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 The Journal of Symbolic Logic

 Volume 71, Number 4, Dec. 2006

 DIAGONAL ACTIONS AND BOREL EQUIVALENCE RELATIONS

 LONGYUN DING AND SU GAO

 Abstract. We investigate diagonal actions of Polish groups and the related intersection operator on

 closed subgroups of the acting group. The Borelness of the diagonal orbit equivalence relation is char
 acterized and is shown to be connected with the Borelness of the intersection operator. We also consider

 relatively tame Polish groups and give a characterization of them in the class of countable products of

 countable abelian groups. Finally an example of a logic action is considered and its complexity in the Borel
 reducbility hierarchy determined.

 ?1. Introduction. We are interested in the following question in the descriptive
 set theory of Polish group actions:

 Let G be a Polish group and X, Y be Borel G-spaces with the orbit
 equivalence relations Eq and Eq Borel. Consider the diagonal action
 ofGonlx Y:

 g (x>y) = (g*x,g- y).
 When is E*xY Borel?

 The question appeals to us for various reasons. On the one hand, it is fundamental
 and simple, but the solution seems to be non-trivial. On the other hand, it has
 potential applications to important classification problems such as that of bounded
 linear operators of the separable Hilbert space. In fact, if we denote by Uoq the
 group of all unitary operators on a separable Hilbert space, it is well known that the
 classification problem for all bounded linear operators is equivalent to finding the
 complexity for the orbit equivalence relation of the diagonal conjugacy action of
 C/oo on Uoo x C/oo (cf., e.g., Introduction of [7]). The Borelness of this equivalence
 relation is still open.

 Borelness of orbit equivalence relations has been one of the main focuses of
 investigation in the descriptive set theory of Polish group actions (cf. [6, 1, 8]).
 One of the first characterizations used a uniform bound on the Borel complexity of
 orbits (when the space is Polish) and was due to Sami.

 Theorem 1.1 (Sami [6]). Let G be a Polish group acting in a Borel manner on a
 Polish space X. Then Eq is Borel iff there is a < co\ such that every orbit is 11^.

 Becker and Kechris considered the stabilizer groups of the actions and charac
 terized the Borelness of the orbit equivalence relation by the stabilizer map.
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 1082  LONGYUN DING AND SU GAO

 Theorem 1.2 (Becker-Kechris [1]). Let G be a Polish group and X a Borel G-space.
 Then the following are equivalent:

 (i) Eq is Borel.
 (ii) The map

 X ->^(G0
 x ^ Gx = {g e G : g x = x}

 is Borel.

 (iii) The map

 XxX^^(G)
 (x, u) ^ Gxu = {g e G: g -x ^u}

 is Borel.

 Both these theorems will play a central role in our study below. For the diagonal
 action of G on X x Y, the stabilizer is simply

 G{x,y) = Gx H Gj,.

 Thus to guarantee Borelness of E*xY under our hypothesis that 2s? and E% are
 Borel, an immediate sufficient condition is the Borelness of the intersection operator
 on^{G).

 In this article we give some characterizations for the Borelness ofEgX Y and also
 for the Borelness of the intersection operator on closed subgroups of G. We call
 a group G relatively tame if the intersection operator on its closed subgroups is
 Borel. Then we will investigate the notion of relative tameness and characterize
 them completely within a class of Polish groups. In fact, the class of Polish groups
 we will consider is that of all countable products of countable abelian groups, as
 considered in [8]. In [8] Solecki has characterized the tame groups within this class.

 We will show that a group in this class is relatively tame if and only if it is tame.
 The article is organized as follows. In section 2 we recall some basic notation and

 define some other notation to be used throughout the rest of the article. In section 3
 we give characterizations for the Borelness of the diagonal orbit equivalence relation.
 In section 4 we give the characterizations for the Borelness of the intersection
 operator. In section 5 we consider countable products of countable abelian groups
 and characterize relative tame groups of this form. In section 6 we consider some
 specific examples of diagonal actions by the permuation group S^ and completely
 characterize the complexity of these equivalence relations.

 Acknowledgement. We thank G. Hjorth and A. S. Kechris for helpful discussions
 on the subject of this article. This article was written during the first author's visit
 to the University of North Texas. He would like to thank UNT for the hospitality.

 ?2. Basic notation. Let G be a Polish group and X a Polish or standard Borel
 space. An action of G on X is a function

 a: G xX ->X

 satisfying, for all g, h e Gandx e X, a(g,a(h,x)) = a(gh, x) &nda(lG,x) = x,
 where 1^ is the identity element of G. We say that G acts on X in a Borel manner or
 that the action is Borel if a is a Borel function. In case X is a standard Borel space
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 DIAGONAL ACTIONS AND BOREL EQUIVALENCE RELATIONS 1083

 on which G acts in a Borel manner, we say that X is a Borel G-space. When there
 is no danger of ambiguity we also write g x for a (g, x).

 Let X be a Borel G-space. The orbit equivalence relation, denoted by Eq, is an
 equivalence relation on X defined by

 x\EqX2 <=> 3g G G (g x\ = x2)

 for xi, *2 G X. When there is no danger of confusion we will write Ex instead of
 Eq, especially when the acting group G is uniquely determined from the context.

 If X and Y are both Borel G-spaces, then the diagonal action of G on X x Y is
 defined by

 g'(x,y) = ig'X,g-y)
 for x e X and y G Y. Unless we specify otherwise this will be the standard action
 of G on the product space X x Y. We also follow a similar convention for products
 with more than two factors.

