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Abstract

We compare two Picard groups in dimension one. Our proofs are constructive and the results
generalize a theorem of J. Sands [11].
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Introduction

In [11] J. Sands generalizes a theorem of Siegel [13]. He explains the link between the Picard group of
the integer ring of a number field and that of an order of this number field. He applies his results to
computing bounds on regulators.

We give here an extension of Sands’ results in the case of two integral domains A ⊆ B of dimension
1 when B is finite over A with the same fraction field. Our proof is constructive and gives a possible
algorithm for Computer Algebra (e.g., for computing the Picard group of algebraic curves) when
hypotheses are satisfied in an explicit way.

Let us recall that the conductor c(A,B) of A in B (when A is a subring of B) is an ideal of A and
B defined by:

c(A,B) = {x ∈ A | xB ⊆ A}.

The fact that our theorem replaces the conductor of A in B by a nonzero ideal contained in the
conductor, improves, w.r.t. the original theorem, the possibility of a concrete computation.

In the first section, we give partial results in the case of an arbitrary extension of rings. This gives
as a particular case a construction of Schanuel related to seminormality. The second section is devoted
to reminders concerning the constructive approach of Krull dimension. Section 3 gives the proof of
the main theorem of this paper:

Theorem 7 Let A ⊆ B be two integral domains of dimension 1 with the same fraction field and such
that B is a finitely generated A-module. If f is a nonzero ideal of B contained in the conductor of A
in B, then we have the following exact sequence:

1 −→ U(B)/U(A)
i [b] 7→[b]−−−−−−→ U(B/f)/U(A/f)

j [b] 7→[bA+f]−−−−−−−−→ Pic(A)
π [a] 7→[aB]−−−−−−−→ Pic(B) −→ 1
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Let us recall that this theorem was given by Dedekind [5] in algebraic number theory when B is
the ring of all integers in a number field.

Our proofs are given in the usual style of constructive algebra (cf. [9]). We have no Nœtherian
hypothesis. We use a simple characterization “without prime ideals” of Krull dimension ([2]): this
characterization has already lead to elementary and constructive proofs for some classical results in
commutative algebra that were previously purely ideal theorems (cf. [3, 4, 6, 8]).

Our theorem is new from two points of view. First we don’t use any Nœtherian hypothesis, second
we obtain an algorithm that makes explicit the exactness of the sequence.

Let us insist on the fact that theorems whose hypotheses mention the Krull dimension can have
an algorithmic version only once Krull dimension has became an explicit notion.

Acknowledgments: We are pleased to thank the referee for his careful reading and relevant com-
ments.

1 Exact sequences for groups of invertible modules

We note U(C) the group of invertible elements of an arbitrary ring C.
Let us consider two commutative rings A ⊆ B. We say that a sub-A-module M of B is invertible

if there exists a sub-A-module N of B such that M.N = A. This definition coincides with that of
Bourbaki [1] when B is the localization of A at a multiplicative subset made up of non-zerodivisors.
In this case we get for any sub-A-module M ′ of B that M.M ′ ' M ⊗A M ′ via the canonical homo-
morphism. Indeed, we have x1, . . . , xn in M , y1, . . . , yn in N such that 1 =

∑
i xiyi and xiyj in A. For

any element
∑

k zk ⊗ z′k in M ⊗A M ′, since yizk ∈ N.M = A, we have∑
k

zk ⊗ z′k =
∑
k,i

xiyizk ⊗ z′k =
∑
k,i

xi (yizk)⊗ z′k =
∑
k,i

xi ⊗ (yizk) z′k =
∑

i

xi ⊗
∑

k

yizkz
′
k,

so the canonical surjection M ⊗A M ′ → M.M ′ is injective. Thus invertible modules are rank 1
projective.

We note Minv(A,B) the group of invertible sub-A-modules of B and Ifr(B) the group of invertible
fractionary ideals of B: in other words Ifr(B) = Minv(B,Frac(B)), where Frac(B) is the total fraction
ring of B. We note Pfr(A,B) the sub-group of Minv(A,B) made up of monogeneous sub-A-modules
of B. Finally Pic(A) is the group isomorphism classes of rank 1 projective modules.

