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1. Introduction 

The term ‘decoherence’ usually refers to the quantum process that supposedly turns a pure state into a 

mixed state, which is diagonal in a well-defined basis. The orthodox explanation of the phenomenon is 

given by the so-called environment-induced decoherence (EID) approach (Zurek 1982, 1993, 2003; 

Paz and Zurek 2002), according to which decoherence results from the interaction of an open quantum 

system and its environment. By studying different physical models, it is proved that the reduced state 

of the open system rapidly diagonalizes in a basis that identifies the candidates for classical states. By 

contrast to non-dissipative accounts to decoherence, the EID approach is commonly understood as a 

dissipative approach: “if one believes that classicality is really an emergent property of quantum open 

systems one may be tempted to conclude that the existence of emergent classicality will always be 

accompanied by other manifestations of openness such as dissipation of energy into the environment” 

(Paz and Zurek 2002, p.6).  

The EID approach has been extensively applied to many areas of physic with impressive practical 

success. Nevertheless, from a conceptual viewpoint it still faces a difficulty derived from its open-

system perspective: the problem of defining the system that decoheres.  

From the einselection view, the split of the Universe into the degrees of freedom which are of 

direct interest to the observer −the system− and the remaining degrees of freedom −the environment− 

is absolutely essential for decoherence. However, the EID approach offers no general criterion for 

deciding where to place the “cut” between system and environment: the environment may be 

“external” (a bath of particles interacting with the system of interest) or “internal” (such as collections 

of phonons or other internal excitations). This fact often leads to the need of assuming the observables 

that will behave classically in advance. For instance, in cosmology the usual strategy consists in 

splitting the Universe into some degrees of freedom representing the “system”, and the remaining 
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degrees of freedom that are supposed to be non accessible and, therefore, play the role of an internal 

environment (see, e.g., Calzetta et al. 2001). Zurek recognizes this difficulty of his proposal: “In 

particular, one issue which has been often taken for granted is looming big, as a foundation of the 

whole decoherence program. It is the question of what are the ‘systems’ which play such a crucial role 

in all the discussions of the emergent classicality. This issue was raised earlier, but the progress to 

date has been slow at best” (Zurek 1998, p.1820; for a discussion, see Castagnino and Lombardi 

2004). 

The main purpose of this paper is to argue that decoherence is a relative phenomenon, better 

understood from a closed-system perspective according to which the split of a closed quantum system 

into an open subsystem and its environment is just a way of selecting a particular space of relevant 

observables of the whole closed system. In order to support this claim, we shall consider the results 

obtained in a natural generalization of the simple spin-bath model usually studied in the literature 

(Castagnino et al. 2010a). Our main thesis will lead us to two corollaries. First, the “looming big” 

problem of identifying the system that decoheres is actually a pseudo-problem, which vanishes as soon 

as one acknowledges the relative nature of decoherence. Second, the link between decoherence and 

energy dissipation is misguided. As previously pointed out (Schlosshauer 2007), energy dissipation 

and decoherence are different phenomena, and we shall argue for this difference on the basis of the 

relative nature of decoherence. 

 

2. Open-system perspective versus closed-system perspective 

As it is well-known in the discussions about irreversibility, when a −classical or quantum− state 

evolves unitarily, it cannot follow an irreversible evolution. Therefore, if a non-unitary evolution is to 

be accounted for, the maximal information about the system must be split into a discarded irrelevant 

part and a relevant part that may evolve non-unitarily. This idea can be rephrased in operator language. 

Since the maximal information about the system is given by the space O  of all its possible 

observables, then we restrict that information to a relevant part by selecting a subspace R ⊂O O  of 

relevant observables. The irreversible evolution is the non-unitary evolution viewed from the 

perspective of those relevant observables. 

As emphasized by Omnès (2001, 2002), decoherence is a particular irreversible process; then, the 

selection of the subspace R ⊂O O  is required. In fact, the different approaches to decoherence select a 

set of relevant observables in terms of which the time-behavior of the system is described: gross 
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observables (van Kampen 1954), macroscopic observables of the apparatus (Daneri et. al 1962), 

relevant observables (Omnès 1994, 1999), van Hove observables (Castagnino and Lombardi 2005, 

Castagnino 2006). In the case of the EID approach, the selection of RO  requires the partition of the 

whole closed system U  into the open system S  and its environment E  (see Castagnino et al. 2007). 

