Skip to main content
Log in

What is Shannon information?

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Despite of its formal precision and its great many applications, Shannon’s theory still offers an active terrain of debate when the interpretation of its main concepts is the task at issue. In this article we try to analyze certain points that still remain obscure or matter of discussion, and whose elucidation contribute to the assessment of the different interpretative proposals about the concept of information. In particular, we argue for a pluralist position, according to which the different views about information are no longer rival, but different interpretations of a single formal concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we are considering the discrete case, but all the definitions can be extended to the continuous case (see, e.g., Cover and Thomas 1991).

  2. We are grateful to one of the anonymous referees for pointing out this interesting issue.

  3. We are grateful to one of the anonymous referees for urging us to consider the possible ways in which the strategy of defining Shannon information via the coding theorems can be retained.

  4. We are grateful to one of the anonymous referees for his suggestion of considering the relationship between Shannon entropy and algorithmic complexity.

  5. In his book of 2013, Timpson talks about information not being a “common-or-garden” referring term (p. 83). Perhaps here he tries to moderate his earlier claims about the non-referring nature of the term ‘information.’ We are grateful to one of the anonymous referees for making us notice this point.

  6. We are grateful to one of the anonymous referees for suggesting the discussion of this point.

  7. We want to thank again one of the anonymous referees for urging us to stress this point.

References

  • Adriaans, P. (2013). Information. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Fall 2013 Edition. http://plato.stanford.edu/archives/fall2013/entries/information/.

  • Adriaans, P., & van Benthem, J. (Eds.). (2008). Handbook of philosophy of information. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Bar-Hillel, Y. (1964). Language and information: Selected essays on their theory and application. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Bar-Hillel, Y., & Carnap, R. (1953). Semantic information. The British Journal for the Philosophy of Science, 4, 147–157.

    Article  Google Scholar 

  • Barwise, J., & Seligman, J. (1997). Information flow. The logic of distributed systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bell, D. (1957). Information theory and its engineering applications. London: Pitman and Sons.

    Google Scholar 

  • Bergstrom, C., & Lachmann, M. (2004). Shannon information and biological fitness. In Proceedings of the IEEE Information Theory Workshop (pp. 50–54). New Jersey.

  • Bergstrom, C., & Rosvall, M. (2011). The transmission sense of information. Biology and Philosophy, 26, 159–176.

    Article  Google Scholar 

  • Brown, H. (1987). Observation and objectivity. Oxford: Oxford University Press.

    Google Scholar 

  • Brukner, Č., & Zeilinger, A. (2001). Conceptual inadequacy of the Shannon information in quantum measurements. Physical Review A: Atomic, Molecular and Optical Physics, 63, #022113.

    Article  Google Scholar 

  • Brukner, Č., & Zeilinger, A. (2009). Information invariance and quantum probabilities. Foundations of Physics, 39, 677–689.

    Article  Google Scholar 

  • Bub, J. (2007). Quantum information and computation. In J. Butterfield & J. Earman (Eds.), Philosophy of Physics (pp. 555–660). Elsevier: Amsterdam.

    Chapter  Google Scholar 

  • Castañeda, H.-N. (1984). Causes, causity, and energy. In P. French, T. Uehling Jr, & H. Wettstein (Eds.), Midwest studies in philosophy IX (pp. 17–27). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Caves, C. M., & Fuchs, C. A. (1996). Quantum information: How much information in a state vector? In A. Mann & M. Revzen (Eds.), The dilemma of Einstein, Podolsky and Rosen—60 Years later. Annals of the Israel Physical Society, 12, 226–257 (see also quant-ph/9601025).

  • Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Unknown quantum states: The quantum de Finetti representation. Journal of Mathematical Physics, 43, 4537–4559.

    Article  Google Scholar 

  • Chaitin, G. (1966). On the length of programs for computing binary sequences. Journal of the Association for Computing Machinery, 13, 547–569.

    Article  Google Scholar 

  • Cover, T., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.

    Book  Google Scholar 

  • Deutsch, D., & Hayden, P. (2000). Information flow in entangled quantum systems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 456, 1759–1774.

    Article  Google Scholar 

  • Dowe, P. (1992). Wesley Salmon’s process theory of causality and the conserved quantity theory. Philosophy of Science, 59, 195–216.

    Article  Google Scholar 

  • Dretske, F. (1981). Knowledge & the flow of information. Cambridge, MA: MIT Press.

    Google Scholar 

  • Dunn, J. M. (2001). The concept of information and the development of modern logic. In W. Stelzner (Ed.), Non-classical approaches in the transition from traditional to modern logic (pp. 423–427). Berlin: de Gruyter.