1.1 First exact sequence

Let us consider an ideal f of B such that fB ⊆ A, i.e., f ⊆ c(A,B). We define a first exact sequence

1 −→ U(A/f) −→ U(B/f)
j−→Minv(A, B)

• Since f is an ideal of A and B, one has A/f ⊆ B/f. So U(A/f) ⊆ U(B/f). This defines the
(injective) left arrow.

• Let us look at the arrow j. For b ∈ B, let j(b) = bA + f. Up to now j(b) is only a sub-A-module
of B. Clearly j(1) = A, and b1 ≡ b2 (mod f) implies j(b1) = j(b2). Remark that if b1 ∈ B is invertible
modulo f, then b1f + f2 = f (multiplying b1B + f = B by f). For all b2 ∈ B, we get j(b1b2) = j(b1)j(b2)
since

j(b1)j(b2) = b1b2A + b1f + b2f + f2 = b1b2A + (b1B + f)f + b2f = b1b2A + f = j(b1b2).

This allows us to define the arrow j : U(B/f) 7→ Minv(A,B) that sends the class modulo f of an
(invertible modulo f) element b ∈ B to bA+f (this is an invertible A-module because j is multiplicative).
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Remark that j(b)B = B for all b ∈ U(B/f).
In order to show the exactness of the desired sequence, we have to compute ker j. Let b be an

element in B invertible modulo f, such that j(b) = A, i.e., f + bA = A. Then bA ⊆ A, b ∈ A and the
equality f + bA = A says that the element b ∈ A is invertible modulo f.

In the sequel, when b ∈ B we use without more precision the notations b, b̂, b̃ for the image of b in
a set X through some natural map B → X.

The previous result can be rephrased in the following way:

Proposition 1 The map j : U(B/f) →Minv(A,B) defined by j(b) = bA + f induces an isomorphism
from U(B/f)/U(A/f) onto some sub-group of Minv(A,B) made up of invertible A-modules a of B
such that aB = B.

1.2 Second exact sequence

We assume in the sequel that B is integral over A.
The kernel of the homomorphism U(B) → U(B/f)/U(A/f) is equal to U(A) (an element of A

which is invertible in B is invertible in A). This gives the arrow i in “the second exact sequence”:

1 −→ U(B)/U(A)
i−→ U(B/f)/U(A/f)

j−→Minv(A, B)/Pfr(A, B)

Concerning the exactness it remains to compute ker j (we keep the same name j). Let b ∈ B be
a unit modulo f such that j(b) is principal, i.e., bA + f = b′A with b′ ∈ B. Multiplying this equality
by B, one obtains bB + f = b′B, i.e., B = b′B, and so b′ is invertible in B. Multiplying bA + f = b′A
by b′−1 and letting a = bb′−1, one gets aA + f = A so that a ∈ A and is invertible modulo f. Finally
b = i(b̂′) as claimed.

The exactness of the above sequence may be rephrased in the following way.

Proposition 2 We assume that B is integral over A. The map j : U(B/f)/U(A/f) → Minv(A,B)
defined by j(b̃) = bA + f induces an isomorphism of U(B/f)/U(A/f)U(B) onto a sub-group of
Minv(A,B)/Pfr(A,B). In other words, for an element b ∈ B which is invertible modulo f, the sub-A-
module bA + f is principal if and only if there exists u ∈ U(B) such that ub ∈ A.

Let us precise “in other words”: let b ∈ B be an element which is invertible modulo f. Its class is
in U(A/f)U(B) if and only if b = ab′ (mod f) with a ∈ A invertible modulo f and b′ ∈ U(B). In this
case we take u = b′−1. Conversely, if such an u exists, the element a = ub is in A and its class modulo
f is invertible in B/f, and thus invertible in A/f since B/f is integral over A/f.