Let us consider the Hilbert space S E= ⊗H H H  of the closed system U , where SH  and EH  are 

the Hilbert spaces of S  and E  respectively. In the EID approach, the relevant observables are: 

     R S E RO O I= ⊗ ∈ ⊂O O      (1) 

where S S SO ∈ ⊗H H  corresponds to S  and EI  is the identity operator in E E⊗H H . The reduced 

density operator ( )S tρ  of S  is computed by tracing over the environmental degrees of freedom, 

      ( ) ( )S Et Tr tρ = ρ      (2) 

The EID approach adopts an open-system perspective: it concentrates the attention on the open 

subsystem S  and, then, studies the time-evolution of ( )S tρ , governed by an effective non-unitary 

master equation. For many physical models it is proved that, under certain definite conditions, ( )S tρ  

converges to a stable state S*ρ : 

       ( )S S*tρ ⎯⎯→ρ      (3) 

However, the same phenomenon can be viewed from a closed-system perspective, according to which 

the only univocally defined system is the whole closed system, whose physically meaningful 

magnitudes are the expectation values of its observables. In fact, since ( )S tρ  is defined as the density 

operator that yields the correct expectation values for the observables corresponding to the subsystem 

S , 

    ( ) [ ]ρ ρ ρ
= ⊗ = ρ ⊗ = ρ =⎡ ⎤⎣ ⎦ S

R S E S E S S SO O I Tr O I Tr O O   (4) 

the convergence of ( )S tρ  to S*ρ  implies the convergence of the expectation values: 

        ( ) ( ) *S S*
R S S Rt tO O O O

ρ ρρ ρ
= ⎯⎯→ =    (5) 

where *ρ  is a “final” diagonal state of the closed system U , such that S* E *Trρ = ρ  (for details, see 

Castagnino et al. 2008). More precisely, the expectation value ( )R tO
ρ

 can be computed as the sum of 

a term coming from the diagonal part of ( )tρ  and a term coming from the non-diagonal part of ( )tρ : 

in the energy eigenbasis, this second term is what vanishes through the time-evolution, 

   ( ) ( ) ( )
*S S*

d nd d
R S S Rt tO O t O O

ρ ρρ ρ
= = Σ + Σ ⎯⎯→ = = Σ   (6) 
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This means that, although the off-diagonal terms of ( )tρ  never vanish through the unitary evolution: 

the system decoheres from the observational viewpoint given by any observable belonging to the space 

RO . 

From this closed-system perspective, the discrimination between system and environment turns out 

to be the selection of the relevant observables. By following Harshman and Wickramasekara (2007), 

we shall use the expression ‘tensor product structure’ (TPS) to call any factorization A B= ⊗H H H  of 

a Hilbert space H , defined by the set of observables { }
i iA B A BO I ,I O⊗ ⊗ , such that the eigenbases of 

the sets { }
iAO  and { }

iBO  are bases of AH  and BH  respectively. If H  corresponds to a closed system 

U , the TPS A B= ⊗H H H  represents the decomposition of U  into two open systems AS  and BS , 

corresponding to the Hilbert spaces AH  and BH  respectively. In turn, given the space = ⊗O H H  of 

the observables of U , such a decomposition identifies the spaces A A A= ⊗O H H  and B B B= ⊗O H H  

of the observables of the open systems AS  and BS , such that A BI⊗ ⊂O O  and A BI ⊗ ⊂O O . Once 

these concepts are considered, the selection of the space RO  of relevant observables in the EID 

approach amounts to the selection of a particular TPS, S E= ⊗H H H , such that 

R S EI= ⊗ ⊂ = ⊗O O� O H H . 

In this paper we will consider the particular case where the closed system U  is composed of n  

spin-1/2 particles, each represented in its Hilbert space. It is quite clear that U  can be decomposed 

into the subsystems S  and E  in different ways, depending on which particles are considered as the 

open system S . In the following sections we will study the phenomenon of decoherence for different 

partitions of the whole closed system U . 

 

3. The traditional spin-bath model 

This is a very simple model that has been exactly solved in previous papers (Zurek 1982). Here we 

shall consider it from the closed-system perspective presented in the previous section. 