    Google Scholar 

  • Duwell, A. (2003). Quantum information does not exist. Studies in History and Philosophy of Modern Physics, 34, 479–499.

    Article  Google Scholar 

  • Duwell, A. (2008). Quantum information does exist. Studies in History and Philosophy of Modern Physics, 39, 195–216.

    Article  Google Scholar 

  • Ehring, D. (1986). The transference theory of causality. Synthese, 67, 249–258.

    Article  Google Scholar 

  • Fabris, F. (2009). Shannon information theory and molecular biology. Journal of Interdisciplinary Mathematics, 12, 41–87.

    Article  Google Scholar 

  • Fair, D. (1979). Causation and the flow of energy. Erkenntnis, 14, 219–250.

    Article  Google Scholar 

  • Fisher, R. (1925). Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society, 22, 700–725.

    Article  Google Scholar 

  • Floridi, L. (2010). Information—A very short introduction. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Floridi, L. (2013). Semantic conceptions of information. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Spring 2013 Edition. http://plato.stanford.edu/archives/spr2013/entries/information-semantic/.

  • Frigg, R. (2008). A field guide to recent work on the foundations of statistical mechanics. In D. Rickles (Ed.), The Ashgate companion to contemporary philosophy of physics (pp. 99–196). London: Ashgate.

    Google Scholar 

  • Glander, T. (2000). Origins of mass communications research during the American Cold War: Educational effects and contemporary implications. New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Hartley, R. (1928). Transmission of information. Bell System Technical Journal, 7, 535–563.

    Article  Google Scholar 

  • Hoel, E., Albantakis, L., & Tononi, G. (2013). Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences of USA, 110, 19790–19795.

    Article  Google Scholar 

  • Jammer, M. (1974). The philosophy of quantum mechanics. New York: Wiley.

    Google Scholar 

  • Jozsa, R. (1998). Entanglement and quantum computation. In S. Huggett, L. Mason, K. P. Tod, S. T. Tsou, & N. M. J. Woodhouse (Eds.), The geometric universe (pp. 369–379). Oxford: Oxford University Press.

    Google Scholar 

  • Jozsa, R. (2004). Illustrating the concept of quantum information. IBM Journal of Research and Development, 4, 79–85.

    Article  Google Scholar 

  • Kahn, D. (1967). The codebreakers—The story of secret writing. New York: Macmillan.

    Google Scholar 

  • Kay, L. (2000). Who wrote the book of life? A history of the genetic code. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Khinchin, A. (1957). Mathematical foundations of information theory. New York: Dover.

    Google Scholar 

  • Kim, Y.-S., Lee, J.-C., Kwon, O., & Kim, Y.-H. (2012). Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Physics, 8, 117–120.

    Article  Google Scholar 

  • Kistler, M. (1998). Reducing causality to transmission. Erkenntnis, 48, 1–24.

    Article  Google Scholar 

  • Kolmogorov, A. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 4–7.

    Google Scholar 

  • Kolmogorov, A. (1968). Logical basis for information theory and probability theory. Transactions on Information Theory, 14, 662–664.

    Article  Google Scholar 

  • Kolmogorov, A. (1983). Combinatorial foundations of information theory and the calculus of probabilities. Russian Mathematical Surveys, 38, 29–40.

    Article  Google Scholar 

  • Kosso, P. (1989). Observability and observation in physical science. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Landauer, R. (1991). Information is physical. Physics Today, 44, 23–29.

    Article  Google Scholar 

  • Landauer, R. (1996). The physical nature of information. Physics Letters A, 217, 188–193.

    Article  Google Scholar 

  • Lean, O. (2013). Getting the most out of Shannon information. Biology and Philosophy, 29, 395–413.

    Article  Google Scholar 

  • Lombardi, O. (2004). What is information? Foundations of Science, 9, 105–134.

    Article  Google Scholar 

  • Lombardi, O. (2005). Dretske, Shannon’s theory and the interpretation of information. Synthese, 144, 23–39.

    Article  Google Scholar 

  • Lombardi, O., Fortin, S., & López, C. (2014a). Deflating the deflationary view of information. PhilSci-Archive, ID: 10910.

  • Lombardi, O., Fortin, S., & Vanni, L. (2014b). A pluralist view about information. Philosophy of Science (forthcoming).

  • Lombardi, O., Holik, F., & Vanni, L. (2014c). What is quantum information? PhilSci-Archive, ID: 11159.

