Skip to main content
Log in

Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Neumann J. (1927). “Thermodynamik quantenmechanischer Gesamtheit”. Goettinger. Nachr. 245, 273

    Google Scholar 

  2. Landau L. (1927). “Das Dämpfungsproblem in der Wellenmechanik”. Z. Phys. 45, 430

    Article  MATH  ADS  Google Scholar 

  3. Ashe Peres (1998). Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht

    Google Scholar 

  4. Preskill J. (1998). Lecture Notes for Physic 229: Quantum Information and Computation. California Institute of Technology, CA

    Google Scholar 

  5. d’Espagnat B. (1995). Veiled Reality: an Analysis of Present-Day Quantum Mechanical Concepts. Addison-Wesley, Reading, MA

    Google Scholar 

  6. Fano U. (1957). “Description of states in quantum mechanics by density matrix and operator techniques”. Rev. Mod. Phys. 29, 74

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Ka Xinglin (2001). Advanced Quantum Mechanics (in Chinese), 2nd edn. Higher Education Press, Beijing

    Google Scholar 

  8. Ref. 3, pp. 75–76.

  9. Shankar R. (1980) Principles of Quantum Mechanics. Plenum, New York, p. 140

    MATH  Google Scholar 

  10. Merzbacher E. (1970). Quantum Mechanics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  11. von Neumann J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, pp. 295–296

    MATH  Google Scholar 

  12. R. K. Pathria, Statistical Mechanics, 2nd edn. (Elsevier (Singapore), Singapore, 2001), pp. 4–45.

  13. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings IEEE Int. Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175–179.

  14. Cohen O. (1999). “Counterfactual entanglement and nonlocal correlations in separable states”. Phys. Rev. A 60, 80

    Article  ADS  Google Scholar 

  15. Yang C.N. (1962). “Concept of off-diagonal long-range order and the quantum phases in liquid He and of superconductors”. Rev. Mod. Phys. 34, 694

    Article  ADS  Google Scholar 

  16. Schliemann J., Loss D., MacDonald A.H. (2001). “Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots”. Phys. Rev. B 63, 085311

    Article  ADS  Google Scholar 

  17. Li Y.S., Zeng B., Liu X.S., Long G.L. (2001). “Entanglement in a two-identical-particle system”. Phys. Rev. A 64, 054302

    Article  ADS  Google Scholar 

  18. Long G.L., Xiao L. (2003). “Experimental realization of a fetching algorithm in a 7-qubit NMR Liouville space computer”. J. Chem.Phys. 119: 8473

    Article  ADS  Google Scholar 

  19. Wang C., Long G.L., Sun Y. (2005). “No-relationship between impossibility of faster-than-light quantum communication and distinction of ensembles with the same density matrix”. Commun. Theor. Phys. 44, 622

    Article  Google Scholar 

  20. Penrose R., Shimony A., Cartwright N., Hawking S. (1997) The Large, the Small and The Human Mind. Cambridge University Press, Cambridge, p. 81

    MATH  Google Scholar 

  21. Exercise 2.1 (and 2.3) on p. 32 of Peres’s book.

  22. Braunstein S.L., Caves C.M., Jozsa R., Linden N., Popescu S., Schack R. (1999). “Separability of very noisy mixed states and implications for NMR quantum computing”. Phys. Rev. Lett. 83: 1054

    Article  ADS  Google Scholar 

  23. Long G.-L., Yan H.-Y. et al. (2002). “Quantum mechanical nature in NMR quantum computing”. Commun. Theor. Phys. 38, 306

    Google Scholar 

  24. J. Tolar and P. Hàjìček, “Can differently prepared mixed states be distinguished?,” quant-ph/0309158.

  25. N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science, 275, 350 (1997). Especially see the explanation under Eq. (3).

  26. Slichter C.P. (1990) Principles of Magnetic Resonance, 3rd edn Springer, Berlin Heidelberg, p. 159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Lu Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, G.L., Zhou, YF., Jin, JQ. et al. Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix. Found Phys 36, 1217–1243 (2006). https://doi.org/10.1007/s10701-006-9057-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9057-9

Keywords

Navigation