Let us consider a closed system ( )1 2 1
N

N i iU P P P P P P== ∪ ∪ ∪ ∪ = ∪" ∪ , where (i) P  is a spin-

1/2 particle represented in the Hilbert space PH , and (ii) each iP  is a spin-1/2 particle represented in 

its Hilbert space iH . The Hilbert space of the composite system U  is, then, 

            ( )
1

N

P i
i=

⎛ ⎞
= ⊗ ⎜ ⎟

⎝ ⎠
⊗H H H      (7) 
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In the particle P , the two eigenstates of the spin operator P,vS G  in direction v
G

 are ⇑  and ⇓ . In each 

particle iP , the two eigenstates of the spin operator i ,vS G  in direction v
G

 are i↑  and i↓ . Therefore, a 

pure initial state of U  reads 

    ( ) ( )0
1

N

i i i i
i

a b
=

⎛ ⎞
ψ = ⇑ + ⇓ ⊗ α ↑ +β ↓⎜ ⎟

⎝ ⎠
⊗    (8) 

where 2 22 2 1i ia b+ = α + β = . If the self-Hamiltonians PH  of P  and iH  of iP  are taken to be zero, 

and there is no interaction among the iP , then the total Hamiltonian H  of the composite system U  is 

given by the interaction between the particle P  and each particle iP . For instance (see Zurek 1982), 

   ( ) ( )
11

1
2

N N

i i i i i j
ji
j i

H g I
==
≠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ⇑ ⇑ − ⇓ ⇓ ⊗ ↑ ↑ − ↓ ↓ ⊗⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ⊗   (9) 

where j j j j jI = ↑ ↑ + ↓ ↓  is the identity operator on the subspace jH  and the ig  are the 

coupling constants.  

 
3.1. Decomposition 1 

In the typical situation studied by the EID approach, the open system S  is the particle P  and the 

remaining particles iP  play the role of the environment E : S P=  and 1
N
i iE P== ∪ . Then, the TPS for 

this case is 

     ( )
1

N

S E P i
i=

⎛ ⎞
= ⊗ = ⊗⎜ ⎟

⎝ ⎠
⊗H H H H H     (10) 

and the relevant observables RO  of U  are those corresponding to the particle P : 

  ( )
1

N

R S E i
i

O O I s s s s I⇑⇑ ⇑⇓ ⇓⇑ ⇓⇓
=

⎛ ⎞
= ⊗ = ⇑ ⇑ + ⇑ ⇓ + ⇓ ⇑ + ⇓ ⇓ ⊗⎜ ⎟

⎝ ⎠
⊗�  (11) 

The expectation value of these observables in the state ( ) 0
−ψ = ψ iHtt e  is given by (Castagnino et 

al. 2010a) 

   ( ) ( )( ) ( )2 2 2 * d nd
R tO a s b s Re ab s r t t⇑⇑ ⇓⇓ ⇓⇑ψ

= + + = Σ + Σ   (12) 

where 

    ( ) ( ) ( ) ( )2 2

1

i i

N
ig t ig t

i i
i

r t t t e e−
⇓ ⇑

=

= ε ε = α + β∏    (13) 

By means of numerical simulations it is shown that, for 1N >> , in general ( ) 2
0r t →  and, therefore, 

( ) 0nd tΣ → : the particle P  decoheres in interaction with a large environment E  composed by N  

particles iP  (see Schlosshauer 2007; for larger values of N  and realistic values of the ig  in typical 

models of spin interaction, see Castagnino et al. 2010a). 
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3.2. Decomposition 2 

Although in the usual presentations of the model the system of interest is P , there are different ways 

of splitting the whole closed system U . For instance, we can decide to observe a particular particle jP  

of what was previously considered the environment, and to consider the remaining particles as the new 

environment: jS P=  and ( )1
N
i ,i j iE P P= ≠= ∪ ∪ . The total Hilbert space of the closed composite system 

U  is still given by eq.(7), but now the TPS is 

              ( )
1

N

S E j P i
i
i j
=
≠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ⊗ = ⊗ ⊗⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⊗H H H H H H    (14) 

and the relevant observables RO  are those corresponding to the particle jP : 

   ( )
1

N
j j j j j j j j j j j j

R S E P i
i
i j

O O I I I↑↑ ↑↓ ↓↑ ↓↓
=
≠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ⊗ = ζ ↑ ↑ + ζ ↑ ↓ + ζ ↓ ↑ + ζ ↓ ↓ ⊗ ⊗⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⊗�  (15) 

The expectation value of these observables in the state ( )tψ  is given by (Castagnino et al. 2010a) 

        ( ) ( ) ( ) ( )2 2
2 jig tj j * j d nd

R j j j jtO Re e t↑↑ ↓↓ ↓↑ψ
= α ζ + β ζ + α β ζ = Σ + Σ   (16) 

In this case, numerical simulations are not necessary to see that the time-depending term of eq.(16) is 

an oscillating function which, therefore, has no limit for t →∞ . This result is not surprising, but 

completely reasonable from a physical point of view. In fact, with the exception of the particle P , the 

remaining particles of the environment E  are uncoupled to each other: each iP  evolves as a free 

system and, as a consequence, E  is unable to reach a final stable state. 

