Skip to main content
Log in

The Differential Method and the Causal Incompleteness of Programming Theory in Molecular Biology

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The “DNA is a program” metaphor is still widely used in Molecular Biology and its popularization. There are good historical reasons for the use of such a metaphor or theoretical model. Yet we argue that both the metaphor and the model are essentially inadequate also from the point of view of Physics and Computer Science. Relevant work has already been done, in Biology, criticizing the programming paradigm. We will refer to empirical evidence and theoretical writings in Biology, although our arguments will be mostly based on a comparison with the use of differential methods (in Molecular Biology: a mutation or alike is observed or induced and its phenotypic consequences are observed) as applied in Computer Science and in Physics, where this fundamental tool for empirical investigation originated and acquired a well-justified status. In particular, as we will argue, the programming paradigm is not theoretically sound as a causal(as in Physics) or deductive(as in Programming) framework for relating the genome to the phenotype, in contrast to the physicalist and computational grounds that this paradigm claims to propose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • (Longo’s articles are “downloadable” dehttp://www.di.ens.fr/users/longo” ou Google: search: Giuseppe Longo).

  • Aceto, L., Longo, G., & Victor, B. (Eds.). (2003). The difference between sequential and concurrent computations. Special issue, Mathematical structures in computer science (n. 4–5). Cambridge University Press.

  • Ahouse J.C., Keller E.F. (1997). Writing and reading about ‘Dolly’. BioEssays 19, 741–742

    Google Scholar 

  • Allis C., Jenuwein T. (2001). Translating the histone code. Science 293, 1074–1080

    Article  Google Scholar 

  • Amadio, R., & Curien, P.-L. (1998). Domains and lambda-calculi. Birkhuaser.

  • Apter, M. J. (1966). Cybernetics and Development. Pergamon.

  • Aristote. Paris. Physique. (1862).

  • Aristote, edition numérique: http://www.clerus.org Traité de l’Âme. (2007).

  • Asperti, A., Longo, G. (1991). Categories, types and structures. M.I.T. Press

  • Atlan, H. (1972). L’Organisation biologique et la théorie de l’information. Hermann.

  • Atlan H., Koppel M. (1990). The cellular computer DNA; program or data. Bulletin of Mathematical Biology 52, 335–348

    Google Scholar 

  • Bailly F., Longo G. (2006). Mathématiques et sciences de la nature. La singularité physique du vivant. Paris, Hermann

    Google Scholar 

  • Barendregt, H. (1984). The lambda-calculus: Its syntax, its semantics. North-Holland (rev. edit.).

  • Barendregt, H., & Longo, G. (1980). Equality of lambda terms in the model T. In J. Seldin & R. Hindley (Eds.), To H.B. Curry: Essays in combinatory logic, lambda-calculus and formalism (pp. 303–337). London: Academic Press.

  • Bartel D. (2004). MicroRNAs: Genomics, biogenesis, mechanism and function. Cell 116, 281–297

    Article  Google Scholar 

  • Beadle G.W., Tatum E.L. (1941). Genetic control of developmental reactions. American Nauturalist 75, 107–116

    Article  Google Scholar 

  • Bernard-Weil, E. (2002). Ago-Antagonistic systèmes. In M. Mugur-Schachter (Ed.), Quantum Mechanics, Mathematics, Cognition and Action (pp. 433–463). Kluwer.

  • Bernot A. (2001). Analyse de génomes, transcriptomes et proteins. Dunod, Paris

    Google Scholar 

  • Beurton, P.-J., et al. (2000). The concept of the gene in development and evolution: Historical and epistemological perspectives. Cambridge University Press.

  • Bjedov I., Denamu E., Gerard B., Matic I., Tenaillon O., Rardman M., Souza V., Taddei F. (2003). Stress-induced mutagenesis in bacteria. Science 300, 1404–1409

    Article  Google Scholar 

  • Black D.L. (1998). Splicing in the inner ear: A familiar tune, but what are the instruments?. Neuron 20, 165–168

    Article  Google Scholar 

  • Boffelli D., Nobrega M., Rubin E. (2004). Comparative genomics at the vertebrates extremes. Nature Reviews Genetics 5, 456–465

    Article  Google Scholar 

  • Boguski M., Hieter P. (1997). Functional genomics: It’s all about how you read it. Science 278, 601–602

    Article  Google Scholar 

  • Bonner, J. (1965). The molecular biology of development. Oxford University Press.