 If X is a Polish space the Effros Borel space SF{X) is defined as the space of all
 closed subsets of X with the Borel structure generated by sets of the form

 {F e&-(x):Fnu^i?}
 for U an open subset of X. Basic properties of the Effros Borel space can be found
 in [4] ?12.C. Here we only recall that &{X) is a standard Borel space and the
 following selection theorem due to Kuratowski-Ryll-Nardzewski.

 Theorem 2.1 (Kuratowski-Ryll-Nardzewski). Let X be a Polish space. Then there
 is a Borel function s : ^(X) ?> X such that for non-empty F G ^(X), s (F) G F.

 We call the above function s a Borel selector for ^(X).
 In fact we will be mostly considering the Effros Borel space ^(G) for a Polish

 group G. In this context we also define the following subclasses of & ( G ). Let &(G)
 denote the collection of all closed subgroups of G. Then 2?(G) is a Borel subset
 of ^(G). To see this, let Se be a countable basis for the topology of G. Then for
 F e9r{G),F e&(G)ii?

 VU G SB(lG G ?/ => F H ?/ ^ 0) A V?7 G SB(F H U ? 0 O F n U~l ? 0)

 A VI7, V G #[(F nl/^0AFnK^0)->Fnl7K^0].
 Thus ^(G) is a standard Borel space with the Borel structure inherited from that
 of^(G).

 Let W(G) denote the collection of all cosets of closed subgroups of G, i.e., sets of
 the form gH where g ? G and H G ^(G). To see that ^(G) is also a Borel subset
 of ^(G), we recall the following theorem of Dixmier (cf. [1] Theorem 1.2.4).

 Theorem 2.2 (Dixmier). Let G be a Polish group. Then there is a Borel set Tl c
 Gx&(G) such that for any H G 9{G)9 TlH = {g G G : (g, H) G T1} is a transversal
 for the left-cosets of H, i.e., TlH contains exactly one element of each left-coset ofH.

 Now the map o : Tl ?> ^(G) defined by a(g, H) = g H is a Borel injection with
 range W(G). Hence ^(G) is Borel in &(G) and also a standard Borel space with
 the inherited Borel structure.
 We remark that Dixmier's theorem can also be used to obtain a Borel set Tr for

 the right-cosets of closed subgroups in G.
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 1084  LONGYUN DING AND SU GAO

 Let G be a Polish group and X be a Borel G-space. For each x G X, the stabilizer
 is defined as

 Gx = {g e G: g -x = x}.

 Each Gx is a closed subgroup of G. The stabilizer map is the map x i?> Gx from
 X into ^(G). Part (ii) of Becker-Kechris theorem states that E* is Borel iff the
 stabilizer map is Borel. For x, u G X, we also denote

 Gxu = {g e G: g x = u}.
 Each Gxu is an element of W(G). We will use the following notation:

 SX{G) = {Gx: x G X} andyx(G) = {Gxy. x,u G X}.

 In general <?*(?) is a E} subset of ^(G) and FX(G) is a E} subset of ^(G). The
 following diagram summarizes their relationship:

 SX(G) ? 9(G) ?
 n n &(g)

 fx{g) ? <g(G) U
 A final piece of notation: we let JV denote the Baire space NN.

 ?3. Products of stabilizers. In this section we consider the diagonal action of G
 on a product X x Y and characterize the Borelness of the orbit equivalence relation
 on an invariant Borel subset Z ? X x Y.

 Theorem 3.1. Let G be a Polish group, X and Y be Borel G-spaces with Ex
 and EY Borel, and Z ? X x Y an invariant Borel subset. Then the following are
 equivalent:

 (i) Ez is Borel.
 (ii) {{gh, x,y): g G Gx,h G Gy, (x, y) G Z} is Borel.
 (iii) There is a < co\ so that for any (x,y) G Z, GxGy isllj.

 Proof. (i)=>(ii). By the Becker-Kechris theorem cited in the Introduction, the
 maps x i?> Gx from X to &(G), y h-> Gy from 7 to ^(G) and (x, y) i-> ?(X)j;) from
 Z to ^(G) are Borel. Let T7 and Tr be Borel subsets o? G x 9(G) giving Borel
 transversals for left- and right-cosets, respectively, by Dixmier's theorem. Now
 define D ? G3 x X x Y as follows:

 (g, U,xj)eD^(xj)GZA^ G^y) A g G G* A (g, G(jcj0) G T7
 Ahe GyA(h,GM) G Tr.

 Thenlet/: D^GxX x F be
 f{g,h,k,x,y) = (gkh,x,y).

 Then it is easy to check that / is continuous and one-to-one. Note that the range
 of/ is exactly {(gh,x,y): g G Gx,h G Gy, (x,y) G Z}, which is Borel being an
 injective image of a Borel map.
 (ii)=>(iii) is trivial.
 (iii)=>(i). Again by the Becker-Kechris theorem, the maps (x,u) i-> Gxu from

 X2 into ^(G) and(y,v) ^ Gy,v from 72 to &(G) are Borel. Let 5bea Borel
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 selector of SF{G). Define tx{x, u) = s(Gx,u) for x, u G X. Then zx is Borel and
 Gxu = tx(x> u)Gx. Similarly define Ty (j/, v) = s(Gy}V) for y, v G 7.

 Now for any x, u G X, y, v G F we have

 G (x, y) = G (w, v) <<=> 3gGG(g-jc = wAg-j = ?;)
 <^> GXM n Gy,v ^ 0

 ?=> zx(x,u)GxnTY(y,v)Gy^^
 <^> T^(x,w)~1Tr(j,'?;) G G^G-^.