 

4. A generalized spin-bath model 

Let us consider a closed system U A B= ∪  where: 

(i) The subsystem A  is composed of M  spin-1/2 particles iA , with 1 2i , , ,M= " , each one 

represented in its Hilbert space 
iAH : in each iA , the two eigenstates of the spin operator 

iA ,vS G  in 

direction v
G

 are i⇑  and i⇓ .  

(ii) The subsystem B  is composed of N  spin-1/2 particles kB , with 1 2k , , ,N= " , each one 

represented in its Hilbert space 
kBH : in each kB , the two eigenstates of the spin operator 

kB ,vS G  in 

direction v
G

 are k↑  and k↓ .  

The Hilbert space of the composite system U A B= ∪  is, then, 

     
1 1

i k

M N

A B A B
i k= =

⎛ ⎞ ⎛ ⎞
= ⊗ = ⊗⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⊗ ⊗H H H H H    (17) 
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and a pure initial state of U  reads 

   ( ) ( )0
1 1

M N

A B i i i i k k k k
i k

a b
= =

⎛ ⎞ ⎛ ⎞
ψ = ψ ⊗ ψ = ⇑ + ⇓ ⊗ α ↑ +β ↓⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⊗ ⊗  (18) 

with 2 2 2 2 1i i k ka b+ = α + β = . As in the original spin-bath model, the self-Hamiltonians 
iAH  and 

kBH  are taken to be zero, and there is no interaction among the particles iA  nor among the particles 

kB . As a consequence, the total Hamiltonian A BH H H= ⊗  of the composite system U  is given by  

     ( ) ( )
1 11 1

1
2 j l

M NM N

i i i i A k k k k k B
j li k
j i l k

H I g I
= == =
≠ ≠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= ⇑ ⇑ − ⇓ ⇓ ⊗ ⊗ ↑ ↑ − ↑ ↓ ⊗⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑⊗ ⊗  (19) 

where 
jA j j j jI = ⇑ ⇑ + ⇓ ⇓  and 

lB l l l lI = ↑ ↑ + ↓ ↓  are the identity operators on the 

subspaces 
jAH  and 

lBH  respectively. Let us notice that the eq.(9) of the original model is the 

particular case of eq.(19) for 1M = . 

 

 

 

 

 

 

 

 
 
 
4.1. Decomposition 1 

We can consider the decomposition where A  is the open system S  and B  is the environment E . This 

is a generalization of Decomposition 1 in the traditional spin-bath model: the only difference is that 

here S  is composed of 1M ≥  particles instead of only one. Then, the TPS is 

     
1 1

i k

M N

S E A B
i k= =

⎛ ⎞ ⎛ ⎞
= ⊗ = ⊗⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⊗ ⊗H H H H H    (20) 

and the relevant observables RO  are those corresponding to A : 

             
1

N

R S E A i
i

O O I O I
=

⎛ ⎞
= ⊗ = ⊗⎜ ⎟

⎝ ⎠
⊗�     (21) 

Figure 1. Schema of the interactions among the particles of the open system A (grey 
circles) and of the open system B (white circles): (a) original spin-bath model (M = 1),  
and (b) generalized spin-bath model (M ≠ 1) 
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When the expectation value ( ) ( )d nd
R tO t

ψ
= Σ + Σ  of the observables RO  in the state ( )tψ  is 

computed, two cases can be distinguished: 

 Case (a): M N�  

Numerical simulations show that ( ) 0nd tΣ →  very fast for increasing time (see Figure 2 of 

Castagnino et al. 2010a). This means that, as expected, a small open system S A=  of M  particles 

decoheres in interaction with a large environment E B=  of N M�  particles. 

 Case (b):   or  M N M N� �  

Numerical simulations show that ( )nd tΣ  exhibits an oscillating behavior and, then, it does not 

approach zero for increasing time (see Figures 3 and 4 of Castagnino et al. 2010a). This means that, 

when the environment E B=  of N  particles is not large enough when compared with the open 

system S A=  of M  particles, S  does not decohere. 