  • Brenner S., Dove W., Herskowitz I., Thomas R. (1990). Genes and development: Molecular and logical themes. Genetics 126, 479–486

    Google Scholar 

  • Brett D., Pospisil H., Valcárcel J., Reich J., Bork P. (2001). Alternative splicing and genome complexity. Nature Genetics 30, 29–30

    Article  Google Scholar 

  • Burnet, F. M. (1982). Le Programme et l’Erreur (1978). Albin Michel.

  • Campbell K.H.S., Kind A.J., Schnieke A.E., McWhir J., Wilmut I. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813

    Article  Google Scholar 

  • Cappuccio, M. (2003). Traces of computational mind: From wax tablets to Turing machine. In G. Longo (Ed.), Géométrie et cognition, Editions rue d’Ulm, 124, s.5, 43–60.

  • Chapouthier G., Matras J.-J. (1984). La Néguentropie: un artefact?. Fundamenta Scientiæ 2, 141–151

    Google Scholar 

  • Collectif (1965). Le Concept d’information dans la science contemporaine. Cahiers de Royaumont, Minuit-Gauthier-Villars.

  • Collectif (1995). Biologie moléculaire de la cellule. Flammarion.

  • Creager A.N., Gaudillière J.-P. (1996). Meanings in search of experiments and vice-versa: The invention of allosteric regulation in Paris and Berkeley, 1889–1968. Historical Studies in the Physical and Biological Sciences 27, 1–89

    Google Scholar 

  • Crick F.H.C. (1957). On protein synthesis. Symposia of the Society for Experimental Biology 12, 138–163

    Google Scholar 

  • Crick F.H.C., Watson J.D. (1953a). Molecular structure of nucleic acids. Nature 171, 737–738

    Article  Google Scholar 

  • Crick F.H.C., Watson J.D. (1953b). Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964

    Google Scholar 

  • Danchin, A. (2003). The Delphic boat: What genomes tell us. Harvard University Press.

  • de Vries, H. (1909). Espèces et variétés, leur naissance par mutations. Traduction de L. Blaringhem. Alcan.

  • Eddy S. (2001). Non-coding RNA genes and the modern RNA world. Nature Reviews Genetics 2, 919–929

    Article  Google Scholar 

  • Edelman G.M., Gally J.A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Science 24, 13763–13768

    Article  Google Scholar 

  • Edelman, G., & Tononi, G. (2000). A universe of consciousness. How matter becomes immagination. Basic Books.

  • Enard W., et al. (2002). Intra- and inter-specific variation in primate gene expression patterns. Science 296, 340–343

    Article  Google Scholar 

  • Feingold, J., & Serre, J.-L. (1993). Génétique humaine, De la transmission des caractères à l’analyse de l’ADN. INSERM-Nathan.

  • Frege, G. (1884). The foundations of arithmetic (english Trans. Evanston, 1980).

  • Gilbert W. (1978). Why genes in pieces?. Nature 271, 501

    Article  Google Scholar 

  • Godell B., Gouyon P.H., Maynard-Smith J., Radman M., Taddei F., Toupance B. (1997). Role of mutator alleles in adaptative evolution. Nature 387, 700–702

    Article  Google Scholar 

  • Goldschmidt, R. (1938). Physiological genetics. McGraw-Hill.

  • Goodwin B. (1985). What are the causes of morphogenesis?. BioEssays 3, 32–36

    Article  Google Scholar 

  • Goubault, E. (Ed.). (2000). Geometry in concurrency. Special issue, Mathematical structures in computer science (Vol. 10, n. 4). Cambridge University Press.

  • Gros, F. (1991). Les Secrets du gène. O. Jacob/Points-Seuil.

  • Havelock, E. A. (1976). Origins of Western Literacy. Toronto: Ontario Institute for Studies in Education.

  • Herrenschmidt, C., et al. (Eds.). (1996). Albin-Michel: L’Orient et nous.

  • Jablonka, E., & Lamb, M. (1995). Epigenetic inheritance and evolution. Oxford University Press.