 Now fix Polish topologies on X, Y and Z so that the topology on Z is finer
 than the subspace topology on it inherited from the product space X x Y (cf., e.g.,
 Theorem 13.1 in [4]). Assume that %x and ty are of Baire class ?; for ? < ca?. Then
 for any (x, j) G Z, the orbit is characterized as

 G (x,j) = {(m,v): TX(x,u)~lzY(y,v) G G^}

 and is n^+a by our assumption. By Sami's theorem Ez is Borel. H
 Clause (iii) of this theorem is particularly interesting: it reduces the question of

 Borelness of the diagonal orbit equivalence relation to questions about the collection
 SX(G). The following corollary is immediate.

 Corollary 3.2. Let Xi,X2,Yu Y2 be Borel G-spaces with EXl ,EX\EY\E Yl all
 Borel Assume thatSx"[G) ? <SX*(G),<SY*{G) ? <SY*(G). If EX^Y^ is Borel, so is
 EXX x YX m

 A curious question at this point is whether there is a version of Theorem 3.1 for
 finite products with more than two factors. We do not know the answer.

 Next we characterize subsets of &(G) that can arise as SX(G) for some Borel
 G-space X on which Ex is Borel. As we remarked before, SX(G) is in general L}.
 Recall that a subset S ? &(G) is said to be closed under conjugation if for g G G
 and H eS we have gHg~l G S. SX(G) is always closed under conjugation.

 Theorem 3.3. Let S ? ^(G). Then the following are equivalent:

 (i) There is a Borel G-space X on which Ex is Borel such that S = SX(G).
 (ii) S isT?\ and closed under conjugation.
 Proof. (i)=>(ii) is trivial.
 (ii)=?(i). Let <p : JT -> &{G) be a Borel map with S = <p(Jf). Let s be a Borel

 selector of ^"(G). Define

 X =.{(k,x) G G x Jf\ k = s(k<p(x))}.
 Then X is a Borel subset of G x </f, and hence is a standard Borel space. Define an
 action of G on X as follows:

 g-(k,x) = (s(gk<p(x)),x).

 It is straightforward to check that this is a Borel action on X. Note that

 g G(k,x) <==> *(gk<p(x)) =k = s(k<p(x))
 <^> gkcp(x) ? k(p(x)

 ^=^ g G k(p(x)k~l.
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 Thus G(??x) = kip(x)k 1 G S and the map (k, x) i-> G^x) is Borel. It follows that
 Ex is Borel and that <? = <?*( G ). H

 ?4. The intersection operator. In this section we give various characterizations
 for the Borelness of the intersection operator on 9(G) and other related classes. It
 turns out that one of the characterizations is the Borelness of a particular diagonal
 orbit equivalence relation.

 Recall that f?(G) is the collection of all (left-) cosets of closed subgroups of G,
 i.e.,

 W(G) = {gH:geG,He9(G)}.
 W(G) is a Borel G-space with the natural action k g H = kgH. Note that EW(G)
 is Borel, since it is in fact smooth with a Borel transversal 9(G). We will make use
 of the diagonal action of G on ^(G)2.

 Theorem 4.1. Let G be a Polish group. Then the following are equivalent:

 (i) E^V2 is Borel.
 (ii) The map (H, K) h-> H n K from 9(G)2 to 9(G) is Borel.
 (iii) For any Borel G-spaces X and Y with Ex and E Y Borel, EXx Y is Borel.
 (iv) There is a < co\ so that for any H,K G 9(G), HK is n?.

 Proof. (i)=?(ii). HEW{G)1 is Borel then the map (hH, kK) h-> G{hHMK) = GhH n
 GkK from^(G)2 into 9(G) is Borel, and therefore its restriction on 9(G)2: (H, K) ^
 GH n GK = H H K is Borel.

 (ii)=>(iii) and (iii)=>(i) are trivial.
 (i) =^ (iv) and (iv) => (iii) follow from Theorem 3.1. H

 Note that the clauses in the above theorem are also equivalent to the following
 statement:

 (iii) For any Borel G-spaces X\,...,Xn with EXi Borel for all i < n,
 Ex'x-xXn is Borel.

 We say that a Polish group G is relatively tame if it satisfies one of the equivalent
 conditions in Theorem 4.1. Recall that a Polish group is tame if Ex is Borel for any
 Borel G-space X. If G is tame then it is relatively tame. Also it is easy to see that
 if G is relatively tame then so are all of its closed subgroups and topological factor
 groups.
 We now turn to Borelness of the intersection operator on other, more general

 subclasses of 9(G)2. Some of these classes we consider will be ?} and non-Borel.
 For them we need the following curious fact.

 Lemma 4.2. Let X, Y andZ be standard Borel spaces, AC Y be?l\, f : A ?> Z,
 and(j>: X ?> Y be a Borel function with <j)(X) = A. Iff o </> is Borel, then f is Borel.

 Proof. For B Borel in Z, we will show that f~l(B) is Borel in A. Let C =
 4>-\f-x(B)), then C is Borel in X. Then both/"1^) = (?>(C) <in?A\f-x(B) =
 <j)(X \ C) are L j in Y. By Lusin Separation Theorem, there is a Borel set D ? Y
 such that f-\B) ? D and (A \ f~l(B)) n D = 0. This means f~l(B) =AnD
 is Borel in A. H

 The following corollary is immediate from the above lemma.
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 Corollary 4.3. Let X and Y be standard Borel spaces and f : X ?> Y. Then the
 following are equivalent:

 (i) / is Borel.
 (ii) For some standard Borel space Z and Borel surjection <\> : Z ?> X, f o c? is

 Borel.
 (iii) For every standard Borel space Z and Borel surjection (j) : Z ?? X, f o cj> is

 Borel.

