
physiological signals have been proposed. Recurrence plots
and recurrence quantitative analysis of the structures therein
contained were used to examine the recurrence properties
of dynamic systems [29]. As an example, in [53] RQA was
employed as a univariate data-driven technique to quantify
recurrent patterns in fMRI data. This technique involves the
projection of each time series in the phase space from which
a recurrence plot is obtained. Several numerical descriptors
are then used to quantify recurrent patterns in each time
series. This method has been developed as an alternative to
general linear model and probabilistic independent compo-
nent analysis in activation studies. The underlying idea is that
single-voxel signals become more regular in response to a
stimulus, so RQA can detect the most active voxels without
any model assumption. Recurrence plots and RQA were
proved successful in analyzing very noisy and nonstationary
signals. These methods afford a set of metrics able to capture
comprehensively the dynamic behavior of a system in the
phase space. Some studies confirmed their effectiveness
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also for the analysis of EEG and MEG data, particularly
for detecting functional anomalies in several diseases [54-
57]. Cross recurrence plots are bivariate extensions of the
recurrence plots that consist in two-dimensional matrices
showing the interactions of pairs of signals in the phase space.
The proposed index, extracted from the CRP, represents an
intuitively interpretable generalized dynamic synchroniza-
tion metric that could be used to extend the set of known
RQA measures.

6. Methodological Limitations

These results are promising with respect to the value of the
novel technique we are proposing, even though they are
not free of limitations. For example, since we used task-
dependent time series, we do not know yet whether these
results extend to resting state data, and this will be the object
of future studies. We chose to examine task-driven functional
connectivity as done in several other studies [17, 18, 51], by
analyzing the modular architecture during working memory.
In particular, we used both the presence of known task-
related functional modules and their high consistence across
a healthy cohort of subjects to evaluate the proposed syn-
chronization metric. An advantage of the block-designed task
we considered is that BOLD activity presents cyclostationary
properties due to the ON-OFF periods of the task. Instead,
spontaneous BOLD fluctuations are intrinsically dynamic
over time and thus nonstationary [58]. For this reason,
studying modularity with resting state data will require a
modified dynamical framework to correctly identify stable
ICNss for the declared purposes.

Another relevant issue concerns the modularity prop-
erties used to perform the comparison between the SYNC
metric and Pearson’s correlation index. Indeed, in our anal-
ysis we found both higher modularity and higher consis-
tency of task-related communities in the SYNC matrices.
These features are related to a greater homogeneity of the
functional organization across the subjects in response to the
same task and although they are compatible with behaviors
expected in a healthy cohort, a more rigorous assessment
of the sensitivity of the proposed synchronization metric
should require further analysis. Future studies could employ
alternative topological properties of SYNC networks and
their correlation with task performance or behavioral data to
uncover additional insights into the suitability of the SYNC
index as a functional connectivity metric for fMRI time series.

Finally, our study has focused on an alternative method to
define functional connectivity between pairs of BOLD time
series. Generally, functional connectivity refers to a larger
spectrum of neuroimaging techniques including EEG, MEG,
and NIRS. As discussed above, recurrence plots have been
used to explore dynamical properties of EEG and MEG,
providing interesting features on complex phenomena in
human brain. Although the SYNC metric is extracted from
cross recurrence plots, a separate and accurate analysis may
be needed to assert the validity of the index in a broader
context and extend its use to more functional imaging
techniques.
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7. Conclusion

In this work, a new synchronization-based metric is proposed
to assess functional connectivity in human brain. The metric
is a generalized synchronization measure that takes into
account both the amplitude and phase coupling between
pairs of fMRI series. This method differs from the correlation
measures used in the literature, as it is more sensitive to
nonlinear coupling phenomena between time series and it is
more robust against the physiological noise. In order to probe
these latter two aspects, we performed a modularity analysis
of task-related fMRI networks of a cohort of healthy subjects
built with the new proposed metric. The aim was to verify
whether the new metric was able to return networks whose
functional modules were coherent with the actual organiza-
tion of the brain regions during the task-based activity. We
considered unthresholded complete connectivity matrices to
test the effectiveness of the synchronization against noise
and spurious correlations. Indeed unthresholded networks
have lower signal-to-noise ratio as the most important links
do not stand out among all the weights. By comparing the
networks constructed by means of the proposed metric with
those obtained through Pearson’s coefficient, it seems that
the synchronization metric better reflects the task-related
network structure for number of detected communities, for
the functional organization of the ROIs, and for greater
consistency of communities across the subjects.
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