1.3 Application: seminormality

Let A ⊆ A[α] with α2 and α3 ∈ A. Let B = A[α] = A + αA and f = α2B = α2A + α3A. For any
a ∈ A the element b = 1 + aα is invertible modulo f (its inverse is 1 − αa) and the sub-A-module
j(b) is invertible. By definition j(b) = bA + α2A + α3A is also equal to bA + α2A or bA + α3A (since
α3 = α3b− (aα2)α2 and α2 = α2b− aα3).

Consequently we get a homomorphism ϕ : (A,+) → Pic(A) by composing A → U(B/f), a 7→
1 + aα and j.

Now assume that A[α] is reduced and replace A by A[X], B by B[X] and α by αX. We get
a homomorphism ϕ : (A[X],+) → Pic(A[X]) which maps P ∈ A[X] to the class of M(X) = (1 +
αXP )A[X] + (αX)2A[X] (an A[X]-projective module). According to Proposition 2, this module is
free if and only if there exists V ∈ U(B[X]) such that V (1 + αXP ) ∈ A[X]. Since B is reduced we
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have U(B[X]) = U(B). This gives the condition ∃v ∈ U(B), v + αvXP ∈ A[X], i.e., v ∈ A and
αvP ∈ A[X]. Since v is invertible in B it is invertible in A and the module M(X) is free if and only
if αP ∈ A[X]. In case P = 1 we retrieve “Schanuel’s example”, namely M(0) is free, and M(X) is
extended (i.e., free) if and only if α ∈ A. Concerning this topic see [7] pages 29-30 and 39-40.

2 Reminder about dimension 1 (in constructive mathematics)

One finds a constructive definition of Krull dimension in [2]. Applications of this notion have been
given in [3, 4, 6, 8].

The trivial ring is characterized by dimension −1. Concerning dimensions 0 and 1, one has the
following elementary characterizations.

Lemma 3 (dimensions 0 and 1) Let A be be a commutative ring.

1. The ring A is of dimension ≤ 0 if and only if for all x ∈ A there exist n ∈ N and a ∈ A such
that xn(1 + ax) = 0.

2. The ring A is of dimension ≤ 1 if and only if for all x, y ∈ A there exist m,n ∈ N and a, b ∈ A
such that ym(xn(1 + ax) + by) = 0.

Moreover “usual rings” which are of dimension ≤ 0 or 1 in classical mathematics satisfy in an
explicit way the above elementary characterization.

The following lemma appears with a constructive proof in a slightly more general form in [6]
(Lemma 4.3).

Lemma 4 (avoiding lemma in dimension 1) Let A be an integral domain of dimension ≤ 1. Let a be
an invertible ideal of A and b a nonzero ideal. Then there exists an element u 6= 0 of Frac(A) such
that the ideal u a is integral (i.e., contained in A) and comaximal to b.

The famous “one and a half theorem” is also constructively proven in [6] (Theorem 2.32) in the
following general form.

Theorem 5 (one and a half theorem) Let A be a commutative ring of dimension ≤ 1 and a an
invertible ideal. Let x ∈ a be a non-zerodivisor. Then there exists y ∈ a such that for all n ≥ 1,
a = xna + yA. In particular, a = 〈xn, y〉.

3 An exact sequence for class groups

3.1 Context

Let us consider two integral domains A ⊆ B having the same fraction field.
The conductor c(A,B) of A in B is the annihilator of the A-module B/A, and this is also the

greatest ideal of B contained in A.
We assume moreover that A is a ring of dimension 1 and B is a finitely generated A-module. So

B has dimension 1.
The hypotheses “Frac(A) = Frac(B)” and “B is a finitely generated A-module ” imply that B is a

fractionary ideal of A (consider a finite system of generators of B over A and multiply by a common
A-denominator). In fact, Frac(A) = Frac(B) says that B/A is a torsion A-module and the fact that
B is a finitely generated A-module (equivalenty, B/A is a finitely generated A-module) implies that
its annihilator (i.e., the conductor of A in B) is not reduced to 0.