 
4.2. Decomposition 2 

In this case we decide to observe only one particle of A . This amounts to splitting the closed system 

U  into two new subsystems: the open system S  is, say, the particle MA  and the environment is 

( ) ( ) ( )1 1
1 1 1

M M N
i i i i k kE A B A B− −
= = == ∪ = ∪∪ ∪ ∪ . Let us notice that the Decomposition 2 of the traditional 

spin-bath model is a particular case of this one, for 1N =  (where N  plays the role of the M  of this 

case). The TPS here is 

    ( )
1

1 1
M i k

M N

S E A A B
i k

−

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⊗ = ⊗ ⊗⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
⊗ ⊗H H H H H H    (22) 

and the relevant observables RO  are those corresponding to MA : 

      
1

1 1
M

M N

R S E A i k
i k

O O I O I I
−

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⊗ = ⊗ ⊗⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
⊗ ⊗�    (23) 

When the expectation value ( ) ( )d nd
R tO t

ψ
= Σ + Σ  is computed, numerical simulations show that, if 

1N � , ( ) 0nd tΣ →  very fast for increasing time (see Figures 5, 6 and 7 of Castagnino et al. 2010a). 

This means that the particle MA  decoheres when 1N � , independently of the value of M . But since 

the particle MA  was arbitrarily selected, the same argument holds for any particle iA  of A . Then, 

when 1N �  and independently of the value of M , any particle iA  decoheres in interaction with its 

environment E  of 1N M+ −  particles. On the other hand, the symmetry of the whole system U  

allows us to draw analogous conclusions when the system S  is one of the particles of B : when 

1M �  and independently of the value of N , any particle kB  decoheres in interaction with its 

environment E  of 1N M+ −  particles. 
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5. Decoherence as a relative phenomenon 

5.1. Analyzing results 

Let us consider the generalized spin-bath model when 1M N� � . In this case, the subsystem 

1
M
i iA A== ∪  does not decohere (Decomposition 1), but the particles iA , considered independently, do 

decohere (Decomposition 2). In other words, in spite of the fact that certain particles decohere and 

may behave classically, the subsystem composed by all of them retains its quantum nature. We have 

also seen that, since 1M � , all the particles kB , considered independently, decohere. Then, in this 

case not only all the iA , but also all the kB  decohere. This means that all the particles of the closed 

system ( ) ( )1 1
M N
i i k kU A B= == ∪∪ ∪  may become classical when considered independently, although the 

whole system U  certainly does not decohere and, therefore, retains its quantum character. 

The fact that certain particles may be classical or quantum depending on how they are considered 

sounds paradoxical in the context of an approach that explains decoherence as the result of an 

interaction between open systems. This difficulty can also be seen as a manifestation of the “looming 

big” problem of defining the open systems involved in decoherence. The irony of this story is that such 

a problem is the consequence of what has been considered to be the main advantage of the 

decoherence program, its open-system perspective, according to which particles interacting with other 

particles are well-defined open systems, and the collections of those particles are open systems too. So, 

the problem is to decide which one of all these open systems is the system S  that decoheres or, in 

other words, where to place the cut between the system S  and its environment E . 

The open-system approach not only leads to the “looming big” problem, but in a certain sense also 

disregards the well-known holism of quantum mechanics: a quantum system in not the mere collection 

of its parts and the interactions among them. In order to retain its holistic nature, a quantum system has 

to be considered as a whole: the open “subsystems” are only partial descriptions of the whole closed 

system. On the basis of this closed-system perspective, we can develop a different conceptual 

viewpoint for understanding decoherence. 

 
5.2. A closed-system perspective 

As we have seen, a TPS expresses the decomposition of the closed system U  into two open 

systems AS  and BS , which amounts to the split of the whole space = ⊗O H H  of the observables of 

U  into the subspaces A A A= ⊗O H H  and B B B= ⊗O H H  such that A B= ⊗O O O .  In particular, the 

total Hamiltonian of U , H ∈O , can be expressed as A B A B ABH H I I H H= ⊗ + ⊗ + , where A AH ∈O  
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is the Hamiltonian of AS , B BH ∈O  is the Hamiltonian of BS , and ABH ∈O  is the interaction 

Hamiltonian, representing the interaction between the open systems AS  and BS . 