  • Lombardi, O., & Labarca, M. (2005). Los Enfoques de Boltzmann y Gibbs frente al Rroblema de la Irreversibilidad. Critica, 37, 39–81.

    Google Scholar 

  • MacKay, D. (1969). Information, mechanism and meaning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Magurran, A. (2004). Measuring biological diversity. Oxford: Blackwell Publishing.

    Google Scholar 

  • Menzies, P., & Price, H. (1993). Causation as a secondary quality. British Journal for the Philosophy of Science, 44, 187–203.

    Article  Google Scholar 

  • Nauta, D. (1972). The meaning of information. The Hague: Mouton.

    Google Scholar 

  • Penrose, R. (1998). Quantum computation, entanglement and state reduction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 356, 1927–1939.

    Article  Google Scholar 

  • Price, H. (1991). Agency and probabilistic causality. British Journal for the Philosophy of Science, 42, 157–176.

    Article  Google Scholar 

  • Reza, F. (1961). Introduction to information theory. New York: McGraw-Hill.

    Google Scholar 

  • Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35, 1637–1678.

    Article  Google Scholar 

  • Russell, B. (1948). Human knowledge: Its scope and limits. New York: Simon and Schuster.

    Google Scholar 

  • Sarkar, S. (2005). How genes encode information for phenotypic traits. In S. Sarkar (Ed.), Molecular models of life. Philosophical papers on molecular biology (pp. 261–283). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Schumacher, B. (1995). Quantum coding. Physical Review A: Atomic, Molecular and Optical Physics, 51, 2738–2747.

    Article  Google Scholar 

  • Shannon, C. (1948). The mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  Google Scholar 

  • Shannon, C. (1993). In N. Sloane & A. Wyner (Eds.), Collected papers. New York: IEEE Press.

  • Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Chicago: University of Illinois Press.

    Google Scholar 

  • Shapere, D. (1982). The concept of observation in science and philosophy. Philosophy of Science, 49, 485–525.

    Article  Google Scholar 

  • Solomonoff, R. (1964). A formal theory of inductive inference. Information and Control, 7(1–22), 224–254.

    Article  Google Scholar 

  • Stonier, T. (1990). Information and the internal structure of the universe: An exploration into information physics. New York: Springer.

    Book  Google Scholar 

  • Stonier, T. (1996). Information as a basic property of the universe. Biosystems, 38, 135–140.

    Article  Google Scholar 

  • Timpson, C. (2003). On a supposed conceptual inadequacy of the Shannon information in quantum mechanics. Studies in History and Philosophy of Modern Physics, 34, 441–468.

    Article  Google Scholar 

  • Timpson, C. (2004). Quantum information theory and the foundations of quantum mechanics. PhD Dissertation, University of Oxford (quant-ph/0412063).

  • Timpson, C. (2006). The grammar of teleportation. The British Journal for the Philosophy of Science, 57, 587–621.

    Article  Google Scholar 

  • Timpson, C. (2008). Philosophical aspects of quantum information theory. In D. Rickles (Ed.), The Ashgate companion to the new philosophy of physics (pp. 197–261). Aldershot: Ashgate Publishing (page numbers are taken from the online version). arXiv:quant-ph/0611187.

  • Timpson, C. (2013). Quantum information theory and the foundations of quantum mechanics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Tribus, M., & McIrving, E. C. (1971). Energy and information. Scientific American, 225, 179–188.

    Article  Google Scholar 

  • Wetzel, L. (2011). Types and tokens. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Spring 2011 Edition. http://plato.stanford.edu/archives/spr2014/entries/types-tokens/.

  • Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.

    Google Scholar 

  • Woodward, J. (2013). Causation and manipulability.’ In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Spring 2011 Edition. http://plato.stanford.edu/archives/win2013/entries/causation-mani/.

  • Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29, 631–643.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the participants of the workshop What is quantum information?, Jeffrey Bub, Adán Cabello, Dennis Dieks, Armond Duwell, Christopher Fuchs, Robert Spekkens and Christopher Timpson, (Buenos Aires, May of 2015) for the stimulating and lively discussions about the concept of information. We are also grateful to the anonymous referees, who devoted considerable effort to discuss the previous version of this article. We also want to thank María José Ferreira Ruiz for her support regarding the question of information in biology. This paper was partially supported by a Large Grant of the Foundational Questions Institute (FQXi), and by a Grant of the National Council of Scientific and Technological Research (CONICET) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardi, O., Holik, F. & Vanni, L. What is Shannon information?. Synthese 193, 1983–2012 (2016). https://doi.org/10.1007/s11229-015-0824-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-015-0824-z

Keywords

Navigation