This context appears in algebraic number theory, namely B is the ring of all integral numbers of a
number field K and A is a number ring in K (i.e., a subring of B which is a Z-module of rank equal
to the dimension of K as a Q-vector space).
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There are other applications of this exact sequence. For example in geometry where rings A and
B are finitely presented k[T ]-algebras (coordinate rings of affine curves). See [10] and the comment of
J.-P. Serre in [12].

In the sequel we consider a nonzero ideal f of B contained in the conductor c(A,B).

3.2 Back to the first exact sequence

We get the following analogue of the first exact sequence (section 1.1):

1 −→ U(A/f) −→ U(B/f)
j−→ Ifr(A)

π−→ Ifr(B)

where π is the canonical map a 7→ aB and j is again defined by b 7→ bA+ f. Proofs of the exactness up
to Ifr(A) are identical to that of section 1.1 and it remains to compute kerπ. Let a be a fractionary
ideal of A such that aB = B. Multiplying this equality by f, we get af = f and so f ⊆ a. By virtue
of Theorem 5, there exists b ∈ a such that bA + f = a. We multiply this equality by B, we get
bB + f = aB = B, b ∈ B and b is invertible modulo f, that is, a = j(b).

This gives the following variant of Proposition 1.

Proposition 6 The map j : U(B/f) → Ifr(A) defined by j(b) = bA + f induces an isomorphism from
U(B/f)/U(A/f) onto the sub-group of Ifr(A) made up of invertible fractionary ideals a of A such that
aB = B.

3.3 The canonical exact sequence

The canonical exact sequence is the following analogue of the second exact sequence (section 1.2):

1 −→ U(B)/U(A) −→ U(B/f)/U(A/f)
j−→ Pic(A)

π−→ Pic(B) −→ 1

Since B is an integral domain, the group Pic(B) is isomorphic to Ifr(B)/Pfr(B). If B is a Prüfer
domain Pic(B) = Ifr(B)/Pfr(B) is the usual class group of finitely generated (fractionary) ideals.

Theorem 7 Let A ⊆ B be two integral domains of dimension 1 with the same fraction field and such
that B is a finitely generated A-module. If f is a nonzero ideal of B contained in the conductor of A
in B, then we have the following exact sequence:

1 −→ U(B)/U(A)
i [b] 7→[b]−−−−−−→ U(B/f)/U(A/f)

j [b] 7→[bA+f]−−−−−−−−→ Pic(A)
π [a] 7→[aB]−−−−−−−→ Pic(B) −→ 1

Proof.
It remains to prove that π is onto. Let b be an invertible fractionary ideal of B. Applying the avoiding
lemma in dimension 1 (Lemma 4), we can assume that b is an integral ideal of B comaximal to f. Let
1 = b + f with b ∈ b, f ∈ f and let us denote b′ = bb−1. We have b ∈ A because f ⊆ A. Moreover b′ is
an integral ideal of B comaximal to f (since 1 = b + f ∈ b′ + f) satisfying bb′ = bB. Let a = b∩A and
a′ = b′∩A, Lemma 8 below implies that aB = b and aa′ = bA. So a is invertible in A and π([a]) = [b].
2

Lemma 8 (avoiding conductor lemma, Dedekind, cf. Sands [11] Theorem 3.1)
Let A ⊆ B be two rings. Let f be an ideal of B contained in c(A,B). Then the two maps a 7→ aB and
b 7→ b ∩ A are reciprocal bijections one of the other. Moreover, they preserve intersection, sum and
product when restricted to integral ideals comaximal to f.
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Proof.
We only show the first item. Let a be an ideal of A such that a + f = A. Then aB ∩ A = a. Indeed,
we have a + f = 1 with a ∈ a and f ∈ f. If a′ ∈ aB ∩ A, then a′ = aa′ + a′f with aa′ ∈ a and
a′f ∈ aBf ⊆ aA = a.
Let b be an ideal of B such that fb + f = B and let us show that (b ∩ A)B = b. We have b + f = 1
with b ∈ b and f ∈ f, thus b ∈ b∩A. If b′ ∈ b, then b′ = bb′ + b′f with bb′ ∈ (b∩A)B and b′f ∈ b∩A.
2
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