In general, a quantum system U  admits a variety of TPSs, that is, of decompositions into AS  and 

BS , each one defined by the space of observables AO  of AS  and BO  of BS  (Harshman and 

Wickramasekara 2007). Among all these possible decompositions, there may be a particular TPS that 

remains dynamically invariant. This is the case when there is no interaction between AS  and BS , 

0ABH = , and, then, 

  [ ] [ ] [ ] [ ]0⊗ ⊗ = ⇒ − = − −A B A B A BH I ,I H exp iHt exp iH t exp iH t   (24) 

Therefore, 

      ( ) ( ) 0 ( ) 0 0( ) ( ) − − −⎡ ⎤ ⎡ ⎤ρ = ρ = ρ = ρ = ρ⎣ ⎦⎣ ⎦
A A A AiHt iHt iH t iH t iH t iH t

A B B B At Tr t Tr e e e Tr e e e  (25) 

      ( ) ( ) 0 ( ) 0 0( ) ( ) − − −⎡ ⎤ ⎡ ⎤ρ = ρ = ρ = ρ = ρ⎣ ⎦⎣ ⎦
B B B BiHt iHt iH t iH t iH t iH t

B A A A Bt Tr t Tr e e e Tr e e e  (26) 

This means that, even if the initial state 0ρ  of U  is an entangled state with respect to the TPS 

A B= ⊗H H H , AS  and BS  are dynamically independent: each one evolves unitarily under the action 

of its own Hamiltonian. As a consequence, the subsystems AS  and BS  resulting from this particular 

TPS do not decohere. 

Once we have excluded the dynamically invariant TPS, all the remaining TPSs of U  define 

subsystems AS  and BS  such that 0ABH ≠ . As a result of the interaction, AS  and BS  evolve non-

unitarily; then, depending on the particular ABH , they may decohere. But the point to stress here is that 

there is no privileged non-dynamically invariant decomposition of U : each partition of the closed 

system into AS  and BS  is just a way of selecting the spaces of observables AO  and BO . 

When we adopt this closed-system perspective, it turns out to be clear that there is no essential 

criterion for identifying the “open system” and its “environment”. Given the closed system U , that 

identification requires two steps: (i) to select a TPS A B= ⊗H H H  such that A BU S S= ∪ , and (ii) to 

decide that one of the systems resulting from the decomposition, say AS , is the open system S , and 

the other, BS , is the environment E . Since the TPS is defined by the spaces of observables AO  and 

BO , the decomposition of U  is just the adoption of a descriptive perspective: the identification of S  

and E  amounts to the selection of the relevant observables in each situation. But since the split can be 

performed in many ways, with no privileged decomposition, there is no need of an unequivocal 

criterion for deciding where to place the cut between “the” system and “the” environment. 

Decoherence is not a yes-or-not process, but a phenomenon relative to the chosen decomposition of 

the whole closed quantum system. When viewed from this closed-system perspective, Zurek’s 
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“looming big problem” is not a real threat to the decoherence program: the supposed challenge 

dissolves once the relative nature of decoherence is taken into account. 

From this perspective, the perplexities derived from the generalized spin-bath model vanish. In 

fact, when we consider the whole closed system U , there is no difficulty in saying that from the 

viewpoint of the space of observables, say, 
1AO  (corresponding to the particle 1A ) there is 

decoherence, but from the viewpoint of the space of observables AO  (corresponding to the open 

subsystem 1
M
i iA A== ∪ ) there is no decoherence. Moreover, even if there is decoherence from the 

viewpoint of all the 
iAO , this does not imply decoherence from the viewpoint of AO  since, as it is 

well-known, AO  is not the mere union of the ( )1i

M
A jj , j iI= ≠⊗ ⊗O . In other words, in agreement with 

quantum holism, the open subsystem A  is not the mere collection of the particles iA ; then, it is 

reasonable to expect that the behavior of A  cannot be inferred from the behavior of all the iA . In the 

same sense, it is not surprising that there is no decoherence from the viewpoint of the total space of 

observables O  of U , in spite of the fact that there is decoherence from the viewpoint of anyone of the 

iAO  and 
kBO , corresponding to the particles iA  and kB  respectively. And since the privileged 

viewpoint does not exist, the conclusions about decoherence have to be relativized to the particular 

observational perspective selected in each case. 