 Theorem 4.4. LetS\ andS2beyL\ subsets of 9(G) both closed under conjugation.
 Then the following are equivalent:

 (i) The map (H, K) ^ H n K from Sx x S2 to 9(G) is Borel.
 (ii) For any Borel G-spaces X and Y with Ex and EY Borel, ifSx(G) ? S\ and

 SY(G) ? ?2, then EXx Y is Borel.
 (iii) There are Borel G-spaces X and Y such that SX(G) ? S\,SY(G) = Si and

 EX,EY andEXxY are Borel.
 (iv) There is a < co\ such that for any H G ?\ and K G ?2, HK GllJ.

 Proof. (i)=>(ii) is trivial.
 (ii)=^(iii). By Theorem 3.3 there are Borel G-spaces X and Y with Ex and EY

 Borel such that SX(G) - Si and SY(G) = S2. By (ii) EXx Y is also Borel.
 (iii)=>(i). Denote the map (H,K) i-> H DK from Sx x S2 into 9(G) by /. Let

 the Borel G-spaces X and Y be given. Define 0: X x Y ?> 9(G)2 by (j)(x,y) =
 (Gx, Gy). Then (j) is Borel and also the map (x,y) i-> G(XJ;) = Gx D G^, which is
 exactly / o 0, is Borel. By Lemma 4.2, / is Borel.

 (iii)=>(iv) and (iv)=>(ii) follow from Theorem 3.1. H

 Next we consider even more general subclasses of 9(G)2. For Z an invariant
 Borel subset of X x Y, we let

 ?z(G) = {(Gx,Gy):(x,y)eZ}.
 The following is a strengthening of Corollary 3.2 but it also follows immediately
 from Theorem 3.1.

 Corollary4.5. Let XUX2, Yu Y2 be Borel G-spaces with Ex\Ex\EY\EYl
 Borel. Let Zi be an invariant Borel subset of Xi x Y i for i ? 1,2. Assume that
 ^Zl (G) ? 9JZ^(G). IfEz> is Borel, so is ?Zl.

 We say that a subset 9f ? 9(G)2 is closed under conjugation if for any g G G
 and (H,K) G 2, we have (gHg~l,gKg~l) G 3f. &Z(G) is ?} and closed under
 conjugation. In contrast to Theorem 3.3 we can only deal with Borel classes below.

 Lemma 4.6. Let Of ? 9(G)2 be Borel. Then the following are equivalent:

 (i) There are Borel G-spaces X and Y with Ex and EY Borel, and an invariant
 Borel subset Z ? X x Y, such that 9f = Q!Z(G).

 (ii) 2 is closed under conjugation.

 Proof. (i)=^(ii) is trivial.
 (ii)=>(i). Let X - Y = &(G). Let Z = G2 -&. Then clearly Z is invariant and

 is Borel since the action of G2 on W(G)2 has a Borel transversal 9(G)2. H
 We suspect that in this general context the analog of Theorem 3.3 is no longer

 true. However, we do not know a counterexample.
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 Theorem 4.7. Let 2 ? 9(G)2 be Borel and closed under conjugation. Then the
 following are equivalent:

 (i) The map (H, K) ^ H n Kfrom 3f to 9(G) is Borel.
 (ii) For any Borel G-spaces X and Y with Ex andEY Borel and any Borel invariant

 Z ?X x Y, if2z(G) ? &, then Ez is Borel.
 (iii) There are Borel G-spaces X and Y and a Borel invariant Z ? X x Y such that

 2Z(G) =3f andEX,EY,EZ are Borel.
 (iv) There is a < co\ such that for (H, K) G 3', HK G 11?.

 Proof. (i)=>(iii) is from the preceding lemma. The other directions are similar
 to the proof of Theorem 4.4. H

 Now we are ready to present our last theorem on Borelness of the intersection
 operator on a general subclass of 9(G)2.

 Theorem 4.8. Let 2 G 9(G)2 be S} and closed under conjugation. Then the
 following are equivalent:

 (i) The map (H, K) ^ H H Kfrom 3? to 9(G) is Borel.
 (ii) There are Borel G-spaces X and Y and a Borel invariant Z ? X x Y such that

 9fz(G) =3f andEx,EY,Ez are Borel
 Proof. (ii)=?(i). Define 0: Z -> 9(G)2, <f>{x,y) = (Gx, Gy). Then <j> is Borel

 and 2 = 9)Z(G) = </>(Z). Since Ez is Borel, the map (x,y) i-> G(jcj;) == Gx n Gy
 is Borel. By Lemma 4.2, the map (H,K) \-> H HK is Borel.

 (i)=?(ii). Let 99: JT -> 9(G)2 be a Borel map with 2 =. (p{jT). Let<?> = (^1,^2).
 Let s be a Borel selector of ^(G). Define

 X = {(h,x) eG xJT: h = s(h<pi(x))}
 and

 Y = {(k,y) eG xJK:k = s(k<p2(y))}.
 Then X and Y are Borel subsets of G x/. Define actions of G on X and 7
 respectively:

 g- (h,x) = (s(gh<pi(x)),x),

 g-(k,y) = (s(gk<p2(y)),y)

 for g G G, (A, x) G X and (fc,j>) G 7. Similar to Theorem 3.3, these are Borel
 actions of G on X and 7, respectively, with isz and EY Borel, and G(?X) =
 h(p\(x)h~l, G(kty) =k(f2(x)k~l. Now define

 Z = {((h,x), (k,x)) eXxY: h(pi(x) nk<p2(x) ? 0}.
 Then Z is a Borel subset oflx Y. To see this, note that the following subset of
 G x Jf is Borel:

 Z' = {(q,x) eGxJT:q = s(q(<pl(x) H ^(x)))}.
 If we let / : Z' -+ X x Y be defined as

 f(q>x) = ((s(q<Pi(x)),x)9(s(q(p2(x)),x)),

 then / is a Borel injection and Z = f(Z'). Thus Z is Borel. We next verify
 that Z is invariant. For g G G and ((A,x), (/:,*)) ? Z, let A7 = ^(gAy>i.(x)) and
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 k' = s(gk(p2(x)). Then g((h,x), (k,x)) ? ((hf,x), (k',x)). Since h'ip\(x) =
 ghipi(x) and k'<p2(x) = gkpiM, we have that

 ti<p\(x)C\kf(p2(x) = gh<pi(x) H gk<p2(x) =g(hipi(x)nk(p2(x)) ^ 0.