  • Jacob F., Monod J. (1959). Gènes de structure et gènes de régulation dans la biosynthèse des protéines. Comptes rendus de l’Académie des Sciences de Paris 349, 1282–1284

    Google Scholar 

  • Kupiec J.-J. (1996). A chance-selection model for cellular differentiation. Cells, Death & Differentiation 3, 385–390

    Google Scholar 

  • Kupiec, J.-J., & Sonigo, P. (2000). Ni Dieu, ni gène. Seuil.

  • Laskar, J. (1992). La stabilité du système solaire. In E. Dahan et al. (Eds.), Chaos et déterminisme. Seuil.

  • Laskar J. (1994). Large scale chaos in the solar system. Astronomy and Astrophysics 287, L9–L12

    Google Scholar 

  • Lewontin, R. (1997). The confusion over cloning. New York Review of Book.

  • Longo, G. (2002). Laplace, Turing et la géométrie impossible du “jeu de l’imitation”: aléas, déterminisme et programmes dans le test de Turing. Conférence invitée, Colloque Cognition, meaning and complexity, Univ. Roma II, June 2002; paru dans Intellectica, n. 35, 2002/2.

  • Matherat, P., & Jaekel, M.-T. (2003). Concurrent computing machines and physical space-time. Special issue, Mathematical structures in computer science (Vol. 13, n. 5). Cambridge University Press.

  • Mayr E. (1959). Cause and effect in biology. Science 24, 1–14

    Google Scholar 

  • Mendel, G. (1907). Recherches sur des hybrides végétaux. Traduction A. de Chappellier. Bulletin scientifique de la France et de la Belgique 41, 371–419

    Google Scholar 

  • Morange, M. (1994). Histoire de la biologie moléculaire. La Découverte.

  • Morange, M. (1998). La Part des genes. Odile Jacon.

  • Morgan, T. H. (1926). The theory of the gene. Yale University Press, 1928.

  • Morgan, T. H. (1934). Embryologie et Génétique. Traduction J. de Rostand, Gallimard, 1936.

  • Nijhout F. (2002). The nature of robustness in development. BioEssays 24, 553–563

    Article  Google Scholar 

  • Nouvel, P. (2002). Modèles et métaphores dans. In P. Nouvel (Ed.), Enquête sur le concept de modèle. Presses Univ. de France.

  • Ong W.J. (1988). Orality and literacy: The technologizing of the word. In T. Hawkes (Ed.), New accents. Methuen, New York

  • Pentris, S., Tooze, J., & Hunt, T. (Eds.). (1983). DNA makes RNA makes protein. Elsevier.

  • Portin P. (1993). The concept of the gene: Short history and present status. Quarterly Review of Biology 68, 173–223

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1975). Théorie mathématique de la communication. Traduction J. de Cosnier, G. Dahan, & S. Economidès. Retz-C. E. P. L.

  • Shroedinger, E. (1944). What is life? Cambridge University Press.

  • Simpson, G. G. (1953). The major features of evolution. Harvard University Press.

  • Sonnenschein C., Soto A. (1999). The society of cells. Bios Scientific Publishers, Boston

    Google Scholar 

  • Stewart J. (2004). La vie existe-t-elle?. Vuibert, Paris

    Google Scholar 

  • Sturtevant, A. H. (1965). A history of genetics. McGrawn-Hill.

  • Tautz D. (1992). Redundancies, development and the flow of information. BioEssays 14, 263–266

    Article  Google Scholar 

  • Thomas J.H. (1993). Thinking about genetic redundancy. Trends in Genetics 9, 395–399

    Article  Google Scholar 

  • Turing A.M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B237: 37–72

    Article  Google Scholar 

  • Turing, A. (1990). Computing machines and intelligence. Mind, LIX, 1950 (page references to its reprinted version. In M. Boden (Ed.), Oxford University Press, 1990).

  • Turner B. (2002). Cellular memory and the histone code. Cell 111, 285–291

    Article  Google Scholar 

  • van Frassen B. (1994). Lois et symetries. Vrin, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Longo.

Additional information

A preliminary (and longer) French version of this paper is an invited paper in Evolution des concepts fondateurs de la biologie du XXIe siècle, (Miquel et al., eds) DeBoeck, Paris, 2007 (in press).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longo, G., Tendero, PE. The Differential Method and the Causal Incompleteness of Programming Theory in Molecular Biology. Found Sci 12, 337–366 (2007). https://doi.org/10.1007/s10699-007-9111-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-007-9111-x

Keywords

Navigation