 
5.3. Decoherence and dissipation 

As pointed out in the Introduction, certain presentations of the EID approach suggest the existence 

of a certain relationship between decoherence and dissipation, as if decoherence were a physical 

consequence of energy dissipation. Some particular models studied in the literature on the subject tend 

to reinforce this idea by describing the behavior of a small open system −typically, a particle− 

immersed in a large environmental bath. On this basis, the EID approach has been considered a 

“dissipative” approach, by contrast to “non-dissipative” accounts of decoherence that constitute the 

“heterodoxy” in the field (see Bonifacio et al. 2000, Ford and O’Connell 2001, Frasca 2003, Sicardi 

Shifino et al. 2003, Gambini et al. 2006). 

The fact that energy dissipation is not a condition for decoherence has been clearly stressed by 

Schlosshauer (2007), who says that “decoherence may, but does not have to, be accompanied by 

dissipation, whereas the presence of dissipation also implies the occurrence of decoherence” (p.93). 

This fact is explained by stressing that the loss of energy from the system is a classical effect, leading 

to thermal equilibrium in the relaxation time, whereas decoherence is a pure quantum effect that takes 

place in the decoherence time, many orders of magnitude shorter than the relaxation time: “If 
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dissipation and decoherence are both present, they are usually quite easily distinguished because of 

their very different timescales” (Schlosshauer 2007, p.93). According to the author, it is this crucial 

difference between relaxation and decoherence timescales what explains why we observe macroscopic 

objects to follow Newtonian trajectories −effectively “created” through the action of decoherence− 

with no manifestation of energy dissipation, such as a slowing-down of the object. Schlosshauer 

recalls an example used by Joos (Joos et al. 1996): the planet Jupiter has been revolving around the 

sun on a Newtonian trajectory for billions of years, while its motional state has remained virtually 

unaffected by any dissipative loss. 

This explanation, although correctly stressing the difference between decoherence and dissipation, 

seems to present both phenomena on the same footing: an open system would first become classical 

through decoherence, and would then relax due to energy dissipation. According to this picture, 

whereas dissipation involves the loss of energy from the system to the environment, decoherence 

amounts to a sort of “dissipation” of coherence which leads the open system, in a very short time, to 

the classical regime: the environment plays the role of a “sink” that carries away the information about 

the system (Schlosshauer 2007, p.85). The results obtained in the generalized spin-bath model show 

that the coherence-dissipation or information-dissipation picture has to be considered with great 

caution, as a mere metaphor. In fact, to the extent that decoherence is a relative phenomenon, no flow 

of a non-relative quantity from the open system to the environment can account for decoherence. In 

particular, although energy dissipation and decoherence are in general easily distinguished because of 

their different timescales, the very reason for their difference is that energy dissipation is not a relative 

phenomenon, whereas decoherence is relative to the observational partition of the whole closed system 

selected in each situation. On the other hand, decoherence can be explained in terms of the flow of 

information from the open system to the environment if information is also conceived as a relative 

magnitude (Lombardi 2004, 2005). 

 

6. Conclusions 

The aim of this paper has been to argue that environment-induced decoherence can be viewed from a 

closed-system perspective, which improves the understanding of the phenomenon. For this purpose, 

we have analyzed the results obtained in the traditional spin-bath model and in a generalization of that 

model.  By considering different partitions of the whole closed system in both cases, we have shown 

how decoherence depends on the way in which the relevant observables are selected. On this basis, the 

following conclusions can be drawn: 



 13

(i) Decoherence is a phenomenon relative to which degrees of freedom of the whole closed system 

are considered relevant and which are disregarded in each situation. 

(ii) Since there is no privileged or essential decomposition of the closed system, there is no need of an 

unequivocal criterion for identifying the systems involved in decoherence. Therefore, the 

“looming big problem” −which, according to Zurek, poses a serious threat to the whole 

decoherence program− dissolves in the light of the relativity of decoherence. 

(iii) Due to its relative nature, decoherence cannot be accounted for in terms of dissipation of energy 

or of any other non-relative magnitude. 

Once the phenomenon of decoherence is “de-substantialized” in this way, one might ask in what 

sense it can be still understood as the result of the action of an environment that destroys the coherence 

between the states of a quantum system by its incessant “monitoring” of the observables associated 

with the preferred states (Paz and Zurek 2002, Zurek 2003). One might consider whether it is not time 

to leave aside the picture according to which it is the environment what “distills” the classical essence 

from quantum systems (Castagnino et al. 2010b).  
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