 Thus g ((A, jc), (k, x)) = ((hf, x), (k', x)) G Z.
 For ((h,x), (k,x)) G Z, suppose q G h(p\(x) n k(f2(x). Then h(fi(x) = qcpi(x),

 and

 h<pi(x)h~l = (hipi(x))(h(fi(x))~l ? q(fi(x)q~l.

 Similarly, we have k<p2(x)k~l = q(f2(x)q~l. Since ^ is closed under conjugation,

 (%*)>%,*)) = (h(p\(x)h~l,kip2(x)k~l) = (^?Mtf'^^O*)?"1) G 0.

 Thus ^ =. ?^Z(G). Since G^h^^x^ = G^iX) H G(^x), it follows from (i) that ?z
 is Borel. H

 Unlike the previous theorems we do not have a clause involving the Borel rank
 of group products in the above theorem. We do not know if the boundedness of the
 Borel ranks of the groups G1G2 for (G\, G2) G O? is equivalent to the Borelness of
 the intersection operator on 9).

 ?5. Countable products of countable groups. In this section we focus on the notion
 of relative tameness. Recall that a Polish group G is relatively tame if for any Borel
 G-spaces X and Y with Ex and E Y Borel, EXx Y from the diagonal action is Borel.
 Following [8] we study a special class of Polish groups, namely countable products
 of countable groups. To emphasize the relevance of [8] we also follow the notation
 there. We first review some notation and facts.

 A typical group in our class will be

 H = H0 x Hx x - - - x Hn x - - ,

 where each Hn is a countable group. We also denote

 Hn = H0 x .. x Hn_i andH<C? = [JHn.
 n

 A tree S ? H<co is called a group tree (coset tree) on (Hn) if S n Hn is a subgroup
 of (coset in) Hn for any n e co. Let S be a coset tree on (Hn). Then for each n G co
 there is a unique subgroup Gn of Hn such that S n Hn = oGn for any o G S n 7/".
 Define

 a(S) = [JGn.
 n

 Then it is easy to see that a(S) is a group tree.
 Let T be the family of all trees on (Hn) with the topology generated by sets of

 the form {T G f \ o G T} and {T G ^: a ? T} for <j G #<?>. ^ is a Polish
 space. The mapping

 0 : {T G F : T is pruned} -> ^(ff")

 given by

 ?(r) = {x g /ff? : v? g c? (x r? g r)}
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 is a Borel isomorphism. In particular the class of all pruned trees is a Borel subset
 of ET. We denote by ETp and Sp the families of all pruned coset trees and pruned
 group trees, respectively Note that T is a pruned group (coset) tree iff (?)(T) is a
 closed subgroup (coset) of H . Hence fp = ^(^(H )) ?md<Sp = (?-l(9(HC0)),
 and both of them are Borel subsets of ET', hence are standard Borel spaces. The
 map a : ETP ?> Sp is Borel.

 We also use the following notation. For T G ?J" and o e T, let Ta =
 {t : <7~t G T} e J. For a well-founded tree S the AdgAi of S, denoted ht (S), is
 just the usual well-founded rank. For a general tree T, the height of J7 is defined by

 ht(r) = sup{ht(7V) : Ta is well-founded}.

 The following theorems characterize relative tameness in terms of height of coset
 trees and group trees. The results are certainly motivated by those in [8].

 Theorem 5.1. H is relatively tame iff there is ? < co\ such that, for any two
 pruned coset trees S and T\ifS C\ T is well-founded, then ht(S Pi T) < ?.

 Proof. (=>) Define an H action on ZTP by

 x-S= \J(x\m)(SnHm).

 Then H%s)tS = <KS) and

 H -S = H T <=> a(S) = a(T).
 It follows easily that ^p is a Borel if^-space and E^p is Borel.

 Now if H is relatively tame, then E^p is Borel too. Thus the set

 sf = {(S, T) : (S, T) and (a(S),a(T)) are not in the same orbit}

 is also Borel. However, for any S, T G^,

 (S, T) and (a(S),a(T)) are in the same orbit

 ^ H%s)tS H H%nT = </>(S) n ct>(T) ? 0
 <^=> S n T is ill-founded.

 Since (S, T) \-> S n T is continuous from J'2 to ^ we have that

 {SnT: (S,T) esf} = {SnT: S,T G Fp and S n T is well-founded}

 is a L} family of well-founded trees. By the boundedness principle, there is ? < co\
 such that, for any S, T G 5^, if S n r is well-founded, then ht (5 HT) < ?.

 (<=) Let X and 7 be Borel #^-spaces with ?x and ?Y Borel. For any x, u e X,

 y,v G YMS(x,u) = ^-U^Jandr^,^) - ^~l(H^v). Then(x,w) h^ S(x,w)
 and (j, v) i-? T(y,v) are Borel maps into ZTP. We have that

 Hm.{x,y) = Hm.(u,v) <*=> H"unH"v^(b
 <=? S(x, u) n T(y, v) is ill-founded.

 Since {T G F : T is well-founded and ht(r) < ?} is Borel, EXx Y is Borel. H
 Theorem 5.2. i/w w relatively tame iff there is ? < co\ such that, for any two

 pruned group trees S and T, ht(S DT) < ?.
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 Proof. (=>) Since H is relatively tame the map (G, K) \-+ Gn K from 9(H )2
 to 9(H ) is Borel. For any g G H<co, let Ua = {x G H : a ? x}. Then

 {(G,K) e9(H )2: GnKnua?9)}
 is Borel for any a G H<co. Let 5 = ^(G) and T = ct>~l(K). Then S,T e<Sp and

 Gnlnt/,^ ^^ (5 n T)G is ill-founded.
 Therefore

 {(S, T)eS2p:(SC\ T)a is well-founded}

 is Borel. By the boundedness principle, there is ?a < co\ such that, whenever
 (S n T)a is well-founded, ht((S n 7%) < #,. Put ? = supj^ : cr g 77<co}. Then
 ht(S n T) < ? for any S, T G ^.

 (<=) By reversing the above argument the converse can be similarly proved. H

 For the rest of this section all groups will be abelian. We will use + for the group
 operation and 0 for the group identity.

 Recall the following definition from [8]. An abelian countable group H is said
 to be manageable if there exist two decreasing sequences of subgroups (G%), (G^)
 with ?]n Gln ? {0} for i = 0,1, and a homomorphism <p: H x H ?> H such that
 <p[G% x G^] = H for any n G co. It was proved in [8] that Z and 0?)Z(/?), where

 p is prime, are manageable. For Z, put G? - {2nk : k G Z}, G,j = {3nk : k G Z}
 and (p(m,l) = m + I. As to 0wZ(/>), let (m, w) be an enumeration of co x co
 and put G? = {0},GJ = {x G 0a>Z(/?): x|>i = (0,0,...,0)} and <p(0,x) =

 Lemma 5.3. Let H be a countable abelian group. If H is manageable, then for any
 ? < co\, there are pruned group trees S?, T? ? H<co such thatht(S? D T?) > ?. Fur
 thermore, we can find such S?, T? that the only infinite branch in S? D T? is (0,0,... ).

 Proof. Let (G%), (G\) witness manageability of H. We will produce group trees
 S? and T? for all ? <co\ with the following properties:

 (a) (0,0,... ) is the unique infinite branch of S? n T?\
 (b) if ? is a successor, then

 VheH(h^0^ ht(S? n T?)h > ?)\
 in particular S?nT?nH = H;

 (c) if ? is a limit, then Vy < ? 3n G co

 V(Ao,Ai) eG?n x Gxn((hoM ? (0,0) =? ht(s, n 7?(?0,Al) > y).

 We define S? and 7^ by transfinite induction on ? < co\. For ? = 0, put

 So = {(*?*, A,..., A): A G#}and7b = {(A,0,0,...,0): A G #}.

 Then obviously 50 and 7b are pruned and S0 n T0 = H U {(0,0,..., 0)}.
 If ? = y -f 1 and y is a successor, put

 S? = {0} U H U M0)~(7 : (7 G Sy, er ^ 0},

 T? = {0} U H u M0)~<7 : a G Ty, a ^ 0}.
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 Then S? and T? are pruned since Sy and Ty are, and since SyC\H = TynH = H
 by the inductive hypothesis. We also have

 S? H T? = {0} U H U {(j(0)~a : g g Sy n Ty, tr ^ 0}

 and thus (b) is satisfied by the inductive hypothesis.
 We assume ? < co\ is a limit ordinal. Fix an increasing sequence of successors

 yn ?> /?,? G co. Fix also a partition (X?)ofco into infinite sets. Denote ?z? = minXM.
 For simplicity assume that (an) is an increasing sequence. For any m G co, let

 km = max{? : <z? < ra}. For i = 0,1 define group trees Sl? and Tl by letting, for

 m > 0, Sj n #m+1 be

 {A^cr: Vrc <A:m(o-fXw eSyH A(r(an) G GJ)AA-^ff(an) G G?w+1};
 ?=o

 and similarly letting Tj n i7m+1 be

 {h~o: \/n < km (o\Xn G T?n A ct(??) g Gln) A A - ^cr(aw) G G?w+1}.

 Let S? n H = r? H H = G?. It is easy to see that S*? n i/m+1 and rj n Hm+l are
 groups for all m G co. To see that Sl? and Tl? are trees, let ra' < ra, A^cr g *SL C\Hm+x
 (similarly for Tl? n #m+1) and A~cr' - /r a \(m' + 1). Then it follows from

 \/n < km (a \Xn G Syn A or(an) G G?)

 that

 V? < km, < km (v'\Xn G Syn A cr(a?) G G?).

 Also from
 km

 h-Ys^M G Glkm+l
 n=0

 it follows that

 km' km km + \

 ?=0 n=km,+\ n=km,+l

 since the sequence (Gln) is decreasing. Thus A^cr' G Sl?.
 We claim that SL and Ti are pruned. By inductive hypothesis all S?n and T7n are

 pruned. Fix an arbitrary h^a e Sl? and let ra = lh(o-). For any n < km, let x? be an

 infinite branch of Syn such that a \Xn ? x?. Note that A7 = h ? Y^nZoa(an) ^ Glk v

 Since ykm+\ is a successor, we can find an Xkm+\ G Sykm+l such that A' = Xkm+i(0).
 Let x be given by

 \/n<km + l(x \Xn = xn) A \/n > km + 1 (x fX? = (0,0,... )).

 Clearly x \m = a. In fact A"x is an infinite branch of S\. We have thus shown that

 S? is pruned. Similarly Tl? is also pruned.
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 Next we claim that the only infinite branch of S*? n T? is (0,0,... ). Suppose
 A ~x is an infinite branch of Sl?C\Tl?. Then x \Xn is an infinite branch of S7n n TYn
 for all n e co, and therefore by the inductive hypothesis x \Xn = (0,0,... ) for all

 n eco. Hence x = (0,0,...). Now for any m G co, h~(x\m) G S^nT^nHm+l,so
 A G G?w+1. It follows that A = 0 and the only infinite branch of Sl? n 7j is (0,0,... ).

 The following computation will be useful for the verification of (c). If A G Gln,

 A ^ 0, consider <r = (0,0,..., 0, A) G i/?"+1. By our construction A~cr eS^nty
 andht(S? n Tl?)h~a > ht(SYn n ryJ? > y?.

 Finally define

 S? = {a eH< : cT\{2k:keco} S?? Aa\{2k + l: k e co} G Sl?}

 and similarly

 7> = {a g #<C? : a \{2k :keco}eTJ?/\cr \{2k + 1 : k G co} G T? }.

 Then 5^ and 7^ are pruned group trees. The requirements (a) and (c) follow from
 the properties of So and Tl noted above.

 The remaining case in our inductive definition is when ? = y + 1 and y is a limit.

 In this case let S? be the tree generated by {(p(a(0),a(l))^a: o G Sy,lh(cr) > 2}
 and T? the tree generated by {(p(a(0),a(l))^a: a G Ty,\h(a) > 2}. Then S?
 and T? are pruned group trees. Requirement (b) holds by manageability and the
 inductive hypothesis on Sy and Ty. H

 Corollary 5.4. Let H be a countable abelian group. If H is manageable, then
 {(G,K) G 9(H ) : GPiK = {0}}is not Borel, hence H is not relatively tame.

 Proof. Assume H is manageable and {(G, K) G 9(H ) : G nK = {0}} is Borel.
 Using the Borel isomorphism 0 between Sp and 9(H ), we get that

 j/ = {(S, r) G c?2 : 5 n T has only one infinite branch (0,0,... )}

 is Borel. By the boundedness principle, there is ? < co\ such that ht^ n T) < ? for
 all (S, T) G s?. This contradicts the preceding lemma. H

 Theorem 5.5. Let (H?) be a sequence of countable abelian groups. Then H is
 relatively tame ijfH is tame.

 Proof. The (<=) direction is trivial. We only argue for the (=>) direction. If H
 is not tame, then by Lemmas 8 and 9 of [8], there are infinitely many n G co
 and a prime number p such that either Hn is torsion-free or there is a surjective
 homomorphism mapping a subgroup of Hn onto 0WZ(/?). It follows that either
 there is a closed subgroup of H isomorphic to If* or there is a closed subgroup
 of H with a continuous homomorphism from it onto (?B Z(p)) . In either case
 H is not relatively tame by the preceding corollary. H

 We say that a Polish group G is g-relatively tame if for any infinite sequence (X?)
 of Borel G-spaces with each EXn Borel, E^Xn is Borel. The concept of o -relative
 tameness implies relative tameness but is weaker than that of tameness. Thus H
 is a -relatively tame iff it is relative tame. In general we do not have any examples to
 distinguish these three concepts. We conjecture that there are such examples in the
 class of countable products of countable groups.
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 ?6. Logic actions. In this last section we make some observations and remarks
 on logic actions of the infinite symmetric group S^. Basic notation and facts
 can be found in [1]. Borel equivalence relations induced by S^ -actions were also
 investigated in [2] and [3]. The reader can find most of the well known facts

 mentioned below in one of these sources.

 Let L be a countable relational language and Mod(L) be the space of all countable
 L-structures with underlying universe co. The logic action of S^ on Mod(L) makes
 it a Polish Sqo-space. The orbit equivalence relation EMod^ is the isomorphism
 relation on Mod(L), which we denote by =?. Let g g Lmc? be a sentence. Then

 Mod(cr) ? Mod(L) is an invariant Borel subset. We also denote =? fMod(o-)
 by^,.

 It is well known that =a is Borel iff there is a uniform bound on the Scott ranks of

 models in Mod(cr), i.e., there is a < co\ such that sr(M) < a for all M G Mod(L).
 The stabilizer map, on the other hand, is exactly M i-> Aut(M), where Aut(M) is
 the automorphism group of M.

 Diagonal actions of Soq can be interpreted in the following sense. Let L and
 V be disjoint relational languages, g g L i and g' g L'm be sentences and
 t G (L U L') iCO be a sentence in the expansion. Assume that |= r ?> (g A g') and
 that =a and =a* are Borel. Then Mod(r) is essentially an invariant Borel subset of

 Mod(cr) x Mod(cr') ? Mod(L) x Mod(Z/), where the action of S^ on the product
 space is the diagonal action. By our Theorem 4.7 =T is Borel iff there is a < co\
 such that Aut(M?)Aut(M?') e n^ for all M G Mod(r), where ML and ML> are
 the reducts of M to L and L\ respectively. In particular this holds if Aut(M?) is
 locally compact for all M G Mod(r).
 We now turn to a concrete example of S^ -action and determine the complexity

 of the orbit equivalence relations up to Borel reducibility.

 Theorem 6.1. Let En, n G co U {co}, be the orbit equivalence relation induced by
 the conjugacy action ofSoo on S^. Then for each 1 < n < co, En is Borel bireducible
 to F2, the identity of countable sets of reals.

 Proof. Clearly for ra < ? < co, Em <B En. Thus it suffices to show that
 E <B F2 and F2<BE2.

 Given / = (/?) G S^, define the structure M? ? (co, (/?)). Then E is the
 isomorphism relation on the class of structures {Mr. f G S^}. We first analyze the

 structure M?. Each My can be decomposed into a disjoint union of substructures.
 For each a G co, let Ca be the smallest subset of co containing a and closed under
 all fn and f~l; call Ca the component of a. Then co is decomposed into at most
 countably many components, and each component induces a substructure.

 Let Foo be the free group generated by the alphabet {gu : n eco} with symbols Gn.

 For u G Foo and given / G S^ let u (f ) be the permutation resulting from replacing

 each occurrence of Gn by /?. Consider a pointed structure N? = (Ca,f\Ca,a)

 and define a relation R?a on F^ by Rfa(u,v) iff u(f)(a) = v(f)(a). Then
 Rfa is an equivalence relation and the isomorphism type of N?a is completely
 determined by Rfa- More specifically, N?a = Ng? iff R? = Rg?> Since R?
 can be coded by a subset of co, this shows that the isomorphism relation between

 pointed components is smooth. We let r(f, a) G 2 be the real coding Rfa.
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 Now for each a G co and u G F^ let 6u(f,a) ? r(f ,u(f)(a)). Note
 that CM(/)(fl) = Ca. We have thus obtained countably many Borel functions
 6U: S^ x co - 2 such that for any f,g G S^ and a,b G co, (Ca,f\Ca) ^
 (Q,gfQ) iS{0u(f,a): u e F^} = {6u(g,b): u G F^} ii? {6u(f, a) : ueF^n
 {Ott(g,A):?GFoo}^0.

 For / G S^ and a G co, let ?(/, a) be the number of distinct components Cb in
 M ? so that Cb = Ca, if this number is finite; and let n(f, a) = 0 if this number is
 infinite. It is easy to check that n : S^ x co ?> co is a Borel function.

 Finally fix a continuous bijection ( , ): 2 x co ?> 260. For f e S^ define />(/ )
 to be the set {(0u(f, a), n(f, a)): a G co,u G Foo}- />(/ ) is a countable set of reals.

 Now p(f ) codes the isomorphism types of all components of M? as well as the

 number of isomorphic components within Mf. Thus M? = M g iff p(f ) = p(g).
 This completes the proof that E <b F2.

 It remains to show that F2 <b Ei- If ^4 ? co is infinite, let nA denote the n-th
 element of A', thus A can be enumerated in the increasing order as 0A, I a,_For
 any permutation / G Sqo and infinite A ? co, let f A : A ?> A be the permutation
 given by

 fA(nA)=fnA <=> f(n) = m.
 Arbitrarily fix a continuous injection xv-+fx from 2 into Soo. For instance, fixing
 a recursive bijection ( ,-): co x co ? co, we can let /* contain a cycle

 ((0,w),(l,w),...,(/i + l,?i>)
 for each n e x, and no other cycles. Thus for any n G co, fx contains a cycle of
 length ? + 2 iff w G x iff x(w) = 1.

 Finally fix a partition of co into a doubly indexed family of disjoint infinite sets
 Ajcj for k,l G co. For instance, we can let Akj ? {(/?, (k,l)): p G co}. Then for
 each x = (*o, *i ,...,*?,... ) e2 XC0 where each xk e2 , define permutations

 and

 where g G Soo is the fixed permutation (..., 4,2,0,1,3,... ). We claim that for
 x,x' e 2coX , {x0,xi,...,} = {*?,*{,...} iff (7Ti(x),7r2(x)) ?md(7ii(x'),7i2(x'))
 are conjugate. To see this, just note that 712(x) codes the partition {Ak,i} of co,
 and within each Akj, n\(x) codes the permutation fXk, and hence in turn codes
 the real x^. Thus each real x& is coded infinitely many times by the cycle structure
 of (n\(x), 7i2(x)), and therefore only the set of {x0, x\,..., xk,... } (rather than
 the sequence itself) is coded by the cycle structure. This finishes the proof of the
 theorem. H

 It is well known and implicit in the above proof that the conjugacy equivalence
 relation on S^ is smooth. The above theorem gives a non-trivial example of the
 diagonal equivalence relation being Borel. It is easy to see that for any permutation
 / G Soo, the stabilizer group Gf can be expressed as the product of a number of
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 wreath products (cf. [5] for definition and notation); in particular, Gf is isomorphic
 to a group of the form

 n

 where mn < co. Lete? = {G/: / e S^}. Then by our Theorem 4.4 the intersection
 operator on S is Borel. This Borelness is obscure when the intersection operation
 is considered directly. Moreover, from the above proof we can obtain that for
 (f\,fi) G Sie the stabilizer G{fxj2) = G/l D Gf2 is also a product of a number of
 wreath products. More specifically, G(fuf2) is isomorphic to a group of the form

 (2) Ip ?KG "
 n

 where Gn is a countable group with 2 generators. It is clear that the groups Gn can
 range over all 2-generator groups. In general, given a group of the form (2) with
 arbitrary countable G?, by considering the Cay ley graphs we may construct an at
 most countable sequence of permutations / so that the given group is isomorphic
 to the stabilizer of / in the diagonal action. It follows that one can rewrite the
 group as an intersection of at most countably many groups of form ( 1 ). Moreover,
 if there is k G co such that all G?'s are /^-generator groups, then we need only k
 many functions in / and thus k many groups of form (1) in the intersection.
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